2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/bootmem.h>
18 #include <linux/sysfs.h>
21 #include <asm/pgtable.h>
23 #include <linux/hugetlb.h>
26 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
27 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
28 unsigned long hugepages_treat_as_movable
;
30 static int max_hstate
;
31 unsigned int default_hstate_idx
;
32 struct hstate hstates
[HUGE_MAX_HSTATE
];
34 __initdata
LIST_HEAD(huge_boot_pages
);
36 /* for command line parsing */
37 static struct hstate
* __initdata parsed_hstate
;
38 static unsigned long __initdata default_hstate_max_huge_pages
;
39 static unsigned long __initdata default_hstate_size
;
41 #define for_each_hstate(h) \
42 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
45 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
47 static DEFINE_SPINLOCK(hugetlb_lock
);
50 * Region tracking -- allows tracking of reservations and instantiated pages
51 * across the pages in a mapping.
53 * The region data structures are protected by a combination of the mmap_sem
54 * and the hugetlb_instantion_mutex. To access or modify a region the caller
55 * must either hold the mmap_sem for write, or the mmap_sem for read and
56 * the hugetlb_instantiation mutex:
58 * down_write(&mm->mmap_sem);
60 * down_read(&mm->mmap_sem);
61 * mutex_lock(&hugetlb_instantiation_mutex);
64 struct list_head link
;
69 static long region_add(struct list_head
*head
, long f
, long t
)
71 struct file_region
*rg
, *nrg
, *trg
;
73 /* Locate the region we are either in or before. */
74 list_for_each_entry(rg
, head
, link
)
78 /* Round our left edge to the current segment if it encloses us. */
82 /* Check for and consume any regions we now overlap with. */
84 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
85 if (&rg
->link
== head
)
90 /* If this area reaches higher then extend our area to
91 * include it completely. If this is not the first area
92 * which we intend to reuse, free it. */
105 static long region_chg(struct list_head
*head
, long f
, long t
)
107 struct file_region
*rg
, *nrg
;
110 /* Locate the region we are before or in. */
111 list_for_each_entry(rg
, head
, link
)
115 /* If we are below the current region then a new region is required.
116 * Subtle, allocate a new region at the position but make it zero
117 * size such that we can guarantee to record the reservation. */
118 if (&rg
->link
== head
|| t
< rg
->from
) {
119 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
124 INIT_LIST_HEAD(&nrg
->link
);
125 list_add(&nrg
->link
, rg
->link
.prev
);
130 /* Round our left edge to the current segment if it encloses us. */
135 /* Check for and consume any regions we now overlap with. */
136 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
137 if (&rg
->link
== head
)
142 /* We overlap with this area, if it extends futher than
143 * us then we must extend ourselves. Account for its
144 * existing reservation. */
149 chg
-= rg
->to
- rg
->from
;
154 static long region_truncate(struct list_head
*head
, long end
)
156 struct file_region
*rg
, *trg
;
159 /* Locate the region we are either in or before. */
160 list_for_each_entry(rg
, head
, link
)
163 if (&rg
->link
== head
)
166 /* If we are in the middle of a region then adjust it. */
167 if (end
> rg
->from
) {
170 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
173 /* Drop any remaining regions. */
174 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
175 if (&rg
->link
== head
)
177 chg
+= rg
->to
- rg
->from
;
184 static long region_count(struct list_head
*head
, long f
, long t
)
186 struct file_region
*rg
;
189 /* Locate each segment we overlap with, and count that overlap. */
190 list_for_each_entry(rg
, head
, link
) {
199 seg_from
= max(rg
->from
, f
);
200 seg_to
= min(rg
->to
, t
);
202 chg
+= seg_to
- seg_from
;
209 * Convert the address within this vma to the page offset within
210 * the mapping, in pagecache page units; huge pages here.
212 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
213 struct vm_area_struct
*vma
, unsigned long address
)
215 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
216 (vma
->vm_pgoff
>> huge_page_order(h
));
220 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
221 * bits of the reservation map pointer, which are always clear due to
224 #define HPAGE_RESV_OWNER (1UL << 0)
225 #define HPAGE_RESV_UNMAPPED (1UL << 1)
226 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
229 * These helpers are used to track how many pages are reserved for
230 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
231 * is guaranteed to have their future faults succeed.
233 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
234 * the reserve counters are updated with the hugetlb_lock held. It is safe
235 * to reset the VMA at fork() time as it is not in use yet and there is no
236 * chance of the global counters getting corrupted as a result of the values.
238 * The private mapping reservation is represented in a subtly different
239 * manner to a shared mapping. A shared mapping has a region map associated
240 * with the underlying file, this region map represents the backing file
241 * pages which have ever had a reservation assigned which this persists even
242 * after the page is instantiated. A private mapping has a region map
243 * associated with the original mmap which is attached to all VMAs which
244 * reference it, this region map represents those offsets which have consumed
245 * reservation ie. where pages have been instantiated.
247 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
249 return (unsigned long)vma
->vm_private_data
;
252 static void set_vma_private_data(struct vm_area_struct
*vma
,
255 vma
->vm_private_data
= (void *)value
;
260 struct list_head regions
;
263 struct resv_map
*resv_map_alloc(void)
265 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
269 kref_init(&resv_map
->refs
);
270 INIT_LIST_HEAD(&resv_map
->regions
);
275 void resv_map_release(struct kref
*ref
)
277 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
279 /* Clear out any active regions before we release the map. */
280 region_truncate(&resv_map
->regions
, 0);
284 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
286 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
287 if (!(vma
->vm_flags
& VM_SHARED
))
288 return (struct resv_map
*)(get_vma_private_data(vma
) &
293 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
295 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
296 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
298 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
299 HPAGE_RESV_MASK
) | (unsigned long)map
);
302 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
304 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
305 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
307 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
310 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
312 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
314 return (get_vma_private_data(vma
) & flag
) != 0;
317 /* Decrement the reserved pages in the hugepage pool by one */
318 static void decrement_hugepage_resv_vma(struct hstate
*h
,
319 struct vm_area_struct
*vma
)
321 if (vma
->vm_flags
& VM_NORESERVE
)
324 if (vma
->vm_flags
& VM_SHARED
) {
325 /* Shared mappings always use reserves */
326 h
->resv_huge_pages
--;
327 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
329 * Only the process that called mmap() has reserves for
332 h
->resv_huge_pages
--;
336 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
337 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
339 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
340 if (!(vma
->vm_flags
& VM_SHARED
))
341 vma
->vm_private_data
= (void *)0;
344 /* Returns true if the VMA has associated reserve pages */
345 static int vma_has_private_reserves(struct vm_area_struct
*vma
)
347 if (vma
->vm_flags
& VM_SHARED
)
349 if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
354 static void clear_huge_page(struct page
*page
,
355 unsigned long addr
, unsigned long sz
)
360 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
362 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
366 static void copy_huge_page(struct page
*dst
, struct page
*src
,
367 unsigned long addr
, struct vm_area_struct
*vma
)
370 struct hstate
*h
= hstate_vma(vma
);
373 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
375 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
379 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
381 int nid
= page_to_nid(page
);
382 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
383 h
->free_huge_pages
++;
384 h
->free_huge_pages_node
[nid
]++;
387 static struct page
*dequeue_huge_page(struct hstate
*h
)
390 struct page
*page
= NULL
;
392 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
393 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
394 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
396 list_del(&page
->lru
);
397 h
->free_huge_pages
--;
398 h
->free_huge_pages_node
[nid
]--;
405 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
406 struct vm_area_struct
*vma
,
407 unsigned long address
, int avoid_reserve
)
410 struct page
*page
= NULL
;
411 struct mempolicy
*mpol
;
412 nodemask_t
*nodemask
;
413 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
414 htlb_alloc_mask
, &mpol
, &nodemask
);
419 * A child process with MAP_PRIVATE mappings created by their parent
420 * have no page reserves. This check ensures that reservations are
421 * not "stolen". The child may still get SIGKILLed
423 if (!vma_has_private_reserves(vma
) &&
424 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
427 /* If reserves cannot be used, ensure enough pages are in the pool */
428 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
431 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
432 MAX_NR_ZONES
- 1, nodemask
) {
433 nid
= zone_to_nid(zone
);
434 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
435 !list_empty(&h
->hugepage_freelists
[nid
])) {
436 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
438 list_del(&page
->lru
);
439 h
->free_huge_pages
--;
440 h
->free_huge_pages_node
[nid
]--;
443 decrement_hugepage_resv_vma(h
, vma
);
452 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
457 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
458 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
459 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
460 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
461 1 << PG_private
| 1<< PG_writeback
);
463 set_compound_page_dtor(page
, NULL
);
464 set_page_refcounted(page
);
465 arch_release_hugepage(page
);
466 __free_pages(page
, huge_page_order(h
));
469 struct hstate
*size_to_hstate(unsigned long size
)
474 if (huge_page_size(h
) == size
)
480 static void free_huge_page(struct page
*page
)
483 * Can't pass hstate in here because it is called from the
484 * compound page destructor.
486 struct hstate
*h
= page_hstate(page
);
487 int nid
= page_to_nid(page
);
488 struct address_space
*mapping
;
490 mapping
= (struct address_space
*) page_private(page
);
491 set_page_private(page
, 0);
492 BUG_ON(page_count(page
));
493 INIT_LIST_HEAD(&page
->lru
);
495 spin_lock(&hugetlb_lock
);
496 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
497 update_and_free_page(h
, page
);
498 h
->surplus_huge_pages
--;
499 h
->surplus_huge_pages_node
[nid
]--;
501 enqueue_huge_page(h
, page
);
503 spin_unlock(&hugetlb_lock
);
505 hugetlb_put_quota(mapping
, 1);
509 * Increment or decrement surplus_huge_pages. Keep node-specific counters
510 * balanced by operating on them in a round-robin fashion.
511 * Returns 1 if an adjustment was made.
513 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
519 VM_BUG_ON(delta
!= -1 && delta
!= 1);
521 nid
= next_node(nid
, node_online_map
);
522 if (nid
== MAX_NUMNODES
)
523 nid
= first_node(node_online_map
);
525 /* To shrink on this node, there must be a surplus page */
526 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
528 /* Surplus cannot exceed the total number of pages */
529 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
530 h
->nr_huge_pages_node
[nid
])
533 h
->surplus_huge_pages
+= delta
;
534 h
->surplus_huge_pages_node
[nid
] += delta
;
537 } while (nid
!= prev_nid
);
543 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
545 set_compound_page_dtor(page
, free_huge_page
);
546 spin_lock(&hugetlb_lock
);
548 h
->nr_huge_pages_node
[nid
]++;
549 spin_unlock(&hugetlb_lock
);
550 put_page(page
); /* free it into the hugepage allocator */
553 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
557 if (h
->order
>= MAX_ORDER
)
560 page
= alloc_pages_node(nid
,
561 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
562 __GFP_REPEAT
|__GFP_NOWARN
,
565 if (arch_prepare_hugepage(page
)) {
566 __free_pages(page
, HUGETLB_PAGE_ORDER
);
569 prep_new_huge_page(h
, page
, nid
);
576 * Use a helper variable to find the next node and then
577 * copy it back to hugetlb_next_nid afterwards:
578 * otherwise there's a window in which a racer might
579 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
580 * But we don't need to use a spin_lock here: it really
581 * doesn't matter if occasionally a racer chooses the
582 * same nid as we do. Move nid forward in the mask even
583 * if we just successfully allocated a hugepage so that
584 * the next caller gets hugepages on the next node.
586 static int hstate_next_node(struct hstate
*h
)
589 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
590 if (next_nid
== MAX_NUMNODES
)
591 next_nid
= first_node(node_online_map
);
592 h
->hugetlb_next_nid
= next_nid
;
596 static int alloc_fresh_huge_page(struct hstate
*h
)
603 start_nid
= h
->hugetlb_next_nid
;
606 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
609 next_nid
= hstate_next_node(h
);
610 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
613 count_vm_event(HTLB_BUDDY_PGALLOC
);
615 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
620 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
621 struct vm_area_struct
*vma
, unsigned long address
)
626 if (h
->order
>= MAX_ORDER
)
630 * Assume we will successfully allocate the surplus page to
631 * prevent racing processes from causing the surplus to exceed
634 * This however introduces a different race, where a process B
635 * tries to grow the static hugepage pool while alloc_pages() is
636 * called by process A. B will only examine the per-node
637 * counters in determining if surplus huge pages can be
638 * converted to normal huge pages in adjust_pool_surplus(). A
639 * won't be able to increment the per-node counter, until the
640 * lock is dropped by B, but B doesn't drop hugetlb_lock until
641 * no more huge pages can be converted from surplus to normal
642 * state (and doesn't try to convert again). Thus, we have a
643 * case where a surplus huge page exists, the pool is grown, and
644 * the surplus huge page still exists after, even though it
645 * should just have been converted to a normal huge page. This
646 * does not leak memory, though, as the hugepage will be freed
647 * once it is out of use. It also does not allow the counters to
648 * go out of whack in adjust_pool_surplus() as we don't modify
649 * the node values until we've gotten the hugepage and only the
650 * per-node value is checked there.
652 spin_lock(&hugetlb_lock
);
653 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
654 spin_unlock(&hugetlb_lock
);
658 h
->surplus_huge_pages
++;
660 spin_unlock(&hugetlb_lock
);
662 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
663 __GFP_REPEAT
|__GFP_NOWARN
,
666 spin_lock(&hugetlb_lock
);
669 * This page is now managed by the hugetlb allocator and has
670 * no users -- drop the buddy allocator's reference.
672 put_page_testzero(page
);
673 VM_BUG_ON(page_count(page
));
674 nid
= page_to_nid(page
);
675 set_compound_page_dtor(page
, free_huge_page
);
677 * We incremented the global counters already
679 h
->nr_huge_pages_node
[nid
]++;
680 h
->surplus_huge_pages_node
[nid
]++;
681 __count_vm_event(HTLB_BUDDY_PGALLOC
);
684 h
->surplus_huge_pages
--;
685 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
687 spin_unlock(&hugetlb_lock
);
693 * Increase the hugetlb pool such that it can accomodate a reservation
696 static int gather_surplus_pages(struct hstate
*h
, int delta
)
698 struct list_head surplus_list
;
699 struct page
*page
, *tmp
;
701 int needed
, allocated
;
703 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
705 h
->resv_huge_pages
+= delta
;
710 INIT_LIST_HEAD(&surplus_list
);
714 spin_unlock(&hugetlb_lock
);
715 for (i
= 0; i
< needed
; i
++) {
716 page
= alloc_buddy_huge_page(h
, NULL
, 0);
719 * We were not able to allocate enough pages to
720 * satisfy the entire reservation so we free what
721 * we've allocated so far.
723 spin_lock(&hugetlb_lock
);
728 list_add(&page
->lru
, &surplus_list
);
733 * After retaking hugetlb_lock, we need to recalculate 'needed'
734 * because either resv_huge_pages or free_huge_pages may have changed.
736 spin_lock(&hugetlb_lock
);
737 needed
= (h
->resv_huge_pages
+ delta
) -
738 (h
->free_huge_pages
+ allocated
);
743 * The surplus_list now contains _at_least_ the number of extra pages
744 * needed to accomodate the reservation. Add the appropriate number
745 * of pages to the hugetlb pool and free the extras back to the buddy
746 * allocator. Commit the entire reservation here to prevent another
747 * process from stealing the pages as they are added to the pool but
748 * before they are reserved.
751 h
->resv_huge_pages
+= delta
;
754 /* Free the needed pages to the hugetlb pool */
755 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
758 list_del(&page
->lru
);
759 enqueue_huge_page(h
, page
);
762 /* Free unnecessary surplus pages to the buddy allocator */
763 if (!list_empty(&surplus_list
)) {
764 spin_unlock(&hugetlb_lock
);
765 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
766 list_del(&page
->lru
);
768 * The page has a reference count of zero already, so
769 * call free_huge_page directly instead of using
770 * put_page. This must be done with hugetlb_lock
771 * unlocked which is safe because free_huge_page takes
772 * hugetlb_lock before deciding how to free the page.
774 free_huge_page(page
);
776 spin_lock(&hugetlb_lock
);
783 * When releasing a hugetlb pool reservation, any surplus pages that were
784 * allocated to satisfy the reservation must be explicitly freed if they were
787 static void return_unused_surplus_pages(struct hstate
*h
,
788 unsigned long unused_resv_pages
)
792 unsigned long nr_pages
;
795 * We want to release as many surplus pages as possible, spread
796 * evenly across all nodes. Iterate across all nodes until we
797 * can no longer free unreserved surplus pages. This occurs when
798 * the nodes with surplus pages have no free pages.
800 unsigned long remaining_iterations
= num_online_nodes();
802 /* Uncommit the reservation */
803 h
->resv_huge_pages
-= unused_resv_pages
;
805 /* Cannot return gigantic pages currently */
806 if (h
->order
>= MAX_ORDER
)
809 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
811 while (remaining_iterations
-- && nr_pages
) {
812 nid
= next_node(nid
, node_online_map
);
813 if (nid
== MAX_NUMNODES
)
814 nid
= first_node(node_online_map
);
816 if (!h
->surplus_huge_pages_node
[nid
])
819 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
820 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
822 list_del(&page
->lru
);
823 update_and_free_page(h
, page
);
824 h
->free_huge_pages
--;
825 h
->free_huge_pages_node
[nid
]--;
826 h
->surplus_huge_pages
--;
827 h
->surplus_huge_pages_node
[nid
]--;
829 remaining_iterations
= num_online_nodes();
835 * Determine if the huge page at addr within the vma has an associated
836 * reservation. Where it does not we will need to logically increase
837 * reservation and actually increase quota before an allocation can occur.
838 * Where any new reservation would be required the reservation change is
839 * prepared, but not committed. Once the page has been quota'd allocated
840 * an instantiated the change should be committed via vma_commit_reservation.
841 * No action is required on failure.
843 static int vma_needs_reservation(struct hstate
*h
,
844 struct vm_area_struct
*vma
, unsigned long addr
)
846 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
847 struct inode
*inode
= mapping
->host
;
849 if (vma
->vm_flags
& VM_SHARED
) {
850 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
851 return region_chg(&inode
->i_mapping
->private_list
,
854 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
859 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
860 struct resv_map
*reservations
= vma_resv_map(vma
);
862 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
868 static void vma_commit_reservation(struct hstate
*h
,
869 struct vm_area_struct
*vma
, unsigned long addr
)
871 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
872 struct inode
*inode
= mapping
->host
;
874 if (vma
->vm_flags
& VM_SHARED
) {
875 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
876 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
878 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
879 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
880 struct resv_map
*reservations
= vma_resv_map(vma
);
882 /* Mark this page used in the map. */
883 region_add(&reservations
->regions
, idx
, idx
+ 1);
887 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
888 unsigned long addr
, int avoid_reserve
)
890 struct hstate
*h
= hstate_vma(vma
);
892 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
893 struct inode
*inode
= mapping
->host
;
897 * Processes that did not create the mapping will have no reserves and
898 * will not have accounted against quota. Check that the quota can be
899 * made before satisfying the allocation
900 * MAP_NORESERVE mappings may also need pages and quota allocated
901 * if no reserve mapping overlaps.
903 chg
= vma_needs_reservation(h
, vma
, addr
);
907 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
908 return ERR_PTR(-ENOSPC
);
910 spin_lock(&hugetlb_lock
);
911 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
912 spin_unlock(&hugetlb_lock
);
915 page
= alloc_buddy_huge_page(h
, vma
, addr
);
917 hugetlb_put_quota(inode
->i_mapping
, chg
);
918 return ERR_PTR(-VM_FAULT_OOM
);
922 set_page_refcounted(page
);
923 set_page_private(page
, (unsigned long) mapping
);
925 vma_commit_reservation(h
, vma
, addr
);
930 __attribute__((weak
)) int alloc_bootmem_huge_page(struct hstate
*h
)
932 struct huge_bootmem_page
*m
;
933 int nr_nodes
= nodes_weight(node_online_map
);
938 addr
= __alloc_bootmem_node_nopanic(
939 NODE_DATA(h
->hugetlb_next_nid
),
940 huge_page_size(h
), huge_page_size(h
), 0);
944 * Use the beginning of the huge page to store the
945 * huge_bootmem_page struct (until gather_bootmem
946 * puts them into the mem_map).
958 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
959 /* Put them into a private list first because mem_map is not up yet */
960 list_add(&m
->list
, &huge_boot_pages
);
965 /* Put bootmem huge pages into the standard lists after mem_map is up */
966 static void __init
gather_bootmem_prealloc(void)
968 struct huge_bootmem_page
*m
;
970 list_for_each_entry(m
, &huge_boot_pages
, list
) {
971 struct page
*page
= virt_to_page(m
);
972 struct hstate
*h
= m
->hstate
;
973 __ClearPageReserved(page
);
974 WARN_ON(page_count(page
) != 1);
975 prep_compound_page(page
, h
->order
);
976 prep_new_huge_page(h
, page
, page_to_nid(page
));
980 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
984 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
985 if (h
->order
>= MAX_ORDER
) {
986 if (!alloc_bootmem_huge_page(h
))
988 } else if (!alloc_fresh_huge_page(h
))
991 h
->max_huge_pages
= i
;
994 static void __init
hugetlb_init_hstates(void)
999 /* oversize hugepages were init'ed in early boot */
1000 if (h
->order
< MAX_ORDER
)
1001 hugetlb_hstate_alloc_pages(h
);
1005 static char * __init
memfmt(char *buf
, unsigned long n
)
1007 if (n
>= (1UL << 30))
1008 sprintf(buf
, "%lu GB", n
>> 30);
1009 else if (n
>= (1UL << 20))
1010 sprintf(buf
, "%lu MB", n
>> 20);
1012 sprintf(buf
, "%lu KB", n
>> 10);
1016 static void __init
report_hugepages(void)
1020 for_each_hstate(h
) {
1022 printk(KERN_INFO
"HugeTLB registered %s page size, "
1023 "pre-allocated %ld pages\n",
1024 memfmt(buf
, huge_page_size(h
)),
1025 h
->free_huge_pages
);
1029 #ifdef CONFIG_SYSCTL
1030 #ifdef CONFIG_HIGHMEM
1031 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
1035 if (h
->order
>= MAX_ORDER
)
1038 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
1039 struct page
*page
, *next
;
1040 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1041 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1042 if (count
>= h
->nr_huge_pages
)
1044 if (PageHighMem(page
))
1046 list_del(&page
->lru
);
1047 update_and_free_page(h
, page
);
1048 h
->free_huge_pages
--;
1049 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1054 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
1059 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1060 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
)
1062 unsigned long min_count
, ret
;
1064 if (h
->order
>= MAX_ORDER
)
1065 return h
->max_huge_pages
;
1068 * Increase the pool size
1069 * First take pages out of surplus state. Then make up the
1070 * remaining difference by allocating fresh huge pages.
1072 * We might race with alloc_buddy_huge_page() here and be unable
1073 * to convert a surplus huge page to a normal huge page. That is
1074 * not critical, though, it just means the overall size of the
1075 * pool might be one hugepage larger than it needs to be, but
1076 * within all the constraints specified by the sysctls.
1078 spin_lock(&hugetlb_lock
);
1079 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1080 if (!adjust_pool_surplus(h
, -1))
1084 while (count
> persistent_huge_pages(h
)) {
1086 * If this allocation races such that we no longer need the
1087 * page, free_huge_page will handle it by freeing the page
1088 * and reducing the surplus.
1090 spin_unlock(&hugetlb_lock
);
1091 ret
= alloc_fresh_huge_page(h
);
1092 spin_lock(&hugetlb_lock
);
1099 * Decrease the pool size
1100 * First return free pages to the buddy allocator (being careful
1101 * to keep enough around to satisfy reservations). Then place
1102 * pages into surplus state as needed so the pool will shrink
1103 * to the desired size as pages become free.
1105 * By placing pages into the surplus state independent of the
1106 * overcommit value, we are allowing the surplus pool size to
1107 * exceed overcommit. There are few sane options here. Since
1108 * alloc_buddy_huge_page() is checking the global counter,
1109 * though, we'll note that we're not allowed to exceed surplus
1110 * and won't grow the pool anywhere else. Not until one of the
1111 * sysctls are changed, or the surplus pages go out of use.
1113 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1114 min_count
= max(count
, min_count
);
1115 try_to_free_low(h
, min_count
);
1116 while (min_count
< persistent_huge_pages(h
)) {
1117 struct page
*page
= dequeue_huge_page(h
);
1120 update_and_free_page(h
, page
);
1122 while (count
< persistent_huge_pages(h
)) {
1123 if (!adjust_pool_surplus(h
, 1))
1127 ret
= persistent_huge_pages(h
);
1128 spin_unlock(&hugetlb_lock
);
1132 #define HSTATE_ATTR_RO(_name) \
1133 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1135 #define HSTATE_ATTR(_name) \
1136 static struct kobj_attribute _name##_attr = \
1137 __ATTR(_name, 0644, _name##_show, _name##_store)
1139 static struct kobject
*hugepages_kobj
;
1140 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1142 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
)
1145 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1146 if (hstate_kobjs
[i
] == kobj
)
1152 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1153 struct kobj_attribute
*attr
, char *buf
)
1155 struct hstate
*h
= kobj_to_hstate(kobj
);
1156 return sprintf(buf
, "%lu\n", h
->nr_huge_pages
);
1158 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1159 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1162 unsigned long input
;
1163 struct hstate
*h
= kobj_to_hstate(kobj
);
1165 err
= strict_strtoul(buf
, 10, &input
);
1169 h
->max_huge_pages
= set_max_huge_pages(h
, input
);
1173 HSTATE_ATTR(nr_hugepages
);
1175 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1176 struct kobj_attribute
*attr
, char *buf
)
1178 struct hstate
*h
= kobj_to_hstate(kobj
);
1179 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1181 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1182 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1185 unsigned long input
;
1186 struct hstate
*h
= kobj_to_hstate(kobj
);
1188 err
= strict_strtoul(buf
, 10, &input
);
1192 spin_lock(&hugetlb_lock
);
1193 h
->nr_overcommit_huge_pages
= input
;
1194 spin_unlock(&hugetlb_lock
);
1198 HSTATE_ATTR(nr_overcommit_hugepages
);
1200 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1201 struct kobj_attribute
*attr
, char *buf
)
1203 struct hstate
*h
= kobj_to_hstate(kobj
);
1204 return sprintf(buf
, "%lu\n", h
->free_huge_pages
);
1206 HSTATE_ATTR_RO(free_hugepages
);
1208 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1209 struct kobj_attribute
*attr
, char *buf
)
1211 struct hstate
*h
= kobj_to_hstate(kobj
);
1212 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1214 HSTATE_ATTR_RO(resv_hugepages
);
1216 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1217 struct kobj_attribute
*attr
, char *buf
)
1219 struct hstate
*h
= kobj_to_hstate(kobj
);
1220 return sprintf(buf
, "%lu\n", h
->surplus_huge_pages
);
1222 HSTATE_ATTR_RO(surplus_hugepages
);
1224 static struct attribute
*hstate_attrs
[] = {
1225 &nr_hugepages_attr
.attr
,
1226 &nr_overcommit_hugepages_attr
.attr
,
1227 &free_hugepages_attr
.attr
,
1228 &resv_hugepages_attr
.attr
,
1229 &surplus_hugepages_attr
.attr
,
1233 static struct attribute_group hstate_attr_group
= {
1234 .attrs
= hstate_attrs
,
1237 static int __init
hugetlb_sysfs_add_hstate(struct hstate
*h
)
1241 hstate_kobjs
[h
- hstates
] = kobject_create_and_add(h
->name
,
1243 if (!hstate_kobjs
[h
- hstates
])
1246 retval
= sysfs_create_group(hstate_kobjs
[h
- hstates
],
1247 &hstate_attr_group
);
1249 kobject_put(hstate_kobjs
[h
- hstates
]);
1254 static void __init
hugetlb_sysfs_init(void)
1259 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1260 if (!hugepages_kobj
)
1263 for_each_hstate(h
) {
1264 err
= hugetlb_sysfs_add_hstate(h
);
1266 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1271 static void __exit
hugetlb_exit(void)
1275 for_each_hstate(h
) {
1276 kobject_put(hstate_kobjs
[h
- hstates
]);
1279 kobject_put(hugepages_kobj
);
1281 module_exit(hugetlb_exit
);
1283 static int __init
hugetlb_init(void)
1285 BUILD_BUG_ON(HPAGE_SHIFT
== 0);
1287 if (!size_to_hstate(default_hstate_size
)) {
1288 default_hstate_size
= HPAGE_SIZE
;
1289 if (!size_to_hstate(default_hstate_size
))
1290 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1292 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1293 if (default_hstate_max_huge_pages
)
1294 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1296 hugetlb_init_hstates();
1298 gather_bootmem_prealloc();
1302 hugetlb_sysfs_init();
1306 module_init(hugetlb_init
);
1308 /* Should be called on processing a hugepagesz=... option */
1309 void __init
hugetlb_add_hstate(unsigned order
)
1314 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1315 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1318 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1320 h
= &hstates
[max_hstate
++];
1322 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1323 h
->nr_huge_pages
= 0;
1324 h
->free_huge_pages
= 0;
1325 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1326 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1327 h
->hugetlb_next_nid
= first_node(node_online_map
);
1328 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1329 huge_page_size(h
)/1024);
1334 static int __init
hugetlb_nrpages_setup(char *s
)
1337 static unsigned long *last_mhp
;
1340 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1341 * so this hugepages= parameter goes to the "default hstate".
1344 mhp
= &default_hstate_max_huge_pages
;
1346 mhp
= &parsed_hstate
->max_huge_pages
;
1348 if (mhp
== last_mhp
) {
1349 printk(KERN_WARNING
"hugepages= specified twice without "
1350 "interleaving hugepagesz=, ignoring\n");
1354 if (sscanf(s
, "%lu", mhp
) <= 0)
1358 * Global state is always initialized later in hugetlb_init.
1359 * But we need to allocate >= MAX_ORDER hstates here early to still
1360 * use the bootmem allocator.
1362 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1363 hugetlb_hstate_alloc_pages(parsed_hstate
);
1369 __setup("hugepages=", hugetlb_nrpages_setup
);
1371 static int __init
hugetlb_default_setup(char *s
)
1373 default_hstate_size
= memparse(s
, &s
);
1376 __setup("default_hugepagesz=", hugetlb_default_setup
);
1378 static unsigned int cpuset_mems_nr(unsigned int *array
)
1381 unsigned int nr
= 0;
1383 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1389 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1390 struct file
*file
, void __user
*buffer
,
1391 size_t *length
, loff_t
*ppos
)
1393 struct hstate
*h
= &default_hstate
;
1397 tmp
= h
->max_huge_pages
;
1400 table
->maxlen
= sizeof(unsigned long);
1401 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1404 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
);
1409 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1410 struct file
*file
, void __user
*buffer
,
1411 size_t *length
, loff_t
*ppos
)
1413 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1414 if (hugepages_treat_as_movable
)
1415 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1417 htlb_alloc_mask
= GFP_HIGHUSER
;
1421 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1422 struct file
*file
, void __user
*buffer
,
1423 size_t *length
, loff_t
*ppos
)
1425 struct hstate
*h
= &default_hstate
;
1429 tmp
= h
->nr_overcommit_huge_pages
;
1432 table
->maxlen
= sizeof(unsigned long);
1433 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1436 spin_lock(&hugetlb_lock
);
1437 h
->nr_overcommit_huge_pages
= tmp
;
1438 spin_unlock(&hugetlb_lock
);
1444 #endif /* CONFIG_SYSCTL */
1446 int hugetlb_report_meminfo(char *buf
)
1448 struct hstate
*h
= &default_hstate
;
1450 "HugePages_Total: %5lu\n"
1451 "HugePages_Free: %5lu\n"
1452 "HugePages_Rsvd: %5lu\n"
1453 "HugePages_Surp: %5lu\n"
1454 "Hugepagesize: %5lu kB\n",
1458 h
->surplus_huge_pages
,
1459 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1462 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1464 struct hstate
*h
= &default_hstate
;
1466 "Node %d HugePages_Total: %5u\n"
1467 "Node %d HugePages_Free: %5u\n"
1468 "Node %d HugePages_Surp: %5u\n",
1469 nid
, h
->nr_huge_pages_node
[nid
],
1470 nid
, h
->free_huge_pages_node
[nid
],
1471 nid
, h
->surplus_huge_pages_node
[nid
]);
1474 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1475 unsigned long hugetlb_total_pages(void)
1477 struct hstate
*h
= &default_hstate
;
1478 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1481 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1485 spin_lock(&hugetlb_lock
);
1487 * When cpuset is configured, it breaks the strict hugetlb page
1488 * reservation as the accounting is done on a global variable. Such
1489 * reservation is completely rubbish in the presence of cpuset because
1490 * the reservation is not checked against page availability for the
1491 * current cpuset. Application can still potentially OOM'ed by kernel
1492 * with lack of free htlb page in cpuset that the task is in.
1493 * Attempt to enforce strict accounting with cpuset is almost
1494 * impossible (or too ugly) because cpuset is too fluid that
1495 * task or memory node can be dynamically moved between cpusets.
1497 * The change of semantics for shared hugetlb mapping with cpuset is
1498 * undesirable. However, in order to preserve some of the semantics,
1499 * we fall back to check against current free page availability as
1500 * a best attempt and hopefully to minimize the impact of changing
1501 * semantics that cpuset has.
1504 if (gather_surplus_pages(h
, delta
) < 0)
1507 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1508 return_unused_surplus_pages(h
, delta
);
1515 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1518 spin_unlock(&hugetlb_lock
);
1522 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1524 struct resv_map
*reservations
= vma_resv_map(vma
);
1527 * This new VMA should share its siblings reservation map if present.
1528 * The VMA will only ever have a valid reservation map pointer where
1529 * it is being copied for another still existing VMA. As that VMA
1530 * has a reference to the reservation map it cannot dissappear until
1531 * after this open call completes. It is therefore safe to take a
1532 * new reference here without additional locking.
1535 kref_get(&reservations
->refs
);
1538 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1540 struct hstate
*h
= hstate_vma(vma
);
1541 struct resv_map
*reservations
= vma_resv_map(vma
);
1542 unsigned long reserve
;
1543 unsigned long start
;
1547 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1548 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1550 reserve
= (end
- start
) -
1551 region_count(&reservations
->regions
, start
, end
);
1553 kref_put(&reservations
->refs
, resv_map_release
);
1556 hugetlb_acct_memory(h
, -reserve
);
1561 * We cannot handle pagefaults against hugetlb pages at all. They cause
1562 * handle_mm_fault() to try to instantiate regular-sized pages in the
1563 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1566 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1572 struct vm_operations_struct hugetlb_vm_ops
= {
1573 .fault
= hugetlb_vm_op_fault
,
1574 .open
= hugetlb_vm_op_open
,
1575 .close
= hugetlb_vm_op_close
,
1578 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1585 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1587 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1589 entry
= pte_mkyoung(entry
);
1590 entry
= pte_mkhuge(entry
);
1595 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1596 unsigned long address
, pte_t
*ptep
)
1600 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1601 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1602 update_mmu_cache(vma
, address
, entry
);
1607 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1608 struct vm_area_struct
*vma
)
1610 pte_t
*src_pte
, *dst_pte
, entry
;
1611 struct page
*ptepage
;
1614 struct hstate
*h
= hstate_vma(vma
);
1615 unsigned long sz
= huge_page_size(h
);
1617 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1619 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1620 src_pte
= huge_pte_offset(src
, addr
);
1623 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1627 /* If the pagetables are shared don't copy or take references */
1628 if (dst_pte
== src_pte
)
1631 spin_lock(&dst
->page_table_lock
);
1632 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1633 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1635 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1636 entry
= huge_ptep_get(src_pte
);
1637 ptepage
= pte_page(entry
);
1639 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1641 spin_unlock(&src
->page_table_lock
);
1642 spin_unlock(&dst
->page_table_lock
);
1650 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1651 unsigned long end
, struct page
*ref_page
)
1653 struct mm_struct
*mm
= vma
->vm_mm
;
1654 unsigned long address
;
1659 struct hstate
*h
= hstate_vma(vma
);
1660 unsigned long sz
= huge_page_size(h
);
1663 * A page gathering list, protected by per file i_mmap_lock. The
1664 * lock is used to avoid list corruption from multiple unmapping
1665 * of the same page since we are using page->lru.
1667 LIST_HEAD(page_list
);
1669 WARN_ON(!is_vm_hugetlb_page(vma
));
1670 BUG_ON(start
& ~huge_page_mask(h
));
1671 BUG_ON(end
& ~huge_page_mask(h
));
1673 spin_lock(&mm
->page_table_lock
);
1674 for (address
= start
; address
< end
; address
+= sz
) {
1675 ptep
= huge_pte_offset(mm
, address
);
1679 if (huge_pmd_unshare(mm
, &address
, ptep
))
1683 * If a reference page is supplied, it is because a specific
1684 * page is being unmapped, not a range. Ensure the page we
1685 * are about to unmap is the actual page of interest.
1688 pte
= huge_ptep_get(ptep
);
1689 if (huge_pte_none(pte
))
1691 page
= pte_page(pte
);
1692 if (page
!= ref_page
)
1696 * Mark the VMA as having unmapped its page so that
1697 * future faults in this VMA will fail rather than
1698 * looking like data was lost
1700 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1703 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1704 if (huge_pte_none(pte
))
1707 page
= pte_page(pte
);
1709 set_page_dirty(page
);
1710 list_add(&page
->lru
, &page_list
);
1712 spin_unlock(&mm
->page_table_lock
);
1713 flush_tlb_range(vma
, start
, end
);
1714 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1715 list_del(&page
->lru
);
1720 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1721 unsigned long end
, struct page
*ref_page
)
1723 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1724 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1725 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1729 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1730 * mappping it owns the reserve page for. The intention is to unmap the page
1731 * from other VMAs and let the children be SIGKILLed if they are faulting the
1734 int unmap_ref_private(struct mm_struct
*mm
,
1735 struct vm_area_struct
*vma
,
1737 unsigned long address
)
1739 struct vm_area_struct
*iter_vma
;
1740 struct address_space
*mapping
;
1741 struct prio_tree_iter iter
;
1745 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1746 * from page cache lookup which is in HPAGE_SIZE units.
1748 address
= address
& huge_page_mask(hstate_vma(vma
));
1749 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1750 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1751 mapping
= (struct address_space
*)page_private(page
);
1753 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1754 /* Do not unmap the current VMA */
1755 if (iter_vma
== vma
)
1759 * Unmap the page from other VMAs without their own reserves.
1760 * They get marked to be SIGKILLed if they fault in these
1761 * areas. This is because a future no-page fault on this VMA
1762 * could insert a zeroed page instead of the data existing
1763 * from the time of fork. This would look like data corruption
1765 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1766 unmap_hugepage_range(iter_vma
,
1767 address
, address
+ HPAGE_SIZE
,
1774 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1775 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1776 struct page
*pagecache_page
)
1778 struct hstate
*h
= hstate_vma(vma
);
1779 struct page
*old_page
, *new_page
;
1781 int outside_reserve
= 0;
1783 old_page
= pte_page(pte
);
1786 /* If no-one else is actually using this page, avoid the copy
1787 * and just make the page writable */
1788 avoidcopy
= (page_count(old_page
) == 1);
1790 set_huge_ptep_writable(vma
, address
, ptep
);
1795 * If the process that created a MAP_PRIVATE mapping is about to
1796 * perform a COW due to a shared page count, attempt to satisfy
1797 * the allocation without using the existing reserves. The pagecache
1798 * page is used to determine if the reserve at this address was
1799 * consumed or not. If reserves were used, a partial faulted mapping
1800 * at the time of fork() could consume its reserves on COW instead
1801 * of the full address range.
1803 if (!(vma
->vm_flags
& VM_SHARED
) &&
1804 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1805 old_page
!= pagecache_page
)
1806 outside_reserve
= 1;
1808 page_cache_get(old_page
);
1809 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1811 if (IS_ERR(new_page
)) {
1812 page_cache_release(old_page
);
1815 * If a process owning a MAP_PRIVATE mapping fails to COW,
1816 * it is due to references held by a child and an insufficient
1817 * huge page pool. To guarantee the original mappers
1818 * reliability, unmap the page from child processes. The child
1819 * may get SIGKILLed if it later faults.
1821 if (outside_reserve
) {
1822 BUG_ON(huge_pte_none(pte
));
1823 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1824 BUG_ON(page_count(old_page
) != 1);
1825 BUG_ON(huge_pte_none(pte
));
1826 goto retry_avoidcopy
;
1831 return -PTR_ERR(new_page
);
1834 spin_unlock(&mm
->page_table_lock
);
1835 copy_huge_page(new_page
, old_page
, address
, vma
);
1836 __SetPageUptodate(new_page
);
1837 spin_lock(&mm
->page_table_lock
);
1839 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1840 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1842 huge_ptep_clear_flush(vma
, address
, ptep
);
1843 set_huge_pte_at(mm
, address
, ptep
,
1844 make_huge_pte(vma
, new_page
, 1));
1845 /* Make the old page be freed below */
1846 new_page
= old_page
;
1848 page_cache_release(new_page
);
1849 page_cache_release(old_page
);
1853 /* Return the pagecache page at a given address within a VMA */
1854 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1855 struct vm_area_struct
*vma
, unsigned long address
)
1857 struct address_space
*mapping
;
1860 mapping
= vma
->vm_file
->f_mapping
;
1861 idx
= vma_hugecache_offset(h
, vma
, address
);
1863 return find_lock_page(mapping
, idx
);
1866 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1867 unsigned long address
, pte_t
*ptep
, int write_access
)
1869 struct hstate
*h
= hstate_vma(vma
);
1870 int ret
= VM_FAULT_SIGBUS
;
1874 struct address_space
*mapping
;
1878 * Currently, we are forced to kill the process in the event the
1879 * original mapper has unmapped pages from the child due to a failed
1880 * COW. Warn that such a situation has occured as it may not be obvious
1882 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
1884 "PID %d killed due to inadequate hugepage pool\n",
1889 mapping
= vma
->vm_file
->f_mapping
;
1890 idx
= vma_hugecache_offset(h
, vma
, address
);
1893 * Use page lock to guard against racing truncation
1894 * before we get page_table_lock.
1897 page
= find_lock_page(mapping
, idx
);
1899 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1902 page
= alloc_huge_page(vma
, address
, 0);
1904 ret
= -PTR_ERR(page
);
1907 clear_huge_page(page
, address
, huge_page_size(h
));
1908 __SetPageUptodate(page
);
1910 if (vma
->vm_flags
& VM_SHARED
) {
1912 struct inode
*inode
= mapping
->host
;
1914 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
1922 spin_lock(&inode
->i_lock
);
1923 inode
->i_blocks
+= blocks_per_huge_page(h
);
1924 spin_unlock(&inode
->i_lock
);
1929 spin_lock(&mm
->page_table_lock
);
1930 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1935 if (!huge_pte_none(huge_ptep_get(ptep
)))
1938 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
1939 && (vma
->vm_flags
& VM_SHARED
)));
1940 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
1942 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
1943 /* Optimization, do the COW without a second fault */
1944 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
1947 spin_unlock(&mm
->page_table_lock
);
1953 spin_unlock(&mm
->page_table_lock
);
1959 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1960 unsigned long address
, int write_access
)
1965 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
1966 struct hstate
*h
= hstate_vma(vma
);
1968 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
1970 return VM_FAULT_OOM
;
1973 * Serialize hugepage allocation and instantiation, so that we don't
1974 * get spurious allocation failures if two CPUs race to instantiate
1975 * the same page in the page cache.
1977 mutex_lock(&hugetlb_instantiation_mutex
);
1978 entry
= huge_ptep_get(ptep
);
1979 if (huge_pte_none(entry
)) {
1980 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
1981 mutex_unlock(&hugetlb_instantiation_mutex
);
1987 spin_lock(&mm
->page_table_lock
);
1988 /* Check for a racing update before calling hugetlb_cow */
1989 if (likely(pte_same(entry
, huge_ptep_get(ptep
))))
1990 if (write_access
&& !pte_write(entry
)) {
1992 page
= hugetlbfs_pagecache_page(h
, vma
, address
);
1993 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
, page
);
1999 spin_unlock(&mm
->page_table_lock
);
2000 mutex_unlock(&hugetlb_instantiation_mutex
);
2005 /* Can be overriden by architectures */
2006 __attribute__((weak
)) struct page
*
2007 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2008 pud_t
*pud
, int write
)
2014 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2015 struct page
**pages
, struct vm_area_struct
**vmas
,
2016 unsigned long *position
, int *length
, int i
,
2019 unsigned long pfn_offset
;
2020 unsigned long vaddr
= *position
;
2021 int remainder
= *length
;
2022 struct hstate
*h
= hstate_vma(vma
);
2024 spin_lock(&mm
->page_table_lock
);
2025 while (vaddr
< vma
->vm_end
&& remainder
) {
2030 * Some archs (sparc64, sh*) have multiple pte_ts to
2031 * each hugepage. We have to make * sure we get the
2032 * first, for the page indexing below to work.
2034 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2036 if (!pte
|| huge_pte_none(huge_ptep_get(pte
)) ||
2037 (write
&& !pte_write(huge_ptep_get(pte
)))) {
2040 spin_unlock(&mm
->page_table_lock
);
2041 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
2042 spin_lock(&mm
->page_table_lock
);
2043 if (!(ret
& VM_FAULT_ERROR
))
2052 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2053 page
= pte_page(huge_ptep_get(pte
));
2057 pages
[i
] = page
+ pfn_offset
;
2067 if (vaddr
< vma
->vm_end
&& remainder
&&
2068 pfn_offset
< pages_per_huge_page(h
)) {
2070 * We use pfn_offset to avoid touching the pageframes
2071 * of this compound page.
2076 spin_unlock(&mm
->page_table_lock
);
2077 *length
= remainder
;
2083 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2084 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2086 struct mm_struct
*mm
= vma
->vm_mm
;
2087 unsigned long start
= address
;
2090 struct hstate
*h
= hstate_vma(vma
);
2092 BUG_ON(address
>= end
);
2093 flush_cache_range(vma
, address
, end
);
2095 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2096 spin_lock(&mm
->page_table_lock
);
2097 for (; address
< end
; address
+= huge_page_size(h
)) {
2098 ptep
= huge_pte_offset(mm
, address
);
2101 if (huge_pmd_unshare(mm
, &address
, ptep
))
2103 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2104 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2105 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2106 set_huge_pte_at(mm
, address
, ptep
, pte
);
2109 spin_unlock(&mm
->page_table_lock
);
2110 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2112 flush_tlb_range(vma
, start
, end
);
2115 int hugetlb_reserve_pages(struct inode
*inode
,
2117 struct vm_area_struct
*vma
)
2120 struct hstate
*h
= hstate_inode(inode
);
2122 if (vma
&& vma
->vm_flags
& VM_NORESERVE
)
2126 * Shared mappings base their reservation on the number of pages that
2127 * are already allocated on behalf of the file. Private mappings need
2128 * to reserve the full area even if read-only as mprotect() may be
2129 * called to make the mapping read-write. Assume !vma is a shm mapping
2131 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2132 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2134 struct resv_map
*resv_map
= resv_map_alloc();
2140 set_vma_resv_map(vma
, resv_map
);
2141 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2147 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2149 ret
= hugetlb_acct_memory(h
, chg
);
2151 hugetlb_put_quota(inode
->i_mapping
, chg
);
2154 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
2155 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2159 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2161 struct hstate
*h
= hstate_inode(inode
);
2162 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2164 spin_lock(&inode
->i_lock
);
2165 inode
->i_blocks
-= blocks_per_huge_page(h
);
2166 spin_unlock(&inode
->i_lock
);
2168 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2169 hugetlb_acct_memory(h
, -(chg
- freed
));