4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/prio_heap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/security.h>
47 #include <linux/slab.h>
48 #include <linux/spinlock.h>
49 #include <linux/stat.h>
50 #include <linux/string.h>
51 #include <linux/time.h>
52 #include <linux/backing-dev.h>
53 #include <linux/sort.h>
55 #include <asm/uaccess.h>
56 #include <asm/atomic.h>
57 #include <linux/mutex.h>
58 #include <linux/kfifo.h>
61 * Tracks how many cpusets are currently defined in system.
62 * When there is only one cpuset (the root cpuset) we can
63 * short circuit some hooks.
65 int number_of_cpusets __read_mostly
;
67 /* Retrieve the cpuset from a cgroup */
68 struct cgroup_subsys cpuset_subsys
;
71 /* See "Frequency meter" comments, below. */
74 int cnt
; /* unprocessed events count */
75 int val
; /* most recent output value */
76 time_t time
; /* clock (secs) when val computed */
77 spinlock_t lock
; /* guards read or write of above */
81 struct cgroup_subsys_state css
;
83 unsigned long flags
; /* "unsigned long" so bitops work */
84 cpumask_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
85 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
87 struct cpuset
*parent
; /* my parent */
90 * Copy of global cpuset_mems_generation as of the most
91 * recent time this cpuset changed its mems_allowed.
95 struct fmeter fmeter
; /* memory_pressure filter */
97 /* partition number for rebuild_sched_domains() */
101 /* Retrieve the cpuset for a cgroup */
102 static inline struct cpuset
*cgroup_cs(struct cgroup
*cont
)
104 return container_of(cgroup_subsys_state(cont
, cpuset_subsys_id
),
108 /* Retrieve the cpuset for a task */
109 static inline struct cpuset
*task_cs(struct task_struct
*task
)
111 return container_of(task_subsys_state(task
, cpuset_subsys_id
),
116 /* bits in struct cpuset flags field */
121 CS_SCHED_LOAD_BALANCE
,
126 /* convenient tests for these bits */
127 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
129 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
132 static inline int is_mem_exclusive(const struct cpuset
*cs
)
134 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
137 static inline int is_sched_load_balance(const struct cpuset
*cs
)
139 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
142 static inline int is_memory_migrate(const struct cpuset
*cs
)
144 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
147 static inline int is_spread_page(const struct cpuset
*cs
)
149 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
152 static inline int is_spread_slab(const struct cpuset
*cs
)
154 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
158 * Increment this integer everytime any cpuset changes its
159 * mems_allowed value. Users of cpusets can track this generation
160 * number, and avoid having to lock and reload mems_allowed unless
161 * the cpuset they're using changes generation.
163 * A single, global generation is needed because attach_task() could
164 * reattach a task to a different cpuset, which must not have its
165 * generation numbers aliased with those of that tasks previous cpuset.
167 * Generations are needed for mems_allowed because one task cannot
168 * modify anothers memory placement. So we must enable every task,
169 * on every visit to __alloc_pages(), to efficiently check whether
170 * its current->cpuset->mems_allowed has changed, requiring an update
171 * of its current->mems_allowed.
173 * Since cpuset_mems_generation is guarded by manage_mutex,
174 * there is no need to mark it atomic.
176 static int cpuset_mems_generation
;
178 static struct cpuset top_cpuset
= {
179 .flags
= ((1 << CS_CPU_EXCLUSIVE
) | (1 << CS_MEM_EXCLUSIVE
)),
180 .cpus_allowed
= CPU_MASK_ALL
,
181 .mems_allowed
= NODE_MASK_ALL
,
185 * We have two global cpuset mutexes below. They can nest.
186 * It is ok to first take manage_mutex, then nest callback_mutex. We also
187 * require taking task_lock() when dereferencing a tasks cpuset pointer.
188 * See "The task_lock() exception", at the end of this comment.
190 * A task must hold both mutexes to modify cpusets. If a task
191 * holds manage_mutex, then it blocks others wanting that mutex,
192 * ensuring that it is the only task able to also acquire callback_mutex
193 * and be able to modify cpusets. It can perform various checks on
194 * the cpuset structure first, knowing nothing will change. It can
195 * also allocate memory while just holding manage_mutex. While it is
196 * performing these checks, various callback routines can briefly
197 * acquire callback_mutex to query cpusets. Once it is ready to make
198 * the changes, it takes callback_mutex, blocking everyone else.
200 * Calls to the kernel memory allocator can not be made while holding
201 * callback_mutex, as that would risk double tripping on callback_mutex
202 * from one of the callbacks into the cpuset code from within
205 * If a task is only holding callback_mutex, then it has read-only
208 * The task_struct fields mems_allowed and mems_generation may only
209 * be accessed in the context of that task, so require no locks.
211 * Any task can increment and decrement the count field without lock.
212 * So in general, code holding manage_mutex or callback_mutex can't rely
213 * on the count field not changing. However, if the count goes to
214 * zero, then only attach_task(), which holds both mutexes, can
215 * increment it again. Because a count of zero means that no tasks
216 * are currently attached, therefore there is no way a task attached
217 * to that cpuset can fork (the other way to increment the count).
218 * So code holding manage_mutex or callback_mutex can safely assume that
219 * if the count is zero, it will stay zero. Similarly, if a task
220 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
221 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
222 * both of those mutexes.
224 * The cpuset_common_file_write handler for operations that modify
225 * the cpuset hierarchy holds manage_mutex across the entire operation,
226 * single threading all such cpuset modifications across the system.
228 * The cpuset_common_file_read() handlers only hold callback_mutex across
229 * small pieces of code, such as when reading out possibly multi-word
230 * cpumasks and nodemasks.
232 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
233 * (usually) take either mutex. These are the two most performance
234 * critical pieces of code here. The exception occurs on cpuset_exit(),
235 * when a task in a notify_on_release cpuset exits. Then manage_mutex
236 * is taken, and if the cpuset count is zero, a usermode call made
237 * to /sbin/cpuset_release_agent with the name of the cpuset (path
238 * relative to the root of cpuset file system) as the argument.
240 * A cpuset can only be deleted if both its 'count' of using tasks
241 * is zero, and its list of 'children' cpusets is empty. Since all
242 * tasks in the system use _some_ cpuset, and since there is always at
243 * least one task in the system (init), therefore, top_cpuset
244 * always has either children cpusets and/or using tasks. So we don't
245 * need a special hack to ensure that top_cpuset cannot be deleted.
247 * The above "Tale of Two Semaphores" would be complete, but for:
249 * The task_lock() exception
251 * The need for this exception arises from the action of attach_task(),
252 * which overwrites one tasks cpuset pointer with another. It does
253 * so using both mutexes, however there are several performance
254 * critical places that need to reference task->cpuset without the
255 * expense of grabbing a system global mutex. Therefore except as
256 * noted below, when dereferencing or, as in attach_task(), modifying
257 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
258 * (task->alloc_lock) already in the task_struct routinely used for
261 * P.S. One more locking exception. RCU is used to guard the
262 * update of a tasks cpuset pointer by attach_task() and the
263 * access of task->cpuset->mems_generation via that pointer in
264 * the routine cpuset_update_task_memory_state().
267 static DEFINE_MUTEX(callback_mutex
);
269 /* This is ugly, but preserves the userspace API for existing cpuset
270 * users. If someone tries to mount the "cpuset" filesystem, we
271 * silently switch it to mount "cgroup" instead */
272 static int cpuset_get_sb(struct file_system_type
*fs_type
,
273 int flags
, const char *unused_dev_name
,
274 void *data
, struct vfsmount
*mnt
)
276 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
281 "release_agent=/sbin/cpuset_release_agent";
282 ret
= cgroup_fs
->get_sb(cgroup_fs
, flags
,
283 unused_dev_name
, mountopts
, mnt
);
284 put_filesystem(cgroup_fs
);
289 static struct file_system_type cpuset_fs_type
= {
291 .get_sb
= cpuset_get_sb
,
295 * Return in *pmask the portion of a cpusets's cpus_allowed that
296 * are online. If none are online, walk up the cpuset hierarchy
297 * until we find one that does have some online cpus. If we get
298 * all the way to the top and still haven't found any online cpus,
299 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
300 * task, return cpu_online_map.
302 * One way or another, we guarantee to return some non-empty subset
305 * Call with callback_mutex held.
308 static void guarantee_online_cpus(const struct cpuset
*cs
, cpumask_t
*pmask
)
310 while (cs
&& !cpus_intersects(cs
->cpus_allowed
, cpu_online_map
))
313 cpus_and(*pmask
, cs
->cpus_allowed
, cpu_online_map
);
315 *pmask
= cpu_online_map
;
316 BUG_ON(!cpus_intersects(*pmask
, cpu_online_map
));
320 * Return in *pmask the portion of a cpusets's mems_allowed that
321 * are online, with memory. If none are online with memory, walk
322 * up the cpuset hierarchy until we find one that does have some
323 * online mems. If we get all the way to the top and still haven't
324 * found any online mems, return node_states[N_HIGH_MEMORY].
326 * One way or another, we guarantee to return some non-empty subset
327 * of node_states[N_HIGH_MEMORY].
329 * Call with callback_mutex held.
332 static void guarantee_online_mems(const struct cpuset
*cs
, nodemask_t
*pmask
)
334 while (cs
&& !nodes_intersects(cs
->mems_allowed
,
335 node_states
[N_HIGH_MEMORY
]))
338 nodes_and(*pmask
, cs
->mems_allowed
,
339 node_states
[N_HIGH_MEMORY
]);
341 *pmask
= node_states
[N_HIGH_MEMORY
];
342 BUG_ON(!nodes_intersects(*pmask
, node_states
[N_HIGH_MEMORY
]));
346 * cpuset_update_task_memory_state - update task memory placement
348 * If the current tasks cpusets mems_allowed changed behind our
349 * backs, update current->mems_allowed, mems_generation and task NUMA
350 * mempolicy to the new value.
352 * Task mempolicy is updated by rebinding it relative to the
353 * current->cpuset if a task has its memory placement changed.
354 * Do not call this routine if in_interrupt().
356 * Call without callback_mutex or task_lock() held. May be
357 * called with or without manage_mutex held. Thanks in part to
358 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
359 * be NULL. This routine also might acquire callback_mutex and
360 * current->mm->mmap_sem during call.
362 * Reading current->cpuset->mems_generation doesn't need task_lock
363 * to guard the current->cpuset derefence, because it is guarded
364 * from concurrent freeing of current->cpuset by attach_task(),
367 * The rcu_dereference() is technically probably not needed,
368 * as I don't actually mind if I see a new cpuset pointer but
369 * an old value of mems_generation. However this really only
370 * matters on alpha systems using cpusets heavily. If I dropped
371 * that rcu_dereference(), it would save them a memory barrier.
372 * For all other arch's, rcu_dereference is a no-op anyway, and for
373 * alpha systems not using cpusets, another planned optimization,
374 * avoiding the rcu critical section for tasks in the root cpuset
375 * which is statically allocated, so can't vanish, will make this
376 * irrelevant. Better to use RCU as intended, than to engage in
377 * some cute trick to save a memory barrier that is impossible to
378 * test, for alpha systems using cpusets heavily, which might not
381 * This routine is needed to update the per-task mems_allowed data,
382 * within the tasks context, when it is trying to allocate memory
383 * (in various mm/mempolicy.c routines) and notices that some other
384 * task has been modifying its cpuset.
387 void cpuset_update_task_memory_state(void)
389 int my_cpusets_mem_gen
;
390 struct task_struct
*tsk
= current
;
393 if (task_cs(tsk
) == &top_cpuset
) {
394 /* Don't need rcu for top_cpuset. It's never freed. */
395 my_cpusets_mem_gen
= top_cpuset
.mems_generation
;
398 my_cpusets_mem_gen
= task_cs(current
)->mems_generation
;
402 if (my_cpusets_mem_gen
!= tsk
->cpuset_mems_generation
) {
403 mutex_lock(&callback_mutex
);
405 cs
= task_cs(tsk
); /* Maybe changed when task not locked */
406 guarantee_online_mems(cs
, &tsk
->mems_allowed
);
407 tsk
->cpuset_mems_generation
= cs
->mems_generation
;
408 if (is_spread_page(cs
))
409 tsk
->flags
|= PF_SPREAD_PAGE
;
411 tsk
->flags
&= ~PF_SPREAD_PAGE
;
412 if (is_spread_slab(cs
))
413 tsk
->flags
|= PF_SPREAD_SLAB
;
415 tsk
->flags
&= ~PF_SPREAD_SLAB
;
417 mutex_unlock(&callback_mutex
);
418 mpol_rebind_task(tsk
, &tsk
->mems_allowed
);
423 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
425 * One cpuset is a subset of another if all its allowed CPUs and
426 * Memory Nodes are a subset of the other, and its exclusive flags
427 * are only set if the other's are set. Call holding manage_mutex.
430 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
432 return cpus_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
433 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
434 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
435 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
439 * validate_change() - Used to validate that any proposed cpuset change
440 * follows the structural rules for cpusets.
442 * If we replaced the flag and mask values of the current cpuset
443 * (cur) with those values in the trial cpuset (trial), would
444 * our various subset and exclusive rules still be valid? Presumes
447 * 'cur' is the address of an actual, in-use cpuset. Operations
448 * such as list traversal that depend on the actual address of the
449 * cpuset in the list must use cur below, not trial.
451 * 'trial' is the address of bulk structure copy of cur, with
452 * perhaps one or more of the fields cpus_allowed, mems_allowed,
453 * or flags changed to new, trial values.
455 * Return 0 if valid, -errno if not.
458 static int validate_change(const struct cpuset
*cur
, const struct cpuset
*trial
)
461 struct cpuset
*c
, *par
;
463 /* Each of our child cpusets must be a subset of us */
464 list_for_each_entry(cont
, &cur
->css
.cgroup
->children
, sibling
) {
465 if (!is_cpuset_subset(cgroup_cs(cont
), trial
))
469 /* Remaining checks don't apply to root cpuset */
470 if (cur
== &top_cpuset
)
475 /* We must be a subset of our parent cpuset */
476 if (!is_cpuset_subset(trial
, par
))
479 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
480 list_for_each_entry(cont
, &par
->css
.cgroup
->children
, sibling
) {
482 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
484 cpus_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
486 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
488 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
492 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
493 if (cgroup_task_count(cur
->css
.cgroup
)) {
494 if (cpus_empty(trial
->cpus_allowed
) ||
495 nodes_empty(trial
->mems_allowed
)) {
504 * Helper routine for rebuild_sched_domains().
505 * Do cpusets a, b have overlapping cpus_allowed masks?
508 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
510 return cpus_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
514 * rebuild_sched_domains()
516 * If the flag 'sched_load_balance' of any cpuset with non-empty
517 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
518 * which has that flag enabled, or if any cpuset with a non-empty
519 * 'cpus' is removed, then call this routine to rebuild the
520 * scheduler's dynamic sched domains.
522 * This routine builds a partial partition of the systems CPUs
523 * (the set of non-overlappping cpumask_t's in the array 'part'
524 * below), and passes that partial partition to the kernel/sched.c
525 * partition_sched_domains() routine, which will rebuild the
526 * schedulers load balancing domains (sched domains) as specified
527 * by that partial partition. A 'partial partition' is a set of
528 * non-overlapping subsets whose union is a subset of that set.
530 * See "What is sched_load_balance" in Documentation/cpusets.txt
531 * for a background explanation of this.
533 * Does not return errors, on the theory that the callers of this
534 * routine would rather not worry about failures to rebuild sched
535 * domains when operating in the severe memory shortage situations
536 * that could cause allocation failures below.
538 * Call with cgroup_mutex held. May take callback_mutex during
539 * call due to the kfifo_alloc() and kmalloc() calls. May nest
540 * a call to the get_online_cpus()/put_online_cpus() pair.
541 * Must not be called holding callback_mutex, because we must not
542 * call get_online_cpus() while holding callback_mutex. Elsewhere
543 * the kernel nests callback_mutex inside get_online_cpus() calls.
544 * So the reverse nesting would risk an ABBA deadlock.
546 * The three key local variables below are:
547 * q - a kfifo queue of cpuset pointers, used to implement a
548 * top-down scan of all cpusets. This scan loads a pointer
549 * to each cpuset marked is_sched_load_balance into the
550 * array 'csa'. For our purposes, rebuilding the schedulers
551 * sched domains, we can ignore !is_sched_load_balance cpusets.
552 * csa - (for CpuSet Array) Array of pointers to all the cpusets
553 * that need to be load balanced, for convenient iterative
554 * access by the subsequent code that finds the best partition,
555 * i.e the set of domains (subsets) of CPUs such that the
556 * cpus_allowed of every cpuset marked is_sched_load_balance
557 * is a subset of one of these domains, while there are as
558 * many such domains as possible, each as small as possible.
559 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
560 * the kernel/sched.c routine partition_sched_domains() in a
561 * convenient format, that can be easily compared to the prior
562 * value to determine what partition elements (sched domains)
563 * were changed (added or removed.)
565 * Finding the best partition (set of domains):
566 * The triple nested loops below over i, j, k scan over the
567 * load balanced cpusets (using the array of cpuset pointers in
568 * csa[]) looking for pairs of cpusets that have overlapping
569 * cpus_allowed, but which don't have the same 'pn' partition
570 * number and gives them in the same partition number. It keeps
571 * looping on the 'restart' label until it can no longer find
574 * The union of the cpus_allowed masks from the set of
575 * all cpusets having the same 'pn' value then form the one
576 * element of the partition (one sched domain) to be passed to
577 * partition_sched_domains().
580 static void rebuild_sched_domains(void)
582 struct kfifo
*q
; /* queue of cpusets to be scanned */
583 struct cpuset
*cp
; /* scans q */
584 struct cpuset
**csa
; /* array of all cpuset ptrs */
585 int csn
; /* how many cpuset ptrs in csa so far */
586 int i
, j
, k
; /* indices for partition finding loops */
587 cpumask_t
*doms
; /* resulting partition; i.e. sched domains */
588 int ndoms
; /* number of sched domains in result */
589 int nslot
; /* next empty doms[] cpumask_t slot */
595 /* Special case for the 99% of systems with one, full, sched domain */
596 if (is_sched_load_balance(&top_cpuset
)) {
598 doms
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
601 *doms
= top_cpuset
.cpus_allowed
;
605 q
= kfifo_alloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
, NULL
);
608 csa
= kmalloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
);
614 __kfifo_put(q
, (void *)&cp
, sizeof(cp
));
615 while (__kfifo_get(q
, (void *)&cp
, sizeof(cp
))) {
617 struct cpuset
*child
; /* scans child cpusets of cp */
618 if (is_sched_load_balance(cp
))
620 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
621 child
= cgroup_cs(cont
);
622 __kfifo_put(q
, (void *)&child
, sizeof(cp
));
626 for (i
= 0; i
< csn
; i
++)
631 /* Find the best partition (set of sched domains) */
632 for (i
= 0; i
< csn
; i
++) {
633 struct cpuset
*a
= csa
[i
];
636 for (j
= 0; j
< csn
; j
++) {
637 struct cpuset
*b
= csa
[j
];
640 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
641 for (k
= 0; k
< csn
; k
++) {
642 struct cpuset
*c
= csa
[k
];
647 ndoms
--; /* one less element */
653 /* Convert <csn, csa> to <ndoms, doms> */
654 doms
= kmalloc(ndoms
* sizeof(cpumask_t
), GFP_KERNEL
);
658 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
659 struct cpuset
*a
= csa
[i
];
663 cpumask_t
*dp
= doms
+ nslot
;
665 if (nslot
== ndoms
) {
666 static int warnings
= 10;
669 "rebuild_sched_domains confused:"
670 " nslot %d, ndoms %d, csn %d, i %d,"
672 nslot
, ndoms
, csn
, i
, apn
);
679 for (j
= i
; j
< csn
; j
++) {
680 struct cpuset
*b
= csa
[j
];
683 cpus_or(*dp
, *dp
, b
->cpus_allowed
);
690 BUG_ON(nslot
!= ndoms
);
693 /* Have scheduler rebuild sched domains */
695 partition_sched_domains(ndoms
, doms
);
702 /* Don't kfree(doms) -- partition_sched_domains() does that. */
705 static inline int started_after_time(struct task_struct
*t1
,
706 struct timespec
*time
,
707 struct task_struct
*t2
)
709 int start_diff
= timespec_compare(&t1
->start_time
, time
);
710 if (start_diff
> 0) {
712 } else if (start_diff
< 0) {
716 * Arbitrarily, if two processes started at the same
717 * time, we'll say that the lower pointer value
718 * started first. Note that t2 may have exited by now
719 * so this may not be a valid pointer any longer, but
720 * that's fine - it still serves to distinguish
721 * between two tasks started (effectively)
728 static inline int started_after(void *p1
, void *p2
)
730 struct task_struct
*t1
= p1
;
731 struct task_struct
*t2
= p2
;
732 return started_after_time(t1
, &t2
->start_time
, t2
);
736 * Call with manage_mutex held. May take callback_mutex during call.
739 static int update_cpumask(struct cpuset
*cs
, char *buf
)
741 struct cpuset trialcs
;
743 int is_load_balanced
;
744 struct cgroup_iter it
;
745 struct cgroup
*cgrp
= cs
->css
.cgroup
;
746 struct task_struct
*p
, *dropped
;
747 /* Never dereference latest_task, since it's not refcounted */
748 struct task_struct
*latest_task
= NULL
;
749 struct ptr_heap heap
;
750 struct timespec latest_time
= { 0, 0 };
752 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
753 if (cs
== &top_cpuset
)
759 * An empty cpus_allowed is ok iff there are no tasks in the cpuset.
760 * Since cpulist_parse() fails on an empty mask, we special case
761 * that parsing. The validate_change() call ensures that cpusets
762 * with tasks have cpus.
766 cpus_clear(trialcs
.cpus_allowed
);
768 retval
= cpulist_parse(buf
, trialcs
.cpus_allowed
);
772 cpus_and(trialcs
.cpus_allowed
, trialcs
.cpus_allowed
, cpu_online_map
);
773 retval
= validate_change(cs
, &trialcs
);
777 /* Nothing to do if the cpus didn't change */
778 if (cpus_equal(cs
->cpus_allowed
, trialcs
.cpus_allowed
))
780 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
784 is_load_balanced
= is_sched_load_balance(&trialcs
);
786 mutex_lock(&callback_mutex
);
787 cs
->cpus_allowed
= trialcs
.cpus_allowed
;
788 mutex_unlock(&callback_mutex
);
792 * Scan tasks in the cpuset, and update the cpumasks of any
793 * that need an update. Since we can't call set_cpus_allowed()
794 * while holding tasklist_lock, gather tasks to be processed
795 * in a heap structure. If the statically-sized heap fills up,
796 * overflow tasks that started later, and in future iterations
797 * only consider tasks that started after the latest task in
798 * the previous pass. This guarantees forward progress and
799 * that we don't miss any tasks
802 cgroup_iter_start(cgrp
, &it
);
803 while ((p
= cgroup_iter_next(cgrp
, &it
))) {
804 /* Only affect tasks that don't have the right cpus_allowed */
805 if (cpus_equal(p
->cpus_allowed
, cs
->cpus_allowed
))
808 * Only process tasks that started after the last task
811 if (!started_after_time(p
, &latest_time
, latest_task
))
813 dropped
= heap_insert(&heap
, p
);
814 if (dropped
== NULL
) {
816 } else if (dropped
!= p
) {
818 put_task_struct(dropped
);
821 cgroup_iter_end(cgrp
, &it
);
823 for (i
= 0; i
< heap
.size
; i
++) {
824 struct task_struct
*p
= heap
.ptrs
[i
];
826 latest_time
= p
->start_time
;
829 set_cpus_allowed(p
, cs
->cpus_allowed
);
833 * If we had to process any tasks at all, scan again
834 * in case some of them were in the middle of forking
835 * children that didn't notice the new cpumask
836 * restriction. Not the most efficient way to do it,
837 * but it avoids having to take callback_mutex in the
843 if (is_load_balanced
)
844 rebuild_sched_domains();
852 * Migrate memory region from one set of nodes to another.
854 * Temporarilly set tasks mems_allowed to target nodes of migration,
855 * so that the migration code can allocate pages on these nodes.
857 * Call holding manage_mutex, so our current->cpuset won't change
858 * during this call, as manage_mutex holds off any attach_task()
859 * calls. Therefore we don't need to take task_lock around the
860 * call to guarantee_online_mems(), as we know no one is changing
863 * Hold callback_mutex around the two modifications of our tasks
864 * mems_allowed to synchronize with cpuset_mems_allowed().
866 * While the mm_struct we are migrating is typically from some
867 * other task, the task_struct mems_allowed that we are hacking
868 * is for our current task, which must allocate new pages for that
869 * migrating memory region.
871 * We call cpuset_update_task_memory_state() before hacking
872 * our tasks mems_allowed, so that we are assured of being in
873 * sync with our tasks cpuset, and in particular, callbacks to
874 * cpuset_update_task_memory_state() from nested page allocations
875 * won't see any mismatch of our cpuset and task mems_generation
876 * values, so won't overwrite our hacked tasks mems_allowed
880 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
881 const nodemask_t
*to
)
883 struct task_struct
*tsk
= current
;
885 cpuset_update_task_memory_state();
887 mutex_lock(&callback_mutex
);
888 tsk
->mems_allowed
= *to
;
889 mutex_unlock(&callback_mutex
);
891 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
893 mutex_lock(&callback_mutex
);
894 guarantee_online_mems(task_cs(tsk
),&tsk
->mems_allowed
);
895 mutex_unlock(&callback_mutex
);
899 * Handle user request to change the 'mems' memory placement
900 * of a cpuset. Needs to validate the request, update the
901 * cpusets mems_allowed and mems_generation, and for each
902 * task in the cpuset, rebind any vma mempolicies and if
903 * the cpuset is marked 'memory_migrate', migrate the tasks
904 * pages to the new memory.
906 * Call with manage_mutex held. May take callback_mutex during call.
907 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
908 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
909 * their mempolicies to the cpusets new mems_allowed.
912 static void *cpuset_being_rebound
;
914 static int update_nodemask(struct cpuset
*cs
, char *buf
)
916 struct cpuset trialcs
;
918 struct task_struct
*p
;
919 struct mm_struct
**mmarray
;
924 struct cgroup_iter it
;
927 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
930 if (cs
== &top_cpuset
)
936 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
937 * Since nodelist_parse() fails on an empty mask, we special case
938 * that parsing. The validate_change() call ensures that cpusets
939 * with tasks have memory.
943 nodes_clear(trialcs
.mems_allowed
);
945 retval
= nodelist_parse(buf
, trialcs
.mems_allowed
);
949 nodes_and(trialcs
.mems_allowed
, trialcs
.mems_allowed
,
950 node_states
[N_HIGH_MEMORY
]);
951 oldmem
= cs
->mems_allowed
;
952 if (nodes_equal(oldmem
, trialcs
.mems_allowed
)) {
953 retval
= 0; /* Too easy - nothing to do */
956 retval
= validate_change(cs
, &trialcs
);
960 mutex_lock(&callback_mutex
);
961 cs
->mems_allowed
= trialcs
.mems_allowed
;
962 cs
->mems_generation
= cpuset_mems_generation
++;
963 mutex_unlock(&callback_mutex
);
965 cpuset_being_rebound
= cs
; /* causes mpol_copy() rebind */
967 fudge
= 10; /* spare mmarray[] slots */
968 fudge
+= cpus_weight(cs
->cpus_allowed
); /* imagine one fork-bomb/cpu */
972 * Allocate mmarray[] to hold mm reference for each task
973 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
974 * tasklist_lock. We could use GFP_ATOMIC, but with a
975 * few more lines of code, we can retry until we get a big
976 * enough mmarray[] w/o using GFP_ATOMIC.
979 ntasks
= cgroup_task_count(cs
->css
.cgroup
); /* guess */
981 mmarray
= kmalloc(ntasks
* sizeof(*mmarray
), GFP_KERNEL
);
984 read_lock(&tasklist_lock
); /* block fork */
985 if (cgroup_task_count(cs
->css
.cgroup
) <= ntasks
)
986 break; /* got enough */
987 read_unlock(&tasklist_lock
); /* try again */
993 /* Load up mmarray[] with mm reference for each task in cpuset. */
994 cgroup_iter_start(cs
->css
.cgroup
, &it
);
995 while ((p
= cgroup_iter_next(cs
->css
.cgroup
, &it
))) {
996 struct mm_struct
*mm
;
1000 "Cpuset mempolicy rebind incomplete.\n");
1003 mm
= get_task_mm(p
);
1008 cgroup_iter_end(cs
->css
.cgroup
, &it
);
1009 read_unlock(&tasklist_lock
);
1012 * Now that we've dropped the tasklist spinlock, we can
1013 * rebind the vma mempolicies of each mm in mmarray[] to their
1014 * new cpuset, and release that mm. The mpol_rebind_mm()
1015 * call takes mmap_sem, which we couldn't take while holding
1016 * tasklist_lock. Forks can happen again now - the mpol_copy()
1017 * cpuset_being_rebound check will catch such forks, and rebind
1018 * their vma mempolicies too. Because we still hold the global
1019 * cpuset manage_mutex, we know that no other rebind effort will
1020 * be contending for the global variable cpuset_being_rebound.
1021 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1022 * is idempotent. Also migrate pages in each mm to new nodes.
1024 migrate
= is_memory_migrate(cs
);
1025 for (i
= 0; i
< n
; i
++) {
1026 struct mm_struct
*mm
= mmarray
[i
];
1028 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1030 cpuset_migrate_mm(mm
, &oldmem
, &cs
->mems_allowed
);
1034 /* We're done rebinding vma's to this cpusets new mems_allowed. */
1036 cpuset_being_rebound
= NULL
;
1042 int current_cpuset_is_being_rebound(void)
1044 return task_cs(current
) == cpuset_being_rebound
;
1048 * Call with manage_mutex held.
1051 static int update_memory_pressure_enabled(struct cpuset
*cs
, char *buf
)
1053 if (simple_strtoul(buf
, NULL
, 10) != 0)
1054 cpuset_memory_pressure_enabled
= 1;
1056 cpuset_memory_pressure_enabled
= 0;
1061 * update_flag - read a 0 or a 1 in a file and update associated flag
1062 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1063 * CS_SCHED_LOAD_BALANCE,
1064 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1065 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1066 * cs: the cpuset to update
1067 * buf: the buffer where we read the 0 or 1
1069 * Call with manage_mutex held.
1072 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
, char *buf
)
1075 struct cpuset trialcs
;
1077 int cpus_nonempty
, balance_flag_changed
;
1079 turning_on
= (simple_strtoul(buf
, NULL
, 10) != 0);
1083 set_bit(bit
, &trialcs
.flags
);
1085 clear_bit(bit
, &trialcs
.flags
);
1087 err
= validate_change(cs
, &trialcs
);
1091 cpus_nonempty
= !cpus_empty(trialcs
.cpus_allowed
);
1092 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1093 is_sched_load_balance(&trialcs
));
1095 mutex_lock(&callback_mutex
);
1096 cs
->flags
= trialcs
.flags
;
1097 mutex_unlock(&callback_mutex
);
1099 if (cpus_nonempty
&& balance_flag_changed
)
1100 rebuild_sched_domains();
1106 * Frequency meter - How fast is some event occurring?
1108 * These routines manage a digitally filtered, constant time based,
1109 * event frequency meter. There are four routines:
1110 * fmeter_init() - initialize a frequency meter.
1111 * fmeter_markevent() - called each time the event happens.
1112 * fmeter_getrate() - returns the recent rate of such events.
1113 * fmeter_update() - internal routine used to update fmeter.
1115 * A common data structure is passed to each of these routines,
1116 * which is used to keep track of the state required to manage the
1117 * frequency meter and its digital filter.
1119 * The filter works on the number of events marked per unit time.
1120 * The filter is single-pole low-pass recursive (IIR). The time unit
1121 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1122 * simulate 3 decimal digits of precision (multiplied by 1000).
1124 * With an FM_COEF of 933, and a time base of 1 second, the filter
1125 * has a half-life of 10 seconds, meaning that if the events quit
1126 * happening, then the rate returned from the fmeter_getrate()
1127 * will be cut in half each 10 seconds, until it converges to zero.
1129 * It is not worth doing a real infinitely recursive filter. If more
1130 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1131 * just compute FM_MAXTICKS ticks worth, by which point the level
1134 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1135 * arithmetic overflow in the fmeter_update() routine.
1137 * Given the simple 32 bit integer arithmetic used, this meter works
1138 * best for reporting rates between one per millisecond (msec) and
1139 * one per 32 (approx) seconds. At constant rates faster than one
1140 * per msec it maxes out at values just under 1,000,000. At constant
1141 * rates between one per msec, and one per second it will stabilize
1142 * to a value N*1000, where N is the rate of events per second.
1143 * At constant rates between one per second and one per 32 seconds,
1144 * it will be choppy, moving up on the seconds that have an event,
1145 * and then decaying until the next event. At rates slower than
1146 * about one in 32 seconds, it decays all the way back to zero between
1150 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1151 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1152 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1153 #define FM_SCALE 1000 /* faux fixed point scale */
1155 /* Initialize a frequency meter */
1156 static void fmeter_init(struct fmeter
*fmp
)
1161 spin_lock_init(&fmp
->lock
);
1164 /* Internal meter update - process cnt events and update value */
1165 static void fmeter_update(struct fmeter
*fmp
)
1167 time_t now
= get_seconds();
1168 time_t ticks
= now
- fmp
->time
;
1173 ticks
= min(FM_MAXTICKS
, ticks
);
1175 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1178 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1182 /* Process any previous ticks, then bump cnt by one (times scale). */
1183 static void fmeter_markevent(struct fmeter
*fmp
)
1185 spin_lock(&fmp
->lock
);
1187 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1188 spin_unlock(&fmp
->lock
);
1191 /* Process any previous ticks, then return current value. */
1192 static int fmeter_getrate(struct fmeter
*fmp
)
1196 spin_lock(&fmp
->lock
);
1199 spin_unlock(&fmp
->lock
);
1203 static int cpuset_can_attach(struct cgroup_subsys
*ss
,
1204 struct cgroup
*cont
, struct task_struct
*tsk
)
1206 struct cpuset
*cs
= cgroup_cs(cont
);
1208 if (cpus_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
))
1211 return security_task_setscheduler(tsk
, 0, NULL
);
1214 static void cpuset_attach(struct cgroup_subsys
*ss
,
1215 struct cgroup
*cont
, struct cgroup
*oldcont
,
1216 struct task_struct
*tsk
)
1219 nodemask_t from
, to
;
1220 struct mm_struct
*mm
;
1221 struct cpuset
*cs
= cgroup_cs(cont
);
1222 struct cpuset
*oldcs
= cgroup_cs(oldcont
);
1224 mutex_lock(&callback_mutex
);
1225 guarantee_online_cpus(cs
, &cpus
);
1226 set_cpus_allowed(tsk
, cpus
);
1227 mutex_unlock(&callback_mutex
);
1229 from
= oldcs
->mems_allowed
;
1230 to
= cs
->mems_allowed
;
1231 mm
= get_task_mm(tsk
);
1233 mpol_rebind_mm(mm
, &to
);
1234 if (is_memory_migrate(cs
))
1235 cpuset_migrate_mm(mm
, &from
, &to
);
1241 /* The various types of files and directories in a cpuset file system */
1244 FILE_MEMORY_MIGRATE
,
1249 FILE_SCHED_LOAD_BALANCE
,
1250 FILE_MEMORY_PRESSURE_ENABLED
,
1251 FILE_MEMORY_PRESSURE
,
1254 } cpuset_filetype_t
;
1256 static ssize_t
cpuset_common_file_write(struct cgroup
*cont
,
1259 const char __user
*userbuf
,
1260 size_t nbytes
, loff_t
*unused_ppos
)
1262 struct cpuset
*cs
= cgroup_cs(cont
);
1263 cpuset_filetype_t type
= cft
->private;
1267 /* Crude upper limit on largest legitimate cpulist user might write. */
1268 if (nbytes
> 100U + 6 * max(NR_CPUS
, MAX_NUMNODES
))
1271 /* +1 for nul-terminator */
1272 if ((buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
)) == 0)
1275 if (copy_from_user(buffer
, userbuf
, nbytes
)) {
1279 buffer
[nbytes
] = 0; /* nul-terminate */
1283 if (cgroup_is_removed(cont
)) {
1290 retval
= update_cpumask(cs
, buffer
);
1293 retval
= update_nodemask(cs
, buffer
);
1295 case FILE_CPU_EXCLUSIVE
:
1296 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, buffer
);
1298 case FILE_MEM_EXCLUSIVE
:
1299 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, buffer
);
1301 case FILE_SCHED_LOAD_BALANCE
:
1302 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, buffer
);
1304 case FILE_MEMORY_MIGRATE
:
1305 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, buffer
);
1307 case FILE_MEMORY_PRESSURE_ENABLED
:
1308 retval
= update_memory_pressure_enabled(cs
, buffer
);
1310 case FILE_MEMORY_PRESSURE
:
1313 case FILE_SPREAD_PAGE
:
1314 retval
= update_flag(CS_SPREAD_PAGE
, cs
, buffer
);
1315 cs
->mems_generation
= cpuset_mems_generation
++;
1317 case FILE_SPREAD_SLAB
:
1318 retval
= update_flag(CS_SPREAD_SLAB
, cs
, buffer
);
1319 cs
->mems_generation
= cpuset_mems_generation
++;
1336 * These ascii lists should be read in a single call, by using a user
1337 * buffer large enough to hold the entire map. If read in smaller
1338 * chunks, there is no guarantee of atomicity. Since the display format
1339 * used, list of ranges of sequential numbers, is variable length,
1340 * and since these maps can change value dynamically, one could read
1341 * gibberish by doing partial reads while a list was changing.
1342 * A single large read to a buffer that crosses a page boundary is
1343 * ok, because the result being copied to user land is not recomputed
1344 * across a page fault.
1347 static int cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1351 mutex_lock(&callback_mutex
);
1352 mask
= cs
->cpus_allowed
;
1353 mutex_unlock(&callback_mutex
);
1355 return cpulist_scnprintf(page
, PAGE_SIZE
, mask
);
1358 static int cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1362 mutex_lock(&callback_mutex
);
1363 mask
= cs
->mems_allowed
;
1364 mutex_unlock(&callback_mutex
);
1366 return nodelist_scnprintf(page
, PAGE_SIZE
, mask
);
1369 static ssize_t
cpuset_common_file_read(struct cgroup
*cont
,
1373 size_t nbytes
, loff_t
*ppos
)
1375 struct cpuset
*cs
= cgroup_cs(cont
);
1376 cpuset_filetype_t type
= cft
->private;
1381 if (!(page
= (char *)__get_free_page(GFP_TEMPORARY
)))
1388 s
+= cpuset_sprintf_cpulist(s
, cs
);
1391 s
+= cpuset_sprintf_memlist(s
, cs
);
1393 case FILE_CPU_EXCLUSIVE
:
1394 *s
++ = is_cpu_exclusive(cs
) ? '1' : '0';
1396 case FILE_MEM_EXCLUSIVE
:
1397 *s
++ = is_mem_exclusive(cs
) ? '1' : '0';
1399 case FILE_SCHED_LOAD_BALANCE
:
1400 *s
++ = is_sched_load_balance(cs
) ? '1' : '0';
1402 case FILE_MEMORY_MIGRATE
:
1403 *s
++ = is_memory_migrate(cs
) ? '1' : '0';
1405 case FILE_MEMORY_PRESSURE_ENABLED
:
1406 *s
++ = cpuset_memory_pressure_enabled
? '1' : '0';
1408 case FILE_MEMORY_PRESSURE
:
1409 s
+= sprintf(s
, "%d", fmeter_getrate(&cs
->fmeter
));
1411 case FILE_SPREAD_PAGE
:
1412 *s
++ = is_spread_page(cs
) ? '1' : '0';
1414 case FILE_SPREAD_SLAB
:
1415 *s
++ = is_spread_slab(cs
) ? '1' : '0';
1423 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1425 free_page((unsigned long)page
);
1434 * for the common functions, 'private' gives the type of file
1437 static struct cftype cft_cpus
= {
1439 .read
= cpuset_common_file_read
,
1440 .write
= cpuset_common_file_write
,
1441 .private = FILE_CPULIST
,
1444 static struct cftype cft_mems
= {
1446 .read
= cpuset_common_file_read
,
1447 .write
= cpuset_common_file_write
,
1448 .private = FILE_MEMLIST
,
1451 static struct cftype cft_cpu_exclusive
= {
1452 .name
= "cpu_exclusive",
1453 .read
= cpuset_common_file_read
,
1454 .write
= cpuset_common_file_write
,
1455 .private = FILE_CPU_EXCLUSIVE
,
1458 static struct cftype cft_mem_exclusive
= {
1459 .name
= "mem_exclusive",
1460 .read
= cpuset_common_file_read
,
1461 .write
= cpuset_common_file_write
,
1462 .private = FILE_MEM_EXCLUSIVE
,
1465 static struct cftype cft_sched_load_balance
= {
1466 .name
= "sched_load_balance",
1467 .read
= cpuset_common_file_read
,
1468 .write
= cpuset_common_file_write
,
1469 .private = FILE_SCHED_LOAD_BALANCE
,
1472 static struct cftype cft_memory_migrate
= {
1473 .name
= "memory_migrate",
1474 .read
= cpuset_common_file_read
,
1475 .write
= cpuset_common_file_write
,
1476 .private = FILE_MEMORY_MIGRATE
,
1479 static struct cftype cft_memory_pressure_enabled
= {
1480 .name
= "memory_pressure_enabled",
1481 .read
= cpuset_common_file_read
,
1482 .write
= cpuset_common_file_write
,
1483 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1486 static struct cftype cft_memory_pressure
= {
1487 .name
= "memory_pressure",
1488 .read
= cpuset_common_file_read
,
1489 .write
= cpuset_common_file_write
,
1490 .private = FILE_MEMORY_PRESSURE
,
1493 static struct cftype cft_spread_page
= {
1494 .name
= "memory_spread_page",
1495 .read
= cpuset_common_file_read
,
1496 .write
= cpuset_common_file_write
,
1497 .private = FILE_SPREAD_PAGE
,
1500 static struct cftype cft_spread_slab
= {
1501 .name
= "memory_spread_slab",
1502 .read
= cpuset_common_file_read
,
1503 .write
= cpuset_common_file_write
,
1504 .private = FILE_SPREAD_SLAB
,
1507 static int cpuset_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1511 if ((err
= cgroup_add_file(cont
, ss
, &cft_cpus
)) < 0)
1513 if ((err
= cgroup_add_file(cont
, ss
, &cft_mems
)) < 0)
1515 if ((err
= cgroup_add_file(cont
, ss
, &cft_cpu_exclusive
)) < 0)
1517 if ((err
= cgroup_add_file(cont
, ss
, &cft_mem_exclusive
)) < 0)
1519 if ((err
= cgroup_add_file(cont
, ss
, &cft_memory_migrate
)) < 0)
1521 if ((err
= cgroup_add_file(cont
, ss
, &cft_sched_load_balance
)) < 0)
1523 if ((err
= cgroup_add_file(cont
, ss
, &cft_memory_pressure
)) < 0)
1525 if ((err
= cgroup_add_file(cont
, ss
, &cft_spread_page
)) < 0)
1527 if ((err
= cgroup_add_file(cont
, ss
, &cft_spread_slab
)) < 0)
1529 /* memory_pressure_enabled is in root cpuset only */
1530 if (err
== 0 && !cont
->parent
)
1531 err
= cgroup_add_file(cont
, ss
,
1532 &cft_memory_pressure_enabled
);
1537 * post_clone() is called at the end of cgroup_clone().
1538 * 'cgroup' was just created automatically as a result of
1539 * a cgroup_clone(), and the current task is about to
1540 * be moved into 'cgroup'.
1542 * Currently we refuse to set up the cgroup - thereby
1543 * refusing the task to be entered, and as a result refusing
1544 * the sys_unshare() or clone() which initiated it - if any
1545 * sibling cpusets have exclusive cpus or mem.
1547 * If this becomes a problem for some users who wish to
1548 * allow that scenario, then cpuset_post_clone() could be
1549 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1550 * (and likewise for mems) to the new cgroup.
1552 static void cpuset_post_clone(struct cgroup_subsys
*ss
,
1553 struct cgroup
*cgroup
)
1555 struct cgroup
*parent
, *child
;
1556 struct cpuset
*cs
, *parent_cs
;
1558 parent
= cgroup
->parent
;
1559 list_for_each_entry(child
, &parent
->children
, sibling
) {
1560 cs
= cgroup_cs(child
);
1561 if (is_mem_exclusive(cs
) || is_cpu_exclusive(cs
))
1564 cs
= cgroup_cs(cgroup
);
1565 parent_cs
= cgroup_cs(parent
);
1567 cs
->mems_allowed
= parent_cs
->mems_allowed
;
1568 cs
->cpus_allowed
= parent_cs
->cpus_allowed
;
1573 * cpuset_create - create a cpuset
1574 * parent: cpuset that will be parent of the new cpuset.
1575 * name: name of the new cpuset. Will be strcpy'ed.
1576 * mode: mode to set on new inode
1578 * Must be called with the mutex on the parent inode held
1581 static struct cgroup_subsys_state
*cpuset_create(
1582 struct cgroup_subsys
*ss
,
1583 struct cgroup
*cont
)
1586 struct cpuset
*parent
;
1588 if (!cont
->parent
) {
1589 /* This is early initialization for the top cgroup */
1590 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1591 return &top_cpuset
.css
;
1593 parent
= cgroup_cs(cont
->parent
);
1594 cs
= kmalloc(sizeof(*cs
), GFP_KERNEL
);
1596 return ERR_PTR(-ENOMEM
);
1598 cpuset_update_task_memory_state();
1600 if (is_spread_page(parent
))
1601 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1602 if (is_spread_slab(parent
))
1603 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1604 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1605 cs
->cpus_allowed
= CPU_MASK_NONE
;
1606 cs
->mems_allowed
= NODE_MASK_NONE
;
1607 cs
->mems_generation
= cpuset_mems_generation
++;
1608 fmeter_init(&cs
->fmeter
);
1610 cs
->parent
= parent
;
1611 number_of_cpusets
++;
1616 * Locking note on the strange update_flag() call below:
1618 * If the cpuset being removed has its flag 'sched_load_balance'
1619 * enabled, then simulate turning sched_load_balance off, which
1620 * will call rebuild_sched_domains(). The get_online_cpus()
1621 * call in rebuild_sched_domains() must not be made while holding
1622 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1623 * get_online_cpus() calls. So the reverse nesting would risk an
1627 static void cpuset_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1629 struct cpuset
*cs
= cgroup_cs(cont
);
1631 cpuset_update_task_memory_state();
1633 if (is_sched_load_balance(cs
))
1634 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, "0");
1636 number_of_cpusets
--;
1640 struct cgroup_subsys cpuset_subsys
= {
1642 .create
= cpuset_create
,
1643 .destroy
= cpuset_destroy
,
1644 .can_attach
= cpuset_can_attach
,
1645 .attach
= cpuset_attach
,
1646 .populate
= cpuset_populate
,
1647 .post_clone
= cpuset_post_clone
,
1648 .subsys_id
= cpuset_subsys_id
,
1653 * cpuset_init_early - just enough so that the calls to
1654 * cpuset_update_task_memory_state() in early init code
1658 int __init
cpuset_init_early(void)
1660 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1666 * cpuset_init - initialize cpusets at system boot
1668 * Description: Initialize top_cpuset and the cpuset internal file system,
1671 int __init
cpuset_init(void)
1675 top_cpuset
.cpus_allowed
= CPU_MASK_ALL
;
1676 top_cpuset
.mems_allowed
= NODE_MASK_ALL
;
1678 fmeter_init(&top_cpuset
.fmeter
);
1679 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1680 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
1682 err
= register_filesystem(&cpuset_fs_type
);
1686 number_of_cpusets
= 1;
1691 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1692 * or memory nodes, we need to walk over the cpuset hierarchy,
1693 * removing that CPU or node from all cpusets. If this removes the
1694 * last CPU or node from a cpuset, then the guarantee_online_cpus()
1695 * or guarantee_online_mems() code will use that emptied cpusets
1696 * parent online CPUs or nodes. Cpusets that were already empty of
1697 * CPUs or nodes are left empty.
1699 * This routine is intentionally inefficient in a couple of regards.
1700 * It will check all cpusets in a subtree even if the top cpuset of
1701 * the subtree has no offline CPUs or nodes. It checks both CPUs and
1702 * nodes, even though the caller could have been coded to know that
1703 * only one of CPUs or nodes needed to be checked on a given call.
1704 * This was done to minimize text size rather than cpu cycles.
1706 * Call with both manage_mutex and callback_mutex held.
1708 * Recursive, on depth of cpuset subtree.
1711 static void guarantee_online_cpus_mems_in_subtree(const struct cpuset
*cur
)
1713 struct cgroup
*cont
;
1716 /* Each of our child cpusets mems must be online */
1717 list_for_each_entry(cont
, &cur
->css
.cgroup
->children
, sibling
) {
1718 c
= cgroup_cs(cont
);
1719 guarantee_online_cpus_mems_in_subtree(c
);
1720 if (!cpus_empty(c
->cpus_allowed
))
1721 guarantee_online_cpus(c
, &c
->cpus_allowed
);
1722 if (!nodes_empty(c
->mems_allowed
))
1723 guarantee_online_mems(c
, &c
->mems_allowed
);
1728 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1729 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1730 * track what's online after any CPU or memory node hotplug or unplug
1733 * To ensure that we don't remove a CPU or node from the top cpuset
1734 * that is currently in use by a child cpuset (which would violate
1735 * the rule that cpusets must be subsets of their parent), we first
1736 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
1738 * Since there are two callers of this routine, one for CPU hotplug
1739 * events and one for memory node hotplug events, we could have coded
1740 * two separate routines here. We code it as a single common routine
1741 * in order to minimize text size.
1744 static void common_cpu_mem_hotplug_unplug(void)
1747 mutex_lock(&callback_mutex
);
1749 guarantee_online_cpus_mems_in_subtree(&top_cpuset
);
1750 top_cpuset
.cpus_allowed
= cpu_online_map
;
1751 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
1753 mutex_unlock(&callback_mutex
);
1758 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1759 * period. This is necessary in order to make cpusets transparent
1760 * (of no affect) on systems that are actively using CPU hotplug
1761 * but making no active use of cpusets.
1763 * This routine ensures that top_cpuset.cpus_allowed tracks
1764 * cpu_online_map on each CPU hotplug (cpuhp) event.
1767 static int cpuset_handle_cpuhp(struct notifier_block
*unused_nb
,
1768 unsigned long phase
, void *unused_cpu
)
1770 if (phase
== CPU_DYING
|| phase
== CPU_DYING_FROZEN
)
1773 common_cpu_mem_hotplug_unplug();
1777 #ifdef CONFIG_MEMORY_HOTPLUG
1779 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1780 * Call this routine anytime after you change
1781 * node_states[N_HIGH_MEMORY].
1782 * See also the previous routine cpuset_handle_cpuhp().
1785 void cpuset_track_online_nodes(void)
1787 common_cpu_mem_hotplug_unplug();
1792 * cpuset_init_smp - initialize cpus_allowed
1794 * Description: Finish top cpuset after cpu, node maps are initialized
1797 void __init
cpuset_init_smp(void)
1799 top_cpuset
.cpus_allowed
= cpu_online_map
;
1800 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
1802 hotcpu_notifier(cpuset_handle_cpuhp
, 0);
1807 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1808 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1810 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1811 * attached to the specified @tsk. Guaranteed to return some non-empty
1812 * subset of cpu_online_map, even if this means going outside the
1816 cpumask_t
cpuset_cpus_allowed(struct task_struct
*tsk
)
1820 mutex_lock(&callback_mutex
);
1821 mask
= cpuset_cpus_allowed_locked(tsk
);
1822 mutex_unlock(&callback_mutex
);
1828 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1829 * Must be called with callback_mutex held.
1831 cpumask_t
cpuset_cpus_allowed_locked(struct task_struct
*tsk
)
1836 guarantee_online_cpus(task_cs(tsk
), &mask
);
1842 void cpuset_init_current_mems_allowed(void)
1844 current
->mems_allowed
= NODE_MASK_ALL
;
1848 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1849 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1851 * Description: Returns the nodemask_t mems_allowed of the cpuset
1852 * attached to the specified @tsk. Guaranteed to return some non-empty
1853 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
1857 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
1861 mutex_lock(&callback_mutex
);
1863 guarantee_online_mems(task_cs(tsk
), &mask
);
1865 mutex_unlock(&callback_mutex
);
1871 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1872 * @zl: the zonelist to be checked
1874 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1876 int cpuset_zonelist_valid_mems_allowed(struct zonelist
*zl
)
1880 for (i
= 0; zl
->zones
[i
]; i
++) {
1881 int nid
= zone_to_nid(zl
->zones
[i
]);
1883 if (node_isset(nid
, current
->mems_allowed
))
1890 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1891 * ancestor to the specified cpuset. Call holding callback_mutex.
1892 * If no ancestor is mem_exclusive (an unusual configuration), then
1893 * returns the root cpuset.
1895 static const struct cpuset
*nearest_exclusive_ancestor(const struct cpuset
*cs
)
1897 while (!is_mem_exclusive(cs
) && cs
->parent
)
1903 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
1904 * @z: is this zone on an allowed node?
1905 * @gfp_mask: memory allocation flags
1907 * If we're in interrupt, yes, we can always allocate. If
1908 * __GFP_THISNODE is set, yes, we can always allocate. If zone
1909 * z's node is in our tasks mems_allowed, yes. If it's not a
1910 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1911 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1912 * If the task has been OOM killed and has access to memory reserves
1913 * as specified by the TIF_MEMDIE flag, yes.
1916 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
1917 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
1918 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
1919 * from an enclosing cpuset.
1921 * cpuset_zone_allowed_hardwall() only handles the simpler case of
1922 * hardwall cpusets, and never sleeps.
1924 * The __GFP_THISNODE placement logic is really handled elsewhere,
1925 * by forcibly using a zonelist starting at a specified node, and by
1926 * (in get_page_from_freelist()) refusing to consider the zones for
1927 * any node on the zonelist except the first. By the time any such
1928 * calls get to this routine, we should just shut up and say 'yes'.
1930 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1931 * and do not allow allocations outside the current tasks cpuset
1932 * unless the task has been OOM killed as is marked TIF_MEMDIE.
1933 * GFP_KERNEL allocations are not so marked, so can escape to the
1934 * nearest enclosing mem_exclusive ancestor cpuset.
1936 * Scanning up parent cpusets requires callback_mutex. The
1937 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
1938 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
1939 * current tasks mems_allowed came up empty on the first pass over
1940 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
1941 * cpuset are short of memory, might require taking the callback_mutex
1944 * The first call here from mm/page_alloc:get_page_from_freelist()
1945 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
1946 * so no allocation on a node outside the cpuset is allowed (unless
1947 * in interrupt, of course).
1949 * The second pass through get_page_from_freelist() doesn't even call
1950 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
1951 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
1952 * in alloc_flags. That logic and the checks below have the combined
1954 * in_interrupt - any node ok (current task context irrelevant)
1955 * GFP_ATOMIC - any node ok
1956 * TIF_MEMDIE - any node ok
1957 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1958 * GFP_USER - only nodes in current tasks mems allowed ok.
1961 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
1962 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
1963 * the code that might scan up ancestor cpusets and sleep.
1966 int __cpuset_zone_allowed_softwall(struct zone
*z
, gfp_t gfp_mask
)
1968 int node
; /* node that zone z is on */
1969 const struct cpuset
*cs
; /* current cpuset ancestors */
1970 int allowed
; /* is allocation in zone z allowed? */
1972 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
1974 node
= zone_to_nid(z
);
1975 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
1976 if (node_isset(node
, current
->mems_allowed
))
1979 * Allow tasks that have access to memory reserves because they have
1980 * been OOM killed to get memory anywhere.
1982 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
1984 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
1987 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
1990 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1991 mutex_lock(&callback_mutex
);
1994 cs
= nearest_exclusive_ancestor(task_cs(current
));
1995 task_unlock(current
);
1997 allowed
= node_isset(node
, cs
->mems_allowed
);
1998 mutex_unlock(&callback_mutex
);
2003 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2004 * @z: is this zone on an allowed node?
2005 * @gfp_mask: memory allocation flags
2007 * If we're in interrupt, yes, we can always allocate.
2008 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2009 * z's node is in our tasks mems_allowed, yes. If the task has been
2010 * OOM killed and has access to memory reserves as specified by the
2011 * TIF_MEMDIE flag, yes. Otherwise, no.
2013 * The __GFP_THISNODE placement logic is really handled elsewhere,
2014 * by forcibly using a zonelist starting at a specified node, and by
2015 * (in get_page_from_freelist()) refusing to consider the zones for
2016 * any node on the zonelist except the first. By the time any such
2017 * calls get to this routine, we should just shut up and say 'yes'.
2019 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2020 * this variant requires that the zone be in the current tasks
2021 * mems_allowed or that we're in interrupt. It does not scan up the
2022 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2026 int __cpuset_zone_allowed_hardwall(struct zone
*z
, gfp_t gfp_mask
)
2028 int node
; /* node that zone z is on */
2030 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2032 node
= zone_to_nid(z
);
2033 if (node_isset(node
, current
->mems_allowed
))
2036 * Allow tasks that have access to memory reserves because they have
2037 * been OOM killed to get memory anywhere.
2039 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2045 * cpuset_lock - lock out any changes to cpuset structures
2047 * The out of memory (oom) code needs to mutex_lock cpusets
2048 * from being changed while it scans the tasklist looking for a
2049 * task in an overlapping cpuset. Expose callback_mutex via this
2050 * cpuset_lock() routine, so the oom code can lock it, before
2051 * locking the task list. The tasklist_lock is a spinlock, so
2052 * must be taken inside callback_mutex.
2055 void cpuset_lock(void)
2057 mutex_lock(&callback_mutex
);
2061 * cpuset_unlock - release lock on cpuset changes
2063 * Undo the lock taken in a previous cpuset_lock() call.
2066 void cpuset_unlock(void)
2068 mutex_unlock(&callback_mutex
);
2072 * cpuset_mem_spread_node() - On which node to begin search for a page
2074 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2075 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2076 * and if the memory allocation used cpuset_mem_spread_node()
2077 * to determine on which node to start looking, as it will for
2078 * certain page cache or slab cache pages such as used for file
2079 * system buffers and inode caches, then instead of starting on the
2080 * local node to look for a free page, rather spread the starting
2081 * node around the tasks mems_allowed nodes.
2083 * We don't have to worry about the returned node being offline
2084 * because "it can't happen", and even if it did, it would be ok.
2086 * The routines calling guarantee_online_mems() are careful to
2087 * only set nodes in task->mems_allowed that are online. So it
2088 * should not be possible for the following code to return an
2089 * offline node. But if it did, that would be ok, as this routine
2090 * is not returning the node where the allocation must be, only
2091 * the node where the search should start. The zonelist passed to
2092 * __alloc_pages() will include all nodes. If the slab allocator
2093 * is passed an offline node, it will fall back to the local node.
2094 * See kmem_cache_alloc_node().
2097 int cpuset_mem_spread_node(void)
2101 node
= next_node(current
->cpuset_mem_spread_rotor
, current
->mems_allowed
);
2102 if (node
== MAX_NUMNODES
)
2103 node
= first_node(current
->mems_allowed
);
2104 current
->cpuset_mem_spread_rotor
= node
;
2107 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2110 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2111 * @tsk1: pointer to task_struct of some task.
2112 * @tsk2: pointer to task_struct of some other task.
2114 * Description: Return true if @tsk1's mems_allowed intersects the
2115 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2116 * one of the task's memory usage might impact the memory available
2120 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2121 const struct task_struct
*tsk2
)
2123 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2127 * Collection of memory_pressure is suppressed unless
2128 * this flag is enabled by writing "1" to the special
2129 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2132 int cpuset_memory_pressure_enabled __read_mostly
;
2135 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2137 * Keep a running average of the rate of synchronous (direct)
2138 * page reclaim efforts initiated by tasks in each cpuset.
2140 * This represents the rate at which some task in the cpuset
2141 * ran low on memory on all nodes it was allowed to use, and
2142 * had to enter the kernels page reclaim code in an effort to
2143 * create more free memory by tossing clean pages or swapping
2144 * or writing dirty pages.
2146 * Display to user space in the per-cpuset read-only file
2147 * "memory_pressure". Value displayed is an integer
2148 * representing the recent rate of entry into the synchronous
2149 * (direct) page reclaim by any task attached to the cpuset.
2152 void __cpuset_memory_pressure_bump(void)
2155 fmeter_markevent(&task_cs(current
)->fmeter
);
2156 task_unlock(current
);
2159 #ifdef CONFIG_PROC_PID_CPUSET
2161 * proc_cpuset_show()
2162 * - Print tasks cpuset path into seq_file.
2163 * - Used for /proc/<pid>/cpuset.
2164 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2165 * doesn't really matter if tsk->cpuset changes after we read it,
2166 * and we take manage_mutex, keeping attach_task() from changing it
2167 * anyway. No need to check that tsk->cpuset != NULL, thanks to
2168 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2169 * cpuset to top_cpuset.
2171 static int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2174 struct task_struct
*tsk
;
2176 struct cgroup_subsys_state
*css
;
2180 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2186 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2192 css
= task_subsys_state(tsk
, cpuset_subsys_id
);
2193 retval
= cgroup_path(css
->cgroup
, buf
, PAGE_SIZE
);
2200 put_task_struct(tsk
);
2207 static int cpuset_open(struct inode
*inode
, struct file
*file
)
2209 struct pid
*pid
= PROC_I(inode
)->pid
;
2210 return single_open(file
, proc_cpuset_show
, pid
);
2213 const struct file_operations proc_cpuset_operations
= {
2214 .open
= cpuset_open
,
2216 .llseek
= seq_lseek
,
2217 .release
= single_release
,
2219 #endif /* CONFIG_PROC_PID_CPUSET */
2221 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2222 char *cpuset_task_status_allowed(struct task_struct
*task
, char *buffer
)
2224 buffer
+= sprintf(buffer
, "Cpus_allowed:\t");
2225 buffer
+= cpumask_scnprintf(buffer
, PAGE_SIZE
, task
->cpus_allowed
);
2226 buffer
+= sprintf(buffer
, "\n");
2227 buffer
+= sprintf(buffer
, "Mems_allowed:\t");
2228 buffer
+= nodemask_scnprintf(buffer
, PAGE_SIZE
, task
->mems_allowed
);
2229 buffer
+= sprintf(buffer
, "\n");