4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static struct kmem_cache
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat
= {
70 static void __d_free(struct dentry
*dentry
)
72 WARN_ON(!list_empty(&dentry
->d_alias
));
73 if (dname_external(dentry
))
74 kfree(dentry
->d_name
.name
);
75 kmem_cache_free(dentry_cache
, dentry
);
78 static void d_callback(struct rcu_head
*head
)
80 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
88 static void d_free(struct dentry
*dentry
)
90 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
91 dentry
->d_op
->d_release(dentry
);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry
->d_hash
))
96 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
103 static void dentry_iput(struct dentry
* dentry
)
104 __releases(dentry
->d_lock
)
105 __releases(dcache_lock
)
107 struct inode
*inode
= dentry
->d_inode
;
109 dentry
->d_inode
= NULL
;
110 list_del_init(&dentry
->d_alias
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
114 fsnotify_inoderemove(inode
);
115 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
116 dentry
->d_op
->d_iput(dentry
, inode
);
120 spin_unlock(&dentry
->d_lock
);
121 spin_unlock(&dcache_lock
);
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
128 static void dentry_lru_add(struct dentry
*dentry
)
130 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
131 dentry
->d_sb
->s_nr_dentry_unused
++;
132 dentry_stat
.nr_unused
++;
135 static void dentry_lru_add_tail(struct dentry
*dentry
)
137 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
138 dentry
->d_sb
->s_nr_dentry_unused
++;
139 dentry_stat
.nr_unused
++;
142 static void dentry_lru_del(struct dentry
*dentry
)
144 if (!list_empty(&dentry
->d_lru
)) {
145 list_del(&dentry
->d_lru
);
146 dentry
->d_sb
->s_nr_dentry_unused
--;
147 dentry_stat
.nr_unused
--;
151 static void dentry_lru_del_init(struct dentry
*dentry
)
153 if (likely(!list_empty(&dentry
->d_lru
))) {
154 list_del_init(&dentry
->d_lru
);
155 dentry
->d_sb
->s_nr_dentry_unused
--;
156 dentry_stat
.nr_unused
--;
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
164 * The dentry must already be unhashed and removed from the LRU.
166 * If this is the root of the dentry tree, return NULL.
168 static struct dentry
*d_kill(struct dentry
*dentry
)
169 __releases(dentry
->d_lock
)
170 __releases(dcache_lock
)
172 struct dentry
*parent
;
174 list_del(&dentry
->d_u
.d_child
);
175 dentry_stat
.nr_dentry
--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
181 parent
= dentry
->d_parent
;
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
204 * dput - release a dentry
205 * @dentry: dentry to release
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
212 * no dcache lock, please.
215 void dput(struct dentry
*dentry
)
221 if (atomic_read(&dentry
->d_count
) == 1)
223 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
226 spin_lock(&dentry
->d_lock
);
227 if (atomic_read(&dentry
->d_count
)) {
228 spin_unlock(&dentry
->d_lock
);
229 spin_unlock(&dcache_lock
);
234 * AV: ->d_delete() is _NOT_ allowed to block now.
236 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
237 if (dentry
->d_op
->d_delete(dentry
))
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry
))
243 if (list_empty(&dentry
->d_lru
)) {
244 dentry
->d_flags
|= DCACHE_REFERENCED
;
245 dentry_lru_add(dentry
);
247 spin_unlock(&dentry
->d_lock
);
248 spin_unlock(&dcache_lock
);
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry
);
256 dentry
= d_kill(dentry
);
262 * d_invalidate - invalidate a dentry
263 * @dentry: dentry to invalidate
265 * Try to invalidate the dentry if it turns out to be
266 * possible. If there are other dentries that can be
267 * reached through this one we can't delete it and we
268 * return -EBUSY. On success we return 0.
273 int d_invalidate(struct dentry
* dentry
)
276 * If it's already been dropped, return OK.
278 spin_lock(&dcache_lock
);
279 if (d_unhashed(dentry
)) {
280 spin_unlock(&dcache_lock
);
284 * Check whether to do a partial shrink_dcache
285 * to get rid of unused child entries.
287 if (!list_empty(&dentry
->d_subdirs
)) {
288 spin_unlock(&dcache_lock
);
289 shrink_dcache_parent(dentry
);
290 spin_lock(&dcache_lock
);
294 * Somebody else still using it?
296 * If it's a directory, we can't drop it
297 * for fear of somebody re-populating it
298 * with children (even though dropping it
299 * would make it unreachable from the root,
300 * we might still populate it if it was a
301 * working directory or similar).
303 spin_lock(&dentry
->d_lock
);
304 if (atomic_read(&dentry
->d_count
) > 1) {
305 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
306 spin_unlock(&dentry
->d_lock
);
307 spin_unlock(&dcache_lock
);
313 spin_unlock(&dentry
->d_lock
);
314 spin_unlock(&dcache_lock
);
318 /* This should be called _only_ with dcache_lock held */
320 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
322 atomic_inc(&dentry
->d_count
);
323 dentry_lru_del_init(dentry
);
327 struct dentry
* dget_locked(struct dentry
*dentry
)
329 return __dget_locked(dentry
);
333 * d_find_alias - grab a hashed alias of inode
334 * @inode: inode in question
335 * @want_discon: flag, used by d_splice_alias, to request
336 * that only a DISCONNECTED alias be returned.
338 * If inode has a hashed alias, or is a directory and has any alias,
339 * acquire the reference to alias and return it. Otherwise return NULL.
340 * Notice that if inode is a directory there can be only one alias and
341 * it can be unhashed only if it has no children, or if it is the root
344 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
345 * any other hashed alias over that one unless @want_discon is set,
346 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
349 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
351 struct list_head
*head
, *next
, *tmp
;
352 struct dentry
*alias
, *discon_alias
=NULL
;
354 head
= &inode
->i_dentry
;
355 next
= inode
->i_dentry
.next
;
356 while (next
!= head
) {
360 alias
= list_entry(tmp
, struct dentry
, d_alias
);
361 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
362 if (IS_ROOT(alias
) &&
363 (alias
->d_flags
& DCACHE_DISCONNECTED
))
364 discon_alias
= alias
;
365 else if (!want_discon
) {
366 __dget_locked(alias
);
372 __dget_locked(discon_alias
);
376 struct dentry
* d_find_alias(struct inode
*inode
)
378 struct dentry
*de
= NULL
;
380 if (!list_empty(&inode
->i_dentry
)) {
381 spin_lock(&dcache_lock
);
382 de
= __d_find_alias(inode
, 0);
383 spin_unlock(&dcache_lock
);
389 * Try to kill dentries associated with this inode.
390 * WARNING: you must own a reference to inode.
392 void d_prune_aliases(struct inode
*inode
)
394 struct dentry
*dentry
;
396 spin_lock(&dcache_lock
);
397 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
398 spin_lock(&dentry
->d_lock
);
399 if (!atomic_read(&dentry
->d_count
)) {
400 __dget_locked(dentry
);
402 spin_unlock(&dentry
->d_lock
);
403 spin_unlock(&dcache_lock
);
407 spin_unlock(&dentry
->d_lock
);
409 spin_unlock(&dcache_lock
);
413 * Throw away a dentry - free the inode, dput the parent. This requires that
414 * the LRU list has already been removed.
416 * Try to prune ancestors as well. This is necessary to prevent
417 * quadratic behavior of shrink_dcache_parent(), but is also expected
418 * to be beneficial in reducing dentry cache fragmentation.
420 static void prune_one_dentry(struct dentry
* dentry
)
421 __releases(dentry
->d_lock
)
422 __releases(dcache_lock
)
423 __acquires(dcache_lock
)
426 dentry
= d_kill(dentry
);
429 * Prune ancestors. Locking is simpler than in dput(),
430 * because dcache_lock needs to be taken anyway.
432 spin_lock(&dcache_lock
);
434 if (!atomic_dec_and_lock(&dentry
->d_count
, &dentry
->d_lock
))
437 if (dentry
->d_op
&& dentry
->d_op
->d_delete
)
438 dentry
->d_op
->d_delete(dentry
);
439 dentry_lru_del_init(dentry
);
441 dentry
= d_kill(dentry
);
442 spin_lock(&dcache_lock
);
447 * Shrink the dentry LRU on a given superblock.
448 * @sb : superblock to shrink dentry LRU.
449 * @count: If count is NULL, we prune all dentries on superblock.
450 * @flags: If flags is non-zero, we need to do special processing based on
451 * which flags are set. This means we don't need to maintain multiple
452 * similar copies of this loop.
454 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
456 LIST_HEAD(referenced
);
458 struct dentry
*dentry
;
462 BUG_ON((flags
& DCACHE_REFERENCED
) && count
== NULL
);
463 spin_lock(&dcache_lock
);
465 /* called from prune_dcache() and shrink_dcache_parent() */
469 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
471 while (!list_empty(&sb
->s_dentry_lru
)) {
472 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
473 struct dentry
, d_lru
);
474 BUG_ON(dentry
->d_sb
!= sb
);
476 spin_lock(&dentry
->d_lock
);
478 * If we are honouring the DCACHE_REFERENCED flag and
479 * the dentry has this flag set, don't free it. Clear
480 * the flag and put it back on the LRU.
482 if ((flags
& DCACHE_REFERENCED
)
483 && (dentry
->d_flags
& DCACHE_REFERENCED
)) {
484 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
485 list_move(&dentry
->d_lru
, &referenced
);
486 spin_unlock(&dentry
->d_lock
);
488 list_move_tail(&dentry
->d_lru
, &tmp
);
489 spin_unlock(&dentry
->d_lock
);
494 cond_resched_lock(&dcache_lock
);
497 while (!list_empty(&tmp
)) {
498 dentry
= list_entry(tmp
.prev
, struct dentry
, d_lru
);
499 dentry_lru_del_init(dentry
);
500 spin_lock(&dentry
->d_lock
);
502 * We found an inuse dentry which was not removed from
503 * the LRU because of laziness during lookup. Do not free
504 * it - just keep it off the LRU list.
506 if (atomic_read(&dentry
->d_count
)) {
507 spin_unlock(&dentry
->d_lock
);
510 prune_one_dentry(dentry
);
511 /* dentry->d_lock was dropped in prune_one_dentry() */
512 cond_resched_lock(&dcache_lock
);
514 if (count
== NULL
&& !list_empty(&sb
->s_dentry_lru
))
518 if (!list_empty(&referenced
))
519 list_splice(&referenced
, &sb
->s_dentry_lru
);
520 spin_unlock(&dcache_lock
);
524 * prune_dcache - shrink the dcache
525 * @count: number of entries to try to free
527 * Shrink the dcache. This is done when we need more memory, or simply when we
528 * need to unmount something (at which point we need to unuse all dentries).
530 * This function may fail to free any resources if all the dentries are in use.
532 static void prune_dcache(int count
)
534 struct super_block
*sb
;
536 int unused
= dentry_stat
.nr_unused
;
540 if (unused
== 0 || count
== 0)
542 spin_lock(&dcache_lock
);
547 prune_ratio
= unused
/ count
;
549 list_for_each_entry(sb
, &super_blocks
, s_list
) {
550 if (sb
->s_nr_dentry_unused
== 0)
553 /* Now, we reclaim unused dentrins with fairness.
554 * We reclaim them same percentage from each superblock.
555 * We calculate number of dentries to scan on this sb
556 * as follows, but the implementation is arranged to avoid
558 * number of dentries to scan on this sb =
559 * count * (number of dentries on this sb /
560 * number of dentries in the machine)
562 spin_unlock(&sb_lock
);
563 if (prune_ratio
!= 1)
564 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
566 w_count
= sb
->s_nr_dentry_unused
;
569 * We need to be sure this filesystem isn't being unmounted,
570 * otherwise we could race with generic_shutdown_super(), and
571 * end up holding a reference to an inode while the filesystem
572 * is unmounted. So we try to get s_umount, and make sure
575 if (down_read_trylock(&sb
->s_umount
)) {
576 if ((sb
->s_root
!= NULL
) &&
577 (!list_empty(&sb
->s_dentry_lru
))) {
578 spin_unlock(&dcache_lock
);
579 __shrink_dcache_sb(sb
, &w_count
,
582 spin_lock(&dcache_lock
);
584 up_read(&sb
->s_umount
);
589 * restart only when sb is no longer on the list and
590 * we have more work to do.
592 if (__put_super_and_need_restart(sb
) && count
> 0) {
593 spin_unlock(&sb_lock
);
597 spin_unlock(&sb_lock
);
598 spin_unlock(&dcache_lock
);
602 * shrink_dcache_sb - shrink dcache for a superblock
605 * Shrink the dcache for the specified super block. This
606 * is used to free the dcache before unmounting a file
609 void shrink_dcache_sb(struct super_block
* sb
)
611 __shrink_dcache_sb(sb
, NULL
, 0);
615 * destroy a single subtree of dentries for unmount
616 * - see the comments on shrink_dcache_for_umount() for a description of the
619 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
621 struct dentry
*parent
;
622 unsigned detached
= 0;
624 BUG_ON(!IS_ROOT(dentry
));
626 /* detach this root from the system */
627 spin_lock(&dcache_lock
);
628 dentry_lru_del_init(dentry
);
630 spin_unlock(&dcache_lock
);
633 /* descend to the first leaf in the current subtree */
634 while (!list_empty(&dentry
->d_subdirs
)) {
637 /* this is a branch with children - detach all of them
638 * from the system in one go */
639 spin_lock(&dcache_lock
);
640 list_for_each_entry(loop
, &dentry
->d_subdirs
,
642 dentry_lru_del_init(loop
);
644 cond_resched_lock(&dcache_lock
);
646 spin_unlock(&dcache_lock
);
648 /* move to the first child */
649 dentry
= list_entry(dentry
->d_subdirs
.next
,
650 struct dentry
, d_u
.d_child
);
653 /* consume the dentries from this leaf up through its parents
654 * until we find one with children or run out altogether */
658 if (atomic_read(&dentry
->d_count
) != 0) {
660 "BUG: Dentry %p{i=%lx,n=%s}"
662 " [unmount of %s %s]\n",
665 dentry
->d_inode
->i_ino
: 0UL,
667 atomic_read(&dentry
->d_count
),
668 dentry
->d_sb
->s_type
->name
,
676 parent
= dentry
->d_parent
;
677 atomic_dec(&parent
->d_count
);
680 list_del(&dentry
->d_u
.d_child
);
683 inode
= dentry
->d_inode
;
685 dentry
->d_inode
= NULL
;
686 list_del_init(&dentry
->d_alias
);
687 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
688 dentry
->d_op
->d_iput(dentry
, inode
);
695 /* finished when we fall off the top of the tree,
696 * otherwise we ascend to the parent and move to the
697 * next sibling if there is one */
703 } while (list_empty(&dentry
->d_subdirs
));
705 dentry
= list_entry(dentry
->d_subdirs
.next
,
706 struct dentry
, d_u
.d_child
);
709 /* several dentries were freed, need to correct nr_dentry */
710 spin_lock(&dcache_lock
);
711 dentry_stat
.nr_dentry
-= detached
;
712 spin_unlock(&dcache_lock
);
716 * destroy the dentries attached to a superblock on unmounting
717 * - we don't need to use dentry->d_lock, and only need dcache_lock when
718 * removing the dentry from the system lists and hashes because:
719 * - the superblock is detached from all mountings and open files, so the
720 * dentry trees will not be rearranged by the VFS
721 * - s_umount is write-locked, so the memory pressure shrinker will ignore
722 * any dentries belonging to this superblock that it comes across
723 * - the filesystem itself is no longer permitted to rearrange the dentries
726 void shrink_dcache_for_umount(struct super_block
*sb
)
728 struct dentry
*dentry
;
730 if (down_read_trylock(&sb
->s_umount
))
735 atomic_dec(&dentry
->d_count
);
736 shrink_dcache_for_umount_subtree(dentry
);
738 while (!hlist_empty(&sb
->s_anon
)) {
739 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
740 shrink_dcache_for_umount_subtree(dentry
);
745 * Search for at least 1 mount point in the dentry's subdirs.
746 * We descend to the next level whenever the d_subdirs
747 * list is non-empty and continue searching.
751 * have_submounts - check for mounts over a dentry
752 * @parent: dentry to check.
754 * Return true if the parent or its subdirectories contain
758 int have_submounts(struct dentry
*parent
)
760 struct dentry
*this_parent
= parent
;
761 struct list_head
*next
;
763 spin_lock(&dcache_lock
);
764 if (d_mountpoint(parent
))
767 next
= this_parent
->d_subdirs
.next
;
769 while (next
!= &this_parent
->d_subdirs
) {
770 struct list_head
*tmp
= next
;
771 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
773 /* Have we found a mount point ? */
774 if (d_mountpoint(dentry
))
776 if (!list_empty(&dentry
->d_subdirs
)) {
777 this_parent
= dentry
;
782 * All done at this level ... ascend and resume the search.
784 if (this_parent
!= parent
) {
785 next
= this_parent
->d_u
.d_child
.next
;
786 this_parent
= this_parent
->d_parent
;
789 spin_unlock(&dcache_lock
);
790 return 0; /* No mount points found in tree */
792 spin_unlock(&dcache_lock
);
797 * Search the dentry child list for the specified parent,
798 * and move any unused dentries to the end of the unused
799 * list for prune_dcache(). We descend to the next level
800 * whenever the d_subdirs list is non-empty and continue
803 * It returns zero iff there are no unused children,
804 * otherwise it returns the number of children moved to
805 * the end of the unused list. This may not be the total
806 * number of unused children, because select_parent can
807 * drop the lock and return early due to latency
810 static int select_parent(struct dentry
* parent
)
812 struct dentry
*this_parent
= parent
;
813 struct list_head
*next
;
816 spin_lock(&dcache_lock
);
818 next
= this_parent
->d_subdirs
.next
;
820 while (next
!= &this_parent
->d_subdirs
) {
821 struct list_head
*tmp
= next
;
822 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
825 dentry_lru_del_init(dentry
);
827 * move only zero ref count dentries to the end
828 * of the unused list for prune_dcache
830 if (!atomic_read(&dentry
->d_count
)) {
831 dentry_lru_add_tail(dentry
);
836 * We can return to the caller if we have found some (this
837 * ensures forward progress). We'll be coming back to find
840 if (found
&& need_resched())
844 * Descend a level if the d_subdirs list is non-empty.
846 if (!list_empty(&dentry
->d_subdirs
)) {
847 this_parent
= dentry
;
852 * All done at this level ... ascend and resume the search.
854 if (this_parent
!= parent
) {
855 next
= this_parent
->d_u
.d_child
.next
;
856 this_parent
= this_parent
->d_parent
;
860 spin_unlock(&dcache_lock
);
865 * shrink_dcache_parent - prune dcache
866 * @parent: parent of entries to prune
868 * Prune the dcache to remove unused children of the parent dentry.
871 void shrink_dcache_parent(struct dentry
* parent
)
873 struct super_block
*sb
= parent
->d_sb
;
876 while ((found
= select_parent(parent
)) != 0)
877 __shrink_dcache_sb(sb
, &found
, 0);
881 * Scan `nr' dentries and return the number which remain.
883 * We need to avoid reentering the filesystem if the caller is performing a
884 * GFP_NOFS allocation attempt. One example deadlock is:
886 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
887 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
888 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
890 * In this case we return -1 to tell the caller that we baled.
892 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
895 if (!(gfp_mask
& __GFP_FS
))
899 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
902 static struct shrinker dcache_shrinker
= {
903 .shrink
= shrink_dcache_memory
,
904 .seeks
= DEFAULT_SEEKS
,
908 * d_alloc - allocate a dcache entry
909 * @parent: parent of entry to allocate
910 * @name: qstr of the name
912 * Allocates a dentry. It returns %NULL if there is insufficient memory
913 * available. On a success the dentry is returned. The name passed in is
914 * copied and the copy passed in may be reused after this call.
917 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
919 struct dentry
*dentry
;
922 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
926 if (name
->len
> DNAME_INLINE_LEN
-1) {
927 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
929 kmem_cache_free(dentry_cache
, dentry
);
933 dname
= dentry
->d_iname
;
935 dentry
->d_name
.name
= dname
;
937 dentry
->d_name
.len
= name
->len
;
938 dentry
->d_name
.hash
= name
->hash
;
939 memcpy(dname
, name
->name
, name
->len
);
940 dname
[name
->len
] = 0;
942 atomic_set(&dentry
->d_count
, 1);
943 dentry
->d_flags
= DCACHE_UNHASHED
;
944 spin_lock_init(&dentry
->d_lock
);
945 dentry
->d_inode
= NULL
;
946 dentry
->d_parent
= NULL
;
949 dentry
->d_fsdata
= NULL
;
950 dentry
->d_mounted
= 0;
951 INIT_HLIST_NODE(&dentry
->d_hash
);
952 INIT_LIST_HEAD(&dentry
->d_lru
);
953 INIT_LIST_HEAD(&dentry
->d_subdirs
);
954 INIT_LIST_HEAD(&dentry
->d_alias
);
957 dentry
->d_parent
= dget(parent
);
958 dentry
->d_sb
= parent
->d_sb
;
960 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
963 spin_lock(&dcache_lock
);
965 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
966 dentry_stat
.nr_dentry
++;
967 spin_unlock(&dcache_lock
);
972 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
977 q
.len
= strlen(name
);
978 q
.hash
= full_name_hash(q
.name
, q
.len
);
979 return d_alloc(parent
, &q
);
982 /* the caller must hold dcache_lock */
983 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
986 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
987 dentry
->d_inode
= inode
;
988 fsnotify_d_instantiate(dentry
, inode
);
992 * d_instantiate - fill in inode information for a dentry
993 * @entry: dentry to complete
994 * @inode: inode to attach to this dentry
996 * Fill in inode information in the entry.
998 * This turns negative dentries into productive full members
1001 * NOTE! This assumes that the inode count has been incremented
1002 * (or otherwise set) by the caller to indicate that it is now
1003 * in use by the dcache.
1006 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1008 BUG_ON(!list_empty(&entry
->d_alias
));
1009 spin_lock(&dcache_lock
);
1010 __d_instantiate(entry
, inode
);
1011 spin_unlock(&dcache_lock
);
1012 security_d_instantiate(entry
, inode
);
1016 * d_instantiate_unique - instantiate a non-aliased dentry
1017 * @entry: dentry to instantiate
1018 * @inode: inode to attach to this dentry
1020 * Fill in inode information in the entry. On success, it returns NULL.
1021 * If an unhashed alias of "entry" already exists, then we return the
1022 * aliased dentry instead and drop one reference to inode.
1024 * Note that in order to avoid conflicts with rename() etc, the caller
1025 * had better be holding the parent directory semaphore.
1027 * This also assumes that the inode count has been incremented
1028 * (or otherwise set) by the caller to indicate that it is now
1029 * in use by the dcache.
1031 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1032 struct inode
*inode
)
1034 struct dentry
*alias
;
1035 int len
= entry
->d_name
.len
;
1036 const char *name
= entry
->d_name
.name
;
1037 unsigned int hash
= entry
->d_name
.hash
;
1040 __d_instantiate(entry
, NULL
);
1044 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1045 struct qstr
*qstr
= &alias
->d_name
;
1047 if (qstr
->hash
!= hash
)
1049 if (alias
->d_parent
!= entry
->d_parent
)
1051 if (qstr
->len
!= len
)
1053 if (memcmp(qstr
->name
, name
, len
))
1059 __d_instantiate(entry
, inode
);
1063 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1065 struct dentry
*result
;
1067 BUG_ON(!list_empty(&entry
->d_alias
));
1069 spin_lock(&dcache_lock
);
1070 result
= __d_instantiate_unique(entry
, inode
);
1071 spin_unlock(&dcache_lock
);
1074 security_d_instantiate(entry
, inode
);
1078 BUG_ON(!d_unhashed(result
));
1083 EXPORT_SYMBOL(d_instantiate_unique
);
1086 * d_alloc_root - allocate root dentry
1087 * @root_inode: inode to allocate the root for
1089 * Allocate a root ("/") dentry for the inode given. The inode is
1090 * instantiated and returned. %NULL is returned if there is insufficient
1091 * memory or the inode passed is %NULL.
1094 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1096 struct dentry
*res
= NULL
;
1099 static const struct qstr name
= { .name
= "/", .len
= 1 };
1101 res
= d_alloc(NULL
, &name
);
1103 res
->d_sb
= root_inode
->i_sb
;
1104 res
->d_parent
= res
;
1105 d_instantiate(res
, root_inode
);
1111 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1114 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1115 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1116 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1120 * d_obtain_alias - find or allocate a dentry for a given inode
1121 * @inode: inode to allocate the dentry for
1123 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1124 * similar open by handle operations. The returned dentry may be anonymous,
1125 * or may have a full name (if the inode was already in the cache).
1127 * When called on a directory inode, we must ensure that the inode only ever
1128 * has one dentry. If a dentry is found, that is returned instead of
1129 * allocating a new one.
1131 * On successful return, the reference to the inode has been transferred
1132 * to the dentry. In case of an error the reference on the inode is released.
1133 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1134 * be passed in and will be the error will be propagate to the return value,
1135 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1137 struct dentry
*d_obtain_alias(struct inode
*inode
)
1139 static const struct qstr anonstring
= { .name
= "" };
1144 return ERR_PTR(-ESTALE
);
1146 return ERR_CAST(inode
);
1148 res
= d_find_alias(inode
);
1152 tmp
= d_alloc(NULL
, &anonstring
);
1154 res
= ERR_PTR(-ENOMEM
);
1157 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1159 spin_lock(&dcache_lock
);
1160 res
= __d_find_alias(inode
, 0);
1162 spin_unlock(&dcache_lock
);
1167 /* attach a disconnected dentry */
1168 spin_lock(&tmp
->d_lock
);
1169 tmp
->d_sb
= inode
->i_sb
;
1170 tmp
->d_inode
= inode
;
1171 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1172 tmp
->d_flags
&= ~DCACHE_UNHASHED
;
1173 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1174 hlist_add_head(&tmp
->d_hash
, &inode
->i_sb
->s_anon
);
1175 spin_unlock(&tmp
->d_lock
);
1177 spin_unlock(&dcache_lock
);
1184 EXPORT_SYMBOL(d_obtain_alias
);
1187 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1188 * @inode: the inode which may have a disconnected dentry
1189 * @dentry: a negative dentry which we want to point to the inode.
1191 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1192 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1193 * and return it, else simply d_add the inode to the dentry and return NULL.
1195 * This is needed in the lookup routine of any filesystem that is exportable
1196 * (via knfsd) so that we can build dcache paths to directories effectively.
1198 * If a dentry was found and moved, then it is returned. Otherwise NULL
1199 * is returned. This matches the expected return value of ->lookup.
1202 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1204 struct dentry
*new = NULL
;
1206 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1207 spin_lock(&dcache_lock
);
1208 new = __d_find_alias(inode
, 1);
1210 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1211 spin_unlock(&dcache_lock
);
1212 security_d_instantiate(new, inode
);
1214 d_move(new, dentry
);
1217 /* already taking dcache_lock, so d_add() by hand */
1218 __d_instantiate(dentry
, inode
);
1219 spin_unlock(&dcache_lock
);
1220 security_d_instantiate(dentry
, inode
);
1224 d_add(dentry
, inode
);
1229 * d_add_ci - lookup or allocate new dentry with case-exact name
1230 * @inode: the inode case-insensitive lookup has found
1231 * @dentry: the negative dentry that was passed to the parent's lookup func
1232 * @name: the case-exact name to be associated with the returned dentry
1234 * This is to avoid filling the dcache with case-insensitive names to the
1235 * same inode, only the actual correct case is stored in the dcache for
1236 * case-insensitive filesystems.
1238 * For a case-insensitive lookup match and if the the case-exact dentry
1239 * already exists in in the dcache, use it and return it.
1241 * If no entry exists with the exact case name, allocate new dentry with
1242 * the exact case, and return the spliced entry.
1244 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1248 struct dentry
*found
;
1252 * First check if a dentry matching the name already exists,
1253 * if not go ahead and create it now.
1255 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1257 new = d_alloc(dentry
->d_parent
, name
);
1263 found
= d_splice_alias(inode
, new);
1272 * If a matching dentry exists, and it's not negative use it.
1274 * Decrement the reference count to balance the iget() done
1277 if (found
->d_inode
) {
1278 if (unlikely(found
->d_inode
!= inode
)) {
1279 /* This can't happen because bad inodes are unhashed. */
1280 BUG_ON(!is_bad_inode(inode
));
1281 BUG_ON(!is_bad_inode(found
->d_inode
));
1288 * Negative dentry: instantiate it unless the inode is a directory and
1289 * already has a dentry.
1291 spin_lock(&dcache_lock
);
1292 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1293 __d_instantiate(found
, inode
);
1294 spin_unlock(&dcache_lock
);
1295 security_d_instantiate(found
, inode
);
1300 * In case a directory already has a (disconnected) entry grab a
1301 * reference to it, move it in place and use it.
1303 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1305 spin_unlock(&dcache_lock
);
1306 security_d_instantiate(found
, inode
);
1314 return ERR_PTR(error
);
1318 * d_lookup - search for a dentry
1319 * @parent: parent dentry
1320 * @name: qstr of name we wish to find
1322 * Searches the children of the parent dentry for the name in question. If
1323 * the dentry is found its reference count is incremented and the dentry
1324 * is returned. The caller must use dput to free the entry when it has
1325 * finished using it. %NULL is returned on failure.
1327 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1328 * Memory barriers are used while updating and doing lockless traversal.
1329 * To avoid races with d_move while rename is happening, d_lock is used.
1331 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1332 * and name pointer in one structure pointed by d_qstr.
1334 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1335 * lookup is going on.
1337 * The dentry unused LRU is not updated even if lookup finds the required dentry
1338 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1339 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1342 * d_lookup() is protected against the concurrent renames in some unrelated
1343 * directory using the seqlockt_t rename_lock.
1346 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1348 struct dentry
* dentry
= NULL
;
1352 seq
= read_seqbegin(&rename_lock
);
1353 dentry
= __d_lookup(parent
, name
);
1356 } while (read_seqretry(&rename_lock
, seq
));
1360 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1362 unsigned int len
= name
->len
;
1363 unsigned int hash
= name
->hash
;
1364 const unsigned char *str
= name
->name
;
1365 struct hlist_head
*head
= d_hash(parent
,hash
);
1366 struct dentry
*found
= NULL
;
1367 struct hlist_node
*node
;
1368 struct dentry
*dentry
;
1372 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1375 if (dentry
->d_name
.hash
!= hash
)
1377 if (dentry
->d_parent
!= parent
)
1380 spin_lock(&dentry
->d_lock
);
1383 * Recheck the dentry after taking the lock - d_move may have
1384 * changed things. Don't bother checking the hash because we're
1385 * about to compare the whole name anyway.
1387 if (dentry
->d_parent
!= parent
)
1390 /* non-existing due to RCU? */
1391 if (d_unhashed(dentry
))
1395 * It is safe to compare names since d_move() cannot
1396 * change the qstr (protected by d_lock).
1398 qstr
= &dentry
->d_name
;
1399 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1400 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1403 if (qstr
->len
!= len
)
1405 if (memcmp(qstr
->name
, str
, len
))
1409 atomic_inc(&dentry
->d_count
);
1411 spin_unlock(&dentry
->d_lock
);
1414 spin_unlock(&dentry
->d_lock
);
1422 * d_hash_and_lookup - hash the qstr then search for a dentry
1423 * @dir: Directory to search in
1424 * @name: qstr of name we wish to find
1426 * On hash failure or on lookup failure NULL is returned.
1428 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1430 struct dentry
*dentry
= NULL
;
1433 * Check for a fs-specific hash function. Note that we must
1434 * calculate the standard hash first, as the d_op->d_hash()
1435 * routine may choose to leave the hash value unchanged.
1437 name
->hash
= full_name_hash(name
->name
, name
->len
);
1438 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1439 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1442 dentry
= d_lookup(dir
, name
);
1448 * d_validate - verify dentry provided from insecure source
1449 * @dentry: The dentry alleged to be valid child of @dparent
1450 * @dparent: The parent dentry (known to be valid)
1452 * An insecure source has sent us a dentry, here we verify it and dget() it.
1453 * This is used by ncpfs in its readdir implementation.
1454 * Zero is returned in the dentry is invalid.
1457 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1459 struct hlist_head
*base
;
1460 struct hlist_node
*lhp
;
1462 /* Check whether the ptr might be valid at all.. */
1463 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1466 if (dentry
->d_parent
!= dparent
)
1469 spin_lock(&dcache_lock
);
1470 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1471 hlist_for_each(lhp
,base
) {
1472 /* hlist_for_each_entry_rcu() not required for d_hash list
1473 * as it is parsed under dcache_lock
1475 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1476 __dget_locked(dentry
);
1477 spin_unlock(&dcache_lock
);
1481 spin_unlock(&dcache_lock
);
1487 * When a file is deleted, we have two options:
1488 * - turn this dentry into a negative dentry
1489 * - unhash this dentry and free it.
1491 * Usually, we want to just turn this into
1492 * a negative dentry, but if anybody else is
1493 * currently using the dentry or the inode
1494 * we can't do that and we fall back on removing
1495 * it from the hash queues and waiting for
1496 * it to be deleted later when it has no users
1500 * d_delete - delete a dentry
1501 * @dentry: The dentry to delete
1503 * Turn the dentry into a negative dentry if possible, otherwise
1504 * remove it from the hash queues so it can be deleted later
1507 void d_delete(struct dentry
* dentry
)
1511 * Are we the only user?
1513 spin_lock(&dcache_lock
);
1514 spin_lock(&dentry
->d_lock
);
1515 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1516 if (atomic_read(&dentry
->d_count
) == 1) {
1517 dentry_iput(dentry
);
1518 fsnotify_nameremove(dentry
, isdir
);
1522 if (!d_unhashed(dentry
))
1525 spin_unlock(&dentry
->d_lock
);
1526 spin_unlock(&dcache_lock
);
1528 fsnotify_nameremove(dentry
, isdir
);
1531 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1534 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1535 hlist_add_head_rcu(&entry
->d_hash
, list
);
1538 static void _d_rehash(struct dentry
* entry
)
1540 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1544 * d_rehash - add an entry back to the hash
1545 * @entry: dentry to add to the hash
1547 * Adds a dentry to the hash according to its name.
1550 void d_rehash(struct dentry
* entry
)
1552 spin_lock(&dcache_lock
);
1553 spin_lock(&entry
->d_lock
);
1555 spin_unlock(&entry
->d_lock
);
1556 spin_unlock(&dcache_lock
);
1560 * When switching names, the actual string doesn't strictly have to
1561 * be preserved in the target - because we're dropping the target
1562 * anyway. As such, we can just do a simple memcpy() to copy over
1563 * the new name before we switch.
1565 * Note that we have to be a lot more careful about getting the hash
1566 * switched - we have to switch the hash value properly even if it
1567 * then no longer matches the actual (corrupted) string of the target.
1568 * The hash value has to match the hash queue that the dentry is on..
1570 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1572 if (dname_external(target
)) {
1573 if (dname_external(dentry
)) {
1575 * Both external: swap the pointers
1577 swap(target
->d_name
.name
, dentry
->d_name
.name
);
1580 * dentry:internal, target:external. Steal target's
1581 * storage and make target internal.
1583 memcpy(target
->d_iname
, dentry
->d_name
.name
,
1584 dentry
->d_name
.len
+ 1);
1585 dentry
->d_name
.name
= target
->d_name
.name
;
1586 target
->d_name
.name
= target
->d_iname
;
1589 if (dname_external(dentry
)) {
1591 * dentry:external, target:internal. Give dentry's
1592 * storage to target and make dentry internal
1594 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1595 target
->d_name
.len
+ 1);
1596 target
->d_name
.name
= dentry
->d_name
.name
;
1597 dentry
->d_name
.name
= dentry
->d_iname
;
1600 * Both are internal. Just copy target to dentry
1602 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1603 target
->d_name
.len
+ 1);
1604 dentry
->d_name
.len
= target
->d_name
.len
;
1608 swap(dentry
->d_name
.len
, target
->d_name
.len
);
1612 * We cannibalize "target" when moving dentry on top of it,
1613 * because it's going to be thrown away anyway. We could be more
1614 * polite about it, though.
1616 * This forceful removal will result in ugly /proc output if
1617 * somebody holds a file open that got deleted due to a rename.
1618 * We could be nicer about the deleted file, and let it show
1619 * up under the name it had before it was deleted rather than
1620 * under the original name of the file that was moved on top of it.
1624 * d_move_locked - move a dentry
1625 * @dentry: entry to move
1626 * @target: new dentry
1628 * Update the dcache to reflect the move of a file name. Negative
1629 * dcache entries should not be moved in this way.
1631 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1633 struct hlist_head
*list
;
1635 if (!dentry
->d_inode
)
1636 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1638 write_seqlock(&rename_lock
);
1640 * XXXX: do we really need to take target->d_lock?
1642 if (target
< dentry
) {
1643 spin_lock(&target
->d_lock
);
1644 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1646 spin_lock(&dentry
->d_lock
);
1647 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1650 /* Move the dentry to the target hash queue, if on different bucket */
1651 if (d_unhashed(dentry
))
1652 goto already_unhashed
;
1654 hlist_del_rcu(&dentry
->d_hash
);
1657 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1658 __d_rehash(dentry
, list
);
1660 /* Unhash the target: dput() will then get rid of it */
1663 list_del(&dentry
->d_u
.d_child
);
1664 list_del(&target
->d_u
.d_child
);
1666 /* Switch the names.. */
1667 switch_names(dentry
, target
);
1668 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
1670 /* ... and switch the parents */
1671 if (IS_ROOT(dentry
)) {
1672 dentry
->d_parent
= target
->d_parent
;
1673 target
->d_parent
= target
;
1674 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1676 swap(dentry
->d_parent
, target
->d_parent
);
1678 /* And add them back to the (new) parent lists */
1679 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1682 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1683 spin_unlock(&target
->d_lock
);
1684 fsnotify_d_move(dentry
);
1685 spin_unlock(&dentry
->d_lock
);
1686 write_sequnlock(&rename_lock
);
1690 * d_move - move a dentry
1691 * @dentry: entry to move
1692 * @target: new dentry
1694 * Update the dcache to reflect the move of a file name. Negative
1695 * dcache entries should not be moved in this way.
1698 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1700 spin_lock(&dcache_lock
);
1701 d_move_locked(dentry
, target
);
1702 spin_unlock(&dcache_lock
);
1706 * d_ancestor - search for an ancestor
1707 * @p1: ancestor dentry
1710 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1711 * an ancestor of p2, else NULL.
1713 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
1717 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
1718 if (p
->d_parent
== p1
)
1725 * This helper attempts to cope with remotely renamed directories
1727 * It assumes that the caller is already holding
1728 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1730 * Note: If ever the locking in lock_rename() changes, then please
1731 * remember to update this too...
1733 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1734 __releases(dcache_lock
)
1736 struct mutex
*m1
= NULL
, *m2
= NULL
;
1739 /* If alias and dentry share a parent, then no extra locks required */
1740 if (alias
->d_parent
== dentry
->d_parent
)
1743 /* Check for loops */
1744 ret
= ERR_PTR(-ELOOP
);
1745 if (d_ancestor(alias
, dentry
))
1748 /* See lock_rename() */
1749 ret
= ERR_PTR(-EBUSY
);
1750 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1752 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1753 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1755 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1757 d_move_locked(alias
, dentry
);
1760 spin_unlock(&dcache_lock
);
1769 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1770 * named dentry in place of the dentry to be replaced.
1772 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1774 struct dentry
*dparent
, *aparent
;
1776 switch_names(dentry
, anon
);
1777 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1779 dparent
= dentry
->d_parent
;
1780 aparent
= anon
->d_parent
;
1782 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1783 list_del(&dentry
->d_u
.d_child
);
1784 if (!IS_ROOT(dentry
))
1785 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1787 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1789 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1790 list_del(&anon
->d_u
.d_child
);
1792 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1794 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1796 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1800 * d_materialise_unique - introduce an inode into the tree
1801 * @dentry: candidate dentry
1802 * @inode: inode to bind to the dentry, to which aliases may be attached
1804 * Introduces an dentry into the tree, substituting an extant disconnected
1805 * root directory alias in its place if there is one
1807 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1809 struct dentry
*actual
;
1811 BUG_ON(!d_unhashed(dentry
));
1813 spin_lock(&dcache_lock
);
1817 __d_instantiate(dentry
, NULL
);
1821 if (S_ISDIR(inode
->i_mode
)) {
1822 struct dentry
*alias
;
1824 /* Does an aliased dentry already exist? */
1825 alias
= __d_find_alias(inode
, 0);
1828 /* Is this an anonymous mountpoint that we could splice
1830 if (IS_ROOT(alias
)) {
1831 spin_lock(&alias
->d_lock
);
1832 __d_materialise_dentry(dentry
, alias
);
1836 /* Nope, but we must(!) avoid directory aliasing */
1837 actual
= __d_unalias(dentry
, alias
);
1844 /* Add a unique reference */
1845 actual
= __d_instantiate_unique(dentry
, inode
);
1848 else if (unlikely(!d_unhashed(actual
)))
1849 goto shouldnt_be_hashed
;
1852 spin_lock(&actual
->d_lock
);
1855 spin_unlock(&actual
->d_lock
);
1856 spin_unlock(&dcache_lock
);
1858 if (actual
== dentry
) {
1859 security_d_instantiate(dentry
, inode
);
1867 spin_unlock(&dcache_lock
);
1871 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
1875 return -ENAMETOOLONG
;
1877 memcpy(*buffer
, str
, namelen
);
1881 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
1883 return prepend(buffer
, buflen
, name
->name
, name
->len
);
1887 * __d_path - return the path of a dentry
1888 * @path: the dentry/vfsmount to report
1889 * @root: root vfsmnt/dentry (may be modified by this function)
1890 * @buffer: buffer to return value in
1891 * @buflen: buffer length
1893 * Convert a dentry into an ASCII path name. If the entry has been deleted
1894 * the string " (deleted)" is appended. Note that this is ambiguous.
1896 * Returns a pointer into the buffer or an error code if the
1897 * path was too long.
1899 * "buflen" should be positive. Caller holds the dcache_lock.
1901 * If path is not reachable from the supplied root, then the value of
1902 * root is changed (without modifying refcounts).
1904 char *__d_path(const struct path
*path
, struct path
*root
,
1905 char *buffer
, int buflen
)
1907 struct dentry
*dentry
= path
->dentry
;
1908 struct vfsmount
*vfsmnt
= path
->mnt
;
1909 char *end
= buffer
+ buflen
;
1912 spin_lock(&vfsmount_lock
);
1913 prepend(&end
, &buflen
, "\0", 1);
1914 if (d_unlinked(dentry
) &&
1915 (prepend(&end
, &buflen
, " (deleted)", 10) != 0))
1925 struct dentry
* parent
;
1927 if (dentry
== root
->dentry
&& vfsmnt
== root
->mnt
)
1929 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1931 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1934 dentry
= vfsmnt
->mnt_mountpoint
;
1935 vfsmnt
= vfsmnt
->mnt_parent
;
1938 parent
= dentry
->d_parent
;
1940 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
1941 (prepend(&end
, &buflen
, "/", 1) != 0))
1948 spin_unlock(&vfsmount_lock
);
1952 retval
+= 1; /* hit the slash */
1953 if (prepend_name(&retval
, &buflen
, &dentry
->d_name
) != 0)
1956 root
->dentry
= dentry
;
1960 retval
= ERR_PTR(-ENAMETOOLONG
);
1965 * d_path - return the path of a dentry
1966 * @path: path to report
1967 * @buf: buffer to return value in
1968 * @buflen: buffer length
1970 * Convert a dentry into an ASCII path name. If the entry has been deleted
1971 * the string " (deleted)" is appended. Note that this is ambiguous.
1973 * Returns a pointer into the buffer or an error code if the path was
1974 * too long. Note: Callers should use the returned pointer, not the passed
1975 * in buffer, to use the name! The implementation often starts at an offset
1976 * into the buffer, and may leave 0 bytes at the start.
1978 * "buflen" should be positive.
1980 char *d_path(const struct path
*path
, char *buf
, int buflen
)
1987 * We have various synthetic filesystems that never get mounted. On
1988 * these filesystems dentries are never used for lookup purposes, and
1989 * thus don't need to be hashed. They also don't need a name until a
1990 * user wants to identify the object in /proc/pid/fd/. The little hack
1991 * below allows us to generate a name for these objects on demand:
1993 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
1994 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
1996 read_lock(¤t
->fs
->lock
);
1997 root
= current
->fs
->root
;
1999 read_unlock(¤t
->fs
->lock
);
2000 spin_lock(&dcache_lock
);
2002 res
= __d_path(path
, &tmp
, buf
, buflen
);
2003 spin_unlock(&dcache_lock
);
2009 * Helper function for dentry_operations.d_dname() members
2011 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2012 const char *fmt
, ...)
2018 va_start(args
, fmt
);
2019 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2022 if (sz
> sizeof(temp
) || sz
> buflen
)
2023 return ERR_PTR(-ENAMETOOLONG
);
2025 buffer
+= buflen
- sz
;
2026 return memcpy(buffer
, temp
, sz
);
2030 * Write full pathname from the root of the filesystem into the buffer.
2032 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2034 char *end
= buf
+ buflen
;
2037 spin_lock(&dcache_lock
);
2038 prepend(&end
, &buflen
, "\0", 1);
2039 if (d_unlinked(dentry
) &&
2040 (prepend(&end
, &buflen
, "//deleted", 9) != 0))
2048 while (!IS_ROOT(dentry
)) {
2049 struct dentry
*parent
= dentry
->d_parent
;
2052 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
2053 (prepend(&end
, &buflen
, "/", 1) != 0))
2059 spin_unlock(&dcache_lock
);
2062 spin_unlock(&dcache_lock
);
2063 return ERR_PTR(-ENAMETOOLONG
);
2067 * NOTE! The user-level library version returns a
2068 * character pointer. The kernel system call just
2069 * returns the length of the buffer filled (which
2070 * includes the ending '\0' character), or a negative
2071 * error value. So libc would do something like
2073 * char *getcwd(char * buf, size_t size)
2077 * retval = sys_getcwd(buf, size);
2084 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2087 struct path pwd
, root
;
2088 char *page
= (char *) __get_free_page(GFP_USER
);
2093 read_lock(¤t
->fs
->lock
);
2094 pwd
= current
->fs
->pwd
;
2096 root
= current
->fs
->root
;
2098 read_unlock(¤t
->fs
->lock
);
2101 spin_lock(&dcache_lock
);
2102 if (!d_unlinked(pwd
.dentry
)) {
2104 struct path tmp
= root
;
2107 cwd
= __d_path(&pwd
, &tmp
, page
, PAGE_SIZE
);
2108 spin_unlock(&dcache_lock
);
2110 error
= PTR_ERR(cwd
);
2115 len
= PAGE_SIZE
+ page
- cwd
;
2118 if (copy_to_user(buf
, cwd
, len
))
2122 spin_unlock(&dcache_lock
);
2127 free_page((unsigned long) page
);
2132 * Test whether new_dentry is a subdirectory of old_dentry.
2134 * Trivially implemented using the dcache structure
2138 * is_subdir - is new dentry a subdirectory of old_dentry
2139 * @new_dentry: new dentry
2140 * @old_dentry: old dentry
2142 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2143 * Returns 0 otherwise.
2144 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2147 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2152 if (new_dentry
== old_dentry
)
2156 * Need rcu_readlock to protect against the d_parent trashing
2161 /* for restarting inner loop in case of seq retry */
2162 seq
= read_seqbegin(&rename_lock
);
2163 if (d_ancestor(old_dentry
, new_dentry
))
2167 } while (read_seqretry(&rename_lock
, seq
));
2173 void d_genocide(struct dentry
*root
)
2175 struct dentry
*this_parent
= root
;
2176 struct list_head
*next
;
2178 spin_lock(&dcache_lock
);
2180 next
= this_parent
->d_subdirs
.next
;
2182 while (next
!= &this_parent
->d_subdirs
) {
2183 struct list_head
*tmp
= next
;
2184 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2186 if (d_unhashed(dentry
)||!dentry
->d_inode
)
2188 if (!list_empty(&dentry
->d_subdirs
)) {
2189 this_parent
= dentry
;
2192 atomic_dec(&dentry
->d_count
);
2194 if (this_parent
!= root
) {
2195 next
= this_parent
->d_u
.d_child
.next
;
2196 atomic_dec(&this_parent
->d_count
);
2197 this_parent
= this_parent
->d_parent
;
2200 spin_unlock(&dcache_lock
);
2204 * find_inode_number - check for dentry with name
2205 * @dir: directory to check
2206 * @name: Name to find.
2208 * Check whether a dentry already exists for the given name,
2209 * and return the inode number if it has an inode. Otherwise
2212 * This routine is used to post-process directory listings for
2213 * filesystems using synthetic inode numbers, and is necessary
2214 * to keep getcwd() working.
2217 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2219 struct dentry
* dentry
;
2222 dentry
= d_hash_and_lookup(dir
, name
);
2224 if (dentry
->d_inode
)
2225 ino
= dentry
->d_inode
->i_ino
;
2231 static __initdata
unsigned long dhash_entries
;
2232 static int __init
set_dhash_entries(char *str
)
2236 dhash_entries
= simple_strtoul(str
, &str
, 0);
2239 __setup("dhash_entries=", set_dhash_entries
);
2241 static void __init
dcache_init_early(void)
2245 /* If hashes are distributed across NUMA nodes, defer
2246 * hash allocation until vmalloc space is available.
2252 alloc_large_system_hash("Dentry cache",
2253 sizeof(struct hlist_head
),
2261 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2262 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2265 static void __init
dcache_init(void)
2270 * A constructor could be added for stable state like the lists,
2271 * but it is probably not worth it because of the cache nature
2274 dentry_cache
= KMEM_CACHE(dentry
,
2275 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2277 register_shrinker(&dcache_shrinker
);
2279 /* Hash may have been set up in dcache_init_early */
2284 alloc_large_system_hash("Dentry cache",
2285 sizeof(struct hlist_head
),
2293 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2294 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2297 /* SLAB cache for __getname() consumers */
2298 struct kmem_cache
*names_cachep __read_mostly
;
2300 EXPORT_SYMBOL(d_genocide
);
2302 void __init
vfs_caches_init_early(void)
2304 dcache_init_early();
2308 void __init
vfs_caches_init(unsigned long mempages
)
2310 unsigned long reserve
;
2312 /* Base hash sizes on available memory, with a reserve equal to
2313 150% of current kernel size */
2315 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2316 mempages
-= reserve
;
2318 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2319 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2323 files_init(mempages
);
2329 EXPORT_SYMBOL(d_alloc
);
2330 EXPORT_SYMBOL(d_alloc_root
);
2331 EXPORT_SYMBOL(d_delete
);
2332 EXPORT_SYMBOL(d_find_alias
);
2333 EXPORT_SYMBOL(d_instantiate
);
2334 EXPORT_SYMBOL(d_invalidate
);
2335 EXPORT_SYMBOL(d_lookup
);
2336 EXPORT_SYMBOL(d_move
);
2337 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2338 EXPORT_SYMBOL(d_path
);
2339 EXPORT_SYMBOL(d_prune_aliases
);
2340 EXPORT_SYMBOL(d_rehash
);
2341 EXPORT_SYMBOL(d_splice_alias
);
2342 EXPORT_SYMBOL(d_add_ci
);
2343 EXPORT_SYMBOL(d_validate
);
2344 EXPORT_SYMBOL(dget_locked
);
2345 EXPORT_SYMBOL(dput
);
2346 EXPORT_SYMBOL(find_inode_number
);
2347 EXPORT_SYMBOL(have_submounts
);
2348 EXPORT_SYMBOL(names_cachep
);
2349 EXPORT_SYMBOL(shrink_dcache_parent
);
2350 EXPORT_SYMBOL(shrink_dcache_sb
);