2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
22 #include <linux/sched.h>
24 #include <linux/file.h>
26 #include <linux/mman.h>
27 #include <linux/mmu_context.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/aio.h>
31 #include <linux/highmem.h>
32 #include <linux/workqueue.h>
33 #include <linux/security.h>
34 #include <linux/eventfd.h>
36 #include <asm/kmap_types.h>
37 #include <asm/uaccess.h>
40 #define dprintk printk
42 #define dprintk(x...) do { ; } while (0)
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock
);
47 unsigned long aio_nr
; /* current system wide number of aio requests */
48 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache
*kiocb_cachep
;
52 static struct kmem_cache
*kioctx_cachep
;
54 static struct workqueue_struct
*aio_wq
;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct
*);
58 static DECLARE_WORK(fput_work
, aio_fput_routine
);
60 static DEFINE_SPINLOCK(fput_lock
);
61 static LIST_HEAD(fput_head
);
63 static void aio_kick_handler(struct work_struct
*);
64 static void aio_queue_work(struct kioctx
*);
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init
aio_setup(void)
72 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
73 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
75 aio_wq
= create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
81 __initcall(aio_setup
);
83 static void aio_free_ring(struct kioctx
*ctx
)
85 struct aio_ring_info
*info
= &ctx
->ring_info
;
88 for (i
=0; i
<info
->nr_pages
; i
++)
89 put_page(info
->ring_pages
[i
]);
91 if (info
->mmap_size
) {
92 down_write(&ctx
->mm
->mmap_sem
);
93 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
94 up_write(&ctx
->mm
->mmap_sem
);
97 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
98 kfree(info
->ring_pages
);
99 info
->ring_pages
= NULL
;
103 static int aio_setup_ring(struct kioctx
*ctx
)
105 struct aio_ring
*ring
;
106 struct aio_ring_info
*info
= &ctx
->ring_info
;
107 unsigned nr_events
= ctx
->max_reqs
;
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events
+= 2; /* 1 is required, 2 for good luck */
114 size
= sizeof(struct aio_ring
);
115 size
+= sizeof(struct io_event
) * nr_events
;
116 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
121 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
124 info
->ring_pages
= info
->internal_pages
;
125 if (nr_pages
> AIO_RING_PAGES
) {
126 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
127 if (!info
->ring_pages
)
131 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
132 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
133 down_write(&ctx
->mm
->mmap_sem
);
134 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
135 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
137 if (IS_ERR((void *)info
->mmap_base
)) {
138 up_write(&ctx
->mm
->mmap_sem
);
144 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
145 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
146 info
->mmap_base
, nr_pages
,
147 1, 0, info
->ring_pages
, NULL
);
148 up_write(&ctx
->mm
->mmap_sem
);
150 if (unlikely(info
->nr_pages
!= nr_pages
)) {
155 ctx
->user_id
= info
->mmap_base
;
157 info
->nr
= nr_events
; /* trusted copy */
159 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
160 ring
->nr
= nr_events
; /* user copy */
161 ring
->id
= ctx
->user_id
;
162 ring
->head
= ring
->tail
= 0;
163 ring
->magic
= AIO_RING_MAGIC
;
164 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
165 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
166 ring
->header_length
= sizeof(struct aio_ring
);
167 kunmap_atomic(ring
, KM_USER0
);
173 /* aio_ring_event: returns a pointer to the event at the given index from
174 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
176 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 #define aio_ring_event(info, nr, km) ({ \
181 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
182 struct io_event *__event; \
183 __event = kmap_atomic( \
184 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 __event += pos % AIO_EVENTS_PER_PAGE; \
189 #define put_aio_ring_event(event, km) do { \
190 struct io_event *__event = (event); \
192 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
195 static void ctx_rcu_free(struct rcu_head
*head
)
197 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
198 unsigned nr_events
= ctx
->max_reqs
;
200 kmem_cache_free(kioctx_cachep
, ctx
);
203 spin_lock(&aio_nr_lock
);
204 BUG_ON(aio_nr
- nr_events
> aio_nr
);
206 spin_unlock(&aio_nr_lock
);
211 * Called when the last user of an aio context has gone away,
212 * and the struct needs to be freed.
214 static void __put_ioctx(struct kioctx
*ctx
)
216 BUG_ON(ctx
->reqs_active
);
218 cancel_delayed_work(&ctx
->wq
);
219 cancel_work_sync(&ctx
->wq
.work
);
223 pr_debug("__put_ioctx: freeing %p\n", ctx
);
224 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
227 #define get_ioctx(kioctx) do { \
228 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
229 atomic_inc(&(kioctx)->users); \
231 #define put_ioctx(kioctx) do { \
232 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
233 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
234 __put_ioctx(kioctx); \
238 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
240 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
242 struct mm_struct
*mm
;
246 /* Prevent overflows */
247 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
248 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
249 pr_debug("ENOMEM: nr_events too high\n");
250 return ERR_PTR(-EINVAL
);
253 if ((unsigned long)nr_events
> aio_max_nr
)
254 return ERR_PTR(-EAGAIN
);
256 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
258 return ERR_PTR(-ENOMEM
);
260 ctx
->max_reqs
= nr_events
;
261 mm
= ctx
->mm
= current
->mm
;
262 atomic_inc(&mm
->mm_count
);
264 atomic_set(&ctx
->users
, 1);
265 spin_lock_init(&ctx
->ctx_lock
);
266 spin_lock_init(&ctx
->ring_info
.ring_lock
);
267 init_waitqueue_head(&ctx
->wait
);
269 INIT_LIST_HEAD(&ctx
->active_reqs
);
270 INIT_LIST_HEAD(&ctx
->run_list
);
271 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
273 if (aio_setup_ring(ctx
) < 0)
276 /* limit the number of system wide aios */
278 spin_lock_bh(&aio_nr_lock
);
279 if (aio_nr
+ nr_events
> aio_max_nr
||
280 aio_nr
+ nr_events
< aio_nr
)
283 aio_nr
+= ctx
->max_reqs
;
284 spin_unlock_bh(&aio_nr_lock
);
285 if (ctx
->max_reqs
|| did_sync
)
288 /* wait for rcu callbacks to have completed before giving up */
291 ctx
->max_reqs
= nr_events
;
294 if (ctx
->max_reqs
== 0)
297 /* now link into global list. */
298 spin_lock(&mm
->ioctx_lock
);
299 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
300 spin_unlock(&mm
->ioctx_lock
);
302 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
303 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
308 return ERR_PTR(-EAGAIN
);
312 kmem_cache_free(kioctx_cachep
, ctx
);
313 ctx
= ERR_PTR(-ENOMEM
);
315 dprintk("aio: error allocating ioctx %p\n", ctx
);
320 * Cancels all outstanding aio requests on an aio context. Used
321 * when the processes owning a context have all exited to encourage
322 * the rapid destruction of the kioctx.
324 static void aio_cancel_all(struct kioctx
*ctx
)
326 int (*cancel
)(struct kiocb
*, struct io_event
*);
328 spin_lock_irq(&ctx
->ctx_lock
);
330 while (!list_empty(&ctx
->active_reqs
)) {
331 struct list_head
*pos
= ctx
->active_reqs
.next
;
332 struct kiocb
*iocb
= list_kiocb(pos
);
333 list_del_init(&iocb
->ki_list
);
334 cancel
= iocb
->ki_cancel
;
335 kiocbSetCancelled(iocb
);
338 spin_unlock_irq(&ctx
->ctx_lock
);
340 spin_lock_irq(&ctx
->ctx_lock
);
343 spin_unlock_irq(&ctx
->ctx_lock
);
346 static void wait_for_all_aios(struct kioctx
*ctx
)
348 struct task_struct
*tsk
= current
;
349 DECLARE_WAITQUEUE(wait
, tsk
);
351 spin_lock_irq(&ctx
->ctx_lock
);
352 if (!ctx
->reqs_active
)
355 add_wait_queue(&ctx
->wait
, &wait
);
356 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
357 while (ctx
->reqs_active
) {
358 spin_unlock_irq(&ctx
->ctx_lock
);
360 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
361 spin_lock_irq(&ctx
->ctx_lock
);
363 __set_task_state(tsk
, TASK_RUNNING
);
364 remove_wait_queue(&ctx
->wait
, &wait
);
367 spin_unlock_irq(&ctx
->ctx_lock
);
370 /* wait_on_sync_kiocb:
371 * Waits on the given sync kiocb to complete.
373 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
375 while (iocb
->ki_users
) {
376 set_current_state(TASK_UNINTERRUPTIBLE
);
381 __set_current_state(TASK_RUNNING
);
382 return iocb
->ki_user_data
;
384 EXPORT_SYMBOL(wait_on_sync_kiocb
);
386 /* exit_aio: called when the last user of mm goes away. At this point,
387 * there is no way for any new requests to be submited or any of the
388 * io_* syscalls to be called on the context. However, there may be
389 * outstanding requests which hold references to the context; as they
390 * go away, they will call put_ioctx and release any pinned memory
391 * associated with the request (held via struct page * references).
393 void exit_aio(struct mm_struct
*mm
)
397 while (!hlist_empty(&mm
->ioctx_list
)) {
398 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
399 hlist_del_rcu(&ctx
->list
);
403 wait_for_all_aios(ctx
);
405 * Ensure we don't leave the ctx on the aio_wq
407 cancel_work_sync(&ctx
->wq
.work
);
409 if (1 != atomic_read(&ctx
->users
))
411 "exit_aio:ioctx still alive: %d %d %d\n",
412 atomic_read(&ctx
->users
), ctx
->dead
,
419 * Allocate a slot for an aio request. Increments the users count
420 * of the kioctx so that the kioctx stays around until all requests are
421 * complete. Returns NULL if no requests are free.
423 * Returns with kiocb->users set to 2. The io submit code path holds
424 * an extra reference while submitting the i/o.
425 * This prevents races between the aio code path referencing the
426 * req (after submitting it) and aio_complete() freeing the req.
428 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
430 struct kiocb
*req
= NULL
;
431 struct aio_ring
*ring
;
434 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
442 req
->ki_cancel
= NULL
;
443 req
->ki_retry
= NULL
;
446 req
->ki_iovec
= NULL
;
447 INIT_LIST_HEAD(&req
->ki_run_list
);
448 req
->ki_eventfd
= NULL
;
450 /* Check if the completion queue has enough free space to
451 * accept an event from this io.
453 spin_lock_irq(&ctx
->ctx_lock
);
454 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
455 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
456 list_add(&req
->ki_list
, &ctx
->active_reqs
);
460 kunmap_atomic(ring
, KM_USER0
);
461 spin_unlock_irq(&ctx
->ctx_lock
);
464 kmem_cache_free(kiocb_cachep
, req
);
471 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
474 /* Handle a potential starvation case -- should be exceedingly rare as
475 * requests will be stuck on fput_head only if the aio_fput_routine is
476 * delayed and the requests were the last user of the struct file.
478 req
= __aio_get_req(ctx
);
479 if (unlikely(NULL
== req
)) {
480 aio_fput_routine(NULL
);
481 req
= __aio_get_req(ctx
);
486 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
488 assert_spin_locked(&ctx
->ctx_lock
);
490 if (req
->ki_eventfd
!= NULL
)
491 eventfd_ctx_put(req
->ki_eventfd
);
494 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
495 kfree(req
->ki_iovec
);
496 kmem_cache_free(kiocb_cachep
, req
);
499 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
503 static void aio_fput_routine(struct work_struct
*data
)
505 spin_lock_irq(&fput_lock
);
506 while (likely(!list_empty(&fput_head
))) {
507 struct kiocb
*req
= list_kiocb(fput_head
.next
);
508 struct kioctx
*ctx
= req
->ki_ctx
;
510 list_del(&req
->ki_list
);
511 spin_unlock_irq(&fput_lock
);
513 /* Complete the fput(s) */
514 if (req
->ki_filp
!= NULL
)
515 __fput(req
->ki_filp
);
517 /* Link the iocb into the context's free list */
518 spin_lock_irq(&ctx
->ctx_lock
);
519 really_put_req(ctx
, req
);
520 spin_unlock_irq(&ctx
->ctx_lock
);
523 spin_lock_irq(&fput_lock
);
525 spin_unlock_irq(&fput_lock
);
529 * Returns true if this put was the last user of the request.
531 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
533 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
534 req
, atomic_long_read(&req
->ki_filp
->f_count
));
536 assert_spin_locked(&ctx
->ctx_lock
);
539 BUG_ON(req
->ki_users
< 0);
540 if (likely(req
->ki_users
))
542 list_del(&req
->ki_list
); /* remove from active_reqs */
543 req
->ki_cancel
= NULL
;
544 req
->ki_retry
= NULL
;
547 * Try to optimize the aio and eventfd file* puts, by avoiding to
548 * schedule work in case it is not __fput() time. In normal cases,
549 * we would not be holding the last reference to the file*, so
550 * this function will be executed w/out any aio kthread wakeup.
552 if (unlikely(atomic_long_dec_and_test(&req
->ki_filp
->f_count
))) {
554 spin_lock(&fput_lock
);
555 list_add(&req
->ki_list
, &fput_head
);
556 spin_unlock(&fput_lock
);
557 queue_work(aio_wq
, &fput_work
);
560 really_put_req(ctx
, req
);
566 * Returns true if this put was the last user of the kiocb,
567 * false if the request is still in use.
569 int aio_put_req(struct kiocb
*req
)
571 struct kioctx
*ctx
= req
->ki_ctx
;
573 spin_lock_irq(&ctx
->ctx_lock
);
574 ret
= __aio_put_req(ctx
, req
);
575 spin_unlock_irq(&ctx
->ctx_lock
);
578 EXPORT_SYMBOL(aio_put_req
);
580 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
582 struct mm_struct
*mm
= current
->mm
;
583 struct kioctx
*ctx
, *ret
= NULL
;
584 struct hlist_node
*n
;
588 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
589 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
) {
601 * Queue up a kiocb to be retried. Assumes that the kiocb
602 * has already been marked as kicked, and places it on
603 * the retry run list for the corresponding ioctx, if it
604 * isn't already queued. Returns 1 if it actually queued
605 * the kiocb (to tell the caller to activate the work
606 * queue to process it), or 0, if it found that it was
609 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
611 struct kioctx
*ctx
= iocb
->ki_ctx
;
613 assert_spin_locked(&ctx
->ctx_lock
);
615 if (list_empty(&iocb
->ki_run_list
)) {
616 list_add_tail(&iocb
->ki_run_list
,
624 * This is the core aio execution routine. It is
625 * invoked both for initial i/o submission and
626 * subsequent retries via the aio_kick_handler.
627 * Expects to be invoked with iocb->ki_ctx->lock
628 * already held. The lock is released and reacquired
629 * as needed during processing.
631 * Calls the iocb retry method (already setup for the
632 * iocb on initial submission) for operation specific
633 * handling, but takes care of most of common retry
634 * execution details for a given iocb. The retry method
635 * needs to be non-blocking as far as possible, to avoid
636 * holding up other iocbs waiting to be serviced by the
637 * retry kernel thread.
639 * The trickier parts in this code have to do with
640 * ensuring that only one retry instance is in progress
641 * for a given iocb at any time. Providing that guarantee
642 * simplifies the coding of individual aio operations as
643 * it avoids various potential races.
645 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
647 struct kioctx
*ctx
= iocb
->ki_ctx
;
648 ssize_t (*retry
)(struct kiocb
*);
651 if (!(retry
= iocb
->ki_retry
)) {
652 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
657 * We don't want the next retry iteration for this
658 * operation to start until this one has returned and
659 * updated the iocb state. However, wait_queue functions
660 * can trigger a kick_iocb from interrupt context in the
661 * meantime, indicating that data is available for the next
662 * iteration. We want to remember that and enable the
663 * next retry iteration _after_ we are through with
666 * So, in order to be able to register a "kick", but
667 * prevent it from being queued now, we clear the kick
668 * flag, but make the kick code *think* that the iocb is
669 * still on the run list until we are actually done.
670 * When we are done with this iteration, we check if
671 * the iocb was kicked in the meantime and if so, queue
675 kiocbClearKicked(iocb
);
678 * This is so that aio_complete knows it doesn't need to
679 * pull the iocb off the run list (We can't just call
680 * INIT_LIST_HEAD because we don't want a kick_iocb to
681 * queue this on the run list yet)
683 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
684 spin_unlock_irq(&ctx
->ctx_lock
);
686 /* Quit retrying if the i/o has been cancelled */
687 if (kiocbIsCancelled(iocb
)) {
689 aio_complete(iocb
, ret
, 0);
690 /* must not access the iocb after this */
695 * Now we are all set to call the retry method in async
700 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
701 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
702 aio_complete(iocb
, ret
, 0);
705 spin_lock_irq(&ctx
->ctx_lock
);
707 if (-EIOCBRETRY
== ret
) {
709 * OK, now that we are done with this iteration
710 * and know that there is more left to go,
711 * this is where we let go so that a subsequent
712 * "kick" can start the next iteration
715 /* will make __queue_kicked_iocb succeed from here on */
716 INIT_LIST_HEAD(&iocb
->ki_run_list
);
717 /* we must queue the next iteration ourselves, if it
718 * has already been kicked */
719 if (kiocbIsKicked(iocb
)) {
720 __queue_kicked_iocb(iocb
);
723 * __queue_kicked_iocb will always return 1 here, because
724 * iocb->ki_run_list is empty at this point so it should
725 * be safe to unconditionally queue the context into the
736 * Process all pending retries queued on the ioctx
738 * Assumes it is operating within the aio issuer's mm
741 static int __aio_run_iocbs(struct kioctx
*ctx
)
744 struct list_head run_list
;
746 assert_spin_locked(&ctx
->ctx_lock
);
748 list_replace_init(&ctx
->run_list
, &run_list
);
749 while (!list_empty(&run_list
)) {
750 iocb
= list_entry(run_list
.next
, struct kiocb
,
752 list_del(&iocb
->ki_run_list
);
754 * Hold an extra reference while retrying i/o.
756 iocb
->ki_users
++; /* grab extra reference */
758 __aio_put_req(ctx
, iocb
);
760 if (!list_empty(&ctx
->run_list
))
765 static void aio_queue_work(struct kioctx
* ctx
)
767 unsigned long timeout
;
769 * if someone is waiting, get the work started right
770 * away, otherwise, use a longer delay
773 if (waitqueue_active(&ctx
->wait
))
777 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
783 * Process all pending retries queued on the ioctx
785 * Assumes it is operating within the aio issuer's mm
788 static inline void aio_run_iocbs(struct kioctx
*ctx
)
792 spin_lock_irq(&ctx
->ctx_lock
);
794 requeue
= __aio_run_iocbs(ctx
);
795 spin_unlock_irq(&ctx
->ctx_lock
);
801 * just like aio_run_iocbs, but keeps running them until
802 * the list stays empty
804 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
806 spin_lock_irq(&ctx
->ctx_lock
);
807 while (__aio_run_iocbs(ctx
))
809 spin_unlock_irq(&ctx
->ctx_lock
);
814 * Work queue handler triggered to process pending
815 * retries on an ioctx. Takes on the aio issuer's
816 * mm context before running the iocbs, so that
817 * copy_xxx_user operates on the issuer's address
819 * Run on aiod's context.
821 static void aio_kick_handler(struct work_struct
*work
)
823 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
824 mm_segment_t oldfs
= get_fs();
825 struct mm_struct
*mm
;
830 spin_lock_irq(&ctx
->ctx_lock
);
831 requeue
=__aio_run_iocbs(ctx
);
833 spin_unlock_irq(&ctx
->ctx_lock
);
837 * we're in a worker thread already, don't use queue_delayed_work,
840 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
845 * Called by kick_iocb to queue the kiocb for retry
846 * and if required activate the aio work queue to process
849 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
851 struct kioctx
*ctx
= iocb
->ki_ctx
;
855 /* We're supposed to be the only path putting the iocb back on the run
856 * list. If we find that the iocb is *back* on a wait queue already
857 * than retry has happened before we could queue the iocb. This also
858 * means that the retry could have completed and freed our iocb, no
860 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
862 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
863 /* set this inside the lock so that we can't race with aio_run_iocb()
864 * testing it and putting the iocb on the run list under the lock */
865 if (!kiocbTryKick(iocb
))
866 run
= __queue_kicked_iocb(iocb
);
867 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
874 * Called typically from a wait queue callback context
875 * (aio_wake_function) to trigger a retry of the iocb.
876 * The retry is usually executed by aio workqueue
877 * threads (See aio_kick_handler).
879 void kick_iocb(struct kiocb
*iocb
)
881 /* sync iocbs are easy: they can only ever be executing from a
883 if (is_sync_kiocb(iocb
)) {
884 kiocbSetKicked(iocb
);
885 wake_up_process(iocb
->ki_obj
.tsk
);
889 try_queue_kicked_iocb(iocb
);
891 EXPORT_SYMBOL(kick_iocb
);
894 * Called when the io request on the given iocb is complete.
895 * Returns true if this is the last user of the request. The
896 * only other user of the request can be the cancellation code.
898 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
900 struct kioctx
*ctx
= iocb
->ki_ctx
;
901 struct aio_ring_info
*info
;
902 struct aio_ring
*ring
;
903 struct io_event
*event
;
909 * Special case handling for sync iocbs:
910 * - events go directly into the iocb for fast handling
911 * - the sync task with the iocb in its stack holds the single iocb
912 * ref, no other paths have a way to get another ref
913 * - the sync task helpfully left a reference to itself in the iocb
915 if (is_sync_kiocb(iocb
)) {
916 BUG_ON(iocb
->ki_users
!= 1);
917 iocb
->ki_user_data
= res
;
919 wake_up_process(iocb
->ki_obj
.tsk
);
923 info
= &ctx
->ring_info
;
925 /* add a completion event to the ring buffer.
926 * must be done holding ctx->ctx_lock to prevent
927 * other code from messing with the tail
928 * pointer since we might be called from irq
931 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
933 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
934 list_del_init(&iocb
->ki_run_list
);
937 * cancelled requests don't get events, userland was given one
938 * when the event got cancelled.
940 if (kiocbIsCancelled(iocb
))
943 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
946 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
947 if (++tail
>= info
->nr
)
950 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
951 event
->data
= iocb
->ki_user_data
;
955 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
956 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
959 /* after flagging the request as done, we
960 * must never even look at it again
962 smp_wmb(); /* make event visible before updating tail */
967 put_aio_ring_event(event
, KM_IRQ0
);
968 kunmap_atomic(ring
, KM_IRQ1
);
970 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
973 * Check if the user asked us to deliver the result through an
974 * eventfd. The eventfd_signal() function is safe to be called
977 if (iocb
->ki_eventfd
!= NULL
)
978 eventfd_signal(iocb
->ki_eventfd
, 1);
981 /* everything turned out well, dispose of the aiocb. */
982 ret
= __aio_put_req(ctx
, iocb
);
985 * We have to order our ring_info tail store above and test
986 * of the wait list below outside the wait lock. This is
987 * like in wake_up_bit() where clearing a bit has to be
988 * ordered with the unlocked test.
992 if (waitqueue_active(&ctx
->wait
))
995 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
998 EXPORT_SYMBOL(aio_complete
);
1001 * Pull an event off of the ioctx's event ring. Returns the number of
1002 * events fetched (0 or 1 ;-)
1003 * FIXME: make this use cmpxchg.
1004 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1006 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1008 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1009 struct aio_ring
*ring
;
1013 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1014 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1015 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1016 (unsigned long)ring
->nr
);
1018 if (ring
->head
== ring
->tail
)
1021 spin_lock(&info
->ring_lock
);
1023 head
= ring
->head
% info
->nr
;
1024 if (head
!= ring
->tail
) {
1025 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1027 head
= (head
+ 1) % info
->nr
;
1028 smp_mb(); /* finish reading the event before updatng the head */
1031 put_aio_ring_event(evp
, KM_USER1
);
1033 spin_unlock(&info
->ring_lock
);
1036 kunmap_atomic(ring
, KM_USER0
);
1037 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1038 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1042 struct aio_timeout
{
1043 struct timer_list timer
;
1045 struct task_struct
*p
;
1048 static void timeout_func(unsigned long data
)
1050 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1053 wake_up_process(to
->p
);
1056 static inline void init_timeout(struct aio_timeout
*to
)
1058 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1063 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1064 const struct timespec
*ts
)
1066 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1067 if (time_after(to
->timer
.expires
, jiffies
))
1068 add_timer(&to
->timer
);
1073 static inline void clear_timeout(struct aio_timeout
*to
)
1075 del_singleshot_timer_sync(&to
->timer
);
1078 static int read_events(struct kioctx
*ctx
,
1079 long min_nr
, long nr
,
1080 struct io_event __user
*event
,
1081 struct timespec __user
*timeout
)
1083 long start_jiffies
= jiffies
;
1084 struct task_struct
*tsk
= current
;
1085 DECLARE_WAITQUEUE(wait
, tsk
);
1088 struct io_event ent
;
1089 struct aio_timeout to
;
1092 /* needed to zero any padding within an entry (there shouldn't be
1093 * any, but C is fun!
1095 memset(&ent
, 0, sizeof(ent
));
1098 while (likely(i
< nr
)) {
1099 ret
= aio_read_evt(ctx
, &ent
);
1100 if (unlikely(ret
<= 0))
1103 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1104 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1106 /* Could we split the check in two? */
1108 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1109 dprintk("aio: lost an event due to EFAULT.\n");
1114 /* Good, event copied to userland, update counts. */
1126 /* racey check, but it gets redone */
1127 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1129 aio_run_all_iocbs(ctx
);
1137 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1140 set_timeout(start_jiffies
, &to
, &ts
);
1143 while (likely(i
< nr
)) {
1144 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1146 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1147 ret
= aio_read_evt(ctx
, &ent
);
1152 if (unlikely(ctx
->dead
)) {
1156 if (to
.timed_out
) /* Only check after read evt */
1158 /* Try to only show up in io wait if there are ops
1160 if (ctx
->reqs_active
)
1164 if (signal_pending(tsk
)) {
1168 /*ret = aio_read_evt(ctx, &ent);*/
1171 set_task_state(tsk
, TASK_RUNNING
);
1172 remove_wait_queue(&ctx
->wait
, &wait
);
1174 if (unlikely(ret
<= 0))
1178 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1179 dprintk("aio: lost an event due to EFAULT.\n");
1183 /* Good, event copied to userland, update counts. */
1191 destroy_timer_on_stack(&to
.timer
);
1195 /* Take an ioctx and remove it from the list of ioctx's. Protects
1196 * against races with itself via ->dead.
1198 static void io_destroy(struct kioctx
*ioctx
)
1200 struct mm_struct
*mm
= current
->mm
;
1203 /* delete the entry from the list is someone else hasn't already */
1204 spin_lock(&mm
->ioctx_lock
);
1205 was_dead
= ioctx
->dead
;
1207 hlist_del_rcu(&ioctx
->list
);
1208 spin_unlock(&mm
->ioctx_lock
);
1210 dprintk("aio_release(%p)\n", ioctx
);
1211 if (likely(!was_dead
))
1212 put_ioctx(ioctx
); /* twice for the list */
1214 aio_cancel_all(ioctx
);
1215 wait_for_all_aios(ioctx
);
1218 * Wake up any waiters. The setting of ctx->dead must be seen
1219 * by other CPUs at this point. Right now, we rely on the
1220 * locking done by the above calls to ensure this consistency.
1222 wake_up(&ioctx
->wait
);
1223 put_ioctx(ioctx
); /* once for the lookup */
1227 * Create an aio_context capable of receiving at least nr_events.
1228 * ctxp must not point to an aio_context that already exists, and
1229 * must be initialized to 0 prior to the call. On successful
1230 * creation of the aio_context, *ctxp is filled in with the resulting
1231 * handle. May fail with -EINVAL if *ctxp is not initialized,
1232 * if the specified nr_events exceeds internal limits. May fail
1233 * with -EAGAIN if the specified nr_events exceeds the user's limit
1234 * of available events. May fail with -ENOMEM if insufficient kernel
1235 * resources are available. May fail with -EFAULT if an invalid
1236 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1239 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1241 struct kioctx
*ioctx
= NULL
;
1245 ret
= get_user(ctx
, ctxp
);
1250 if (unlikely(ctx
|| nr_events
== 0)) {
1251 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1256 ioctx
= ioctx_alloc(nr_events
);
1257 ret
= PTR_ERR(ioctx
);
1258 if (!IS_ERR(ioctx
)) {
1259 ret
= put_user(ioctx
->user_id
, ctxp
);
1263 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1272 * Destroy the aio_context specified. May cancel any outstanding
1273 * AIOs and block on completion. Will fail with -ENOSYS if not
1274 * implemented. May fail with -EFAULT if the context pointed to
1277 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1279 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1280 if (likely(NULL
!= ioctx
)) {
1284 pr_debug("EINVAL: io_destroy: invalid context id\n");
1288 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1290 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1294 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1295 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1296 iov
->iov_base
+= this;
1297 iov
->iov_len
-= this;
1298 iocb
->ki_left
-= this;
1300 if (iov
->iov_len
== 0) {
1306 /* the caller should not have done more io than what fit in
1307 * the remaining iovecs */
1308 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1311 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1313 struct file
*file
= iocb
->ki_filp
;
1314 struct address_space
*mapping
= file
->f_mapping
;
1315 struct inode
*inode
= mapping
->host
;
1316 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1317 unsigned long, loff_t
);
1319 unsigned short opcode
;
1321 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1322 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1323 rw_op
= file
->f_op
->aio_read
;
1324 opcode
= IOCB_CMD_PREADV
;
1326 rw_op
= file
->f_op
->aio_write
;
1327 opcode
= IOCB_CMD_PWRITEV
;
1330 /* This matches the pread()/pwrite() logic */
1331 if (iocb
->ki_pos
< 0)
1335 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1336 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1339 aio_advance_iovec(iocb
, ret
);
1341 /* retry all partial writes. retry partial reads as long as its a
1343 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1344 (opcode
== IOCB_CMD_PWRITEV
||
1345 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1347 /* This means we must have transferred all that we could */
1348 /* No need to retry anymore */
1349 if ((ret
== 0) || (iocb
->ki_left
== 0))
1350 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1352 /* If we managed to write some out we return that, rather than
1353 * the eventual error. */
1354 if (opcode
== IOCB_CMD_PWRITEV
1355 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1356 && iocb
->ki_nbytes
- iocb
->ki_left
)
1357 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1362 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1364 struct file
*file
= iocb
->ki_filp
;
1365 ssize_t ret
= -EINVAL
;
1367 if (file
->f_op
->aio_fsync
)
1368 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1372 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1374 struct file
*file
= iocb
->ki_filp
;
1375 ssize_t ret
= -EINVAL
;
1377 if (file
->f_op
->aio_fsync
)
1378 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1382 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
)
1386 ret
= rw_copy_check_uvector(type
, (struct iovec __user
*)kiocb
->ki_buf
,
1387 kiocb
->ki_nbytes
, 1,
1388 &kiocb
->ki_inline_vec
, &kiocb
->ki_iovec
);
1392 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1393 kiocb
->ki_cur_seg
= 0;
1394 /* ki_nbytes/left now reflect bytes instead of segs */
1395 kiocb
->ki_nbytes
= ret
;
1396 kiocb
->ki_left
= ret
;
1403 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1405 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1406 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1407 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1408 kiocb
->ki_nr_segs
= 1;
1409 kiocb
->ki_cur_seg
= 0;
1415 * Performs the initial checks and aio retry method
1416 * setup for the kiocb at the time of io submission.
1418 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1420 struct file
*file
= kiocb
->ki_filp
;
1423 switch (kiocb
->ki_opcode
) {
1424 case IOCB_CMD_PREAD
:
1426 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1429 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1432 ret
= security_file_permission(file
, MAY_READ
);
1435 ret
= aio_setup_single_vector(kiocb
);
1439 if (file
->f_op
->aio_read
)
1440 kiocb
->ki_retry
= aio_rw_vect_retry
;
1442 case IOCB_CMD_PWRITE
:
1444 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1447 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1450 ret
= security_file_permission(file
, MAY_WRITE
);
1453 ret
= aio_setup_single_vector(kiocb
);
1457 if (file
->f_op
->aio_write
)
1458 kiocb
->ki_retry
= aio_rw_vect_retry
;
1460 case IOCB_CMD_PREADV
:
1462 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1464 ret
= security_file_permission(file
, MAY_READ
);
1467 ret
= aio_setup_vectored_rw(READ
, kiocb
);
1471 if (file
->f_op
->aio_read
)
1472 kiocb
->ki_retry
= aio_rw_vect_retry
;
1474 case IOCB_CMD_PWRITEV
:
1476 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1478 ret
= security_file_permission(file
, MAY_WRITE
);
1481 ret
= aio_setup_vectored_rw(WRITE
, kiocb
);
1485 if (file
->f_op
->aio_write
)
1486 kiocb
->ki_retry
= aio_rw_vect_retry
;
1488 case IOCB_CMD_FDSYNC
:
1490 if (file
->f_op
->aio_fsync
)
1491 kiocb
->ki_retry
= aio_fdsync
;
1493 case IOCB_CMD_FSYNC
:
1495 if (file
->f_op
->aio_fsync
)
1496 kiocb
->ki_retry
= aio_fsync
;
1499 dprintk("EINVAL: io_submit: no operation provided\n");
1503 if (!kiocb
->ki_retry
)
1510 * aio_wake_function:
1511 * wait queue callback function for aio notification,
1512 * Simply triggers a retry of the operation via kick_iocb.
1514 * This callback is specified in the wait queue entry in
1518 * This routine is executed with the wait queue lock held.
1519 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1520 * the ioctx lock inside the wait queue lock. This is safe
1521 * because this callback isn't used for wait queues which
1522 * are nested inside ioctx lock (i.e. ctx->wait)
1524 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1525 int sync
, void *key
)
1527 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1529 list_del_init(&wait
->task_list
);
1534 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1541 /* enforce forwards compatibility on users */
1542 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1543 pr_debug("EINVAL: io_submit: reserve field set\n");
1547 /* prevent overflows */
1549 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1550 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1551 ((ssize_t
)iocb
->aio_nbytes
< 0)
1553 pr_debug("EINVAL: io_submit: overflow check\n");
1557 file
= fget(iocb
->aio_fildes
);
1558 if (unlikely(!file
))
1561 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1562 if (unlikely(!req
)) {
1566 req
->ki_filp
= file
;
1567 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1569 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1570 * instance of the file* now. The file descriptor must be
1571 * an eventfd() fd, and will be signaled for each completed
1572 * event using the eventfd_signal() function.
1574 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1575 if (IS_ERR(req
->ki_eventfd
)) {
1576 ret
= PTR_ERR(req
->ki_eventfd
);
1577 req
->ki_eventfd
= NULL
;
1582 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1583 if (unlikely(ret
)) {
1584 dprintk("EFAULT: aio_key\n");
1588 req
->ki_obj
.user
= user_iocb
;
1589 req
->ki_user_data
= iocb
->aio_data
;
1590 req
->ki_pos
= iocb
->aio_offset
;
1592 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1593 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1594 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1595 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1596 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1598 ret
= aio_setup_iocb(req
);
1603 spin_lock_irq(&ctx
->ctx_lock
);
1605 if (!list_empty(&ctx
->run_list
)) {
1606 /* drain the run list */
1607 while (__aio_run_iocbs(ctx
))
1610 spin_unlock_irq(&ctx
->ctx_lock
);
1611 aio_put_req(req
); /* drop extra ref to req */
1615 aio_put_req(req
); /* drop extra ref to req */
1616 aio_put_req(req
); /* drop i/o ref to req */
1621 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1622 * the number of iocbs queued. May return -EINVAL if the aio_context
1623 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1624 * *iocbpp[0] is not properly initialized, if the operation specified
1625 * is invalid for the file descriptor in the iocb. May fail with
1626 * -EFAULT if any of the data structures point to invalid data. May
1627 * fail with -EBADF if the file descriptor specified in the first
1628 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1629 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1630 * fail with -ENOSYS if not implemented.
1632 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1633 struct iocb __user
* __user
*, iocbpp
)
1639 if (unlikely(nr
< 0))
1642 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1645 ctx
= lookup_ioctx(ctx_id
);
1646 if (unlikely(!ctx
)) {
1647 pr_debug("EINVAL: io_submit: invalid context id\n");
1652 * AKPM: should this return a partial result if some of the IOs were
1653 * successfully submitted?
1655 for (i
=0; i
<nr
; i
++) {
1656 struct iocb __user
*user_iocb
;
1659 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1664 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1669 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1679 * Finds a given iocb for cancellation.
1681 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1684 struct list_head
*pos
;
1686 assert_spin_locked(&ctx
->ctx_lock
);
1688 /* TODO: use a hash or array, this sucks. */
1689 list_for_each(pos
, &ctx
->active_reqs
) {
1690 struct kiocb
*kiocb
= list_kiocb(pos
);
1691 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1698 * Attempts to cancel an iocb previously passed to io_submit. If
1699 * the operation is successfully cancelled, the resulting event is
1700 * copied into the memory pointed to by result without being placed
1701 * into the completion queue and 0 is returned. May fail with
1702 * -EFAULT if any of the data structures pointed to are invalid.
1703 * May fail with -EINVAL if aio_context specified by ctx_id is
1704 * invalid. May fail with -EAGAIN if the iocb specified was not
1705 * cancelled. Will fail with -ENOSYS if not implemented.
1707 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1708 struct io_event __user
*, result
)
1710 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1712 struct kiocb
*kiocb
;
1716 ret
= get_user(key
, &iocb
->aio_key
);
1720 ctx
= lookup_ioctx(ctx_id
);
1724 spin_lock_irq(&ctx
->ctx_lock
);
1726 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1727 if (kiocb
&& kiocb
->ki_cancel
) {
1728 cancel
= kiocb
->ki_cancel
;
1730 kiocbSetCancelled(kiocb
);
1733 spin_unlock_irq(&ctx
->ctx_lock
);
1735 if (NULL
!= cancel
) {
1736 struct io_event tmp
;
1737 pr_debug("calling cancel\n");
1738 memset(&tmp
, 0, sizeof(tmp
));
1739 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1740 tmp
.data
= kiocb
->ki_user_data
;
1741 ret
= cancel(kiocb
, &tmp
);
1743 /* Cancellation succeeded -- copy the result
1744 * into the user's buffer.
1746 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1758 * Attempts to read at least min_nr events and up to nr events from
1759 * the completion queue for the aio_context specified by ctx_id. May
1760 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1761 * if nr is out of range, if when is out of range. May fail with
1762 * -EFAULT if any of the memory specified to is invalid. May return
1763 * 0 or < min_nr if no events are available and the timeout specified
1764 * by when has elapsed, where when == NULL specifies an infinite
1765 * timeout. Note that the timeout pointed to by when is relative and
1766 * will be updated if not NULL and the operation blocks. Will fail
1767 * with -ENOSYS if not implemented.
1769 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1772 struct io_event __user
*, events
,
1773 struct timespec __user
*, timeout
)
1775 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1778 if (likely(ioctx
)) {
1779 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1780 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1784 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);