Merge branch 'linux-2.6'
[linux-2.6/mini2440.git] / arch / powerpc / mm / hash_utils_64.c
blobc2e5f61788b0cfbe779f337bd35847db9c93c5bb
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/lmb.h>
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/page.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
63 #ifdef DEBUG_LOW
64 #define DBG_LOW(fmt...) udbg_printf(fmt)
65 #else
66 #define DBG_LOW(fmt...)
67 #endif
69 #define KB (1024)
70 #define MB (1024*KB)
73 * Note: pte --> Linux PTE
74 * HPTE --> PowerPC Hashed Page Table Entry
76 * Execution context:
77 * htab_initialize is called with the MMU off (of course), but
78 * the kernel has been copied down to zero so it can directly
79 * reference global data. At this point it is very difficult
80 * to print debug info.
84 #ifdef CONFIG_U3_DART
85 extern unsigned long dart_tablebase;
86 #endif /* CONFIG_U3_DART */
88 static unsigned long _SDR1;
89 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
91 struct hash_pte *htab_address;
92 unsigned long htab_size_bytes;
93 unsigned long htab_hash_mask;
94 int mmu_linear_psize = MMU_PAGE_4K;
95 int mmu_virtual_psize = MMU_PAGE_4K;
96 int mmu_vmalloc_psize = MMU_PAGE_4K;
97 int mmu_io_psize = MMU_PAGE_4K;
98 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
99 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
100 u16 mmu_slb_size = 64;
101 #ifdef CONFIG_HUGETLB_PAGE
102 int mmu_huge_psize = MMU_PAGE_16M;
103 unsigned int HPAGE_SHIFT;
104 #endif
105 #ifdef CONFIG_PPC_64K_PAGES
106 int mmu_ci_restrictions;
107 #endif
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 static u8 *linear_map_hash_slots;
110 static unsigned long linear_map_hash_count;
111 static DEFINE_SPINLOCK(linear_map_hash_lock);
112 #endif /* CONFIG_DEBUG_PAGEALLOC */
114 /* There are definitions of page sizes arrays to be used when none
115 * is provided by the firmware.
118 /* Pre-POWER4 CPUs (4k pages only)
120 struct mmu_psize_def mmu_psize_defaults_old[] = {
121 [MMU_PAGE_4K] = {
122 .shift = 12,
123 .sllp = 0,
124 .penc = 0,
125 .avpnm = 0,
126 .tlbiel = 0,
130 /* POWER4, GPUL, POWER5
132 * Support for 16Mb large pages
134 struct mmu_psize_def mmu_psize_defaults_gp[] = {
135 [MMU_PAGE_4K] = {
136 .shift = 12,
137 .sllp = 0,
138 .penc = 0,
139 .avpnm = 0,
140 .tlbiel = 1,
142 [MMU_PAGE_16M] = {
143 .shift = 24,
144 .sllp = SLB_VSID_L,
145 .penc = 0,
146 .avpnm = 0x1UL,
147 .tlbiel = 0,
152 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
153 unsigned long pstart, unsigned long mode,
154 int psize, int ssize)
156 unsigned long vaddr, paddr;
157 unsigned int step, shift;
158 unsigned long tmp_mode;
159 int ret = 0;
161 shift = mmu_psize_defs[psize].shift;
162 step = 1 << shift;
164 for (vaddr = vstart, paddr = pstart; vaddr < vend;
165 vaddr += step, paddr += step) {
166 unsigned long hash, hpteg;
167 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
168 unsigned long va = hpt_va(vaddr, vsid, ssize);
170 tmp_mode = mode;
172 /* Make non-kernel text non-executable */
173 if (!in_kernel_text(vaddr))
174 tmp_mode = mode | HPTE_R_N;
176 hash = hpt_hash(va, shift, ssize);
177 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
179 DBG("htab_bolt_mapping: calling %p\n", ppc_md.hpte_insert);
181 BUG_ON(!ppc_md.hpte_insert);
182 ret = ppc_md.hpte_insert(hpteg, va, paddr,
183 tmp_mode, HPTE_V_BOLTED, psize, ssize);
185 if (ret < 0)
186 break;
187 #ifdef CONFIG_DEBUG_PAGEALLOC
188 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
189 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
190 #endif /* CONFIG_DEBUG_PAGEALLOC */
192 return ret < 0 ? ret : 0;
195 static void htab_remove_mapping(unsigned long vstart, unsigned long vend,
196 int psize, int ssize)
198 unsigned long vaddr;
199 unsigned int step, shift;
201 shift = mmu_psize_defs[psize].shift;
202 step = 1 << shift;
204 if (!ppc_md.hpte_removebolted) {
205 printk("Sub-arch doesn't implement hpte_removebolted\n");
206 return;
209 for (vaddr = vstart; vaddr < vend; vaddr += step)
210 ppc_md.hpte_removebolted(vaddr, psize, ssize);
213 static int __init htab_dt_scan_seg_sizes(unsigned long node,
214 const char *uname, int depth,
215 void *data)
217 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
218 u32 *prop;
219 unsigned long size = 0;
221 /* We are scanning "cpu" nodes only */
222 if (type == NULL || strcmp(type, "cpu") != 0)
223 return 0;
225 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
226 &size);
227 if (prop == NULL)
228 return 0;
229 for (; size >= 4; size -= 4, ++prop) {
230 if (prop[0] == 40) {
231 DBG("1T segment support detected\n");
232 cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
233 return 1;
236 cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
237 return 0;
240 static void __init htab_init_seg_sizes(void)
242 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
245 static int __init htab_dt_scan_page_sizes(unsigned long node,
246 const char *uname, int depth,
247 void *data)
249 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
250 u32 *prop;
251 unsigned long size = 0;
253 /* We are scanning "cpu" nodes only */
254 if (type == NULL || strcmp(type, "cpu") != 0)
255 return 0;
257 prop = (u32 *)of_get_flat_dt_prop(node,
258 "ibm,segment-page-sizes", &size);
259 if (prop != NULL) {
260 DBG("Page sizes from device-tree:\n");
261 size /= 4;
262 cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
263 while(size > 0) {
264 unsigned int shift = prop[0];
265 unsigned int slbenc = prop[1];
266 unsigned int lpnum = prop[2];
267 unsigned int lpenc = 0;
268 struct mmu_psize_def *def;
269 int idx = -1;
271 size -= 3; prop += 3;
272 while(size > 0 && lpnum) {
273 if (prop[0] == shift)
274 lpenc = prop[1];
275 prop += 2; size -= 2;
276 lpnum--;
278 switch(shift) {
279 case 0xc:
280 idx = MMU_PAGE_4K;
281 break;
282 case 0x10:
283 idx = MMU_PAGE_64K;
284 break;
285 case 0x14:
286 idx = MMU_PAGE_1M;
287 break;
288 case 0x18:
289 idx = MMU_PAGE_16M;
290 cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
291 break;
292 case 0x22:
293 idx = MMU_PAGE_16G;
294 break;
296 if (idx < 0)
297 continue;
298 def = &mmu_psize_defs[idx];
299 def->shift = shift;
300 if (shift <= 23)
301 def->avpnm = 0;
302 else
303 def->avpnm = (1 << (shift - 23)) - 1;
304 def->sllp = slbenc;
305 def->penc = lpenc;
306 /* We don't know for sure what's up with tlbiel, so
307 * for now we only set it for 4K and 64K pages
309 if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
310 def->tlbiel = 1;
311 else
312 def->tlbiel = 0;
314 DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
315 "tlbiel=%d, penc=%d\n",
316 idx, shift, def->sllp, def->avpnm, def->tlbiel,
317 def->penc);
319 return 1;
321 return 0;
324 static void __init htab_init_page_sizes(void)
326 int rc;
328 /* Default to 4K pages only */
329 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
330 sizeof(mmu_psize_defaults_old));
333 * Try to find the available page sizes in the device-tree
335 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
336 if (rc != 0) /* Found */
337 goto found;
340 * Not in the device-tree, let's fallback on known size
341 * list for 16M capable GP & GR
343 if (cpu_has_feature(CPU_FTR_16M_PAGE))
344 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
345 sizeof(mmu_psize_defaults_gp));
346 found:
347 #ifndef CONFIG_DEBUG_PAGEALLOC
349 * Pick a size for the linear mapping. Currently, we only support
350 * 16M, 1M and 4K which is the default
352 if (mmu_psize_defs[MMU_PAGE_16M].shift)
353 mmu_linear_psize = MMU_PAGE_16M;
354 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
355 mmu_linear_psize = MMU_PAGE_1M;
356 #endif /* CONFIG_DEBUG_PAGEALLOC */
358 #ifdef CONFIG_PPC_64K_PAGES
360 * Pick a size for the ordinary pages. Default is 4K, we support
361 * 64K for user mappings and vmalloc if supported by the processor.
362 * We only use 64k for ioremap if the processor
363 * (and firmware) support cache-inhibited large pages.
364 * If not, we use 4k and set mmu_ci_restrictions so that
365 * hash_page knows to switch processes that use cache-inhibited
366 * mappings to 4k pages.
368 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
369 mmu_virtual_psize = MMU_PAGE_64K;
370 mmu_vmalloc_psize = MMU_PAGE_64K;
371 if (mmu_linear_psize == MMU_PAGE_4K)
372 mmu_linear_psize = MMU_PAGE_64K;
373 if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) {
375 * Don't use 64k pages for ioremap on pSeries, since
376 * that would stop us accessing the HEA ethernet.
378 if (!machine_is(pseries))
379 mmu_io_psize = MMU_PAGE_64K;
380 } else
381 mmu_ci_restrictions = 1;
383 #endif /* CONFIG_PPC_64K_PAGES */
385 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
386 "virtual = %d, io = %d\n",
387 mmu_psize_defs[mmu_linear_psize].shift,
388 mmu_psize_defs[mmu_virtual_psize].shift,
389 mmu_psize_defs[mmu_io_psize].shift);
391 #ifdef CONFIG_HUGETLB_PAGE
392 /* Init large page size. Currently, we pick 16M or 1M depending
393 * on what is available
395 if (mmu_psize_defs[MMU_PAGE_16M].shift)
396 set_huge_psize(MMU_PAGE_16M);
397 /* With 4k/4level pagetables, we can't (for now) cope with a
398 * huge page size < PMD_SIZE */
399 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
400 set_huge_psize(MMU_PAGE_1M);
401 #endif /* CONFIG_HUGETLB_PAGE */
404 static int __init htab_dt_scan_pftsize(unsigned long node,
405 const char *uname, int depth,
406 void *data)
408 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
409 u32 *prop;
411 /* We are scanning "cpu" nodes only */
412 if (type == NULL || strcmp(type, "cpu") != 0)
413 return 0;
415 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
416 if (prop != NULL) {
417 /* pft_size[0] is the NUMA CEC cookie */
418 ppc64_pft_size = prop[1];
419 return 1;
421 return 0;
424 static unsigned long __init htab_get_table_size(void)
426 unsigned long mem_size, rnd_mem_size, pteg_count;
428 /* If hash size isn't already provided by the platform, we try to
429 * retrieve it from the device-tree. If it's not there neither, we
430 * calculate it now based on the total RAM size
432 if (ppc64_pft_size == 0)
433 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
434 if (ppc64_pft_size)
435 return 1UL << ppc64_pft_size;
437 /* round mem_size up to next power of 2 */
438 mem_size = lmb_phys_mem_size();
439 rnd_mem_size = 1UL << __ilog2(mem_size);
440 if (rnd_mem_size < mem_size)
441 rnd_mem_size <<= 1;
443 /* # pages / 2 */
444 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
446 return pteg_count << 7;
449 #ifdef CONFIG_MEMORY_HOTPLUG
450 void create_section_mapping(unsigned long start, unsigned long end)
452 BUG_ON(htab_bolt_mapping(start, end, __pa(start),
453 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX,
454 mmu_linear_psize, mmu_kernel_ssize));
457 void remove_section_mapping(unsigned long start, unsigned long end)
459 htab_remove_mapping(start, end, mmu_linear_psize, mmu_kernel_ssize);
461 #endif /* CONFIG_MEMORY_HOTPLUG */
463 static inline void make_bl(unsigned int *insn_addr, void *func)
465 unsigned long funcp = *((unsigned long *)func);
466 int offset = funcp - (unsigned long)insn_addr;
468 *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
469 flush_icache_range((unsigned long)insn_addr, 4+
470 (unsigned long)insn_addr);
473 static void __init htab_finish_init(void)
475 extern unsigned int *htab_call_hpte_insert1;
476 extern unsigned int *htab_call_hpte_insert2;
477 extern unsigned int *htab_call_hpte_remove;
478 extern unsigned int *htab_call_hpte_updatepp;
480 #ifdef CONFIG_PPC_HAS_HASH_64K
481 extern unsigned int *ht64_call_hpte_insert1;
482 extern unsigned int *ht64_call_hpte_insert2;
483 extern unsigned int *ht64_call_hpte_remove;
484 extern unsigned int *ht64_call_hpte_updatepp;
486 make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
487 make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
488 make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
489 make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
490 #endif /* CONFIG_PPC_HAS_HASH_64K */
492 make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
493 make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
494 make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
495 make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
498 void __init htab_initialize(void)
500 unsigned long table;
501 unsigned long pteg_count;
502 unsigned long mode_rw;
503 unsigned long base = 0, size = 0, limit;
504 int i;
506 extern unsigned long tce_alloc_start, tce_alloc_end;
508 DBG(" -> htab_initialize()\n");
510 /* Initialize segment sizes */
511 htab_init_seg_sizes();
513 /* Initialize page sizes */
514 htab_init_page_sizes();
516 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
517 mmu_kernel_ssize = MMU_SEGSIZE_1T;
518 mmu_highuser_ssize = MMU_SEGSIZE_1T;
519 printk(KERN_INFO "Using 1TB segments\n");
523 * Calculate the required size of the htab. We want the number of
524 * PTEGs to equal one half the number of real pages.
526 htab_size_bytes = htab_get_table_size();
527 pteg_count = htab_size_bytes >> 7;
529 htab_hash_mask = pteg_count - 1;
531 if (firmware_has_feature(FW_FEATURE_LPAR)) {
532 /* Using a hypervisor which owns the htab */
533 htab_address = NULL;
534 _SDR1 = 0;
535 } else {
536 /* Find storage for the HPT. Must be contiguous in
537 * the absolute address space. On cell we want it to be
538 * in the first 2 Gig so we can use it for IOMMU hacks.
540 if (machine_is(cell))
541 limit = 0x80000000;
542 else
543 limit = 0;
545 table = lmb_alloc_base(htab_size_bytes, htab_size_bytes, limit);
547 DBG("Hash table allocated at %lx, size: %lx\n", table,
548 htab_size_bytes);
550 htab_address = abs_to_virt(table);
552 /* htab absolute addr + encoded htabsize */
553 _SDR1 = table + __ilog2(pteg_count) - 11;
555 /* Initialize the HPT with no entries */
556 memset((void *)table, 0, htab_size_bytes);
558 /* Set SDR1 */
559 mtspr(SPRN_SDR1, _SDR1);
562 mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX;
564 #ifdef CONFIG_DEBUG_PAGEALLOC
565 linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
566 linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
567 1, lmb.rmo_size));
568 memset(linear_map_hash_slots, 0, linear_map_hash_count);
569 #endif /* CONFIG_DEBUG_PAGEALLOC */
571 /* On U3 based machines, we need to reserve the DART area and
572 * _NOT_ map it to avoid cache paradoxes as it's remapped non
573 * cacheable later on
576 /* create bolted the linear mapping in the hash table */
577 for (i=0; i < lmb.memory.cnt; i++) {
578 base = (unsigned long)__va(lmb.memory.region[i].base);
579 size = lmb.memory.region[i].size;
581 DBG("creating mapping for region: %lx : %lx\n", base, size);
583 #ifdef CONFIG_U3_DART
584 /* Do not map the DART space. Fortunately, it will be aligned
585 * in such a way that it will not cross two lmb regions and
586 * will fit within a single 16Mb page.
587 * The DART space is assumed to be a full 16Mb region even if
588 * we only use 2Mb of that space. We will use more of it later
589 * for AGP GART. We have to use a full 16Mb large page.
591 DBG("DART base: %lx\n", dart_tablebase);
593 if (dart_tablebase != 0 && dart_tablebase >= base
594 && dart_tablebase < (base + size)) {
595 unsigned long dart_table_end = dart_tablebase + 16 * MB;
596 if (base != dart_tablebase)
597 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
598 __pa(base), mode_rw,
599 mmu_linear_psize,
600 mmu_kernel_ssize));
601 if ((base + size) > dart_table_end)
602 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
603 base + size,
604 __pa(dart_table_end),
605 mode_rw,
606 mmu_linear_psize,
607 mmu_kernel_ssize));
608 continue;
610 #endif /* CONFIG_U3_DART */
611 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
612 mode_rw, mmu_linear_psize, mmu_kernel_ssize));
616 * If we have a memory_limit and we've allocated TCEs then we need to
617 * explicitly map the TCE area at the top of RAM. We also cope with the
618 * case that the TCEs start below memory_limit.
619 * tce_alloc_start/end are 16MB aligned so the mapping should work
620 * for either 4K or 16MB pages.
622 if (tce_alloc_start) {
623 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
624 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
626 if (base + size >= tce_alloc_start)
627 tce_alloc_start = base + size + 1;
629 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
630 __pa(tce_alloc_start), mode_rw,
631 mmu_linear_psize, mmu_kernel_ssize));
634 htab_finish_init();
636 DBG(" <- htab_initialize()\n");
638 #undef KB
639 #undef MB
641 void htab_initialize_secondary(void)
643 if (!firmware_has_feature(FW_FEATURE_LPAR))
644 mtspr(SPRN_SDR1, _SDR1);
648 * Called by asm hashtable.S for doing lazy icache flush
650 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
652 struct page *page;
654 if (!pfn_valid(pte_pfn(pte)))
655 return pp;
657 page = pte_page(pte);
659 /* page is dirty */
660 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
661 if (trap == 0x400) {
662 __flush_dcache_icache(page_address(page));
663 set_bit(PG_arch_1, &page->flags);
664 } else
665 pp |= HPTE_R_N;
667 return pp;
671 * Demote a segment to using 4k pages.
672 * For now this makes the whole process use 4k pages.
674 #ifdef CONFIG_PPC_64K_PAGES
675 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
677 if (mm->context.user_psize == MMU_PAGE_4K)
678 return;
679 slice_set_user_psize(mm, MMU_PAGE_4K);
680 #ifdef CONFIG_SPU_BASE
681 spu_flush_all_slbs(mm);
682 #endif
683 if (get_paca()->context.user_psize != MMU_PAGE_4K) {
684 get_paca()->context = mm->context;
685 slb_flush_and_rebolt();
688 #endif /* CONFIG_PPC_64K_PAGES */
690 #ifdef CONFIG_PPC_SUBPAGE_PROT
692 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
693 * Userspace sets the subpage permissions using the subpage_prot system call.
695 * Result is 0: full permissions, _PAGE_RW: read-only,
696 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
698 static int subpage_protection(pgd_t *pgdir, unsigned long ea)
700 struct subpage_prot_table *spt = pgd_subpage_prot(pgdir);
701 u32 spp = 0;
702 u32 **sbpm, *sbpp;
704 if (ea >= spt->maxaddr)
705 return 0;
706 if (ea < 0x100000000) {
707 /* addresses below 4GB use spt->low_prot */
708 sbpm = spt->low_prot;
709 } else {
710 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
711 if (!sbpm)
712 return 0;
714 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
715 if (!sbpp)
716 return 0;
717 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
719 /* extract 2-bit bitfield for this 4k subpage */
720 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
722 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
723 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
724 return spp;
727 #else /* CONFIG_PPC_SUBPAGE_PROT */
728 static inline int subpage_protection(pgd_t *pgdir, unsigned long ea)
730 return 0;
732 #endif
734 /* Result code is:
735 * 0 - handled
736 * 1 - normal page fault
737 * -1 - critical hash insertion error
738 * -2 - access not permitted by subpage protection mechanism
740 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
742 void *pgdir;
743 unsigned long vsid;
744 struct mm_struct *mm;
745 pte_t *ptep;
746 cpumask_t tmp;
747 int rc, user_region = 0, local = 0;
748 int psize, ssize;
750 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
751 ea, access, trap);
753 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
754 DBG_LOW(" out of pgtable range !\n");
755 return 1;
758 /* Get region & vsid */
759 switch (REGION_ID(ea)) {
760 case USER_REGION_ID:
761 user_region = 1;
762 mm = current->mm;
763 if (! mm) {
764 DBG_LOW(" user region with no mm !\n");
765 return 1;
767 #ifdef CONFIG_PPC_MM_SLICES
768 psize = get_slice_psize(mm, ea);
769 #else
770 psize = mm->context.user_psize;
771 #endif
772 ssize = user_segment_size(ea);
773 vsid = get_vsid(mm->context.id, ea, ssize);
774 break;
775 case VMALLOC_REGION_ID:
776 mm = &init_mm;
777 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
778 if (ea < VMALLOC_END)
779 psize = mmu_vmalloc_psize;
780 else
781 psize = mmu_io_psize;
782 ssize = mmu_kernel_ssize;
783 break;
784 default:
785 /* Not a valid range
786 * Send the problem up to do_page_fault
788 return 1;
790 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
792 /* Get pgdir */
793 pgdir = mm->pgd;
794 if (pgdir == NULL)
795 return 1;
797 /* Check CPU locality */
798 tmp = cpumask_of_cpu(smp_processor_id());
799 if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
800 local = 1;
802 #ifdef CONFIG_HUGETLB_PAGE
803 /* Handle hugepage regions */
804 if (HPAGE_SHIFT && psize == mmu_huge_psize) {
805 DBG_LOW(" -> huge page !\n");
806 return hash_huge_page(mm, access, ea, vsid, local, trap);
808 #endif /* CONFIG_HUGETLB_PAGE */
810 #ifndef CONFIG_PPC_64K_PAGES
811 /* If we use 4K pages and our psize is not 4K, then we are hitting
812 * a special driver mapping, we need to align the address before
813 * we fetch the PTE
815 if (psize != MMU_PAGE_4K)
816 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
817 #endif /* CONFIG_PPC_64K_PAGES */
819 /* Get PTE and page size from page tables */
820 ptep = find_linux_pte(pgdir, ea);
821 if (ptep == NULL || !pte_present(*ptep)) {
822 DBG_LOW(" no PTE !\n");
823 return 1;
826 #ifndef CONFIG_PPC_64K_PAGES
827 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
828 #else
829 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
830 pte_val(*(ptep + PTRS_PER_PTE)));
831 #endif
832 /* Pre-check access permissions (will be re-checked atomically
833 * in __hash_page_XX but this pre-check is a fast path
835 if (access & ~pte_val(*ptep)) {
836 DBG_LOW(" no access !\n");
837 return 1;
840 /* Do actual hashing */
841 #ifdef CONFIG_PPC_64K_PAGES
842 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
843 if (pte_val(*ptep) & _PAGE_4K_PFN) {
844 demote_segment_4k(mm, ea);
845 psize = MMU_PAGE_4K;
848 /* If this PTE is non-cacheable and we have restrictions on
849 * using non cacheable large pages, then we switch to 4k
851 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
852 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
853 if (user_region) {
854 demote_segment_4k(mm, ea);
855 psize = MMU_PAGE_4K;
856 } else if (ea < VMALLOC_END) {
858 * some driver did a non-cacheable mapping
859 * in vmalloc space, so switch vmalloc
860 * to 4k pages
862 printk(KERN_ALERT "Reducing vmalloc segment "
863 "to 4kB pages because of "
864 "non-cacheable mapping\n");
865 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
866 #ifdef CONFIG_SPU_BASE
867 spu_flush_all_slbs(mm);
868 #endif
871 if (user_region) {
872 if (psize != get_paca()->context.user_psize) {
873 get_paca()->context = mm->context;
874 slb_flush_and_rebolt();
876 } else if (get_paca()->vmalloc_sllp !=
877 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
878 get_paca()->vmalloc_sllp =
879 mmu_psize_defs[mmu_vmalloc_psize].sllp;
880 slb_vmalloc_update();
882 #endif /* CONFIG_PPC_64K_PAGES */
884 #ifdef CONFIG_PPC_HAS_HASH_64K
885 if (psize == MMU_PAGE_64K)
886 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
887 else
888 #endif /* CONFIG_PPC_HAS_HASH_64K */
890 int spp = subpage_protection(pgdir, ea);
891 if (access & spp)
892 rc = -2;
893 else
894 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
895 local, ssize, spp);
898 #ifndef CONFIG_PPC_64K_PAGES
899 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
900 #else
901 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
902 pte_val(*(ptep + PTRS_PER_PTE)));
903 #endif
904 DBG_LOW(" -> rc=%d\n", rc);
905 return rc;
907 EXPORT_SYMBOL_GPL(hash_page);
909 void hash_preload(struct mm_struct *mm, unsigned long ea,
910 unsigned long access, unsigned long trap)
912 unsigned long vsid;
913 void *pgdir;
914 pte_t *ptep;
915 cpumask_t mask;
916 unsigned long flags;
917 int local = 0;
918 int ssize;
920 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
922 #ifdef CONFIG_PPC_MM_SLICES
923 /* We only prefault standard pages for now */
924 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
925 return;
926 #endif
928 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
929 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
931 /* Get Linux PTE if available */
932 pgdir = mm->pgd;
933 if (pgdir == NULL)
934 return;
935 ptep = find_linux_pte(pgdir, ea);
936 if (!ptep)
937 return;
939 #ifdef CONFIG_PPC_64K_PAGES
940 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
941 * a 64K kernel), then we don't preload, hash_page() will take
942 * care of it once we actually try to access the page.
943 * That way we don't have to duplicate all of the logic for segment
944 * page size demotion here
946 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
947 return;
948 #endif /* CONFIG_PPC_64K_PAGES */
950 /* Get VSID */
951 ssize = user_segment_size(ea);
952 vsid = get_vsid(mm->context.id, ea, ssize);
954 /* Hash doesn't like irqs */
955 local_irq_save(flags);
957 /* Is that local to this CPU ? */
958 mask = cpumask_of_cpu(smp_processor_id());
959 if (cpus_equal(mm->cpu_vm_mask, mask))
960 local = 1;
962 /* Hash it in */
963 #ifdef CONFIG_PPC_HAS_HASH_64K
964 if (mm->context.user_psize == MMU_PAGE_64K)
965 __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
966 else
967 #endif /* CONFIG_PPC_HAS_HASH_64K */
968 __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
969 subpage_protection(pgdir, ea));
971 local_irq_restore(flags);
974 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
975 * do not forget to update the assembly call site !
977 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
978 int local)
980 unsigned long hash, index, shift, hidx, slot;
982 DBG_LOW("flush_hash_page(va=%016x)\n", va);
983 pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
984 hash = hpt_hash(va, shift, ssize);
985 hidx = __rpte_to_hidx(pte, index);
986 if (hidx & _PTEIDX_SECONDARY)
987 hash = ~hash;
988 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
989 slot += hidx & _PTEIDX_GROUP_IX;
990 DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
991 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
992 } pte_iterate_hashed_end();
995 void flush_hash_range(unsigned long number, int local)
997 if (ppc_md.flush_hash_range)
998 ppc_md.flush_hash_range(number, local);
999 else {
1000 int i;
1001 struct ppc64_tlb_batch *batch =
1002 &__get_cpu_var(ppc64_tlb_batch);
1004 for (i = 0; i < number; i++)
1005 flush_hash_page(batch->vaddr[i], batch->pte[i],
1006 batch->psize, batch->ssize, local);
1011 * low_hash_fault is called when we the low level hash code failed
1012 * to instert a PTE due to an hypervisor error
1014 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1016 if (user_mode(regs)) {
1017 #ifdef CONFIG_PPC_SUBPAGE_PROT
1018 if (rc == -2)
1019 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1020 else
1021 #endif
1022 _exception(SIGBUS, regs, BUS_ADRERR, address);
1023 } else
1024 bad_page_fault(regs, address, SIGBUS);
1027 #ifdef CONFIG_DEBUG_PAGEALLOC
1028 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1030 unsigned long hash, hpteg;
1031 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1032 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1033 unsigned long mode = _PAGE_ACCESSED | _PAGE_DIRTY |
1034 _PAGE_COHERENT | PP_RWXX | HPTE_R_N;
1035 int ret;
1037 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1038 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1040 ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1041 mode, HPTE_V_BOLTED,
1042 mmu_linear_psize, mmu_kernel_ssize);
1043 BUG_ON (ret < 0);
1044 spin_lock(&linear_map_hash_lock);
1045 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1046 linear_map_hash_slots[lmi] = ret | 0x80;
1047 spin_unlock(&linear_map_hash_lock);
1050 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1052 unsigned long hash, hidx, slot;
1053 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1054 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1056 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1057 spin_lock(&linear_map_hash_lock);
1058 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1059 hidx = linear_map_hash_slots[lmi] & 0x7f;
1060 linear_map_hash_slots[lmi] = 0;
1061 spin_unlock(&linear_map_hash_lock);
1062 if (hidx & _PTEIDX_SECONDARY)
1063 hash = ~hash;
1064 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1065 slot += hidx & _PTEIDX_GROUP_IX;
1066 ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1069 void kernel_map_pages(struct page *page, int numpages, int enable)
1071 unsigned long flags, vaddr, lmi;
1072 int i;
1074 local_irq_save(flags);
1075 for (i = 0; i < numpages; i++, page++) {
1076 vaddr = (unsigned long)page_address(page);
1077 lmi = __pa(vaddr) >> PAGE_SHIFT;
1078 if (lmi >= linear_map_hash_count)
1079 continue;
1080 if (enable)
1081 kernel_map_linear_page(vaddr, lmi);
1082 else
1083 kernel_unmap_linear_page(vaddr, lmi);
1085 local_irq_restore(flags);
1087 #endif /* CONFIG_DEBUG_PAGEALLOC */