readahead: remove several readahead macros
[linux-2.6/mini2440.git] / mm / readahead.c
blobfc52f9f1b80cb08695c2379ed8faf5d761021293
1 /*
2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 akpm@zip.com.au
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
20 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
23 EXPORT_SYMBOL(default_unplug_io_fn);
25 struct backing_dev_info default_backing_dev_info = {
26 .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
27 .state = 0,
28 .capabilities = BDI_CAP_MAP_COPY,
29 .unplug_io_fn = default_unplug_io_fn,
31 EXPORT_SYMBOL_GPL(default_backing_dev_info);
34 * Initialise a struct file's readahead state. Assumes that the caller has
35 * memset *ra to zero.
37 void
38 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
40 ra->ra_pages = mapping->backing_dev_info->ra_pages;
41 ra->prev_pos = -1;
43 EXPORT_SYMBOL_GPL(file_ra_state_init);
45 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
47 /**
48 * read_cache_pages - populate an address space with some pages & start reads against them
49 * @mapping: the address_space
50 * @pages: The address of a list_head which contains the target pages. These
51 * pages have their ->index populated and are otherwise uninitialised.
52 * @filler: callback routine for filling a single page.
53 * @data: private data for the callback routine.
55 * Hides the details of the LRU cache etc from the filesystems.
57 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
58 int (*filler)(void *, struct page *), void *data)
60 struct page *page;
61 struct pagevec lru_pvec;
62 int ret = 0;
64 pagevec_init(&lru_pvec, 0);
66 while (!list_empty(pages)) {
67 page = list_to_page(pages);
68 list_del(&page->lru);
69 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
70 page_cache_release(page);
71 continue;
73 ret = filler(data, page);
74 if (!pagevec_add(&lru_pvec, page))
75 __pagevec_lru_add(&lru_pvec);
76 if (ret) {
77 put_pages_list(pages);
78 break;
80 task_io_account_read(PAGE_CACHE_SIZE);
82 pagevec_lru_add(&lru_pvec);
83 return ret;
86 EXPORT_SYMBOL(read_cache_pages);
88 static int read_pages(struct address_space *mapping, struct file *filp,
89 struct list_head *pages, unsigned nr_pages)
91 unsigned page_idx;
92 struct pagevec lru_pvec;
93 int ret;
95 if (mapping->a_ops->readpages) {
96 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
97 /* Clean up the remaining pages */
98 put_pages_list(pages);
99 goto out;
102 pagevec_init(&lru_pvec, 0);
103 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
104 struct page *page = list_to_page(pages);
105 list_del(&page->lru);
106 if (!add_to_page_cache(page, mapping,
107 page->index, GFP_KERNEL)) {
108 mapping->a_ops->readpage(filp, page);
109 if (!pagevec_add(&lru_pvec, page))
110 __pagevec_lru_add(&lru_pvec);
111 } else
112 page_cache_release(page);
114 pagevec_lru_add(&lru_pvec);
115 ret = 0;
116 out:
117 return ret;
121 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
122 * the pages first, then submits them all for I/O. This avoids the very bad
123 * behaviour which would occur if page allocations are causing VM writeback.
124 * We really don't want to intermingle reads and writes like that.
126 * Returns the number of pages requested, or the maximum amount of I/O allowed.
128 * do_page_cache_readahead() returns -1 if it encountered request queue
129 * congestion.
131 static int
132 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
133 pgoff_t offset, unsigned long nr_to_read,
134 unsigned long lookahead_size)
136 struct inode *inode = mapping->host;
137 struct page *page;
138 unsigned long end_index; /* The last page we want to read */
139 LIST_HEAD(page_pool);
140 int page_idx;
141 int ret = 0;
142 loff_t isize = i_size_read(inode);
144 if (isize == 0)
145 goto out;
147 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
150 * Preallocate as many pages as we will need.
152 read_lock_irq(&mapping->tree_lock);
153 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
154 pgoff_t page_offset = offset + page_idx;
156 if (page_offset > end_index)
157 break;
159 page = radix_tree_lookup(&mapping->page_tree, page_offset);
160 if (page)
161 continue;
163 read_unlock_irq(&mapping->tree_lock);
164 page = page_cache_alloc_cold(mapping);
165 read_lock_irq(&mapping->tree_lock);
166 if (!page)
167 break;
168 page->index = page_offset;
169 list_add(&page->lru, &page_pool);
170 if (page_idx == nr_to_read - lookahead_size)
171 SetPageReadahead(page);
172 ret++;
174 read_unlock_irq(&mapping->tree_lock);
177 * Now start the IO. We ignore I/O errors - if the page is not
178 * uptodate then the caller will launch readpage again, and
179 * will then handle the error.
181 if (ret)
182 read_pages(mapping, filp, &page_pool, ret);
183 BUG_ON(!list_empty(&page_pool));
184 out:
185 return ret;
189 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
190 * memory at once.
192 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
193 pgoff_t offset, unsigned long nr_to_read)
195 int ret = 0;
197 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
198 return -EINVAL;
200 while (nr_to_read) {
201 int err;
203 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
205 if (this_chunk > nr_to_read)
206 this_chunk = nr_to_read;
207 err = __do_page_cache_readahead(mapping, filp,
208 offset, this_chunk, 0);
209 if (err < 0) {
210 ret = err;
211 break;
213 ret += err;
214 offset += this_chunk;
215 nr_to_read -= this_chunk;
217 return ret;
221 * This version skips the IO if the queue is read-congested, and will tell the
222 * block layer to abandon the readahead if request allocation would block.
224 * force_page_cache_readahead() will ignore queue congestion and will block on
225 * request queues.
227 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
228 pgoff_t offset, unsigned long nr_to_read)
230 if (bdi_read_congested(mapping->backing_dev_info))
231 return -1;
233 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
237 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
238 * sensible upper limit.
240 unsigned long max_sane_readahead(unsigned long nr)
242 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
243 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
247 * Submit IO for the read-ahead request in file_ra_state.
249 static unsigned long ra_submit(struct file_ra_state *ra,
250 struct address_space *mapping, struct file *filp)
252 int actual;
254 actual = __do_page_cache_readahead(mapping, filp,
255 ra->start, ra->size, ra->async_size);
257 return actual;
261 * Set the initial window size, round to next power of 2 and square
262 * for small size, x 4 for medium, and x 2 for large
263 * for 128k (32 page) max ra
264 * 1-8 page = 32k initial, > 8 page = 128k initial
266 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
268 unsigned long newsize = roundup_pow_of_two(size);
270 if (newsize <= max / 32)
271 newsize = newsize * 4;
272 else if (newsize <= max / 4)
273 newsize = newsize * 2;
274 else
275 newsize = max;
277 return newsize;
281 * Get the previous window size, ramp it up, and
282 * return it as the new window size.
284 static unsigned long get_next_ra_size(struct file_ra_state *ra,
285 unsigned long max)
287 unsigned long cur = ra->size;
288 unsigned long newsize;
290 if (cur < max / 16)
291 newsize = 4 * cur;
292 else
293 newsize = 2 * cur;
295 return min(newsize, max);
299 * On-demand readahead design.
301 * The fields in struct file_ra_state represent the most-recently-executed
302 * readahead attempt:
304 * |<----- async_size ---------|
305 * |------------------- size -------------------->|
306 * |==================#===========================|
307 * ^start ^page marked with PG_readahead
309 * To overlap application thinking time and disk I/O time, we do
310 * `readahead pipelining': Do not wait until the application consumed all
311 * readahead pages and stalled on the missing page at readahead_index;
312 * Instead, submit an asynchronous readahead I/O as soon as there are
313 * only async_size pages left in the readahead window. Normally async_size
314 * will be equal to size, for maximum pipelining.
316 * In interleaved sequential reads, concurrent streams on the same fd can
317 * be invalidating each other's readahead state. So we flag the new readahead
318 * page at (start+size-async_size) with PG_readahead, and use it as readahead
319 * indicator. The flag won't be set on already cached pages, to avoid the
320 * readahead-for-nothing fuss, saving pointless page cache lookups.
322 * prev_pos tracks the last visited byte in the _previous_ read request.
323 * It should be maintained by the caller, and will be used for detecting
324 * small random reads. Note that the readahead algorithm checks loosely
325 * for sequential patterns. Hence interleaved reads might be served as
326 * sequential ones.
328 * There is a special-case: if the first page which the application tries to
329 * read happens to be the first page of the file, it is assumed that a linear
330 * read is about to happen and the window is immediately set to the initial size
331 * based on I/O request size and the max_readahead.
333 * The code ramps up the readahead size aggressively at first, but slow down as
334 * it approaches max_readhead.
338 * A minimal readahead algorithm for trivial sequential/random reads.
340 static unsigned long
341 ondemand_readahead(struct address_space *mapping,
342 struct file_ra_state *ra, struct file *filp,
343 bool hit_readahead_marker, pgoff_t offset,
344 unsigned long req_size)
346 int max = ra->ra_pages; /* max readahead pages */
347 pgoff_t prev_offset;
348 int sequential;
351 * It's the expected callback offset, assume sequential access.
352 * Ramp up sizes, and push forward the readahead window.
354 if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
355 offset == (ra->start + ra->size))) {
356 ra->start += ra->size;
357 ra->size = get_next_ra_size(ra, max);
358 ra->async_size = ra->size;
359 goto readit;
362 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
363 sequential = offset - prev_offset <= 1UL || req_size > max;
366 * Standalone, small read.
367 * Read as is, and do not pollute the readahead state.
369 if (!hit_readahead_marker && !sequential) {
370 return __do_page_cache_readahead(mapping, filp,
371 offset, req_size, 0);
375 * Hit a marked page without valid readahead state.
376 * E.g. interleaved reads.
377 * Query the pagecache for async_size, which normally equals to
378 * readahead size. Ramp it up and use it as the new readahead size.
380 if (hit_readahead_marker) {
381 pgoff_t start;
383 read_lock_irq(&mapping->tree_lock);
384 start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
385 read_unlock_irq(&mapping->tree_lock);
387 if (!start || start - offset > max)
388 return 0;
390 ra->start = start;
391 ra->size = start - offset; /* old async_size */
392 ra->size = get_next_ra_size(ra, max);
393 ra->async_size = ra->size;
394 goto readit;
398 * It may be one of
399 * - first read on start of file
400 * - sequential cache miss
401 * - oversize random read
402 * Start readahead for it.
404 ra->start = offset;
405 ra->size = get_init_ra_size(req_size, max);
406 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
408 readit:
409 return ra_submit(ra, mapping, filp);
413 * page_cache_sync_readahead - generic file readahead
414 * @mapping: address_space which holds the pagecache and I/O vectors
415 * @ra: file_ra_state which holds the readahead state
416 * @filp: passed on to ->readpage() and ->readpages()
417 * @offset: start offset into @mapping, in pagecache page-sized units
418 * @req_size: hint: total size of the read which the caller is performing in
419 * pagecache pages
421 * page_cache_sync_readahead() should be called when a cache miss happened:
422 * it will submit the read. The readahead logic may decide to piggyback more
423 * pages onto the read request if access patterns suggest it will improve
424 * performance.
426 void page_cache_sync_readahead(struct address_space *mapping,
427 struct file_ra_state *ra, struct file *filp,
428 pgoff_t offset, unsigned long req_size)
430 /* no read-ahead */
431 if (!ra->ra_pages)
432 return;
434 /* do read-ahead */
435 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
437 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
440 * page_cache_async_readahead - file readahead for marked pages
441 * @mapping: address_space which holds the pagecache and I/O vectors
442 * @ra: file_ra_state which holds the readahead state
443 * @filp: passed on to ->readpage() and ->readpages()
444 * @page: the page at @offset which has the PG_readahead flag set
445 * @offset: start offset into @mapping, in pagecache page-sized units
446 * @req_size: hint: total size of the read which the caller is performing in
447 * pagecache pages
449 * page_cache_async_ondemand() should be called when a page is used which
450 * has the PG_readahead flag: this is a marker to suggest that the application
451 * has used up enough of the readahead window that we should start pulling in
452 * more pages. */
453 void
454 page_cache_async_readahead(struct address_space *mapping,
455 struct file_ra_state *ra, struct file *filp,
456 struct page *page, pgoff_t offset,
457 unsigned long req_size)
459 /* no read-ahead */
460 if (!ra->ra_pages)
461 return;
464 * Same bit is used for PG_readahead and PG_reclaim.
466 if (PageWriteback(page))
467 return;
469 ClearPageReadahead(page);
472 * Defer asynchronous read-ahead on IO congestion.
474 if (bdi_read_congested(mapping->backing_dev_info))
475 return;
477 /* do read-ahead */
478 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
480 EXPORT_SYMBOL_GPL(page_cache_async_readahead);