hugetlb: allow arch overridden hugepage allocation
[linux-2.6/mini2440.git] / mm / hugetlb.c
blob3e1506b808a36782a030cc8bf5ae23afa9265295
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/bootmem.h>
18 #include <linux/sysfs.h>
20 #include <asm/page.h>
21 #include <asm/pgtable.h>
23 #include <linux/hugetlb.h>
24 #include "internal.h"
26 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
28 unsigned long hugepages_treat_as_movable;
30 static int max_hstate;
31 unsigned int default_hstate_idx;
32 struct hstate hstates[HUGE_MAX_HSTATE];
34 __initdata LIST_HEAD(huge_boot_pages);
36 /* for command line parsing */
37 static struct hstate * __initdata parsed_hstate;
38 static unsigned long __initdata default_hstate_max_huge_pages;
39 static unsigned long __initdata default_hstate_size;
41 #define for_each_hstate(h) \
42 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
45 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
47 static DEFINE_SPINLOCK(hugetlb_lock);
50 * Region tracking -- allows tracking of reservations and instantiated pages
51 * across the pages in a mapping.
53 * The region data structures are protected by a combination of the mmap_sem
54 * and the hugetlb_instantion_mutex. To access or modify a region the caller
55 * must either hold the mmap_sem for write, or the mmap_sem for read and
56 * the hugetlb_instantiation mutex:
58 * down_write(&mm->mmap_sem);
59 * or
60 * down_read(&mm->mmap_sem);
61 * mutex_lock(&hugetlb_instantiation_mutex);
63 struct file_region {
64 struct list_head link;
65 long from;
66 long to;
69 static long region_add(struct list_head *head, long f, long t)
71 struct file_region *rg, *nrg, *trg;
73 /* Locate the region we are either in or before. */
74 list_for_each_entry(rg, head, link)
75 if (f <= rg->to)
76 break;
78 /* Round our left edge to the current segment if it encloses us. */
79 if (f > rg->from)
80 f = rg->from;
82 /* Check for and consume any regions we now overlap with. */
83 nrg = rg;
84 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
85 if (&rg->link == head)
86 break;
87 if (rg->from > t)
88 break;
90 /* If this area reaches higher then extend our area to
91 * include it completely. If this is not the first area
92 * which we intend to reuse, free it. */
93 if (rg->to > t)
94 t = rg->to;
95 if (rg != nrg) {
96 list_del(&rg->link);
97 kfree(rg);
100 nrg->from = f;
101 nrg->to = t;
102 return 0;
105 static long region_chg(struct list_head *head, long f, long t)
107 struct file_region *rg, *nrg;
108 long chg = 0;
110 /* Locate the region we are before or in. */
111 list_for_each_entry(rg, head, link)
112 if (f <= rg->to)
113 break;
115 /* If we are below the current region then a new region is required.
116 * Subtle, allocate a new region at the position but make it zero
117 * size such that we can guarantee to record the reservation. */
118 if (&rg->link == head || t < rg->from) {
119 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
120 if (!nrg)
121 return -ENOMEM;
122 nrg->from = f;
123 nrg->to = f;
124 INIT_LIST_HEAD(&nrg->link);
125 list_add(&nrg->link, rg->link.prev);
127 return t - f;
130 /* Round our left edge to the current segment if it encloses us. */
131 if (f > rg->from)
132 f = rg->from;
133 chg = t - f;
135 /* Check for and consume any regions we now overlap with. */
136 list_for_each_entry(rg, rg->link.prev, link) {
137 if (&rg->link == head)
138 break;
139 if (rg->from > t)
140 return chg;
142 /* We overlap with this area, if it extends futher than
143 * us then we must extend ourselves. Account for its
144 * existing reservation. */
145 if (rg->to > t) {
146 chg += rg->to - t;
147 t = rg->to;
149 chg -= rg->to - rg->from;
151 return chg;
154 static long region_truncate(struct list_head *head, long end)
156 struct file_region *rg, *trg;
157 long chg = 0;
159 /* Locate the region we are either in or before. */
160 list_for_each_entry(rg, head, link)
161 if (end <= rg->to)
162 break;
163 if (&rg->link == head)
164 return 0;
166 /* If we are in the middle of a region then adjust it. */
167 if (end > rg->from) {
168 chg = rg->to - end;
169 rg->to = end;
170 rg = list_entry(rg->link.next, typeof(*rg), link);
173 /* Drop any remaining regions. */
174 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
175 if (&rg->link == head)
176 break;
177 chg += rg->to - rg->from;
178 list_del(&rg->link);
179 kfree(rg);
181 return chg;
184 static long region_count(struct list_head *head, long f, long t)
186 struct file_region *rg;
187 long chg = 0;
189 /* Locate each segment we overlap with, and count that overlap. */
190 list_for_each_entry(rg, head, link) {
191 int seg_from;
192 int seg_to;
194 if (rg->to <= f)
195 continue;
196 if (rg->from >= t)
197 break;
199 seg_from = max(rg->from, f);
200 seg_to = min(rg->to, t);
202 chg += seg_to - seg_from;
205 return chg;
209 * Convert the address within this vma to the page offset within
210 * the mapping, in pagecache page units; huge pages here.
212 static pgoff_t vma_hugecache_offset(struct hstate *h,
213 struct vm_area_struct *vma, unsigned long address)
215 return ((address - vma->vm_start) >> huge_page_shift(h)) +
216 (vma->vm_pgoff >> huge_page_order(h));
220 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
221 * bits of the reservation map pointer, which are always clear due to
222 * alignment.
224 #define HPAGE_RESV_OWNER (1UL << 0)
225 #define HPAGE_RESV_UNMAPPED (1UL << 1)
226 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
229 * These helpers are used to track how many pages are reserved for
230 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
231 * is guaranteed to have their future faults succeed.
233 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
234 * the reserve counters are updated with the hugetlb_lock held. It is safe
235 * to reset the VMA at fork() time as it is not in use yet and there is no
236 * chance of the global counters getting corrupted as a result of the values.
238 * The private mapping reservation is represented in a subtly different
239 * manner to a shared mapping. A shared mapping has a region map associated
240 * with the underlying file, this region map represents the backing file
241 * pages which have ever had a reservation assigned which this persists even
242 * after the page is instantiated. A private mapping has a region map
243 * associated with the original mmap which is attached to all VMAs which
244 * reference it, this region map represents those offsets which have consumed
245 * reservation ie. where pages have been instantiated.
247 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
249 return (unsigned long)vma->vm_private_data;
252 static void set_vma_private_data(struct vm_area_struct *vma,
253 unsigned long value)
255 vma->vm_private_data = (void *)value;
258 struct resv_map {
259 struct kref refs;
260 struct list_head regions;
263 struct resv_map *resv_map_alloc(void)
265 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
266 if (!resv_map)
267 return NULL;
269 kref_init(&resv_map->refs);
270 INIT_LIST_HEAD(&resv_map->regions);
272 return resv_map;
275 void resv_map_release(struct kref *ref)
277 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
279 /* Clear out any active regions before we release the map. */
280 region_truncate(&resv_map->regions, 0);
281 kfree(resv_map);
284 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
286 VM_BUG_ON(!is_vm_hugetlb_page(vma));
287 if (!(vma->vm_flags & VM_SHARED))
288 return (struct resv_map *)(get_vma_private_data(vma) &
289 ~HPAGE_RESV_MASK);
290 return 0;
293 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
295 VM_BUG_ON(!is_vm_hugetlb_page(vma));
296 VM_BUG_ON(vma->vm_flags & VM_SHARED);
298 set_vma_private_data(vma, (get_vma_private_data(vma) &
299 HPAGE_RESV_MASK) | (unsigned long)map);
302 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
304 VM_BUG_ON(!is_vm_hugetlb_page(vma));
305 VM_BUG_ON(vma->vm_flags & VM_SHARED);
307 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
310 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
312 VM_BUG_ON(!is_vm_hugetlb_page(vma));
314 return (get_vma_private_data(vma) & flag) != 0;
317 /* Decrement the reserved pages in the hugepage pool by one */
318 static void decrement_hugepage_resv_vma(struct hstate *h,
319 struct vm_area_struct *vma)
321 if (vma->vm_flags & VM_NORESERVE)
322 return;
324 if (vma->vm_flags & VM_SHARED) {
325 /* Shared mappings always use reserves */
326 h->resv_huge_pages--;
327 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
329 * Only the process that called mmap() has reserves for
330 * private mappings.
332 h->resv_huge_pages--;
336 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
337 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
339 VM_BUG_ON(!is_vm_hugetlb_page(vma));
340 if (!(vma->vm_flags & VM_SHARED))
341 vma->vm_private_data = (void *)0;
344 /* Returns true if the VMA has associated reserve pages */
345 static int vma_has_private_reserves(struct vm_area_struct *vma)
347 if (vma->vm_flags & VM_SHARED)
348 return 0;
349 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
350 return 0;
351 return 1;
354 static void clear_huge_page(struct page *page,
355 unsigned long addr, unsigned long sz)
357 int i;
359 might_sleep();
360 for (i = 0; i < sz/PAGE_SIZE; i++) {
361 cond_resched();
362 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
366 static void copy_huge_page(struct page *dst, struct page *src,
367 unsigned long addr, struct vm_area_struct *vma)
369 int i;
370 struct hstate *h = hstate_vma(vma);
372 might_sleep();
373 for (i = 0; i < pages_per_huge_page(h); i++) {
374 cond_resched();
375 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
379 static void enqueue_huge_page(struct hstate *h, struct page *page)
381 int nid = page_to_nid(page);
382 list_add(&page->lru, &h->hugepage_freelists[nid]);
383 h->free_huge_pages++;
384 h->free_huge_pages_node[nid]++;
387 static struct page *dequeue_huge_page(struct hstate *h)
389 int nid;
390 struct page *page = NULL;
392 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
393 if (!list_empty(&h->hugepage_freelists[nid])) {
394 page = list_entry(h->hugepage_freelists[nid].next,
395 struct page, lru);
396 list_del(&page->lru);
397 h->free_huge_pages--;
398 h->free_huge_pages_node[nid]--;
399 break;
402 return page;
405 static struct page *dequeue_huge_page_vma(struct hstate *h,
406 struct vm_area_struct *vma,
407 unsigned long address, int avoid_reserve)
409 int nid;
410 struct page *page = NULL;
411 struct mempolicy *mpol;
412 nodemask_t *nodemask;
413 struct zonelist *zonelist = huge_zonelist(vma, address,
414 htlb_alloc_mask, &mpol, &nodemask);
415 struct zone *zone;
416 struct zoneref *z;
419 * A child process with MAP_PRIVATE mappings created by their parent
420 * have no page reserves. This check ensures that reservations are
421 * not "stolen". The child may still get SIGKILLed
423 if (!vma_has_private_reserves(vma) &&
424 h->free_huge_pages - h->resv_huge_pages == 0)
425 return NULL;
427 /* If reserves cannot be used, ensure enough pages are in the pool */
428 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
429 return NULL;
431 for_each_zone_zonelist_nodemask(zone, z, zonelist,
432 MAX_NR_ZONES - 1, nodemask) {
433 nid = zone_to_nid(zone);
434 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
435 !list_empty(&h->hugepage_freelists[nid])) {
436 page = list_entry(h->hugepage_freelists[nid].next,
437 struct page, lru);
438 list_del(&page->lru);
439 h->free_huge_pages--;
440 h->free_huge_pages_node[nid]--;
442 if (!avoid_reserve)
443 decrement_hugepage_resv_vma(h, vma);
445 break;
448 mpol_cond_put(mpol);
449 return page;
452 static void update_and_free_page(struct hstate *h, struct page *page)
454 int i;
456 h->nr_huge_pages--;
457 h->nr_huge_pages_node[page_to_nid(page)]--;
458 for (i = 0; i < pages_per_huge_page(h); i++) {
459 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
460 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
461 1 << PG_private | 1<< PG_writeback);
463 set_compound_page_dtor(page, NULL);
464 set_page_refcounted(page);
465 arch_release_hugepage(page);
466 __free_pages(page, huge_page_order(h));
469 struct hstate *size_to_hstate(unsigned long size)
471 struct hstate *h;
473 for_each_hstate(h) {
474 if (huge_page_size(h) == size)
475 return h;
477 return NULL;
480 static void free_huge_page(struct page *page)
483 * Can't pass hstate in here because it is called from the
484 * compound page destructor.
486 struct hstate *h = page_hstate(page);
487 int nid = page_to_nid(page);
488 struct address_space *mapping;
490 mapping = (struct address_space *) page_private(page);
491 set_page_private(page, 0);
492 BUG_ON(page_count(page));
493 INIT_LIST_HEAD(&page->lru);
495 spin_lock(&hugetlb_lock);
496 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
497 update_and_free_page(h, page);
498 h->surplus_huge_pages--;
499 h->surplus_huge_pages_node[nid]--;
500 } else {
501 enqueue_huge_page(h, page);
503 spin_unlock(&hugetlb_lock);
504 if (mapping)
505 hugetlb_put_quota(mapping, 1);
509 * Increment or decrement surplus_huge_pages. Keep node-specific counters
510 * balanced by operating on them in a round-robin fashion.
511 * Returns 1 if an adjustment was made.
513 static int adjust_pool_surplus(struct hstate *h, int delta)
515 static int prev_nid;
516 int nid = prev_nid;
517 int ret = 0;
519 VM_BUG_ON(delta != -1 && delta != 1);
520 do {
521 nid = next_node(nid, node_online_map);
522 if (nid == MAX_NUMNODES)
523 nid = first_node(node_online_map);
525 /* To shrink on this node, there must be a surplus page */
526 if (delta < 0 && !h->surplus_huge_pages_node[nid])
527 continue;
528 /* Surplus cannot exceed the total number of pages */
529 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
530 h->nr_huge_pages_node[nid])
531 continue;
533 h->surplus_huge_pages += delta;
534 h->surplus_huge_pages_node[nid] += delta;
535 ret = 1;
536 break;
537 } while (nid != prev_nid);
539 prev_nid = nid;
540 return ret;
543 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
545 set_compound_page_dtor(page, free_huge_page);
546 spin_lock(&hugetlb_lock);
547 h->nr_huge_pages++;
548 h->nr_huge_pages_node[nid]++;
549 spin_unlock(&hugetlb_lock);
550 put_page(page); /* free it into the hugepage allocator */
553 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
555 struct page *page;
557 if (h->order >= MAX_ORDER)
558 return NULL;
560 page = alloc_pages_node(nid,
561 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
562 __GFP_REPEAT|__GFP_NOWARN,
563 huge_page_order(h));
564 if (page) {
565 if (arch_prepare_hugepage(page)) {
566 __free_pages(page, HUGETLB_PAGE_ORDER);
567 return NULL;
569 prep_new_huge_page(h, page, nid);
572 return page;
576 * Use a helper variable to find the next node and then
577 * copy it back to hugetlb_next_nid afterwards:
578 * otherwise there's a window in which a racer might
579 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
580 * But we don't need to use a spin_lock here: it really
581 * doesn't matter if occasionally a racer chooses the
582 * same nid as we do. Move nid forward in the mask even
583 * if we just successfully allocated a hugepage so that
584 * the next caller gets hugepages on the next node.
586 static int hstate_next_node(struct hstate *h)
588 int next_nid;
589 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
590 if (next_nid == MAX_NUMNODES)
591 next_nid = first_node(node_online_map);
592 h->hugetlb_next_nid = next_nid;
593 return next_nid;
596 static int alloc_fresh_huge_page(struct hstate *h)
598 struct page *page;
599 int start_nid;
600 int next_nid;
601 int ret = 0;
603 start_nid = h->hugetlb_next_nid;
605 do {
606 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
607 if (page)
608 ret = 1;
609 next_nid = hstate_next_node(h);
610 } while (!page && h->hugetlb_next_nid != start_nid);
612 if (ret)
613 count_vm_event(HTLB_BUDDY_PGALLOC);
614 else
615 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
617 return ret;
620 static struct page *alloc_buddy_huge_page(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
623 struct page *page;
624 unsigned int nid;
626 if (h->order >= MAX_ORDER)
627 return NULL;
630 * Assume we will successfully allocate the surplus page to
631 * prevent racing processes from causing the surplus to exceed
632 * overcommit
634 * This however introduces a different race, where a process B
635 * tries to grow the static hugepage pool while alloc_pages() is
636 * called by process A. B will only examine the per-node
637 * counters in determining if surplus huge pages can be
638 * converted to normal huge pages in adjust_pool_surplus(). A
639 * won't be able to increment the per-node counter, until the
640 * lock is dropped by B, but B doesn't drop hugetlb_lock until
641 * no more huge pages can be converted from surplus to normal
642 * state (and doesn't try to convert again). Thus, we have a
643 * case where a surplus huge page exists, the pool is grown, and
644 * the surplus huge page still exists after, even though it
645 * should just have been converted to a normal huge page. This
646 * does not leak memory, though, as the hugepage will be freed
647 * once it is out of use. It also does not allow the counters to
648 * go out of whack in adjust_pool_surplus() as we don't modify
649 * the node values until we've gotten the hugepage and only the
650 * per-node value is checked there.
652 spin_lock(&hugetlb_lock);
653 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
654 spin_unlock(&hugetlb_lock);
655 return NULL;
656 } else {
657 h->nr_huge_pages++;
658 h->surplus_huge_pages++;
660 spin_unlock(&hugetlb_lock);
662 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
663 __GFP_REPEAT|__GFP_NOWARN,
664 huge_page_order(h));
666 spin_lock(&hugetlb_lock);
667 if (page) {
669 * This page is now managed by the hugetlb allocator and has
670 * no users -- drop the buddy allocator's reference.
672 put_page_testzero(page);
673 VM_BUG_ON(page_count(page));
674 nid = page_to_nid(page);
675 set_compound_page_dtor(page, free_huge_page);
677 * We incremented the global counters already
679 h->nr_huge_pages_node[nid]++;
680 h->surplus_huge_pages_node[nid]++;
681 __count_vm_event(HTLB_BUDDY_PGALLOC);
682 } else {
683 h->nr_huge_pages--;
684 h->surplus_huge_pages--;
685 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
687 spin_unlock(&hugetlb_lock);
689 return page;
693 * Increase the hugetlb pool such that it can accomodate a reservation
694 * of size 'delta'.
696 static int gather_surplus_pages(struct hstate *h, int delta)
698 struct list_head surplus_list;
699 struct page *page, *tmp;
700 int ret, i;
701 int needed, allocated;
703 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
704 if (needed <= 0) {
705 h->resv_huge_pages += delta;
706 return 0;
709 allocated = 0;
710 INIT_LIST_HEAD(&surplus_list);
712 ret = -ENOMEM;
713 retry:
714 spin_unlock(&hugetlb_lock);
715 for (i = 0; i < needed; i++) {
716 page = alloc_buddy_huge_page(h, NULL, 0);
717 if (!page) {
719 * We were not able to allocate enough pages to
720 * satisfy the entire reservation so we free what
721 * we've allocated so far.
723 spin_lock(&hugetlb_lock);
724 needed = 0;
725 goto free;
728 list_add(&page->lru, &surplus_list);
730 allocated += needed;
733 * After retaking hugetlb_lock, we need to recalculate 'needed'
734 * because either resv_huge_pages or free_huge_pages may have changed.
736 spin_lock(&hugetlb_lock);
737 needed = (h->resv_huge_pages + delta) -
738 (h->free_huge_pages + allocated);
739 if (needed > 0)
740 goto retry;
743 * The surplus_list now contains _at_least_ the number of extra pages
744 * needed to accomodate the reservation. Add the appropriate number
745 * of pages to the hugetlb pool and free the extras back to the buddy
746 * allocator. Commit the entire reservation here to prevent another
747 * process from stealing the pages as they are added to the pool but
748 * before they are reserved.
750 needed += allocated;
751 h->resv_huge_pages += delta;
752 ret = 0;
753 free:
754 /* Free the needed pages to the hugetlb pool */
755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
756 if ((--needed) < 0)
757 break;
758 list_del(&page->lru);
759 enqueue_huge_page(h, page);
762 /* Free unnecessary surplus pages to the buddy allocator */
763 if (!list_empty(&surplus_list)) {
764 spin_unlock(&hugetlb_lock);
765 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
766 list_del(&page->lru);
768 * The page has a reference count of zero already, so
769 * call free_huge_page directly instead of using
770 * put_page. This must be done with hugetlb_lock
771 * unlocked which is safe because free_huge_page takes
772 * hugetlb_lock before deciding how to free the page.
774 free_huge_page(page);
776 spin_lock(&hugetlb_lock);
779 return ret;
783 * When releasing a hugetlb pool reservation, any surplus pages that were
784 * allocated to satisfy the reservation must be explicitly freed if they were
785 * never used.
787 static void return_unused_surplus_pages(struct hstate *h,
788 unsigned long unused_resv_pages)
790 static int nid = -1;
791 struct page *page;
792 unsigned long nr_pages;
795 * We want to release as many surplus pages as possible, spread
796 * evenly across all nodes. Iterate across all nodes until we
797 * can no longer free unreserved surplus pages. This occurs when
798 * the nodes with surplus pages have no free pages.
800 unsigned long remaining_iterations = num_online_nodes();
802 /* Uncommit the reservation */
803 h->resv_huge_pages -= unused_resv_pages;
805 /* Cannot return gigantic pages currently */
806 if (h->order >= MAX_ORDER)
807 return;
809 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
811 while (remaining_iterations-- && nr_pages) {
812 nid = next_node(nid, node_online_map);
813 if (nid == MAX_NUMNODES)
814 nid = first_node(node_online_map);
816 if (!h->surplus_huge_pages_node[nid])
817 continue;
819 if (!list_empty(&h->hugepage_freelists[nid])) {
820 page = list_entry(h->hugepage_freelists[nid].next,
821 struct page, lru);
822 list_del(&page->lru);
823 update_and_free_page(h, page);
824 h->free_huge_pages--;
825 h->free_huge_pages_node[nid]--;
826 h->surplus_huge_pages--;
827 h->surplus_huge_pages_node[nid]--;
828 nr_pages--;
829 remaining_iterations = num_online_nodes();
835 * Determine if the huge page at addr within the vma has an associated
836 * reservation. Where it does not we will need to logically increase
837 * reservation and actually increase quota before an allocation can occur.
838 * Where any new reservation would be required the reservation change is
839 * prepared, but not committed. Once the page has been quota'd allocated
840 * an instantiated the change should be committed via vma_commit_reservation.
841 * No action is required on failure.
843 static int vma_needs_reservation(struct hstate *h,
844 struct vm_area_struct *vma, unsigned long addr)
846 struct address_space *mapping = vma->vm_file->f_mapping;
847 struct inode *inode = mapping->host;
849 if (vma->vm_flags & VM_SHARED) {
850 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
851 return region_chg(&inode->i_mapping->private_list,
852 idx, idx + 1);
854 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
855 return 1;
857 } else {
858 int err;
859 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
860 struct resv_map *reservations = vma_resv_map(vma);
862 err = region_chg(&reservations->regions, idx, idx + 1);
863 if (err < 0)
864 return err;
865 return 0;
868 static void vma_commit_reservation(struct hstate *h,
869 struct vm_area_struct *vma, unsigned long addr)
871 struct address_space *mapping = vma->vm_file->f_mapping;
872 struct inode *inode = mapping->host;
874 if (vma->vm_flags & VM_SHARED) {
875 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
876 region_add(&inode->i_mapping->private_list, idx, idx + 1);
878 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
879 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
880 struct resv_map *reservations = vma_resv_map(vma);
882 /* Mark this page used in the map. */
883 region_add(&reservations->regions, idx, idx + 1);
887 static struct page *alloc_huge_page(struct vm_area_struct *vma,
888 unsigned long addr, int avoid_reserve)
890 struct hstate *h = hstate_vma(vma);
891 struct page *page;
892 struct address_space *mapping = vma->vm_file->f_mapping;
893 struct inode *inode = mapping->host;
894 unsigned int chg;
897 * Processes that did not create the mapping will have no reserves and
898 * will not have accounted against quota. Check that the quota can be
899 * made before satisfying the allocation
900 * MAP_NORESERVE mappings may also need pages and quota allocated
901 * if no reserve mapping overlaps.
903 chg = vma_needs_reservation(h, vma, addr);
904 if (chg < 0)
905 return ERR_PTR(chg);
906 if (chg)
907 if (hugetlb_get_quota(inode->i_mapping, chg))
908 return ERR_PTR(-ENOSPC);
910 spin_lock(&hugetlb_lock);
911 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
912 spin_unlock(&hugetlb_lock);
914 if (!page) {
915 page = alloc_buddy_huge_page(h, vma, addr);
916 if (!page) {
917 hugetlb_put_quota(inode->i_mapping, chg);
918 return ERR_PTR(-VM_FAULT_OOM);
922 set_page_refcounted(page);
923 set_page_private(page, (unsigned long) mapping);
925 vma_commit_reservation(h, vma, addr);
927 return page;
930 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
932 struct huge_bootmem_page *m;
933 int nr_nodes = nodes_weight(node_online_map);
935 while (nr_nodes) {
936 void *addr;
938 addr = __alloc_bootmem_node_nopanic(
939 NODE_DATA(h->hugetlb_next_nid),
940 huge_page_size(h), huge_page_size(h), 0);
942 if (addr) {
944 * Use the beginning of the huge page to store the
945 * huge_bootmem_page struct (until gather_bootmem
946 * puts them into the mem_map).
948 m = addr;
949 if (m)
950 goto found;
952 hstate_next_node(h);
953 nr_nodes--;
955 return 0;
957 found:
958 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
959 /* Put them into a private list first because mem_map is not up yet */
960 list_add(&m->list, &huge_boot_pages);
961 m->hstate = h;
962 return 1;
965 /* Put bootmem huge pages into the standard lists after mem_map is up */
966 static void __init gather_bootmem_prealloc(void)
968 struct huge_bootmem_page *m;
970 list_for_each_entry(m, &huge_boot_pages, list) {
971 struct page *page = virt_to_page(m);
972 struct hstate *h = m->hstate;
973 __ClearPageReserved(page);
974 WARN_ON(page_count(page) != 1);
975 prep_compound_page(page, h->order);
976 prep_new_huge_page(h, page, page_to_nid(page));
980 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
982 unsigned long i;
984 for (i = 0; i < h->max_huge_pages; ++i) {
985 if (h->order >= MAX_ORDER) {
986 if (!alloc_bootmem_huge_page(h))
987 break;
988 } else if (!alloc_fresh_huge_page(h))
989 break;
991 h->max_huge_pages = i;
994 static void __init hugetlb_init_hstates(void)
996 struct hstate *h;
998 for_each_hstate(h) {
999 /* oversize hugepages were init'ed in early boot */
1000 if (h->order < MAX_ORDER)
1001 hugetlb_hstate_alloc_pages(h);
1005 static char * __init memfmt(char *buf, unsigned long n)
1007 if (n >= (1UL << 30))
1008 sprintf(buf, "%lu GB", n >> 30);
1009 else if (n >= (1UL << 20))
1010 sprintf(buf, "%lu MB", n >> 20);
1011 else
1012 sprintf(buf, "%lu KB", n >> 10);
1013 return buf;
1016 static void __init report_hugepages(void)
1018 struct hstate *h;
1020 for_each_hstate(h) {
1021 char buf[32];
1022 printk(KERN_INFO "HugeTLB registered %s page size, "
1023 "pre-allocated %ld pages\n",
1024 memfmt(buf, huge_page_size(h)),
1025 h->free_huge_pages);
1029 #ifdef CONFIG_SYSCTL
1030 #ifdef CONFIG_HIGHMEM
1031 static void try_to_free_low(struct hstate *h, unsigned long count)
1033 int i;
1035 if (h->order >= MAX_ORDER)
1036 return;
1038 for (i = 0; i < MAX_NUMNODES; ++i) {
1039 struct page *page, *next;
1040 struct list_head *freel = &h->hugepage_freelists[i];
1041 list_for_each_entry_safe(page, next, freel, lru) {
1042 if (count >= h->nr_huge_pages)
1043 return;
1044 if (PageHighMem(page))
1045 continue;
1046 list_del(&page->lru);
1047 update_and_free_page(h, page);
1048 h->free_huge_pages--;
1049 h->free_huge_pages_node[page_to_nid(page)]--;
1053 #else
1054 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1057 #endif
1059 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1060 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1062 unsigned long min_count, ret;
1064 if (h->order >= MAX_ORDER)
1065 return h->max_huge_pages;
1068 * Increase the pool size
1069 * First take pages out of surplus state. Then make up the
1070 * remaining difference by allocating fresh huge pages.
1072 * We might race with alloc_buddy_huge_page() here and be unable
1073 * to convert a surplus huge page to a normal huge page. That is
1074 * not critical, though, it just means the overall size of the
1075 * pool might be one hugepage larger than it needs to be, but
1076 * within all the constraints specified by the sysctls.
1078 spin_lock(&hugetlb_lock);
1079 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1080 if (!adjust_pool_surplus(h, -1))
1081 break;
1084 while (count > persistent_huge_pages(h)) {
1086 * If this allocation races such that we no longer need the
1087 * page, free_huge_page will handle it by freeing the page
1088 * and reducing the surplus.
1090 spin_unlock(&hugetlb_lock);
1091 ret = alloc_fresh_huge_page(h);
1092 spin_lock(&hugetlb_lock);
1093 if (!ret)
1094 goto out;
1099 * Decrease the pool size
1100 * First return free pages to the buddy allocator (being careful
1101 * to keep enough around to satisfy reservations). Then place
1102 * pages into surplus state as needed so the pool will shrink
1103 * to the desired size as pages become free.
1105 * By placing pages into the surplus state independent of the
1106 * overcommit value, we are allowing the surplus pool size to
1107 * exceed overcommit. There are few sane options here. Since
1108 * alloc_buddy_huge_page() is checking the global counter,
1109 * though, we'll note that we're not allowed to exceed surplus
1110 * and won't grow the pool anywhere else. Not until one of the
1111 * sysctls are changed, or the surplus pages go out of use.
1113 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1114 min_count = max(count, min_count);
1115 try_to_free_low(h, min_count);
1116 while (min_count < persistent_huge_pages(h)) {
1117 struct page *page = dequeue_huge_page(h);
1118 if (!page)
1119 break;
1120 update_and_free_page(h, page);
1122 while (count < persistent_huge_pages(h)) {
1123 if (!adjust_pool_surplus(h, 1))
1124 break;
1126 out:
1127 ret = persistent_huge_pages(h);
1128 spin_unlock(&hugetlb_lock);
1129 return ret;
1132 #define HSTATE_ATTR_RO(_name) \
1133 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1135 #define HSTATE_ATTR(_name) \
1136 static struct kobj_attribute _name##_attr = \
1137 __ATTR(_name, 0644, _name##_show, _name##_store)
1139 static struct kobject *hugepages_kobj;
1140 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1142 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1144 int i;
1145 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1146 if (hstate_kobjs[i] == kobj)
1147 return &hstates[i];
1148 BUG();
1149 return NULL;
1152 static ssize_t nr_hugepages_show(struct kobject *kobj,
1153 struct kobj_attribute *attr, char *buf)
1155 struct hstate *h = kobj_to_hstate(kobj);
1156 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1158 static ssize_t nr_hugepages_store(struct kobject *kobj,
1159 struct kobj_attribute *attr, const char *buf, size_t count)
1161 int err;
1162 unsigned long input;
1163 struct hstate *h = kobj_to_hstate(kobj);
1165 err = strict_strtoul(buf, 10, &input);
1166 if (err)
1167 return 0;
1169 h->max_huge_pages = set_max_huge_pages(h, input);
1171 return count;
1173 HSTATE_ATTR(nr_hugepages);
1175 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1176 struct kobj_attribute *attr, char *buf)
1178 struct hstate *h = kobj_to_hstate(kobj);
1179 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1181 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1182 struct kobj_attribute *attr, const char *buf, size_t count)
1184 int err;
1185 unsigned long input;
1186 struct hstate *h = kobj_to_hstate(kobj);
1188 err = strict_strtoul(buf, 10, &input);
1189 if (err)
1190 return 0;
1192 spin_lock(&hugetlb_lock);
1193 h->nr_overcommit_huge_pages = input;
1194 spin_unlock(&hugetlb_lock);
1196 return count;
1198 HSTATE_ATTR(nr_overcommit_hugepages);
1200 static ssize_t free_hugepages_show(struct kobject *kobj,
1201 struct kobj_attribute *attr, char *buf)
1203 struct hstate *h = kobj_to_hstate(kobj);
1204 return sprintf(buf, "%lu\n", h->free_huge_pages);
1206 HSTATE_ATTR_RO(free_hugepages);
1208 static ssize_t resv_hugepages_show(struct kobject *kobj,
1209 struct kobj_attribute *attr, char *buf)
1211 struct hstate *h = kobj_to_hstate(kobj);
1212 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1214 HSTATE_ATTR_RO(resv_hugepages);
1216 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1217 struct kobj_attribute *attr, char *buf)
1219 struct hstate *h = kobj_to_hstate(kobj);
1220 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1222 HSTATE_ATTR_RO(surplus_hugepages);
1224 static struct attribute *hstate_attrs[] = {
1225 &nr_hugepages_attr.attr,
1226 &nr_overcommit_hugepages_attr.attr,
1227 &free_hugepages_attr.attr,
1228 &resv_hugepages_attr.attr,
1229 &surplus_hugepages_attr.attr,
1230 NULL,
1233 static struct attribute_group hstate_attr_group = {
1234 .attrs = hstate_attrs,
1237 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1239 int retval;
1241 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1242 hugepages_kobj);
1243 if (!hstate_kobjs[h - hstates])
1244 return -ENOMEM;
1246 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1247 &hstate_attr_group);
1248 if (retval)
1249 kobject_put(hstate_kobjs[h - hstates]);
1251 return retval;
1254 static void __init hugetlb_sysfs_init(void)
1256 struct hstate *h;
1257 int err;
1259 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1260 if (!hugepages_kobj)
1261 return;
1263 for_each_hstate(h) {
1264 err = hugetlb_sysfs_add_hstate(h);
1265 if (err)
1266 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1267 h->name);
1271 static void __exit hugetlb_exit(void)
1273 struct hstate *h;
1275 for_each_hstate(h) {
1276 kobject_put(hstate_kobjs[h - hstates]);
1279 kobject_put(hugepages_kobj);
1281 module_exit(hugetlb_exit);
1283 static int __init hugetlb_init(void)
1285 BUILD_BUG_ON(HPAGE_SHIFT == 0);
1287 if (!size_to_hstate(default_hstate_size)) {
1288 default_hstate_size = HPAGE_SIZE;
1289 if (!size_to_hstate(default_hstate_size))
1290 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1292 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1293 if (default_hstate_max_huge_pages)
1294 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1296 hugetlb_init_hstates();
1298 gather_bootmem_prealloc();
1300 report_hugepages();
1302 hugetlb_sysfs_init();
1304 return 0;
1306 module_init(hugetlb_init);
1308 /* Should be called on processing a hugepagesz=... option */
1309 void __init hugetlb_add_hstate(unsigned order)
1311 struct hstate *h;
1312 unsigned long i;
1314 if (size_to_hstate(PAGE_SIZE << order)) {
1315 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1316 return;
1318 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1319 BUG_ON(order == 0);
1320 h = &hstates[max_hstate++];
1321 h->order = order;
1322 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1323 h->nr_huge_pages = 0;
1324 h->free_huge_pages = 0;
1325 for (i = 0; i < MAX_NUMNODES; ++i)
1326 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1327 h->hugetlb_next_nid = first_node(node_online_map);
1328 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1329 huge_page_size(h)/1024);
1331 parsed_hstate = h;
1334 static int __init hugetlb_nrpages_setup(char *s)
1336 unsigned long *mhp;
1337 static unsigned long *last_mhp;
1340 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1341 * so this hugepages= parameter goes to the "default hstate".
1343 if (!max_hstate)
1344 mhp = &default_hstate_max_huge_pages;
1345 else
1346 mhp = &parsed_hstate->max_huge_pages;
1348 if (mhp == last_mhp) {
1349 printk(KERN_WARNING "hugepages= specified twice without "
1350 "interleaving hugepagesz=, ignoring\n");
1351 return 1;
1354 if (sscanf(s, "%lu", mhp) <= 0)
1355 *mhp = 0;
1358 * Global state is always initialized later in hugetlb_init.
1359 * But we need to allocate >= MAX_ORDER hstates here early to still
1360 * use the bootmem allocator.
1362 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1363 hugetlb_hstate_alloc_pages(parsed_hstate);
1365 last_mhp = mhp;
1367 return 1;
1369 __setup("hugepages=", hugetlb_nrpages_setup);
1371 static int __init hugetlb_default_setup(char *s)
1373 default_hstate_size = memparse(s, &s);
1374 return 1;
1376 __setup("default_hugepagesz=", hugetlb_default_setup);
1378 static unsigned int cpuset_mems_nr(unsigned int *array)
1380 int node;
1381 unsigned int nr = 0;
1383 for_each_node_mask(node, cpuset_current_mems_allowed)
1384 nr += array[node];
1386 return nr;
1389 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1390 struct file *file, void __user *buffer,
1391 size_t *length, loff_t *ppos)
1393 struct hstate *h = &default_hstate;
1394 unsigned long tmp;
1396 if (!write)
1397 tmp = h->max_huge_pages;
1399 table->data = &tmp;
1400 table->maxlen = sizeof(unsigned long);
1401 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1403 if (write)
1404 h->max_huge_pages = set_max_huge_pages(h, tmp);
1406 return 0;
1409 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1410 struct file *file, void __user *buffer,
1411 size_t *length, loff_t *ppos)
1413 proc_dointvec(table, write, file, buffer, length, ppos);
1414 if (hugepages_treat_as_movable)
1415 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1416 else
1417 htlb_alloc_mask = GFP_HIGHUSER;
1418 return 0;
1421 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1422 struct file *file, void __user *buffer,
1423 size_t *length, loff_t *ppos)
1425 struct hstate *h = &default_hstate;
1426 unsigned long tmp;
1428 if (!write)
1429 tmp = h->nr_overcommit_huge_pages;
1431 table->data = &tmp;
1432 table->maxlen = sizeof(unsigned long);
1433 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1435 if (write) {
1436 spin_lock(&hugetlb_lock);
1437 h->nr_overcommit_huge_pages = tmp;
1438 spin_unlock(&hugetlb_lock);
1441 return 0;
1444 #endif /* CONFIG_SYSCTL */
1446 int hugetlb_report_meminfo(char *buf)
1448 struct hstate *h = &default_hstate;
1449 return sprintf(buf,
1450 "HugePages_Total: %5lu\n"
1451 "HugePages_Free: %5lu\n"
1452 "HugePages_Rsvd: %5lu\n"
1453 "HugePages_Surp: %5lu\n"
1454 "Hugepagesize: %5lu kB\n",
1455 h->nr_huge_pages,
1456 h->free_huge_pages,
1457 h->resv_huge_pages,
1458 h->surplus_huge_pages,
1459 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1462 int hugetlb_report_node_meminfo(int nid, char *buf)
1464 struct hstate *h = &default_hstate;
1465 return sprintf(buf,
1466 "Node %d HugePages_Total: %5u\n"
1467 "Node %d HugePages_Free: %5u\n"
1468 "Node %d HugePages_Surp: %5u\n",
1469 nid, h->nr_huge_pages_node[nid],
1470 nid, h->free_huge_pages_node[nid],
1471 nid, h->surplus_huge_pages_node[nid]);
1474 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1475 unsigned long hugetlb_total_pages(void)
1477 struct hstate *h = &default_hstate;
1478 return h->nr_huge_pages * pages_per_huge_page(h);
1481 static int hugetlb_acct_memory(struct hstate *h, long delta)
1483 int ret = -ENOMEM;
1485 spin_lock(&hugetlb_lock);
1487 * When cpuset is configured, it breaks the strict hugetlb page
1488 * reservation as the accounting is done on a global variable. Such
1489 * reservation is completely rubbish in the presence of cpuset because
1490 * the reservation is not checked against page availability for the
1491 * current cpuset. Application can still potentially OOM'ed by kernel
1492 * with lack of free htlb page in cpuset that the task is in.
1493 * Attempt to enforce strict accounting with cpuset is almost
1494 * impossible (or too ugly) because cpuset is too fluid that
1495 * task or memory node can be dynamically moved between cpusets.
1497 * The change of semantics for shared hugetlb mapping with cpuset is
1498 * undesirable. However, in order to preserve some of the semantics,
1499 * we fall back to check against current free page availability as
1500 * a best attempt and hopefully to minimize the impact of changing
1501 * semantics that cpuset has.
1503 if (delta > 0) {
1504 if (gather_surplus_pages(h, delta) < 0)
1505 goto out;
1507 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1508 return_unused_surplus_pages(h, delta);
1509 goto out;
1513 ret = 0;
1514 if (delta < 0)
1515 return_unused_surplus_pages(h, (unsigned long) -delta);
1517 out:
1518 spin_unlock(&hugetlb_lock);
1519 return ret;
1522 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1524 struct resv_map *reservations = vma_resv_map(vma);
1527 * This new VMA should share its siblings reservation map if present.
1528 * The VMA will only ever have a valid reservation map pointer where
1529 * it is being copied for another still existing VMA. As that VMA
1530 * has a reference to the reservation map it cannot dissappear until
1531 * after this open call completes. It is therefore safe to take a
1532 * new reference here without additional locking.
1534 if (reservations)
1535 kref_get(&reservations->refs);
1538 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1540 struct hstate *h = hstate_vma(vma);
1541 struct resv_map *reservations = vma_resv_map(vma);
1542 unsigned long reserve;
1543 unsigned long start;
1544 unsigned long end;
1546 if (reservations) {
1547 start = vma_hugecache_offset(h, vma, vma->vm_start);
1548 end = vma_hugecache_offset(h, vma, vma->vm_end);
1550 reserve = (end - start) -
1551 region_count(&reservations->regions, start, end);
1553 kref_put(&reservations->refs, resv_map_release);
1555 if (reserve)
1556 hugetlb_acct_memory(h, -reserve);
1561 * We cannot handle pagefaults against hugetlb pages at all. They cause
1562 * handle_mm_fault() to try to instantiate regular-sized pages in the
1563 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1564 * this far.
1566 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1568 BUG();
1569 return 0;
1572 struct vm_operations_struct hugetlb_vm_ops = {
1573 .fault = hugetlb_vm_op_fault,
1574 .open = hugetlb_vm_op_open,
1575 .close = hugetlb_vm_op_close,
1578 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1579 int writable)
1581 pte_t entry;
1583 if (writable) {
1584 entry =
1585 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1586 } else {
1587 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1589 entry = pte_mkyoung(entry);
1590 entry = pte_mkhuge(entry);
1592 return entry;
1595 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1596 unsigned long address, pte_t *ptep)
1598 pte_t entry;
1600 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1601 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1602 update_mmu_cache(vma, address, entry);
1607 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1608 struct vm_area_struct *vma)
1610 pte_t *src_pte, *dst_pte, entry;
1611 struct page *ptepage;
1612 unsigned long addr;
1613 int cow;
1614 struct hstate *h = hstate_vma(vma);
1615 unsigned long sz = huge_page_size(h);
1617 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1619 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1620 src_pte = huge_pte_offset(src, addr);
1621 if (!src_pte)
1622 continue;
1623 dst_pte = huge_pte_alloc(dst, addr, sz);
1624 if (!dst_pte)
1625 goto nomem;
1627 /* If the pagetables are shared don't copy or take references */
1628 if (dst_pte == src_pte)
1629 continue;
1631 spin_lock(&dst->page_table_lock);
1632 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1633 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1634 if (cow)
1635 huge_ptep_set_wrprotect(src, addr, src_pte);
1636 entry = huge_ptep_get(src_pte);
1637 ptepage = pte_page(entry);
1638 get_page(ptepage);
1639 set_huge_pte_at(dst, addr, dst_pte, entry);
1641 spin_unlock(&src->page_table_lock);
1642 spin_unlock(&dst->page_table_lock);
1644 return 0;
1646 nomem:
1647 return -ENOMEM;
1650 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1651 unsigned long end, struct page *ref_page)
1653 struct mm_struct *mm = vma->vm_mm;
1654 unsigned long address;
1655 pte_t *ptep;
1656 pte_t pte;
1657 struct page *page;
1658 struct page *tmp;
1659 struct hstate *h = hstate_vma(vma);
1660 unsigned long sz = huge_page_size(h);
1663 * A page gathering list, protected by per file i_mmap_lock. The
1664 * lock is used to avoid list corruption from multiple unmapping
1665 * of the same page since we are using page->lru.
1667 LIST_HEAD(page_list);
1669 WARN_ON(!is_vm_hugetlb_page(vma));
1670 BUG_ON(start & ~huge_page_mask(h));
1671 BUG_ON(end & ~huge_page_mask(h));
1673 spin_lock(&mm->page_table_lock);
1674 for (address = start; address < end; address += sz) {
1675 ptep = huge_pte_offset(mm, address);
1676 if (!ptep)
1677 continue;
1679 if (huge_pmd_unshare(mm, &address, ptep))
1680 continue;
1683 * If a reference page is supplied, it is because a specific
1684 * page is being unmapped, not a range. Ensure the page we
1685 * are about to unmap is the actual page of interest.
1687 if (ref_page) {
1688 pte = huge_ptep_get(ptep);
1689 if (huge_pte_none(pte))
1690 continue;
1691 page = pte_page(pte);
1692 if (page != ref_page)
1693 continue;
1696 * Mark the VMA as having unmapped its page so that
1697 * future faults in this VMA will fail rather than
1698 * looking like data was lost
1700 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1703 pte = huge_ptep_get_and_clear(mm, address, ptep);
1704 if (huge_pte_none(pte))
1705 continue;
1707 page = pte_page(pte);
1708 if (pte_dirty(pte))
1709 set_page_dirty(page);
1710 list_add(&page->lru, &page_list);
1712 spin_unlock(&mm->page_table_lock);
1713 flush_tlb_range(vma, start, end);
1714 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1715 list_del(&page->lru);
1716 put_page(page);
1720 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1721 unsigned long end, struct page *ref_page)
1723 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1724 __unmap_hugepage_range(vma, start, end, ref_page);
1725 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1729 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1730 * mappping it owns the reserve page for. The intention is to unmap the page
1731 * from other VMAs and let the children be SIGKILLed if they are faulting the
1732 * same region.
1734 int unmap_ref_private(struct mm_struct *mm,
1735 struct vm_area_struct *vma,
1736 struct page *page,
1737 unsigned long address)
1739 struct vm_area_struct *iter_vma;
1740 struct address_space *mapping;
1741 struct prio_tree_iter iter;
1742 pgoff_t pgoff;
1745 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1746 * from page cache lookup which is in HPAGE_SIZE units.
1748 address = address & huge_page_mask(hstate_vma(vma));
1749 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1750 + (vma->vm_pgoff >> PAGE_SHIFT);
1751 mapping = (struct address_space *)page_private(page);
1753 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1754 /* Do not unmap the current VMA */
1755 if (iter_vma == vma)
1756 continue;
1759 * Unmap the page from other VMAs without their own reserves.
1760 * They get marked to be SIGKILLed if they fault in these
1761 * areas. This is because a future no-page fault on this VMA
1762 * could insert a zeroed page instead of the data existing
1763 * from the time of fork. This would look like data corruption
1765 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1766 unmap_hugepage_range(iter_vma,
1767 address, address + HPAGE_SIZE,
1768 page);
1771 return 1;
1774 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1775 unsigned long address, pte_t *ptep, pte_t pte,
1776 struct page *pagecache_page)
1778 struct hstate *h = hstate_vma(vma);
1779 struct page *old_page, *new_page;
1780 int avoidcopy;
1781 int outside_reserve = 0;
1783 old_page = pte_page(pte);
1785 retry_avoidcopy:
1786 /* If no-one else is actually using this page, avoid the copy
1787 * and just make the page writable */
1788 avoidcopy = (page_count(old_page) == 1);
1789 if (avoidcopy) {
1790 set_huge_ptep_writable(vma, address, ptep);
1791 return 0;
1795 * If the process that created a MAP_PRIVATE mapping is about to
1796 * perform a COW due to a shared page count, attempt to satisfy
1797 * the allocation without using the existing reserves. The pagecache
1798 * page is used to determine if the reserve at this address was
1799 * consumed or not. If reserves were used, a partial faulted mapping
1800 * at the time of fork() could consume its reserves on COW instead
1801 * of the full address range.
1803 if (!(vma->vm_flags & VM_SHARED) &&
1804 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1805 old_page != pagecache_page)
1806 outside_reserve = 1;
1808 page_cache_get(old_page);
1809 new_page = alloc_huge_page(vma, address, outside_reserve);
1811 if (IS_ERR(new_page)) {
1812 page_cache_release(old_page);
1815 * If a process owning a MAP_PRIVATE mapping fails to COW,
1816 * it is due to references held by a child and an insufficient
1817 * huge page pool. To guarantee the original mappers
1818 * reliability, unmap the page from child processes. The child
1819 * may get SIGKILLed if it later faults.
1821 if (outside_reserve) {
1822 BUG_ON(huge_pte_none(pte));
1823 if (unmap_ref_private(mm, vma, old_page, address)) {
1824 BUG_ON(page_count(old_page) != 1);
1825 BUG_ON(huge_pte_none(pte));
1826 goto retry_avoidcopy;
1828 WARN_ON_ONCE(1);
1831 return -PTR_ERR(new_page);
1834 spin_unlock(&mm->page_table_lock);
1835 copy_huge_page(new_page, old_page, address, vma);
1836 __SetPageUptodate(new_page);
1837 spin_lock(&mm->page_table_lock);
1839 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1840 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1841 /* Break COW */
1842 huge_ptep_clear_flush(vma, address, ptep);
1843 set_huge_pte_at(mm, address, ptep,
1844 make_huge_pte(vma, new_page, 1));
1845 /* Make the old page be freed below */
1846 new_page = old_page;
1848 page_cache_release(new_page);
1849 page_cache_release(old_page);
1850 return 0;
1853 /* Return the pagecache page at a given address within a VMA */
1854 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1855 struct vm_area_struct *vma, unsigned long address)
1857 struct address_space *mapping;
1858 pgoff_t idx;
1860 mapping = vma->vm_file->f_mapping;
1861 idx = vma_hugecache_offset(h, vma, address);
1863 return find_lock_page(mapping, idx);
1866 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1867 unsigned long address, pte_t *ptep, int write_access)
1869 struct hstate *h = hstate_vma(vma);
1870 int ret = VM_FAULT_SIGBUS;
1871 pgoff_t idx;
1872 unsigned long size;
1873 struct page *page;
1874 struct address_space *mapping;
1875 pte_t new_pte;
1878 * Currently, we are forced to kill the process in the event the
1879 * original mapper has unmapped pages from the child due to a failed
1880 * COW. Warn that such a situation has occured as it may not be obvious
1882 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1883 printk(KERN_WARNING
1884 "PID %d killed due to inadequate hugepage pool\n",
1885 current->pid);
1886 return ret;
1889 mapping = vma->vm_file->f_mapping;
1890 idx = vma_hugecache_offset(h, vma, address);
1893 * Use page lock to guard against racing truncation
1894 * before we get page_table_lock.
1896 retry:
1897 page = find_lock_page(mapping, idx);
1898 if (!page) {
1899 size = i_size_read(mapping->host) >> huge_page_shift(h);
1900 if (idx >= size)
1901 goto out;
1902 page = alloc_huge_page(vma, address, 0);
1903 if (IS_ERR(page)) {
1904 ret = -PTR_ERR(page);
1905 goto out;
1907 clear_huge_page(page, address, huge_page_size(h));
1908 __SetPageUptodate(page);
1910 if (vma->vm_flags & VM_SHARED) {
1911 int err;
1912 struct inode *inode = mapping->host;
1914 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1915 if (err) {
1916 put_page(page);
1917 if (err == -EEXIST)
1918 goto retry;
1919 goto out;
1922 spin_lock(&inode->i_lock);
1923 inode->i_blocks += blocks_per_huge_page(h);
1924 spin_unlock(&inode->i_lock);
1925 } else
1926 lock_page(page);
1929 spin_lock(&mm->page_table_lock);
1930 size = i_size_read(mapping->host) >> huge_page_shift(h);
1931 if (idx >= size)
1932 goto backout;
1934 ret = 0;
1935 if (!huge_pte_none(huge_ptep_get(ptep)))
1936 goto backout;
1938 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1939 && (vma->vm_flags & VM_SHARED)));
1940 set_huge_pte_at(mm, address, ptep, new_pte);
1942 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1943 /* Optimization, do the COW without a second fault */
1944 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1947 spin_unlock(&mm->page_table_lock);
1948 unlock_page(page);
1949 out:
1950 return ret;
1952 backout:
1953 spin_unlock(&mm->page_table_lock);
1954 unlock_page(page);
1955 put_page(page);
1956 goto out;
1959 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1960 unsigned long address, int write_access)
1962 pte_t *ptep;
1963 pte_t entry;
1964 int ret;
1965 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1966 struct hstate *h = hstate_vma(vma);
1968 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1969 if (!ptep)
1970 return VM_FAULT_OOM;
1973 * Serialize hugepage allocation and instantiation, so that we don't
1974 * get spurious allocation failures if two CPUs race to instantiate
1975 * the same page in the page cache.
1977 mutex_lock(&hugetlb_instantiation_mutex);
1978 entry = huge_ptep_get(ptep);
1979 if (huge_pte_none(entry)) {
1980 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1981 mutex_unlock(&hugetlb_instantiation_mutex);
1982 return ret;
1985 ret = 0;
1987 spin_lock(&mm->page_table_lock);
1988 /* Check for a racing update before calling hugetlb_cow */
1989 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1990 if (write_access && !pte_write(entry)) {
1991 struct page *page;
1992 page = hugetlbfs_pagecache_page(h, vma, address);
1993 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1994 if (page) {
1995 unlock_page(page);
1996 put_page(page);
1999 spin_unlock(&mm->page_table_lock);
2000 mutex_unlock(&hugetlb_instantiation_mutex);
2002 return ret;
2005 /* Can be overriden by architectures */
2006 __attribute__((weak)) struct page *
2007 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2008 pud_t *pud, int write)
2010 BUG();
2011 return NULL;
2014 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2015 struct page **pages, struct vm_area_struct **vmas,
2016 unsigned long *position, int *length, int i,
2017 int write)
2019 unsigned long pfn_offset;
2020 unsigned long vaddr = *position;
2021 int remainder = *length;
2022 struct hstate *h = hstate_vma(vma);
2024 spin_lock(&mm->page_table_lock);
2025 while (vaddr < vma->vm_end && remainder) {
2026 pte_t *pte;
2027 struct page *page;
2030 * Some archs (sparc64, sh*) have multiple pte_ts to
2031 * each hugepage. We have to make * sure we get the
2032 * first, for the page indexing below to work.
2034 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2036 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2037 (write && !pte_write(huge_ptep_get(pte)))) {
2038 int ret;
2040 spin_unlock(&mm->page_table_lock);
2041 ret = hugetlb_fault(mm, vma, vaddr, write);
2042 spin_lock(&mm->page_table_lock);
2043 if (!(ret & VM_FAULT_ERROR))
2044 continue;
2046 remainder = 0;
2047 if (!i)
2048 i = -EFAULT;
2049 break;
2052 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2053 page = pte_page(huge_ptep_get(pte));
2054 same_page:
2055 if (pages) {
2056 get_page(page);
2057 pages[i] = page + pfn_offset;
2060 if (vmas)
2061 vmas[i] = vma;
2063 vaddr += PAGE_SIZE;
2064 ++pfn_offset;
2065 --remainder;
2066 ++i;
2067 if (vaddr < vma->vm_end && remainder &&
2068 pfn_offset < pages_per_huge_page(h)) {
2070 * We use pfn_offset to avoid touching the pageframes
2071 * of this compound page.
2073 goto same_page;
2076 spin_unlock(&mm->page_table_lock);
2077 *length = remainder;
2078 *position = vaddr;
2080 return i;
2083 void hugetlb_change_protection(struct vm_area_struct *vma,
2084 unsigned long address, unsigned long end, pgprot_t newprot)
2086 struct mm_struct *mm = vma->vm_mm;
2087 unsigned long start = address;
2088 pte_t *ptep;
2089 pte_t pte;
2090 struct hstate *h = hstate_vma(vma);
2092 BUG_ON(address >= end);
2093 flush_cache_range(vma, address, end);
2095 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2096 spin_lock(&mm->page_table_lock);
2097 for (; address < end; address += huge_page_size(h)) {
2098 ptep = huge_pte_offset(mm, address);
2099 if (!ptep)
2100 continue;
2101 if (huge_pmd_unshare(mm, &address, ptep))
2102 continue;
2103 if (!huge_pte_none(huge_ptep_get(ptep))) {
2104 pte = huge_ptep_get_and_clear(mm, address, ptep);
2105 pte = pte_mkhuge(pte_modify(pte, newprot));
2106 set_huge_pte_at(mm, address, ptep, pte);
2109 spin_unlock(&mm->page_table_lock);
2110 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2112 flush_tlb_range(vma, start, end);
2115 int hugetlb_reserve_pages(struct inode *inode,
2116 long from, long to,
2117 struct vm_area_struct *vma)
2119 long ret, chg;
2120 struct hstate *h = hstate_inode(inode);
2122 if (vma && vma->vm_flags & VM_NORESERVE)
2123 return 0;
2126 * Shared mappings base their reservation on the number of pages that
2127 * are already allocated on behalf of the file. Private mappings need
2128 * to reserve the full area even if read-only as mprotect() may be
2129 * called to make the mapping read-write. Assume !vma is a shm mapping
2131 if (!vma || vma->vm_flags & VM_SHARED)
2132 chg = region_chg(&inode->i_mapping->private_list, from, to);
2133 else {
2134 struct resv_map *resv_map = resv_map_alloc();
2135 if (!resv_map)
2136 return -ENOMEM;
2138 chg = to - from;
2140 set_vma_resv_map(vma, resv_map);
2141 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2144 if (chg < 0)
2145 return chg;
2147 if (hugetlb_get_quota(inode->i_mapping, chg))
2148 return -ENOSPC;
2149 ret = hugetlb_acct_memory(h, chg);
2150 if (ret < 0) {
2151 hugetlb_put_quota(inode->i_mapping, chg);
2152 return ret;
2154 if (!vma || vma->vm_flags & VM_SHARED)
2155 region_add(&inode->i_mapping->private_list, from, to);
2156 return 0;
2159 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2161 struct hstate *h = hstate_inode(inode);
2162 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2164 spin_lock(&inode->i_lock);
2165 inode->i_blocks -= blocks_per_huge_page(h);
2166 spin_unlock(&inode->i_lock);
2168 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2169 hugetlb_acct_memory(h, -(chg - freed));