sched: mark scheduling classes as const
[linux-2.6/mini2440.git] / kernel / sched_fair.c
blob32fd976f85660a36163b1b010d1c9627e8054520
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
49 const_debug unsigned int sysctl_sched_nr_latency = 20;
52 * sys_sched_yield() compat mode
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
57 unsigned int __read_mostly sysctl_sched_compat_yield;
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
79 /**************************************************************
80 * CFS operations on generic schedulable entities:
83 #ifdef CONFIG_FAIR_GROUP_SCHED
85 /* cpu runqueue to which this cfs_rq is attached */
86 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
88 return cfs_rq->rq;
91 /* An entity is a task if it doesn't "own" a runqueue */
92 #define entity_is_task(se) (!se->my_q)
94 #else /* CONFIG_FAIR_GROUP_SCHED */
96 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
98 return container_of(cfs_rq, struct rq, cfs);
101 #define entity_is_task(se) 1
103 #endif /* CONFIG_FAIR_GROUP_SCHED */
105 static inline struct task_struct *task_of(struct sched_entity *se)
107 return container_of(se, struct task_struct, se);
111 /**************************************************************
112 * Scheduling class tree data structure manipulation methods:
115 static inline u64
116 max_vruntime(u64 min_vruntime, u64 vruntime)
118 s64 delta = (s64)(vruntime - min_vruntime);
119 if (delta > 0)
120 min_vruntime = vruntime;
122 return min_vruntime;
125 static inline u64
126 min_vruntime(u64 min_vruntime, u64 vruntime)
128 s64 delta = (s64)(vruntime - min_vruntime);
129 if (delta < 0)
130 min_vruntime = vruntime;
132 return min_vruntime;
135 static inline s64
136 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
138 return se->vruntime - cfs_rq->min_vruntime;
142 * Enqueue an entity into the rb-tree:
144 static void
145 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
147 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
148 struct rb_node *parent = NULL;
149 struct sched_entity *entry;
150 s64 key = entity_key(cfs_rq, se);
151 int leftmost = 1;
154 * Find the right place in the rbtree:
156 while (*link) {
157 parent = *link;
158 entry = rb_entry(parent, struct sched_entity, run_node);
160 * We dont care about collisions. Nodes with
161 * the same key stay together.
163 if (key < entity_key(cfs_rq, entry)) {
164 link = &parent->rb_left;
165 } else {
166 link = &parent->rb_right;
167 leftmost = 0;
172 * Maintain a cache of leftmost tree entries (it is frequently
173 * used):
175 if (leftmost)
176 cfs_rq->rb_leftmost = &se->run_node;
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
182 static void
183 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193 return cfs_rq->rb_leftmost;
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
213 return se;
216 /**************************************************************
217 * Scheduling class statistics methods:
220 static u64 __sched_period(unsigned long nr_running)
222 u64 period = sysctl_sched_latency;
223 unsigned long nr_latency = sysctl_sched_nr_latency;
225 if (unlikely(nr_running > nr_latency)) {
226 period *= nr_running;
227 do_div(period, nr_latency);
230 return period;
233 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
235 u64 period = __sched_period(cfs_rq->nr_running);
237 period *= se->load.weight;
238 do_div(period, cfs_rq->load.weight);
240 return period;
243 static u64 __sched_vslice(unsigned long nr_running)
245 unsigned long period = sysctl_sched_latency;
246 unsigned long nr_latency = sysctl_sched_nr_latency;
248 if (unlikely(nr_running > nr_latency))
249 nr_running = nr_latency;
251 period /= nr_running;
253 return (u64)period;
257 * Update the current task's runtime statistics. Skip current tasks that
258 * are not in our scheduling class.
260 static inline void
261 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
262 unsigned long delta_exec)
264 unsigned long delta_exec_weighted;
265 u64 vruntime;
267 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
269 curr->sum_exec_runtime += delta_exec;
270 schedstat_add(cfs_rq, exec_clock, delta_exec);
271 delta_exec_weighted = delta_exec;
272 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
273 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
274 &curr->load);
276 curr->vruntime += delta_exec_weighted;
279 * maintain cfs_rq->min_vruntime to be a monotonic increasing
280 * value tracking the leftmost vruntime in the tree.
282 if (first_fair(cfs_rq)) {
283 vruntime = min_vruntime(curr->vruntime,
284 __pick_next_entity(cfs_rq)->vruntime);
285 } else
286 vruntime = curr->vruntime;
288 cfs_rq->min_vruntime =
289 max_vruntime(cfs_rq->min_vruntime, vruntime);
292 static void update_curr(struct cfs_rq *cfs_rq)
294 struct sched_entity *curr = cfs_rq->curr;
295 u64 now = rq_of(cfs_rq)->clock;
296 unsigned long delta_exec;
298 if (unlikely(!curr))
299 return;
302 * Get the amount of time the current task was running
303 * since the last time we changed load (this cannot
304 * overflow on 32 bits):
306 delta_exec = (unsigned long)(now - curr->exec_start);
308 __update_curr(cfs_rq, curr, delta_exec);
309 curr->exec_start = now;
312 static inline void
313 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
315 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
318 static inline unsigned long
319 calc_weighted(unsigned long delta, struct sched_entity *se)
321 unsigned long weight = se->load.weight;
323 if (unlikely(weight != NICE_0_LOAD))
324 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
325 else
326 return delta;
330 * Task is being enqueued - update stats:
332 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
335 * Are we enqueueing a waiting task? (for current tasks
336 * a dequeue/enqueue event is a NOP)
338 if (se != cfs_rq->curr)
339 update_stats_wait_start(cfs_rq, se);
342 static void
343 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
345 schedstat_set(se->wait_max, max(se->wait_max,
346 rq_of(cfs_rq)->clock - se->wait_start));
347 schedstat_set(se->wait_start, 0);
350 static inline void
351 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
353 update_curr(cfs_rq);
355 * Mark the end of the wait period if dequeueing a
356 * waiting task:
358 if (se != cfs_rq->curr)
359 update_stats_wait_end(cfs_rq, se);
363 * We are picking a new current task - update its stats:
365 static inline void
366 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
369 * We are starting a new run period:
371 se->exec_start = rq_of(cfs_rq)->clock;
375 * We are descheduling a task - update its stats:
377 static inline void
378 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
380 se->exec_start = 0;
383 /**************************************************
384 * Scheduling class queueing methods:
387 static void
388 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
390 update_load_add(&cfs_rq->load, se->load.weight);
391 cfs_rq->nr_running++;
392 se->on_rq = 1;
395 static void
396 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
398 update_load_sub(&cfs_rq->load, se->load.weight);
399 cfs_rq->nr_running--;
400 se->on_rq = 0;
403 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 #ifdef CONFIG_SCHEDSTATS
406 if (se->sleep_start) {
407 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
409 if ((s64)delta < 0)
410 delta = 0;
412 if (unlikely(delta > se->sleep_max))
413 se->sleep_max = delta;
415 se->sleep_start = 0;
416 se->sum_sleep_runtime += delta;
418 if (se->block_start) {
419 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
421 if ((s64)delta < 0)
422 delta = 0;
424 if (unlikely(delta > se->block_max))
425 se->block_max = delta;
427 se->block_start = 0;
428 se->sum_sleep_runtime += delta;
431 * Blocking time is in units of nanosecs, so shift by 20 to
432 * get a milliseconds-range estimation of the amount of
433 * time that the task spent sleeping:
435 if (unlikely(prof_on == SLEEP_PROFILING)) {
436 struct task_struct *tsk = task_of(se);
438 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
439 delta >> 20);
442 #endif
445 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
447 #ifdef CONFIG_SCHED_DEBUG
448 s64 d = se->vruntime - cfs_rq->min_vruntime;
450 if (d < 0)
451 d = -d;
453 if (d > 3*sysctl_sched_latency)
454 schedstat_inc(cfs_rq, nr_spread_over);
455 #endif
458 static void
459 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
461 u64 vruntime;
463 vruntime = cfs_rq->min_vruntime;
465 if (sched_feat(USE_TREE_AVG)) {
466 struct sched_entity *last = __pick_last_entity(cfs_rq);
467 if (last) {
468 vruntime += last->vruntime;
469 vruntime >>= 1;
471 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
472 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
474 if (initial && sched_feat(START_DEBIT))
475 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
477 if (!initial) {
478 if (sched_feat(NEW_FAIR_SLEEPERS))
479 vruntime -= sysctl_sched_latency;
481 vruntime = max_t(s64, vruntime, se->vruntime);
484 se->vruntime = vruntime;
488 static void
489 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
492 * Update the fair clock.
494 update_curr(cfs_rq);
496 if (wakeup) {
497 place_entity(cfs_rq, se, 0);
498 enqueue_sleeper(cfs_rq, se);
501 update_stats_enqueue(cfs_rq, se);
502 check_spread(cfs_rq, se);
503 if (se != cfs_rq->curr)
504 __enqueue_entity(cfs_rq, se);
505 account_entity_enqueue(cfs_rq, se);
508 static void
509 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
511 update_stats_dequeue(cfs_rq, se);
512 if (sleep) {
513 #ifdef CONFIG_SCHEDSTATS
514 if (entity_is_task(se)) {
515 struct task_struct *tsk = task_of(se);
517 if (tsk->state & TASK_INTERRUPTIBLE)
518 se->sleep_start = rq_of(cfs_rq)->clock;
519 if (tsk->state & TASK_UNINTERRUPTIBLE)
520 se->block_start = rq_of(cfs_rq)->clock;
522 #endif
525 if (se != cfs_rq->curr)
526 __dequeue_entity(cfs_rq, se);
527 account_entity_dequeue(cfs_rq, se);
531 * Preempt the current task with a newly woken task if needed:
533 static void
534 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
536 unsigned long ideal_runtime, delta_exec;
538 ideal_runtime = sched_slice(cfs_rq, curr);
539 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
540 if (delta_exec > ideal_runtime)
541 resched_task(rq_of(cfs_rq)->curr);
544 static void
545 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 /* 'current' is not kept within the tree. */
548 if (se->on_rq) {
550 * Any task has to be enqueued before it get to execute on
551 * a CPU. So account for the time it spent waiting on the
552 * runqueue.
554 update_stats_wait_end(cfs_rq, se);
555 __dequeue_entity(cfs_rq, se);
558 update_stats_curr_start(cfs_rq, se);
559 cfs_rq->curr = se;
560 #ifdef CONFIG_SCHEDSTATS
562 * Track our maximum slice length, if the CPU's load is at
563 * least twice that of our own weight (i.e. dont track it
564 * when there are only lesser-weight tasks around):
566 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
567 se->slice_max = max(se->slice_max,
568 se->sum_exec_runtime - se->prev_sum_exec_runtime);
570 #endif
571 se->prev_sum_exec_runtime = se->sum_exec_runtime;
574 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
576 struct sched_entity *se = __pick_next_entity(cfs_rq);
578 set_next_entity(cfs_rq, se);
580 return se;
583 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
586 * If still on the runqueue then deactivate_task()
587 * was not called and update_curr() has to be done:
589 if (prev->on_rq)
590 update_curr(cfs_rq);
592 update_stats_curr_end(cfs_rq, prev);
594 check_spread(cfs_rq, prev);
595 if (prev->on_rq) {
596 update_stats_wait_start(cfs_rq, prev);
597 /* Put 'current' back into the tree. */
598 __enqueue_entity(cfs_rq, prev);
600 cfs_rq->curr = NULL;
603 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
606 * Update run-time statistics of the 'current'.
608 update_curr(cfs_rq);
610 if (cfs_rq->nr_running > 1)
611 check_preempt_tick(cfs_rq, curr);
614 /**************************************************
615 * CFS operations on tasks:
618 #ifdef CONFIG_FAIR_GROUP_SCHED
620 /* Walk up scheduling entities hierarchy */
621 #define for_each_sched_entity(se) \
622 for (; se; se = se->parent)
624 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
626 return p->se.cfs_rq;
629 /* runqueue on which this entity is (to be) queued */
630 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
632 return se->cfs_rq;
635 /* runqueue "owned" by this group */
636 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
638 return grp->my_q;
641 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
642 * another cpu ('this_cpu')
644 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
646 return cfs_rq->tg->cfs_rq[this_cpu];
649 /* Iterate thr' all leaf cfs_rq's on a runqueue */
650 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
651 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
653 /* Do the two (enqueued) entities belong to the same group ? */
654 static inline int
655 is_same_group(struct sched_entity *se, struct sched_entity *pse)
657 if (se->cfs_rq == pse->cfs_rq)
658 return 1;
660 return 0;
663 static inline struct sched_entity *parent_entity(struct sched_entity *se)
665 return se->parent;
668 #else /* CONFIG_FAIR_GROUP_SCHED */
670 #define for_each_sched_entity(se) \
671 for (; se; se = NULL)
673 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
675 return &task_rq(p)->cfs;
678 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
680 struct task_struct *p = task_of(se);
681 struct rq *rq = task_rq(p);
683 return &rq->cfs;
686 /* runqueue "owned" by this group */
687 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
689 return NULL;
692 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
694 return &cpu_rq(this_cpu)->cfs;
697 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
698 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
700 static inline int
701 is_same_group(struct sched_entity *se, struct sched_entity *pse)
703 return 1;
706 static inline struct sched_entity *parent_entity(struct sched_entity *se)
708 return NULL;
711 #endif /* CONFIG_FAIR_GROUP_SCHED */
714 * The enqueue_task method is called before nr_running is
715 * increased. Here we update the fair scheduling stats and
716 * then put the task into the rbtree:
718 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
720 struct cfs_rq *cfs_rq;
721 struct sched_entity *se = &p->se;
723 for_each_sched_entity(se) {
724 if (se->on_rq)
725 break;
726 cfs_rq = cfs_rq_of(se);
727 enqueue_entity(cfs_rq, se, wakeup);
728 wakeup = 1;
733 * The dequeue_task method is called before nr_running is
734 * decreased. We remove the task from the rbtree and
735 * update the fair scheduling stats:
737 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
739 struct cfs_rq *cfs_rq;
740 struct sched_entity *se = &p->se;
742 for_each_sched_entity(se) {
743 cfs_rq = cfs_rq_of(se);
744 dequeue_entity(cfs_rq, se, sleep);
745 /* Don't dequeue parent if it has other entities besides us */
746 if (cfs_rq->load.weight)
747 break;
748 sleep = 1;
753 * sched_yield() support is very simple - we dequeue and enqueue.
755 * If compat_yield is turned on then we requeue to the end of the tree.
757 static void yield_task_fair(struct rq *rq)
759 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
760 struct sched_entity *rightmost, *se = &rq->curr->se;
763 * Are we the only task in the tree?
765 if (unlikely(cfs_rq->nr_running == 1))
766 return;
768 if (likely(!sysctl_sched_compat_yield)) {
769 __update_rq_clock(rq);
771 * Dequeue and enqueue the task to update its
772 * position within the tree:
774 update_curr(cfs_rq);
776 return;
779 * Find the rightmost entry in the rbtree:
781 rightmost = __pick_last_entity(cfs_rq);
783 * Already in the rightmost position?
785 if (unlikely(rightmost->vruntime < se->vruntime))
786 return;
789 * Minimally necessary key value to be last in the tree:
790 * Upon rescheduling, sched_class::put_prev_task() will place
791 * 'current' within the tree based on its new key value.
793 se->vruntime = rightmost->vruntime + 1;
797 * Preempt the current task with a newly woken task if needed:
799 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
801 struct task_struct *curr = rq->curr;
802 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
803 struct sched_entity *se = &curr->se, *pse = &p->se;
804 s64 delta;
806 if (unlikely(rt_prio(p->prio))) {
807 update_rq_clock(rq);
808 update_curr(cfs_rq);
809 resched_task(curr);
810 return;
813 while (!is_same_group(se, pse)) {
814 se = parent_entity(se);
815 pse = parent_entity(pse);
818 delta = se->vruntime - pse->vruntime;
820 if (delta > (s64)sysctl_sched_wakeup_granularity)
821 resched_task(curr);
824 static struct task_struct *pick_next_task_fair(struct rq *rq)
826 struct cfs_rq *cfs_rq = &rq->cfs;
827 struct sched_entity *se;
829 if (unlikely(!cfs_rq->nr_running))
830 return NULL;
832 do {
833 se = pick_next_entity(cfs_rq);
834 cfs_rq = group_cfs_rq(se);
835 } while (cfs_rq);
837 return task_of(se);
841 * Account for a descheduled task:
843 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
845 struct sched_entity *se = &prev->se;
846 struct cfs_rq *cfs_rq;
848 for_each_sched_entity(se) {
849 cfs_rq = cfs_rq_of(se);
850 put_prev_entity(cfs_rq, se);
854 /**************************************************
855 * Fair scheduling class load-balancing methods:
859 * Load-balancing iterator. Note: while the runqueue stays locked
860 * during the whole iteration, the current task might be
861 * dequeued so the iterator has to be dequeue-safe. Here we
862 * achieve that by always pre-iterating before returning
863 * the current task:
865 static inline struct task_struct *
866 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
868 struct task_struct *p;
870 if (!curr)
871 return NULL;
873 p = rb_entry(curr, struct task_struct, se.run_node);
874 cfs_rq->rb_load_balance_curr = rb_next(curr);
876 return p;
879 static struct task_struct *load_balance_start_fair(void *arg)
881 struct cfs_rq *cfs_rq = arg;
883 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
886 static struct task_struct *load_balance_next_fair(void *arg)
888 struct cfs_rq *cfs_rq = arg;
890 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
893 #ifdef CONFIG_FAIR_GROUP_SCHED
894 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
896 struct sched_entity *curr;
897 struct task_struct *p;
899 if (!cfs_rq->nr_running)
900 return MAX_PRIO;
902 curr = cfs_rq->curr;
903 if (!curr)
904 curr = __pick_next_entity(cfs_rq);
906 p = task_of(curr);
908 return p->prio;
910 #endif
912 static unsigned long
913 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
914 unsigned long max_nr_move, unsigned long max_load_move,
915 struct sched_domain *sd, enum cpu_idle_type idle,
916 int *all_pinned, int *this_best_prio)
918 struct cfs_rq *busy_cfs_rq;
919 unsigned long load_moved, total_nr_moved = 0, nr_moved;
920 long rem_load_move = max_load_move;
921 struct rq_iterator cfs_rq_iterator;
923 cfs_rq_iterator.start = load_balance_start_fair;
924 cfs_rq_iterator.next = load_balance_next_fair;
926 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
927 #ifdef CONFIG_FAIR_GROUP_SCHED
928 struct cfs_rq *this_cfs_rq;
929 long imbalance;
930 unsigned long maxload;
932 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
934 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
935 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
936 if (imbalance <= 0)
937 continue;
939 /* Don't pull more than imbalance/2 */
940 imbalance /= 2;
941 maxload = min(rem_load_move, imbalance);
943 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
944 #else
945 # define maxload rem_load_move
946 #endif
947 /* pass busy_cfs_rq argument into
948 * load_balance_[start|next]_fair iterators
950 cfs_rq_iterator.arg = busy_cfs_rq;
951 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
952 max_nr_move, maxload, sd, idle, all_pinned,
953 &load_moved, this_best_prio, &cfs_rq_iterator);
955 total_nr_moved += nr_moved;
956 max_nr_move -= nr_moved;
957 rem_load_move -= load_moved;
959 if (max_nr_move <= 0 || rem_load_move <= 0)
960 break;
963 return max_load_move - rem_load_move;
967 * scheduler tick hitting a task of our scheduling class:
969 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
971 struct cfs_rq *cfs_rq;
972 struct sched_entity *se = &curr->se;
974 for_each_sched_entity(se) {
975 cfs_rq = cfs_rq_of(se);
976 entity_tick(cfs_rq, se);
980 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
983 * Share the fairness runtime between parent and child, thus the
984 * total amount of pressure for CPU stays equal - new tasks
985 * get a chance to run but frequent forkers are not allowed to
986 * monopolize the CPU. Note: the parent runqueue is locked,
987 * the child is not running yet.
989 static void task_new_fair(struct rq *rq, struct task_struct *p)
991 struct cfs_rq *cfs_rq = task_cfs_rq(p);
992 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
994 sched_info_queued(p);
996 update_curr(cfs_rq);
997 place_entity(cfs_rq, se, 1);
999 if (sysctl_sched_child_runs_first &&
1000 curr->vruntime < se->vruntime) {
1002 * Upon rescheduling, sched_class::put_prev_task() will place
1003 * 'current' within the tree based on its new key value.
1005 swap(curr->vruntime, se->vruntime);
1008 update_stats_enqueue(cfs_rq, se);
1009 check_spread(cfs_rq, se);
1010 check_spread(cfs_rq, curr);
1011 __enqueue_entity(cfs_rq, se);
1012 account_entity_enqueue(cfs_rq, se);
1013 resched_task(rq->curr);
1016 /* Account for a task changing its policy or group.
1018 * This routine is mostly called to set cfs_rq->curr field when a task
1019 * migrates between groups/classes.
1021 static void set_curr_task_fair(struct rq *rq)
1023 struct sched_entity *se = &rq->curr->se;
1025 for_each_sched_entity(se)
1026 set_next_entity(cfs_rq_of(se), se);
1030 * All the scheduling class methods:
1032 static const struct sched_class fair_sched_class = {
1033 .next = &idle_sched_class,
1034 .enqueue_task = enqueue_task_fair,
1035 .dequeue_task = dequeue_task_fair,
1036 .yield_task = yield_task_fair,
1038 .check_preempt_curr = check_preempt_wakeup,
1040 .pick_next_task = pick_next_task_fair,
1041 .put_prev_task = put_prev_task_fair,
1043 .load_balance = load_balance_fair,
1045 .set_curr_task = set_curr_task_fair,
1046 .task_tick = task_tick_fair,
1047 .task_new = task_new_fair,
1050 #ifdef CONFIG_SCHED_DEBUG
1051 static void print_cfs_stats(struct seq_file *m, int cpu)
1053 struct cfs_rq *cfs_rq;
1055 #ifdef CONFIG_FAIR_GROUP_SCHED
1056 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1057 #endif
1058 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1059 print_cfs_rq(m, cpu, cfs_rq);
1061 #endif