1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
53 #include "buffer_head_io.h"
55 DEFINE_SPINLOCK(trans_inc_lock
);
57 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59 static int ocfs2_force_read_journal(struct inode
*inode
);
60 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
61 int node_num
, int slot_num
);
62 static int __ocfs2_recovery_thread(void *arg
);
63 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
64 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
65 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
66 int dirty
, int replayed
);
67 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
69 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
71 static int ocfs2_commit_thread(void *arg
);
72 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
74 struct ocfs2_dinode
*la_dinode
,
75 struct ocfs2_dinode
*tl_dinode
,
76 struct ocfs2_quota_recovery
*qrec
);
78 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
80 return __ocfs2_wait_on_mount(osb
, 0);
83 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
85 return __ocfs2_wait_on_mount(osb
, 1);
89 * This replay_map is to track online/offline slots, so we could recover
90 * offline slots during recovery and mount
93 enum ocfs2_replay_state
{
94 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
95 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
96 REPLAY_DONE
/* Replay was already queued */
99 struct ocfs2_replay_map
{
100 unsigned int rm_slots
;
101 enum ocfs2_replay_state rm_state
;
102 unsigned char rm_replay_slots
[0];
105 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
107 if (!osb
->replay_map
)
110 /* If we've already queued the replay, we don't have any more to do */
111 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
114 osb
->replay_map
->rm_state
= state
;
117 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
119 struct ocfs2_replay_map
*replay_map
;
122 /* If replay map is already set, we don't do it again */
126 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
127 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
134 spin_lock(&osb
->osb_lock
);
136 replay_map
->rm_slots
= osb
->max_slots
;
137 replay_map
->rm_state
= REPLAY_UNNEEDED
;
139 /* set rm_replay_slots for offline slot(s) */
140 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
141 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
142 replay_map
->rm_replay_slots
[i
] = 1;
145 osb
->replay_map
= replay_map
;
146 spin_unlock(&osb
->osb_lock
);
150 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
152 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
158 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
161 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
162 if (replay_map
->rm_replay_slots
[i
])
163 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
165 replay_map
->rm_state
= REPLAY_DONE
;
168 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
170 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
172 if (!osb
->replay_map
)
176 osb
->replay_map
= NULL
;
179 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
181 struct ocfs2_recovery_map
*rm
;
183 mutex_init(&osb
->recovery_lock
);
184 osb
->disable_recovery
= 0;
185 osb
->recovery_thread_task
= NULL
;
186 init_waitqueue_head(&osb
->recovery_event
);
188 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
189 osb
->max_slots
* sizeof(unsigned int),
196 rm
->rm_entries
= (unsigned int *)((char *)rm
+
197 sizeof(struct ocfs2_recovery_map
));
198 osb
->recovery_map
= rm
;
203 /* we can't grab the goofy sem lock from inside wait_event, so we use
204 * memory barriers to make sure that we'll see the null task before
206 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
209 return osb
->recovery_thread_task
!= NULL
;
212 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
214 struct ocfs2_recovery_map
*rm
;
216 /* disable any new recovery threads and wait for any currently
217 * running ones to exit. Do this before setting the vol_state. */
218 mutex_lock(&osb
->recovery_lock
);
219 osb
->disable_recovery
= 1;
220 mutex_unlock(&osb
->recovery_lock
);
221 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
223 /* At this point, we know that no more recovery threads can be
224 * launched, so wait for any recovery completion work to
226 flush_workqueue(ocfs2_wq
);
229 * Now that recovery is shut down, and the osb is about to be
230 * freed, the osb_lock is not taken here.
232 rm
= osb
->recovery_map
;
233 /* XXX: Should we bug if there are dirty entries? */
238 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
239 unsigned int node_num
)
242 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
244 assert_spin_locked(&osb
->osb_lock
);
246 for (i
= 0; i
< rm
->rm_used
; i
++) {
247 if (rm
->rm_entries
[i
] == node_num
)
254 /* Behaves like test-and-set. Returns the previous value */
255 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
256 unsigned int node_num
)
258 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
260 spin_lock(&osb
->osb_lock
);
261 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
262 spin_unlock(&osb
->osb_lock
);
266 /* XXX: Can this be exploited? Not from o2dlm... */
267 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
269 rm
->rm_entries
[rm
->rm_used
] = node_num
;
271 spin_unlock(&osb
->osb_lock
);
276 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
277 unsigned int node_num
)
280 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
282 spin_lock(&osb
->osb_lock
);
284 for (i
= 0; i
< rm
->rm_used
; i
++) {
285 if (rm
->rm_entries
[i
] == node_num
)
289 if (i
< rm
->rm_used
) {
290 /* XXX: be careful with the pointer math */
291 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
292 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
296 spin_unlock(&osb
->osb_lock
);
299 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
302 unsigned int flushed
;
303 unsigned long old_id
;
304 struct ocfs2_journal
*journal
= NULL
;
308 journal
= osb
->journal
;
310 /* Flush all pending commits and checkpoint the journal. */
311 down_write(&journal
->j_trans_barrier
);
313 if (atomic_read(&journal
->j_num_trans
) == 0) {
314 up_write(&journal
->j_trans_barrier
);
315 mlog(0, "No transactions for me to flush!\n");
319 jbd2_journal_lock_updates(journal
->j_journal
);
320 status
= jbd2_journal_flush(journal
->j_journal
);
321 jbd2_journal_unlock_updates(journal
->j_journal
);
323 up_write(&journal
->j_trans_barrier
);
328 old_id
= ocfs2_inc_trans_id(journal
);
330 flushed
= atomic_read(&journal
->j_num_trans
);
331 atomic_set(&journal
->j_num_trans
, 0);
332 up_write(&journal
->j_trans_barrier
);
334 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
335 journal
->j_trans_id
, flushed
);
337 ocfs2_wake_downconvert_thread(osb
);
338 wake_up(&journal
->j_checkpointed
);
344 /* pass it NULL and it will allocate a new handle object for you. If
345 * you pass it a handle however, it may still return error, in which
346 * case it has free'd the passed handle for you. */
347 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
349 journal_t
*journal
= osb
->journal
->j_journal
;
352 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
354 if (ocfs2_is_hard_readonly(osb
))
355 return ERR_PTR(-EROFS
);
357 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
358 BUG_ON(max_buffs
<= 0);
360 /* Nested transaction? Just return the handle... */
361 if (journal_current_handle())
362 return jbd2_journal_start(journal
, max_buffs
);
364 down_read(&osb
->journal
->j_trans_barrier
);
366 handle
= jbd2_journal_start(journal
, max_buffs
);
367 if (IS_ERR(handle
)) {
368 up_read(&osb
->journal
->j_trans_barrier
);
370 mlog_errno(PTR_ERR(handle
));
372 if (is_journal_aborted(journal
)) {
373 ocfs2_abort(osb
->sb
, "Detected aborted journal");
374 handle
= ERR_PTR(-EROFS
);
377 if (!ocfs2_mount_local(osb
))
378 atomic_inc(&(osb
->journal
->j_num_trans
));
384 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
388 struct ocfs2_journal
*journal
= osb
->journal
;
392 nested
= handle
->h_ref
> 1;
393 ret
= jbd2_journal_stop(handle
);
398 up_read(&journal
->j_trans_barrier
);
404 * 'nblocks' is what you want to add to the current
405 * transaction. extend_trans will either extend the current handle by
406 * nblocks, or commit it and start a new one with nblocks credits.
408 * This might call jbd2_journal_restart() which will commit dirty buffers
409 * and then restart the transaction. Before calling
410 * ocfs2_extend_trans(), any changed blocks should have been
411 * dirtied. After calling it, all blocks which need to be changed must
412 * go through another set of journal_access/journal_dirty calls.
414 * WARNING: This will not release any semaphores or disk locks taken
415 * during the transaction, so make sure they were taken *before*
416 * start_trans or we'll have ordering deadlocks.
418 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
419 * good because transaction ids haven't yet been recorded on the
420 * cluster locks associated with this handle.
422 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
431 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
433 #ifdef CONFIG_OCFS2_DEBUG_FS
436 status
= jbd2_journal_extend(handle
, nblocks
);
445 "jbd2_journal_extend failed, trying "
446 "jbd2_journal_restart\n");
447 status
= jbd2_journal_restart(handle
, nblocks
);
461 struct ocfs2_triggers
{
462 struct jbd2_buffer_trigger_type ot_triggers
;
466 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
468 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
471 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
472 struct buffer_head
*bh
,
473 void *data
, size_t size
)
475 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
478 * We aren't guaranteed to have the superblock here, so we
479 * must unconditionally compute the ecc data.
480 * __ocfs2_journal_access() will only set the triggers if
481 * metaecc is enabled.
483 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
487 * Quota blocks have their own trigger because the struct ocfs2_block_check
488 * offset depends on the blocksize.
490 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
491 struct buffer_head
*bh
,
492 void *data
, size_t size
)
494 struct ocfs2_disk_dqtrailer
*dqt
=
495 ocfs2_block_dqtrailer(size
, data
);
498 * We aren't guaranteed to have the superblock here, so we
499 * must unconditionally compute the ecc data.
500 * __ocfs2_journal_access() will only set the triggers if
501 * metaecc is enabled.
503 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
507 * Directory blocks also have their own trigger because the
508 * struct ocfs2_block_check offset depends on the blocksize.
510 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
511 struct buffer_head
*bh
,
512 void *data
, size_t size
)
514 struct ocfs2_dir_block_trailer
*trailer
=
515 ocfs2_dir_trailer_from_size(size
, data
);
518 * We aren't guaranteed to have the superblock here, so we
519 * must unconditionally compute the ecc data.
520 * __ocfs2_journal_access() will only set the triggers if
521 * metaecc is enabled.
523 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
526 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
527 struct buffer_head
*bh
)
530 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
531 "bh->b_blocknr = %llu\n",
533 (unsigned long long)bh
->b_blocknr
);
535 /* We aren't guaranteed to have the superblock here - but if we
536 * don't, it'll just crash. */
537 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
538 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
541 static struct ocfs2_triggers di_triggers
= {
543 .t_commit
= ocfs2_commit_trigger
,
544 .t_abort
= ocfs2_abort_trigger
,
546 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
549 static struct ocfs2_triggers eb_triggers
= {
551 .t_commit
= ocfs2_commit_trigger
,
552 .t_abort
= ocfs2_abort_trigger
,
554 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
557 static struct ocfs2_triggers gd_triggers
= {
559 .t_commit
= ocfs2_commit_trigger
,
560 .t_abort
= ocfs2_abort_trigger
,
562 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
565 static struct ocfs2_triggers db_triggers
= {
567 .t_commit
= ocfs2_db_commit_trigger
,
568 .t_abort
= ocfs2_abort_trigger
,
572 static struct ocfs2_triggers xb_triggers
= {
574 .t_commit
= ocfs2_commit_trigger
,
575 .t_abort
= ocfs2_abort_trigger
,
577 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
580 static struct ocfs2_triggers dq_triggers
= {
582 .t_commit
= ocfs2_dq_commit_trigger
,
583 .t_abort
= ocfs2_abort_trigger
,
587 static struct ocfs2_triggers dr_triggers
= {
589 .t_commit
= ocfs2_commit_trigger
,
590 .t_abort
= ocfs2_abort_trigger
,
592 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
595 static struct ocfs2_triggers dl_triggers
= {
597 .t_commit
= ocfs2_commit_trigger
,
598 .t_abort
= ocfs2_abort_trigger
,
600 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
603 static int __ocfs2_journal_access(handle_t
*handle
,
605 struct buffer_head
*bh
,
606 struct ocfs2_triggers
*triggers
,
615 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
616 (unsigned long long)bh
->b_blocknr
, type
,
617 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
618 "OCFS2_JOURNAL_ACCESS_CREATE" :
619 "OCFS2_JOURNAL_ACCESS_WRITE",
622 /* we can safely remove this assertion after testing. */
623 if (!buffer_uptodate(bh
)) {
624 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
625 mlog(ML_ERROR
, "b_blocknr=%llu\n",
626 (unsigned long long)bh
->b_blocknr
);
630 /* Set the current transaction information on the inode so
631 * that the locking code knows whether it can drop it's locks
632 * on this inode or not. We're protected from the commit
633 * thread updating the current transaction id until
634 * ocfs2_commit_trans() because ocfs2_start_trans() took
635 * j_trans_barrier for us. */
636 ocfs2_set_inode_lock_trans(OCFS2_SB(inode
->i_sb
)->journal
, inode
);
638 mutex_lock(&OCFS2_I(inode
)->ip_io_mutex
);
640 case OCFS2_JOURNAL_ACCESS_CREATE
:
641 case OCFS2_JOURNAL_ACCESS_WRITE
:
642 status
= jbd2_journal_get_write_access(handle
, bh
);
645 case OCFS2_JOURNAL_ACCESS_UNDO
:
646 status
= jbd2_journal_get_undo_access(handle
, bh
);
651 mlog(ML_ERROR
, "Uknown access type!\n");
653 if (!status
&& ocfs2_meta_ecc(OCFS2_SB(inode
->i_sb
)) && triggers
)
654 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
655 mutex_unlock(&OCFS2_I(inode
)->ip_io_mutex
);
658 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
665 int ocfs2_journal_access_di(handle_t
*handle
, struct inode
*inode
,
666 struct buffer_head
*bh
, int type
)
668 return __ocfs2_journal_access(handle
, inode
, bh
, &di_triggers
,
672 int ocfs2_journal_access_eb(handle_t
*handle
, struct inode
*inode
,
673 struct buffer_head
*bh
, int type
)
675 return __ocfs2_journal_access(handle
, inode
, bh
, &eb_triggers
,
679 int ocfs2_journal_access_gd(handle_t
*handle
, struct inode
*inode
,
680 struct buffer_head
*bh
, int type
)
682 return __ocfs2_journal_access(handle
, inode
, bh
, &gd_triggers
,
686 int ocfs2_journal_access_db(handle_t
*handle
, struct inode
*inode
,
687 struct buffer_head
*bh
, int type
)
689 return __ocfs2_journal_access(handle
, inode
, bh
, &db_triggers
,
693 int ocfs2_journal_access_xb(handle_t
*handle
, struct inode
*inode
,
694 struct buffer_head
*bh
, int type
)
696 return __ocfs2_journal_access(handle
, inode
, bh
, &xb_triggers
,
700 int ocfs2_journal_access_dq(handle_t
*handle
, struct inode
*inode
,
701 struct buffer_head
*bh
, int type
)
703 return __ocfs2_journal_access(handle
, inode
, bh
, &dq_triggers
,
707 int ocfs2_journal_access_dr(handle_t
*handle
, struct inode
*inode
,
708 struct buffer_head
*bh
, int type
)
710 return __ocfs2_journal_access(handle
, inode
, bh
, &dr_triggers
,
714 int ocfs2_journal_access_dl(handle_t
*handle
, struct inode
*inode
,
715 struct buffer_head
*bh
, int type
)
717 return __ocfs2_journal_access(handle
, inode
, bh
, &dl_triggers
,
721 int ocfs2_journal_access(handle_t
*handle
, struct inode
*inode
,
722 struct buffer_head
*bh
, int type
)
724 return __ocfs2_journal_access(handle
, inode
, bh
, NULL
, type
);
727 int ocfs2_journal_dirty(handle_t
*handle
,
728 struct buffer_head
*bh
)
732 mlog_entry("(bh->b_blocknr=%llu)\n",
733 (unsigned long long)bh
->b_blocknr
);
735 status
= jbd2_journal_dirty_metadata(handle
, bh
);
737 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
738 "(bh->b_blocknr=%llu)\n",
739 (unsigned long long)bh
->b_blocknr
);
745 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
747 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
749 journal_t
*journal
= osb
->journal
->j_journal
;
750 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
752 if (osb
->osb_commit_interval
)
753 commit_interval
= osb
->osb_commit_interval
;
755 spin_lock(&journal
->j_state_lock
);
756 journal
->j_commit_interval
= commit_interval
;
757 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
758 journal
->j_flags
|= JBD2_BARRIER
;
760 journal
->j_flags
&= ~JBD2_BARRIER
;
761 spin_unlock(&journal
->j_state_lock
);
764 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
767 struct inode
*inode
= NULL
; /* the journal inode */
768 journal_t
*j_journal
= NULL
;
769 struct ocfs2_dinode
*di
= NULL
;
770 struct buffer_head
*bh
= NULL
;
771 struct ocfs2_super
*osb
;
778 osb
= journal
->j_osb
;
780 /* already have the inode for our journal */
781 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
788 if (is_bad_inode(inode
)) {
789 mlog(ML_ERROR
, "access error (bad inode)\n");
796 SET_INODE_JOURNAL(inode
);
797 OCFS2_I(inode
)->ip_open_count
++;
799 /* Skip recovery waits here - journal inode metadata never
800 * changes in a live cluster so it can be considered an
801 * exception to the rule. */
802 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
804 if (status
!= -ERESTARTSYS
)
805 mlog(ML_ERROR
, "Could not get lock on journal!\n");
810 di
= (struct ocfs2_dinode
*)bh
->b_data
;
812 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
813 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
819 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
820 mlog(0, "inode->i_blocks = %llu\n",
821 (unsigned long long)inode
->i_blocks
);
822 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
824 /* call the kernels journal init function now */
825 j_journal
= jbd2_journal_init_inode(inode
);
826 if (j_journal
== NULL
) {
827 mlog(ML_ERROR
, "Linux journal layer error\n");
832 mlog(0, "Returned from jbd2_journal_init_inode\n");
833 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
835 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
836 OCFS2_JOURNAL_DIRTY_FL
);
838 journal
->j_journal
= j_journal
;
839 journal
->j_inode
= inode
;
842 ocfs2_set_journal_params(osb
);
844 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
850 ocfs2_inode_unlock(inode
, 1);
853 OCFS2_I(inode
)->ip_open_count
--;
862 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
864 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
867 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
869 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
872 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
873 int dirty
, int replayed
)
877 struct ocfs2_journal
*journal
= osb
->journal
;
878 struct buffer_head
*bh
= journal
->j_bh
;
879 struct ocfs2_dinode
*fe
;
883 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
885 /* The journal bh on the osb always comes from ocfs2_journal_init()
886 * and was validated there inside ocfs2_inode_lock_full(). It's a
887 * code bug if we mess it up. */
888 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
890 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
892 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
894 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
895 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
898 ocfs2_bump_recovery_generation(fe
);
900 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
901 status
= ocfs2_write_block(osb
, bh
, journal
->j_inode
);
910 * If the journal has been kmalloc'd it needs to be freed after this
913 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
915 struct ocfs2_journal
*journal
= NULL
;
917 struct inode
*inode
= NULL
;
918 int num_running_trans
= 0;
924 journal
= osb
->journal
;
928 inode
= journal
->j_inode
;
930 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
933 /* need to inc inode use count - jbd2_journal_destroy will iput. */
937 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
938 if (num_running_trans
> 0)
939 mlog(0, "Shutting down journal: must wait on %d "
940 "running transactions!\n",
943 /* Do a commit_cache here. It will flush our journal, *and*
944 * release any locks that are still held.
945 * set the SHUTDOWN flag and release the trans lock.
946 * the commit thread will take the trans lock for us below. */
947 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
949 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
950 * drop the trans_lock (which we want to hold until we
951 * completely destroy the journal. */
952 if (osb
->commit_task
) {
953 /* Wait for the commit thread */
954 mlog(0, "Waiting for ocfs2commit to exit....\n");
955 kthread_stop(osb
->commit_task
);
956 osb
->commit_task
= NULL
;
959 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
961 if (ocfs2_mount_local(osb
)) {
962 jbd2_journal_lock_updates(journal
->j_journal
);
963 status
= jbd2_journal_flush(journal
->j_journal
);
964 jbd2_journal_unlock_updates(journal
->j_journal
);
971 * Do not toggle if flush was unsuccessful otherwise
972 * will leave dirty metadata in a "clean" journal
974 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
979 /* Shutdown the kernel journal system */
980 jbd2_journal_destroy(journal
->j_journal
);
981 journal
->j_journal
= NULL
;
983 OCFS2_I(inode
)->ip_open_count
--;
985 /* unlock our journal */
986 ocfs2_inode_unlock(inode
, 1);
988 brelse(journal
->j_bh
);
989 journal
->j_bh
= NULL
;
991 journal
->j_state
= OCFS2_JOURNAL_FREE
;
993 // up_write(&journal->j_trans_barrier);
1000 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1006 olderr
= jbd2_journal_errno(journal
);
1008 mlog(ML_ERROR
, "File system error %d recorded in "
1009 "journal %u.\n", olderr
, slot
);
1010 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1013 jbd2_journal_ack_err(journal
);
1014 jbd2_journal_clear_err(journal
);
1018 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1021 struct ocfs2_super
*osb
;
1027 osb
= journal
->j_osb
;
1029 status
= jbd2_journal_load(journal
->j_journal
);
1031 mlog(ML_ERROR
, "Failed to load journal!\n");
1035 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1037 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1043 /* Launch the commit thread */
1045 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1047 if (IS_ERR(osb
->commit_task
)) {
1048 status
= PTR_ERR(osb
->commit_task
);
1049 osb
->commit_task
= NULL
;
1050 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1051 "error=%d", status
);
1055 osb
->commit_task
= NULL
;
1063 /* 'full' flag tells us whether we clear out all blocks or if we just
1064 * mark the journal clean */
1065 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1073 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1079 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1088 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1091 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1093 spin_lock(&osb
->osb_lock
);
1094 empty
= (rm
->rm_used
== 0);
1095 spin_unlock(&osb
->osb_lock
);
1100 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1102 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1106 * JBD Might read a cached version of another nodes journal file. We
1107 * don't want this as this file changes often and we get no
1108 * notification on those changes. The only way to be sure that we've
1109 * got the most up to date version of those blocks then is to force
1110 * read them off disk. Just searching through the buffer cache won't
1111 * work as there may be pages backing this file which are still marked
1112 * up to date. We know things can't change on this file underneath us
1113 * as we have the lock by now :)
1115 static int ocfs2_force_read_journal(struct inode
*inode
)
1119 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1120 #define CONCURRENT_JOURNAL_FILL 32ULL
1121 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1125 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1127 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
1129 while (v_blkno
< num_blocks
) {
1130 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1131 &p_blkno
, &p_blocks
, NULL
);
1137 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1138 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1140 /* We are reading journal data which should not
1141 * be put in the uptodate cache */
1142 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1143 p_blkno
, p_blocks
, bhs
);
1149 for(i
= 0; i
< p_blocks
; i
++) {
1154 v_blkno
+= p_blocks
;
1158 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1164 struct ocfs2_la_recovery_item
{
1165 struct list_head lri_list
;
1167 struct ocfs2_dinode
*lri_la_dinode
;
1168 struct ocfs2_dinode
*lri_tl_dinode
;
1169 struct ocfs2_quota_recovery
*lri_qrec
;
1172 /* Does the second half of the recovery process. By this point, the
1173 * node is marked clean and can actually be considered recovered,
1174 * hence it's no longer in the recovery map, but there's still some
1175 * cleanup we can do which shouldn't happen within the recovery thread
1176 * as locking in that context becomes very difficult if we are to take
1177 * recovering nodes into account.
1179 * NOTE: This function can and will sleep on recovery of other nodes
1180 * during cluster locking, just like any other ocfs2 process.
1182 void ocfs2_complete_recovery(struct work_struct
*work
)
1185 struct ocfs2_journal
*journal
=
1186 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1187 struct ocfs2_super
*osb
= journal
->j_osb
;
1188 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1189 struct ocfs2_la_recovery_item
*item
, *n
;
1190 struct ocfs2_quota_recovery
*qrec
;
1191 LIST_HEAD(tmp_la_list
);
1195 mlog(0, "completing recovery from keventd\n");
1197 spin_lock(&journal
->j_lock
);
1198 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1199 spin_unlock(&journal
->j_lock
);
1201 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1202 list_del_init(&item
->lri_list
);
1204 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
1206 ocfs2_wait_on_quotas(osb
);
1208 la_dinode
= item
->lri_la_dinode
;
1210 mlog(0, "Clean up local alloc %llu\n",
1211 (unsigned long long)le64_to_cpu(la_dinode
->i_blkno
));
1213 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1221 tl_dinode
= item
->lri_tl_dinode
;
1223 mlog(0, "Clean up truncate log %llu\n",
1224 (unsigned long long)le64_to_cpu(tl_dinode
->i_blkno
));
1226 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1234 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1238 qrec
= item
->lri_qrec
;
1240 mlog(0, "Recovering quota files");
1241 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1245 /* Recovery info is already freed now */
1251 mlog(0, "Recovery completion\n");
1255 /* NOTE: This function always eats your references to la_dinode and
1256 * tl_dinode, either manually on error, or by passing them to
1257 * ocfs2_complete_recovery */
1258 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1260 struct ocfs2_dinode
*la_dinode
,
1261 struct ocfs2_dinode
*tl_dinode
,
1262 struct ocfs2_quota_recovery
*qrec
)
1264 struct ocfs2_la_recovery_item
*item
;
1266 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1268 /* Though we wish to avoid it, we are in fact safe in
1269 * skipping local alloc cleanup as fsck.ocfs2 is more
1270 * than capable of reclaiming unused space. */
1278 ocfs2_free_quota_recovery(qrec
);
1280 mlog_errno(-ENOMEM
);
1284 INIT_LIST_HEAD(&item
->lri_list
);
1285 item
->lri_la_dinode
= la_dinode
;
1286 item
->lri_slot
= slot_num
;
1287 item
->lri_tl_dinode
= tl_dinode
;
1288 item
->lri_qrec
= qrec
;
1290 spin_lock(&journal
->j_lock
);
1291 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1292 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1293 spin_unlock(&journal
->j_lock
);
1296 /* Called by the mount code to queue recovery the last part of
1297 * recovery for it's own and offline slot(s). */
1298 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1300 struct ocfs2_journal
*journal
= osb
->journal
;
1302 /* No need to queue up our truncate_log as regular cleanup will catch
1304 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1305 osb
->local_alloc_copy
, NULL
, NULL
);
1306 ocfs2_schedule_truncate_log_flush(osb
, 0);
1308 osb
->local_alloc_copy
= NULL
;
1311 /* queue to recover orphan slots for all offline slots */
1312 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1313 ocfs2_queue_replay_slots(osb
);
1314 ocfs2_free_replay_slots(osb
);
1317 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1319 if (osb
->quota_rec
) {
1320 ocfs2_queue_recovery_completion(osb
->journal
,
1325 osb
->quota_rec
= NULL
;
1329 static int __ocfs2_recovery_thread(void *arg
)
1331 int status
, node_num
, slot_num
;
1332 struct ocfs2_super
*osb
= arg
;
1333 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1334 int *rm_quota
= NULL
;
1335 int rm_quota_used
= 0, i
;
1336 struct ocfs2_quota_recovery
*qrec
;
1340 status
= ocfs2_wait_on_mount(osb
);
1345 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1351 status
= ocfs2_super_lock(osb
, 1);
1357 status
= ocfs2_compute_replay_slots(osb
);
1361 /* queue recovery for our own slot */
1362 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1365 spin_lock(&osb
->osb_lock
);
1366 while (rm
->rm_used
) {
1367 /* It's always safe to remove entry zero, as we won't
1368 * clear it until ocfs2_recover_node() has succeeded. */
1369 node_num
= rm
->rm_entries
[0];
1370 spin_unlock(&osb
->osb_lock
);
1371 mlog(0, "checking node %d\n", node_num
);
1372 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1373 if (slot_num
== -ENOENT
) {
1375 mlog(0, "no slot for this node, so no recovery"
1379 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1381 /* It is a bit subtle with quota recovery. We cannot do it
1382 * immediately because we have to obtain cluster locks from
1383 * quota files and we also don't want to just skip it because
1384 * then quota usage would be out of sync until some node takes
1385 * the slot. So we remember which nodes need quota recovery
1386 * and when everything else is done, we recover quotas. */
1387 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1388 if (i
== rm_quota_used
)
1389 rm_quota
[rm_quota_used
++] = slot_num
;
1391 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1394 ocfs2_recovery_map_clear(osb
, node_num
);
1397 "Error %d recovering node %d on device (%u,%u)!\n",
1399 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1400 mlog(ML_ERROR
, "Volume requires unmount.\n");
1403 spin_lock(&osb
->osb_lock
);
1405 spin_unlock(&osb
->osb_lock
);
1406 mlog(0, "All nodes recovered\n");
1408 /* Refresh all journal recovery generations from disk */
1409 status
= ocfs2_check_journals_nolocks(osb
);
1410 status
= (status
== -EROFS
) ? 0 : status
;
1414 /* Now it is right time to recover quotas... We have to do this under
1415 * superblock lock so that noone can start using the slot (and crash)
1416 * before we recover it */
1417 for (i
= 0; i
< rm_quota_used
; i
++) {
1418 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1420 status
= PTR_ERR(qrec
);
1424 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1428 ocfs2_super_unlock(osb
, 1);
1430 /* queue recovery for offline slots */
1431 ocfs2_queue_replay_slots(osb
);
1434 mutex_lock(&osb
->recovery_lock
);
1435 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1436 mutex_unlock(&osb
->recovery_lock
);
1440 ocfs2_free_replay_slots(osb
);
1441 osb
->recovery_thread_task
= NULL
;
1442 mb(); /* sync with ocfs2_recovery_thread_running */
1443 wake_up(&osb
->recovery_event
);
1445 mutex_unlock(&osb
->recovery_lock
);
1451 /* no one is callint kthread_stop() for us so the kthread() api
1452 * requires that we call do_exit(). And it isn't exported, but
1453 * complete_and_exit() seems to be a minimal wrapper around it. */
1454 complete_and_exit(NULL
, status
);
1458 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1460 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1461 node_num
, osb
->node_num
);
1463 mutex_lock(&osb
->recovery_lock
);
1464 if (osb
->disable_recovery
)
1467 /* People waiting on recovery will wait on
1468 * the recovery map to empty. */
1469 if (ocfs2_recovery_map_set(osb
, node_num
))
1470 mlog(0, "node %d already in recovery map.\n", node_num
);
1472 mlog(0, "starting recovery thread...\n");
1474 if (osb
->recovery_thread_task
)
1477 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1479 if (IS_ERR(osb
->recovery_thread_task
)) {
1480 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1481 osb
->recovery_thread_task
= NULL
;
1485 mutex_unlock(&osb
->recovery_lock
);
1486 wake_up(&osb
->recovery_event
);
1491 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1493 struct buffer_head
**bh
,
1494 struct inode
**ret_inode
)
1496 int status
= -EACCES
;
1497 struct inode
*inode
= NULL
;
1499 BUG_ON(slot_num
>= osb
->max_slots
);
1501 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1503 if (!inode
|| is_bad_inode(inode
)) {
1507 SET_INODE_JOURNAL(inode
);
1509 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1519 if (status
|| !ret_inode
)
1527 /* Does the actual journal replay and marks the journal inode as
1528 * clean. Will only replay if the journal inode is marked dirty. */
1529 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1536 struct inode
*inode
= NULL
;
1537 struct ocfs2_dinode
*fe
;
1538 journal_t
*journal
= NULL
;
1539 struct buffer_head
*bh
= NULL
;
1542 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1548 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1549 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1554 * As the fs recovery is asynchronous, there is a small chance that
1555 * another node mounted (and recovered) the slot before the recovery
1556 * thread could get the lock. To handle that, we dirty read the journal
1557 * inode for that slot to get the recovery generation. If it is
1558 * different than what we expected, the slot has been recovered.
1559 * If not, it needs recovery.
1561 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1562 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num
,
1563 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1564 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1569 /* Continue with recovery as the journal has not yet been recovered */
1571 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1573 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status
);
1574 if (status
!= -ERESTARTSYS
)
1575 mlog(ML_ERROR
, "Could not lock journal!\n");
1580 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1582 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1583 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1585 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1586 mlog(0, "No recovery required for node %d\n", node_num
);
1587 /* Refresh recovery generation for the slot */
1588 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1592 /* we need to run complete recovery for offline orphan slots */
1593 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1595 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
1597 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1599 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1601 status
= ocfs2_force_read_journal(inode
);
1607 mlog(0, "calling journal_init_inode\n");
1608 journal
= jbd2_journal_init_inode(inode
);
1609 if (journal
== NULL
) {
1610 mlog(ML_ERROR
, "Linux journal layer error\n");
1615 status
= jbd2_journal_load(journal
);
1620 jbd2_journal_destroy(journal
);
1624 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1626 /* wipe the journal */
1627 mlog(0, "flushing the journal.\n");
1628 jbd2_journal_lock_updates(journal
);
1629 status
= jbd2_journal_flush(journal
);
1630 jbd2_journal_unlock_updates(journal
);
1634 /* This will mark the node clean */
1635 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1636 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1637 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1639 /* Increment recovery generation to indicate successful recovery */
1640 ocfs2_bump_recovery_generation(fe
);
1641 osb
->slot_recovery_generations
[slot_num
] =
1642 ocfs2_get_recovery_generation(fe
);
1644 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1645 status
= ocfs2_write_block(osb
, bh
, inode
);
1652 jbd2_journal_destroy(journal
);
1655 /* drop the lock on this nodes journal */
1657 ocfs2_inode_unlock(inode
, 1);
1669 * Do the most important parts of node recovery:
1670 * - Replay it's journal
1671 * - Stamp a clean local allocator file
1672 * - Stamp a clean truncate log
1673 * - Mark the node clean
1675 * If this function completes without error, a node in OCFS2 can be
1676 * said to have been safely recovered. As a result, failure during the
1677 * second part of a nodes recovery process (local alloc recovery) is
1678 * far less concerning.
1680 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1681 int node_num
, int slot_num
)
1684 struct ocfs2_dinode
*la_copy
= NULL
;
1685 struct ocfs2_dinode
*tl_copy
= NULL
;
1687 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1688 node_num
, slot_num
, osb
->node_num
);
1690 /* Should not ever be called to recover ourselves -- in that
1691 * case we should've called ocfs2_journal_load instead. */
1692 BUG_ON(osb
->node_num
== node_num
);
1694 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1696 if (status
== -EBUSY
) {
1697 mlog(0, "Skipping recovery for slot %u (node %u) "
1698 "as another node has recovered it\n", slot_num
,
1707 /* Stamp a clean local alloc file AFTER recovering the journal... */
1708 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1714 /* An error from begin_truncate_log_recovery is not
1715 * serious enough to warrant halting the rest of
1717 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1721 /* Likewise, this would be a strange but ultimately not so
1722 * harmful place to get an error... */
1723 status
= ocfs2_clear_slot(osb
, slot_num
);
1727 /* This will kfree the memory pointed to by la_copy and tl_copy */
1728 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1738 /* Test node liveness by trylocking his journal. If we get the lock,
1739 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1740 * still alive (we couldn't get the lock) and < 0 on error. */
1741 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1745 struct inode
*inode
= NULL
;
1747 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1749 if (inode
== NULL
) {
1750 mlog(ML_ERROR
, "access error\n");
1754 if (is_bad_inode(inode
)) {
1755 mlog(ML_ERROR
, "access error (bad inode)\n");
1761 SET_INODE_JOURNAL(inode
);
1763 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1764 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1766 if (status
!= -EAGAIN
)
1771 ocfs2_inode_unlock(inode
, 1);
1779 /* Call this underneath ocfs2_super_lock. It also assumes that the
1780 * slot info struct has been updated from disk. */
1781 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1783 unsigned int node_num
;
1786 struct buffer_head
*bh
= NULL
;
1787 struct ocfs2_dinode
*di
;
1789 /* This is called with the super block cluster lock, so we
1790 * know that the slot map can't change underneath us. */
1792 for (i
= 0; i
< osb
->max_slots
; i
++) {
1793 /* Read journal inode to get the recovery generation */
1794 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1799 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1800 gen
= ocfs2_get_recovery_generation(di
);
1804 spin_lock(&osb
->osb_lock
);
1805 osb
->slot_recovery_generations
[i
] = gen
;
1807 mlog(0, "Slot %u recovery generation is %u\n", i
,
1808 osb
->slot_recovery_generations
[i
]);
1810 if (i
== osb
->slot_num
) {
1811 spin_unlock(&osb
->osb_lock
);
1815 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1816 if (status
== -ENOENT
) {
1817 spin_unlock(&osb
->osb_lock
);
1821 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1822 spin_unlock(&osb
->osb_lock
);
1825 spin_unlock(&osb
->osb_lock
);
1827 /* Ok, we have a slot occupied by another node which
1828 * is not in the recovery map. We trylock his journal
1829 * file here to test if he's alive. */
1830 status
= ocfs2_trylock_journal(osb
, i
);
1832 /* Since we're called from mount, we know that
1833 * the recovery thread can't race us on
1834 * setting / checking the recovery bits. */
1835 ocfs2_recovery_thread(osb
, node_num
);
1836 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1849 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1850 * randomness to the timeout to minimize multple nodes firing the timer at the
1853 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1857 get_random_bytes(&time
, sizeof(time
));
1858 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1859 return msecs_to_jiffies(time
);
1863 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1864 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1865 * is done to catch any orphans that are left over in orphan directories.
1867 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1868 * seconds. It gets an EX lock on os_lockres and checks sequence number
1869 * stored in LVB. If the sequence number has changed, it means some other
1870 * node has done the scan. This node skips the scan and tracks the
1871 * sequence number. If the sequence number didn't change, it means a scan
1872 * hasn't happened. The node queues a scan and increments the
1873 * sequence number in the LVB.
1875 void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1877 struct ocfs2_orphan_scan
*os
;
1881 os
= &osb
->osb_orphan_scan
;
1883 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1886 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1888 if (status
!= -EAGAIN
)
1893 /* Do no queue the tasks if the volume is being umounted */
1894 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1897 if (os
->os_seqno
!= seqno
) {
1898 os
->os_seqno
= seqno
;
1902 for (i
= 0; i
< osb
->max_slots
; i
++)
1903 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1906 * We queued a recovery on orphan slots, increment the sequence
1907 * number and update LVB so other node will skip the scan for a while
1911 os
->os_scantime
= CURRENT_TIME
;
1913 ocfs2_orphan_scan_unlock(osb
, seqno
);
1918 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1919 void ocfs2_orphan_scan_work(struct work_struct
*work
)
1921 struct ocfs2_orphan_scan
*os
;
1922 struct ocfs2_super
*osb
;
1924 os
= container_of(work
, struct ocfs2_orphan_scan
,
1925 os_orphan_scan_work
.work
);
1928 mutex_lock(&os
->os_lock
);
1929 ocfs2_queue_orphan_scan(osb
);
1930 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1931 schedule_delayed_work(&os
->os_orphan_scan_work
,
1932 ocfs2_orphan_scan_timeout());
1933 mutex_unlock(&os
->os_lock
);
1936 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1938 struct ocfs2_orphan_scan
*os
;
1940 os
= &osb
->osb_orphan_scan
;
1941 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1942 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1943 mutex_lock(&os
->os_lock
);
1944 cancel_delayed_work(&os
->os_orphan_scan_work
);
1945 mutex_unlock(&os
->os_lock
);
1949 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1951 struct ocfs2_orphan_scan
*os
;
1953 os
= &osb
->osb_orphan_scan
;
1957 mutex_init(&os
->os_lock
);
1958 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1961 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1963 struct ocfs2_orphan_scan
*os
;
1965 os
= &osb
->osb_orphan_scan
;
1966 os
->os_scantime
= CURRENT_TIME
;
1967 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1968 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1970 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1971 schedule_delayed_work(&os
->os_orphan_scan_work
,
1972 ocfs2_orphan_scan_timeout());
1976 struct ocfs2_orphan_filldir_priv
{
1978 struct ocfs2_super
*osb
;
1981 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1982 loff_t pos
, u64 ino
, unsigned type
)
1984 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1987 if (name_len
== 1 && !strncmp(".", name
, 1))
1989 if (name_len
== 2 && !strncmp("..", name
, 2))
1992 /* Skip bad inodes so that recovery can continue */
1993 iter
= ocfs2_iget(p
->osb
, ino
,
1994 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
1998 mlog(0, "queue orphan %llu\n",
1999 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2000 /* No locking is required for the next_orphan queue as there
2001 * is only ever a single process doing orphan recovery. */
2002 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2008 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2010 struct inode
**head
)
2013 struct inode
*orphan_dir_inode
= NULL
;
2014 struct ocfs2_orphan_filldir_priv priv
;
2020 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2021 ORPHAN_DIR_SYSTEM_INODE
,
2023 if (!orphan_dir_inode
) {
2029 mutex_lock(&orphan_dir_inode
->i_mutex
);
2030 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2036 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
2037 ocfs2_orphan_filldir
);
2046 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2048 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2049 iput(orphan_dir_inode
);
2053 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2058 spin_lock(&osb
->osb_lock
);
2059 ret
= !osb
->osb_orphan_wipes
[slot
];
2060 spin_unlock(&osb
->osb_lock
);
2064 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2067 spin_lock(&osb
->osb_lock
);
2068 /* Mark ourselves such that new processes in delete_inode()
2069 * know to quit early. */
2070 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2071 while (osb
->osb_orphan_wipes
[slot
]) {
2072 /* If any processes are already in the middle of an
2073 * orphan wipe on this dir, then we need to wait for
2075 spin_unlock(&osb
->osb_lock
);
2076 wait_event_interruptible(osb
->osb_wipe_event
,
2077 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2078 spin_lock(&osb
->osb_lock
);
2080 spin_unlock(&osb
->osb_lock
);
2083 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2086 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2090 * Orphan recovery. Each mounted node has it's own orphan dir which we
2091 * must run during recovery. Our strategy here is to build a list of
2092 * the inodes in the orphan dir and iget/iput them. The VFS does
2093 * (most) of the rest of the work.
2095 * Orphan recovery can happen at any time, not just mount so we have a
2096 * couple of extra considerations.
2098 * - We grab as many inodes as we can under the orphan dir lock -
2099 * doing iget() outside the orphan dir risks getting a reference on
2101 * - We must be sure not to deadlock with other processes on the
2102 * system wanting to run delete_inode(). This can happen when they go
2103 * to lock the orphan dir and the orphan recovery process attempts to
2104 * iget() inside the orphan dir lock. This can be avoided by
2105 * advertising our state to ocfs2_delete_inode().
2107 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2111 struct inode
*inode
= NULL
;
2113 struct ocfs2_inode_info
*oi
;
2115 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
2117 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2118 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2119 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2121 /* Error here should be noted, but we want to continue with as
2122 * many queued inodes as we've got. */
2127 oi
= OCFS2_I(inode
);
2128 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
2130 iter
= oi
->ip_next_orphan
;
2132 spin_lock(&oi
->ip_lock
);
2133 /* The remote delete code may have set these on the
2134 * assumption that the other node would wipe them
2135 * successfully. If they are still in the node's
2136 * orphan dir, we need to reset that state. */
2137 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
2139 /* Set the proper information to get us going into
2140 * ocfs2_delete_inode. */
2141 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2142 spin_unlock(&oi
->ip_lock
);
2152 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2154 /* This check is good because ocfs2 will wait on our recovery
2155 * thread before changing it to something other than MOUNTED
2157 wait_event(osb
->osb_mount_event
,
2158 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2159 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2160 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2162 /* If there's an error on mount, then we may never get to the
2163 * MOUNTED flag, but this is set right before
2164 * dismount_volume() so we can trust it. */
2165 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2166 mlog(0, "mount error, exiting!\n");
2173 static int ocfs2_commit_thread(void *arg
)
2176 struct ocfs2_super
*osb
= arg
;
2177 struct ocfs2_journal
*journal
= osb
->journal
;
2179 /* we can trust j_num_trans here because _should_stop() is only set in
2180 * shutdown and nobody other than ourselves should be able to start
2181 * transactions. committing on shutdown might take a few iterations
2182 * as final transactions put deleted inodes on the list */
2183 while (!(kthread_should_stop() &&
2184 atomic_read(&journal
->j_num_trans
) == 0)) {
2186 wait_event_interruptible(osb
->checkpoint_event
,
2187 atomic_read(&journal
->j_num_trans
)
2188 || kthread_should_stop());
2190 status
= ocfs2_commit_cache(osb
);
2194 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2196 "commit_thread: %u transactions pending on "
2198 atomic_read(&journal
->j_num_trans
));
2205 /* Reads all the journal inodes without taking any cluster locks. Used
2206 * for hard readonly access to determine whether any journal requires
2207 * recovery. Also used to refresh the recovery generation numbers after
2208 * a journal has been recovered by another node.
2210 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2214 struct buffer_head
*di_bh
= NULL
;
2215 struct ocfs2_dinode
*di
;
2216 int journal_dirty
= 0;
2218 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2219 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2225 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2227 osb
->slot_recovery_generations
[slot
] =
2228 ocfs2_get_recovery_generation(di
);
2230 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2231 OCFS2_JOURNAL_DIRTY_FL
)