rt2x00: Restrict interface between rt2x00link and drivers
[linux-2.6/mini2440.git] / drivers / net / wireless / rt2x00 / rt61pci.c
blobed829879c941af371f7618cc3408678af1ce7e0c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
41 * Allow hardware encryption to be disabled.
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
69 u32 reg;
71 mutex_lock(&rt2x00dev->csr_mutex);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
87 mutex_unlock(&rt2x00dev->csr_mutex);
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
93 u32 reg;
95 mutex_lock(&rt2x00dev->csr_mutex);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113 WAIT_FOR_BBP(rt2x00dev, &reg);
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 mutex_unlock(&rt2x00dev->csr_mutex);
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
124 u32 reg;
126 if (!word)
127 return;
129 mutex_lock(&rt2x00dev->csr_mutex);
132 * Wait until the RF becomes available, afterwards we
133 * can safely write the new data into the register.
135 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
136 reg = 0;
137 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
138 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
139 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
142 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
146 mutex_unlock(&rt2x00dev->csr_mutex);
149 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
150 const u8 command, const u8 token,
151 const u8 arg0, const u8 arg1)
153 u32 reg;
155 mutex_lock(&rt2x00dev->csr_mutex);
158 * Wait until the MCU becomes available, afterwards we
159 * can safely write the new data into the register.
161 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
164 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
165 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
166 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
168 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
169 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
170 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
171 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
174 mutex_unlock(&rt2x00dev->csr_mutex);
178 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
180 struct rt2x00_dev *rt2x00dev = eeprom->data;
181 u32 reg;
183 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
185 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
186 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
187 eeprom->reg_data_clock =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
189 eeprom->reg_chip_select =
190 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
193 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
196 u32 reg = 0;
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
199 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
200 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
201 !!eeprom->reg_data_clock);
202 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
203 !!eeprom->reg_chip_select);
205 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static const struct rt2x00debug rt61pci_rt2x00debug = {
210 .owner = THIS_MODULE,
211 .csr = {
212 .read = rt2x00pci_register_read,
213 .write = rt2x00pci_register_write,
214 .flags = RT2X00DEBUGFS_OFFSET,
215 .word_base = CSR_REG_BASE,
216 .word_size = sizeof(u32),
217 .word_count = CSR_REG_SIZE / sizeof(u32),
219 .eeprom = {
220 .read = rt2x00_eeprom_read,
221 .write = rt2x00_eeprom_write,
222 .word_base = EEPROM_BASE,
223 .word_size = sizeof(u16),
224 .word_count = EEPROM_SIZE / sizeof(u16),
226 .bbp = {
227 .read = rt61pci_bbp_read,
228 .write = rt61pci_bbp_write,
229 .word_base = BBP_BASE,
230 .word_size = sizeof(u8),
231 .word_count = BBP_SIZE / sizeof(u8),
233 .rf = {
234 .read = rt2x00_rf_read,
235 .write = rt61pci_rf_write,
236 .word_base = RF_BASE,
237 .word_size = sizeof(u32),
238 .word_count = RF_SIZE / sizeof(u32),
241 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
243 #ifdef CONFIG_RT2X00_LIB_RFKILL
244 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
246 u32 reg;
248 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
249 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
251 #else
252 #define rt61pci_rfkill_poll NULL
253 #endif /* CONFIG_RT2X00_LIB_RFKILL */
255 #ifdef CONFIG_RT2X00_LIB_LEDS
256 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
257 enum led_brightness brightness)
259 struct rt2x00_led *led =
260 container_of(led_cdev, struct rt2x00_led, led_dev);
261 unsigned int enabled = brightness != LED_OFF;
262 unsigned int a_mode =
263 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
264 unsigned int bg_mode =
265 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
267 if (led->type == LED_TYPE_RADIO) {
268 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269 MCU_LEDCS_RADIO_STATUS, enabled);
271 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
272 (led->rt2x00dev->led_mcu_reg & 0xff),
273 ((led->rt2x00dev->led_mcu_reg >> 8)));
274 } else if (led->type == LED_TYPE_ASSOC) {
275 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
277 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
278 MCU_LEDCS_LINK_A_STATUS, a_mode);
280 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
281 (led->rt2x00dev->led_mcu_reg & 0xff),
282 ((led->rt2x00dev->led_mcu_reg >> 8)));
283 } else if (led->type == LED_TYPE_QUALITY) {
285 * The brightness is divided into 6 levels (0 - 5),
286 * this means we need to convert the brightness
287 * argument into the matching level within that range.
289 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
290 brightness / (LED_FULL / 6), 0);
294 static int rt61pci_blink_set(struct led_classdev *led_cdev,
295 unsigned long *delay_on,
296 unsigned long *delay_off)
298 struct rt2x00_led *led =
299 container_of(led_cdev, struct rt2x00_led, led_dev);
300 u32 reg;
302 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
303 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
304 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
305 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
307 return 0;
310 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
311 struct rt2x00_led *led,
312 enum led_type type)
314 led->rt2x00dev = rt2x00dev;
315 led->type = type;
316 led->led_dev.brightness_set = rt61pci_brightness_set;
317 led->led_dev.blink_set = rt61pci_blink_set;
318 led->flags = LED_INITIALIZED;
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
323 * Configuration handlers.
325 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
326 struct rt2x00lib_crypto *crypto,
327 struct ieee80211_key_conf *key)
329 struct hw_key_entry key_entry;
330 struct rt2x00_field32 field;
331 u32 mask;
332 u32 reg;
334 if (crypto->cmd == SET_KEY) {
336 * rt2x00lib can't determine the correct free
337 * key_idx for shared keys. We have 1 register
338 * with key valid bits. The goal is simple, read
339 * the register, if that is full we have no slots
340 * left.
341 * Note that each BSS is allowed to have up to 4
342 * shared keys, so put a mask over the allowed
343 * entries.
345 mask = (0xf << crypto->bssidx);
347 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
348 reg &= mask;
350 if (reg && reg == mask)
351 return -ENOSPC;
353 key->hw_key_idx += reg ? ffz(reg) : 0;
356 * Upload key to hardware
358 memcpy(key_entry.key, crypto->key,
359 sizeof(key_entry.key));
360 memcpy(key_entry.tx_mic, crypto->tx_mic,
361 sizeof(key_entry.tx_mic));
362 memcpy(key_entry.rx_mic, crypto->rx_mic,
363 sizeof(key_entry.rx_mic));
365 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
366 rt2x00pci_register_multiwrite(rt2x00dev, reg,
367 &key_entry, sizeof(key_entry));
370 * The cipher types are stored over 2 registers.
371 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
372 * bssidx 1 and 2 keys are stored in SEC_CSR5.
373 * Using the correct defines correctly will cause overhead,
374 * so just calculate the correct offset.
376 if (key->hw_key_idx < 8) {
377 field.bit_offset = (3 * key->hw_key_idx);
378 field.bit_mask = 0x7 << field.bit_offset;
380 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
381 rt2x00_set_field32(&reg, field, crypto->cipher);
382 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
383 } else {
384 field.bit_offset = (3 * (key->hw_key_idx - 8));
385 field.bit_mask = 0x7 << field.bit_offset;
387 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
388 rt2x00_set_field32(&reg, field, crypto->cipher);
389 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided seperately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
405 * SEC_CSR0 contains only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead we use
408 * a calculation to determine the correct bit directly.
410 mask = 1 << key->hw_key_idx;
412 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
413 if (crypto->cmd == SET_KEY)
414 reg |= mask;
415 else if (crypto->cmd == DISABLE_KEY)
416 reg &= ~mask;
417 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
419 return 0;
422 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
423 struct rt2x00lib_crypto *crypto,
424 struct ieee80211_key_conf *key)
426 struct hw_pairwise_ta_entry addr_entry;
427 struct hw_key_entry key_entry;
428 u32 mask;
429 u32 reg;
431 if (crypto->cmd == SET_KEY) {
433 * rt2x00lib can't determine the correct free
434 * key_idx for pairwise keys. We have 2 registers
435 * with key valid bits. The goal is simple, read
436 * the first register, if that is full move to
437 * the next register.
438 * When both registers are full, we drop the key,
439 * otherwise we use the first invalid entry.
441 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
442 if (reg && reg == ~0) {
443 key->hw_key_idx = 32;
444 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
445 if (reg && reg == ~0)
446 return -ENOSPC;
449 key->hw_key_idx += reg ? ffz(reg) : 0;
452 * Upload key to hardware
454 memcpy(key_entry.key, crypto->key,
455 sizeof(key_entry.key));
456 memcpy(key_entry.tx_mic, crypto->tx_mic,
457 sizeof(key_entry.tx_mic));
458 memcpy(key_entry.rx_mic, crypto->rx_mic,
459 sizeof(key_entry.rx_mic));
461 memset(&addr_entry, 0, sizeof(addr_entry));
462 memcpy(&addr_entry, crypto->address, ETH_ALEN);
463 addr_entry.cipher = crypto->cipher;
465 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
466 rt2x00pci_register_multiwrite(rt2x00dev, reg,
467 &key_entry, sizeof(key_entry));
469 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
470 rt2x00pci_register_multiwrite(rt2x00dev, reg,
471 &addr_entry, sizeof(addr_entry));
474 * Enable pairwise lookup table for given BSS idx,
475 * without this received frames will not be decrypted
476 * by the hardware.
478 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
479 reg |= (1 << crypto->bssidx);
480 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
483 * The driver does not support the IV/EIV generation
484 * in hardware. However it doesn't support the IV/EIV
485 * inside the ieee80211 frame either, but requires it
486 * to be provided seperately for the descriptor.
487 * rt2x00lib will cut the IV/EIV data out of all frames
488 * given to us by mac80211, but we must tell mac80211
489 * to generate the IV/EIV data.
491 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
495 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
496 * a particular key is valid. Because using the FIELD32()
497 * defines directly will cause a lot of overhead we use
498 * a calculation to determine the correct bit directly.
500 if (key->hw_key_idx < 32) {
501 mask = 1 << key->hw_key_idx;
503 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
504 if (crypto->cmd == SET_KEY)
505 reg |= mask;
506 else if (crypto->cmd == DISABLE_KEY)
507 reg &= ~mask;
508 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
509 } else {
510 mask = 1 << (key->hw_key_idx - 32);
512 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
513 if (crypto->cmd == SET_KEY)
514 reg |= mask;
515 else if (crypto->cmd == DISABLE_KEY)
516 reg &= ~mask;
517 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
520 return 0;
523 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
524 const unsigned int filter_flags)
526 u32 reg;
529 * Start configuration steps.
530 * Note that the version error will always be dropped
531 * and broadcast frames will always be accepted since
532 * there is no filter for it at this time.
534 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
536 !(filter_flags & FIF_FCSFAIL));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
538 !(filter_flags & FIF_PLCPFAIL));
539 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
540 !(filter_flags & FIF_CONTROL));
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
542 !(filter_flags & FIF_PROMISC_IN_BSS));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
544 !(filter_flags & FIF_PROMISC_IN_BSS) &&
545 !rt2x00dev->intf_ap_count);
546 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
547 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
548 !(filter_flags & FIF_ALLMULTI));
549 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
550 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
551 !(filter_flags & FIF_CONTROL));
552 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
555 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
556 struct rt2x00_intf *intf,
557 struct rt2x00intf_conf *conf,
558 const unsigned int flags)
560 unsigned int beacon_base;
561 u32 reg;
563 if (flags & CONFIG_UPDATE_TYPE) {
565 * Clear current synchronisation setup.
566 * For the Beacon base registers we only need to clear
567 * the first byte since that byte contains the VALID and OWNER
568 * bits which (when set to 0) will invalidate the entire beacon.
570 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
571 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
574 * Enable synchronisation.
576 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
577 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
578 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
579 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
580 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
583 if (flags & CONFIG_UPDATE_MAC) {
584 reg = le32_to_cpu(conf->mac[1]);
585 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
586 conf->mac[1] = cpu_to_le32(reg);
588 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
589 conf->mac, sizeof(conf->mac));
592 if (flags & CONFIG_UPDATE_BSSID) {
593 reg = le32_to_cpu(conf->bssid[1]);
594 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
595 conf->bssid[1] = cpu_to_le32(reg);
597 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
598 conf->bssid, sizeof(conf->bssid));
602 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_erp *erp)
605 u32 reg;
607 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
608 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
611 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
612 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
613 !!erp->short_preamble);
614 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630 struct antenna_setup *ant)
632 u8 r3;
633 u8 r4;
634 u8 r77;
636 rt61pci_bbp_read(rt2x00dev, 3, &r3);
637 rt61pci_bbp_read(rt2x00dev, 4, &r4);
638 rt61pci_bbp_read(rt2x00dev, 77, &r77);
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
641 rt2x00_rf(&rt2x00dev->chip, RF5325));
644 * Configure the RX antenna.
646 switch (ant->rx) {
647 case ANTENNA_HW_DIVERSITY:
648 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651 break;
652 case ANTENNA_A:
653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657 else
658 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659 break;
660 case ANTENNA_B:
661 default:
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666 else
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668 break;
671 rt61pci_bbp_write(rt2x00dev, 77, r77);
672 rt61pci_bbp_write(rt2x00dev, 3, r3);
673 rt61pci_bbp_write(rt2x00dev, 4, r4);
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677 struct antenna_setup *ant)
679 u8 r3;
680 u8 r4;
681 u8 r77;
683 rt61pci_bbp_read(rt2x00dev, 3, &r3);
684 rt61pci_bbp_read(rt2x00dev, 4, &r4);
685 rt61pci_bbp_read(rt2x00dev, 77, &r77);
687 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
688 rt2x00_rf(&rt2x00dev->chip, RF2529));
689 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
693 * Configure the RX antenna.
695 switch (ant->rx) {
696 case ANTENNA_HW_DIVERSITY:
697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
698 break;
699 case ANTENNA_A:
700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
702 break;
703 case ANTENNA_B:
704 default:
705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
707 break;
710 rt61pci_bbp_write(rt2x00dev, 77, r77);
711 rt61pci_bbp_write(rt2x00dev, 3, r3);
712 rt61pci_bbp_write(rt2x00dev, 4, r4);
715 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716 const int p1, const int p2)
718 u32 reg;
720 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
723 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
725 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
726 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
728 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
731 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
732 struct antenna_setup *ant)
734 u8 r3;
735 u8 r4;
736 u8 r77;
738 rt61pci_bbp_read(rt2x00dev, 3, &r3);
739 rt61pci_bbp_read(rt2x00dev, 4, &r4);
740 rt61pci_bbp_read(rt2x00dev, 77, &r77);
743 * Configure the RX antenna.
745 switch (ant->rx) {
746 case ANTENNA_A:
747 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
750 break;
751 case ANTENNA_HW_DIVERSITY:
753 * FIXME: Antenna selection for the rf 2529 is very confusing
754 * in the legacy driver. Just default to antenna B until the
755 * legacy code can be properly translated into rt2x00 code.
757 case ANTENNA_B:
758 default:
759 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
762 break;
765 rt61pci_bbp_write(rt2x00dev, 77, r77);
766 rt61pci_bbp_write(rt2x00dev, 3, r3);
767 rt61pci_bbp_write(rt2x00dev, 4, r4);
770 struct antenna_sel {
771 u8 word;
773 * value[0] -> non-LNA
774 * value[1] -> LNA
776 u8 value[2];
779 static const struct antenna_sel antenna_sel_a[] = {
780 { 96, { 0x58, 0x78 } },
781 { 104, { 0x38, 0x48 } },
782 { 75, { 0xfe, 0x80 } },
783 { 86, { 0xfe, 0x80 } },
784 { 88, { 0xfe, 0x80 } },
785 { 35, { 0x60, 0x60 } },
786 { 97, { 0x58, 0x58 } },
787 { 98, { 0x58, 0x58 } },
790 static const struct antenna_sel antenna_sel_bg[] = {
791 { 96, { 0x48, 0x68 } },
792 { 104, { 0x2c, 0x3c } },
793 { 75, { 0xfe, 0x80 } },
794 { 86, { 0xfe, 0x80 } },
795 { 88, { 0xfe, 0x80 } },
796 { 35, { 0x50, 0x50 } },
797 { 97, { 0x48, 0x48 } },
798 { 98, { 0x48, 0x48 } },
801 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802 struct antenna_setup *ant)
804 const struct antenna_sel *sel;
805 unsigned int lna;
806 unsigned int i;
807 u32 reg;
810 * We should never come here because rt2x00lib is supposed
811 * to catch this and send us the correct antenna explicitely.
813 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814 ant->tx == ANTENNA_SW_DIVERSITY);
816 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
817 sel = antenna_sel_a;
818 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
819 } else {
820 sel = antenna_sel_bg;
821 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
824 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
827 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
829 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
830 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
831 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
832 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
834 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
836 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837 rt2x00_rf(&rt2x00dev->chip, RF5325))
838 rt61pci_config_antenna_5x(rt2x00dev, ant);
839 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
840 rt61pci_config_antenna_2x(rt2x00dev, ant);
841 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
843 rt61pci_config_antenna_2x(rt2x00dev, ant);
844 else
845 rt61pci_config_antenna_2529(rt2x00dev, ant);
849 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850 struct rt2x00lib_conf *libconf)
852 u16 eeprom;
853 short lna_gain = 0;
855 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
857 lna_gain += 14;
859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
861 } else {
862 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
863 lna_gain += 14;
865 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
869 rt2x00dev->lna_gain = lna_gain;
872 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873 struct rf_channel *rf, const int txpower)
875 u8 r3;
876 u8 r94;
877 u8 smart;
879 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
882 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883 rt2x00_rf(&rt2x00dev->chip, RF2527));
885 rt61pci_bbp_read(rt2x00dev, 3, &r3);
886 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887 rt61pci_bbp_write(rt2x00dev, 3, r3);
889 r94 = 6;
890 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891 r94 += txpower - MAX_TXPOWER;
892 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
893 r94 += txpower;
894 rt61pci_bbp_write(rt2x00dev, 94, r94);
896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
901 udelay(200);
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
908 udelay(200);
910 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
915 msleep(1);
918 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
919 const int txpower)
921 struct rf_channel rf;
923 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
928 rt61pci_config_channel(rt2x00dev, &rf, txpower);
931 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
932 struct rt2x00lib_conf *libconf)
934 u32 reg;
936 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
937 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938 libconf->conf->long_frame_max_tx_count);
939 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940 libconf->conf->short_frame_max_tx_count);
941 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
944 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf)
947 u32 reg;
949 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
950 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
951 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
953 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
954 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
955 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
957 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
958 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
959 libconf->conf->beacon_int * 16);
960 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
963 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
964 struct rt2x00lib_conf *libconf)
966 enum dev_state state =
967 (libconf->conf->flags & IEEE80211_CONF_PS) ?
968 STATE_SLEEP : STATE_AWAKE;
969 u32 reg;
971 if (state == STATE_SLEEP) {
972 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
973 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
974 libconf->conf->beacon_int - 10);
975 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
976 libconf->conf->listen_interval - 1);
977 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
979 /* We must first disable autowake before it can be enabled */
980 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
981 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
983 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
984 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
986 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
987 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
988 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
990 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
991 } else {
992 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
993 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
994 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
995 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
996 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
997 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
999 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
1000 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
1001 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
1003 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1007 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1008 struct rt2x00lib_conf *libconf,
1009 const unsigned int flags)
1011 /* Always recalculate LNA gain before changing configuration */
1012 rt61pci_config_lna_gain(rt2x00dev, libconf);
1014 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1015 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1016 libconf->conf->power_level);
1017 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1018 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1019 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1020 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1021 rt61pci_config_retry_limit(rt2x00dev, libconf);
1022 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1023 rt61pci_config_duration(rt2x00dev, libconf);
1024 if (flags & IEEE80211_CONF_CHANGE_PS)
1025 rt61pci_config_ps(rt2x00dev, libconf);
1029 * Link tuning
1031 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1032 struct link_qual *qual)
1034 u32 reg;
1037 * Update FCS error count from register.
1039 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1040 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1043 * Update False CCA count from register.
1045 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1046 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1049 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1050 struct link_qual *qual, u8 vgc_level)
1052 if (qual->vgc_level != vgc_level) {
1053 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1054 qual->vgc_level = vgc_level;
1055 qual->vgc_level_reg = vgc_level;
1059 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1060 struct link_qual *qual)
1062 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1065 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1066 struct link_qual *qual, const u32 count)
1068 u8 up_bound;
1069 u8 low_bound;
1072 * Determine r17 bounds.
1074 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1075 low_bound = 0x28;
1076 up_bound = 0x48;
1077 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1078 low_bound += 0x10;
1079 up_bound += 0x10;
1081 } else {
1082 low_bound = 0x20;
1083 up_bound = 0x40;
1084 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1085 low_bound += 0x10;
1086 up_bound += 0x10;
1091 * If we are not associated, we should go straight to the
1092 * dynamic CCA tuning.
1094 if (!rt2x00dev->intf_associated)
1095 goto dynamic_cca_tune;
1098 * Special big-R17 for very short distance
1100 if (qual->rssi >= -35) {
1101 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1102 return;
1106 * Special big-R17 for short distance
1108 if (qual->rssi >= -58) {
1109 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1110 return;
1114 * Special big-R17 for middle-short distance
1116 if (qual->rssi >= -66) {
1117 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1118 return;
1122 * Special mid-R17 for middle distance
1124 if (qual->rssi >= -74) {
1125 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1126 return;
1130 * Special case: Change up_bound based on the rssi.
1131 * Lower up_bound when rssi is weaker then -74 dBm.
1133 up_bound -= 2 * (-74 - qual->rssi);
1134 if (low_bound > up_bound)
1135 up_bound = low_bound;
1137 if (qual->vgc_level > up_bound) {
1138 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1139 return;
1142 dynamic_cca_tune:
1145 * r17 does not yet exceed upper limit, continue and base
1146 * the r17 tuning on the false CCA count.
1148 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1149 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1150 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1151 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1155 * Firmware functions
1157 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1159 char *fw_name;
1161 switch (rt2x00dev->chip.rt) {
1162 case RT2561:
1163 fw_name = FIRMWARE_RT2561;
1164 break;
1165 case RT2561s:
1166 fw_name = FIRMWARE_RT2561s;
1167 break;
1168 case RT2661:
1169 fw_name = FIRMWARE_RT2661;
1170 break;
1171 default:
1172 fw_name = NULL;
1173 break;
1176 return fw_name;
1179 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1181 u16 crc;
1184 * Use the crc itu-t algorithm.
1185 * The last 2 bytes in the firmware array are the crc checksum itself,
1186 * this means that we should never pass those 2 bytes to the crc
1187 * algorithm.
1189 crc = crc_itu_t(0, data, len - 2);
1190 crc = crc_itu_t_byte(crc, 0);
1191 crc = crc_itu_t_byte(crc, 0);
1193 return crc;
1196 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1197 const size_t len)
1199 int i;
1200 u32 reg;
1203 * Wait for stable hardware.
1205 for (i = 0; i < 100; i++) {
1206 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1207 if (reg)
1208 break;
1209 msleep(1);
1212 if (!reg) {
1213 ERROR(rt2x00dev, "Unstable hardware.\n");
1214 return -EBUSY;
1218 * Prepare MCU and mailbox for firmware loading.
1220 reg = 0;
1221 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1222 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1223 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1224 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1225 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1228 * Write firmware to device.
1230 reg = 0;
1231 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1232 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1233 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1235 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1236 data, len);
1238 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1239 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1241 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1242 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1244 for (i = 0; i < 100; i++) {
1245 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1246 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1247 break;
1248 msleep(1);
1251 if (i == 100) {
1252 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1253 return -EBUSY;
1257 * Hardware needs another millisecond before it is ready.
1259 msleep(1);
1262 * Reset MAC and BBP registers.
1264 reg = 0;
1265 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1266 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1267 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1269 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1270 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1271 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1272 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1274 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1275 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1276 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1278 return 0;
1282 * Initialization functions.
1284 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1286 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1287 u32 word;
1289 if (entry->queue->qid == QID_RX) {
1290 rt2x00_desc_read(entry_priv->desc, 0, &word);
1292 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1293 } else {
1294 rt2x00_desc_read(entry_priv->desc, 0, &word);
1296 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1297 rt2x00_get_field32(word, TXD_W0_VALID));
1301 static void rt61pci_clear_entry(struct queue_entry *entry)
1303 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1304 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1305 u32 word;
1307 if (entry->queue->qid == QID_RX) {
1308 rt2x00_desc_read(entry_priv->desc, 5, &word);
1309 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1310 skbdesc->skb_dma);
1311 rt2x00_desc_write(entry_priv->desc, 5, word);
1313 rt2x00_desc_read(entry_priv->desc, 0, &word);
1314 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1315 rt2x00_desc_write(entry_priv->desc, 0, word);
1316 } else {
1317 rt2x00_desc_read(entry_priv->desc, 0, &word);
1318 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1319 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1320 rt2x00_desc_write(entry_priv->desc, 0, word);
1324 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1326 struct queue_entry_priv_pci *entry_priv;
1327 u32 reg;
1330 * Initialize registers.
1332 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1333 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1334 rt2x00dev->tx[0].limit);
1335 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1336 rt2x00dev->tx[1].limit);
1337 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1338 rt2x00dev->tx[2].limit);
1339 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1340 rt2x00dev->tx[3].limit);
1341 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1343 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1344 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1345 rt2x00dev->tx[0].desc_size / 4);
1346 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1348 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1349 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1350 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1351 entry_priv->desc_dma);
1352 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1354 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1355 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1356 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1357 entry_priv->desc_dma);
1358 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1360 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1361 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1362 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1363 entry_priv->desc_dma);
1364 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1366 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1367 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1368 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1369 entry_priv->desc_dma);
1370 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1372 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1373 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1374 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1375 rt2x00dev->rx->desc_size / 4);
1376 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1377 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1379 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1380 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1381 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1382 entry_priv->desc_dma);
1383 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1385 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1386 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1387 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1388 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1389 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1390 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1392 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1393 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1394 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1395 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1396 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1397 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1399 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1400 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1401 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1403 return 0;
1406 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1408 u32 reg;
1410 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1411 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1412 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1413 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1414 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1416 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1417 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1418 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1419 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1420 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1421 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1422 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1423 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1424 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1425 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1428 * CCK TXD BBP registers
1430 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1431 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1432 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1433 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1434 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1435 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1436 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1437 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1438 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1439 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1442 * OFDM TXD BBP registers
1444 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1445 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1446 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1447 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1448 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1449 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1450 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1451 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1453 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1454 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1455 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1456 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1457 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1458 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1460 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1461 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1462 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1463 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1464 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1465 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1467 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1468 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1469 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1470 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1471 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1472 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1473 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1474 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1476 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1478 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1480 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1481 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1482 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1484 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1486 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1487 return -EBUSY;
1489 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1492 * Invalidate all Shared Keys (SEC_CSR0),
1493 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1495 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1496 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1497 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1499 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1500 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1501 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1502 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1504 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1506 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1508 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1511 * Clear all beacons
1512 * For the Beacon base registers we only need to clear
1513 * the first byte since that byte contains the VALID and OWNER
1514 * bits which (when set to 0) will invalidate the entire beacon.
1516 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1517 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1518 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1519 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1522 * We must clear the error counters.
1523 * These registers are cleared on read,
1524 * so we may pass a useless variable to store the value.
1526 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1527 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1528 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1531 * Reset MAC and BBP registers.
1533 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1534 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1535 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1536 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1538 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1539 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1540 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1541 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1543 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1544 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1545 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1547 return 0;
1550 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1552 unsigned int i;
1553 u8 value;
1555 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1556 rt61pci_bbp_read(rt2x00dev, 0, &value);
1557 if ((value != 0xff) && (value != 0x00))
1558 return 0;
1559 udelay(REGISTER_BUSY_DELAY);
1562 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1563 return -EACCES;
1566 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1568 unsigned int i;
1569 u16 eeprom;
1570 u8 reg_id;
1571 u8 value;
1573 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1574 return -EACCES;
1576 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1577 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1578 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1579 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1580 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1581 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1582 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1583 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1584 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1585 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1586 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1587 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1588 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1589 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1590 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1591 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1592 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1593 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1594 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1595 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1596 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1597 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1598 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1599 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1601 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1602 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1604 if (eeprom != 0xffff && eeprom != 0x0000) {
1605 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1606 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1607 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1611 return 0;
1615 * Device state switch handlers.
1617 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1618 enum dev_state state)
1620 u32 reg;
1622 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1623 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1624 (state == STATE_RADIO_RX_OFF) ||
1625 (state == STATE_RADIO_RX_OFF_LINK));
1626 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1629 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1630 enum dev_state state)
1632 int mask = (state == STATE_RADIO_IRQ_OFF);
1633 u32 reg;
1636 * When interrupts are being enabled, the interrupt registers
1637 * should clear the register to assure a clean state.
1639 if (state == STATE_RADIO_IRQ_ON) {
1640 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1641 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1643 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1644 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1648 * Only toggle the interrupts bits we are going to use.
1649 * Non-checked interrupt bits are disabled by default.
1651 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1652 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1653 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1654 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1655 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1656 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1658 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1659 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1660 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1661 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1662 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1663 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1664 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1665 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1666 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1667 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1670 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1672 u32 reg;
1675 * Initialize all registers.
1677 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1678 rt61pci_init_registers(rt2x00dev) ||
1679 rt61pci_init_bbp(rt2x00dev)))
1680 return -EIO;
1683 * Enable RX.
1685 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1686 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1687 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1689 return 0;
1692 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1694 u32 reg;
1696 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1699 * Disable synchronisation.
1701 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1704 * Cancel RX and TX.
1706 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1707 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1708 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1709 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1710 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1711 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1714 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1716 u32 reg;
1717 unsigned int i;
1718 char put_to_sleep;
1720 put_to_sleep = (state != STATE_AWAKE);
1722 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1723 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1724 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1725 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1728 * Device is not guaranteed to be in the requested state yet.
1729 * We must wait until the register indicates that the
1730 * device has entered the correct state.
1732 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1733 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1734 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1735 if (state == !put_to_sleep)
1736 return 0;
1737 msleep(10);
1740 return -EBUSY;
1743 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1744 enum dev_state state)
1746 int retval = 0;
1748 switch (state) {
1749 case STATE_RADIO_ON:
1750 retval = rt61pci_enable_radio(rt2x00dev);
1751 break;
1752 case STATE_RADIO_OFF:
1753 rt61pci_disable_radio(rt2x00dev);
1754 break;
1755 case STATE_RADIO_RX_ON:
1756 case STATE_RADIO_RX_ON_LINK:
1757 case STATE_RADIO_RX_OFF:
1758 case STATE_RADIO_RX_OFF_LINK:
1759 rt61pci_toggle_rx(rt2x00dev, state);
1760 break;
1761 case STATE_RADIO_IRQ_ON:
1762 case STATE_RADIO_IRQ_OFF:
1763 rt61pci_toggle_irq(rt2x00dev, state);
1764 break;
1765 case STATE_DEEP_SLEEP:
1766 case STATE_SLEEP:
1767 case STATE_STANDBY:
1768 case STATE_AWAKE:
1769 retval = rt61pci_set_state(rt2x00dev, state);
1770 break;
1771 default:
1772 retval = -ENOTSUPP;
1773 break;
1776 if (unlikely(retval))
1777 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1778 state, retval);
1780 return retval;
1784 * TX descriptor initialization
1786 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1787 struct sk_buff *skb,
1788 struct txentry_desc *txdesc)
1790 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1791 __le32 *txd = skbdesc->desc;
1792 u32 word;
1795 * Start writing the descriptor words.
1797 rt2x00_desc_read(txd, 1, &word);
1798 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1799 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1800 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1801 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1802 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1803 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1804 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1805 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1806 rt2x00_desc_write(txd, 1, word);
1808 rt2x00_desc_read(txd, 2, &word);
1809 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1810 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1811 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1812 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1813 rt2x00_desc_write(txd, 2, word);
1815 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1816 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1817 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1820 rt2x00_desc_read(txd, 5, &word);
1821 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1822 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1823 skbdesc->entry->entry_idx);
1824 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1825 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1826 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1827 rt2x00_desc_write(txd, 5, word);
1829 rt2x00_desc_read(txd, 6, &word);
1830 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1831 skbdesc->skb_dma);
1832 rt2x00_desc_write(txd, 6, word);
1834 if (skbdesc->desc_len > TXINFO_SIZE) {
1835 rt2x00_desc_read(txd, 11, &word);
1836 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1837 rt2x00_desc_write(txd, 11, word);
1840 rt2x00_desc_read(txd, 0, &word);
1841 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1842 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1843 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1844 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1845 rt2x00_set_field32(&word, TXD_W0_ACK,
1846 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1847 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1848 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1849 rt2x00_set_field32(&word, TXD_W0_OFDM,
1850 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1851 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1852 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1853 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1854 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1855 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1856 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1857 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1858 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1859 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1860 rt2x00_set_field32(&word, TXD_W0_BURST,
1861 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1862 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1863 rt2x00_desc_write(txd, 0, word);
1867 * TX data initialization
1869 static void rt61pci_write_beacon(struct queue_entry *entry)
1871 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1872 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1873 unsigned int beacon_base;
1874 u32 reg;
1877 * Disable beaconing while we are reloading the beacon data,
1878 * otherwise we might be sending out invalid data.
1880 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1881 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1882 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1883 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1884 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1887 * Write entire beacon with descriptor to register.
1889 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1890 rt2x00pci_register_multiwrite(rt2x00dev,
1891 beacon_base,
1892 skbdesc->desc, skbdesc->desc_len);
1893 rt2x00pci_register_multiwrite(rt2x00dev,
1894 beacon_base + skbdesc->desc_len,
1895 entry->skb->data, entry->skb->len);
1898 * Clean up beacon skb.
1900 dev_kfree_skb_any(entry->skb);
1901 entry->skb = NULL;
1904 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1905 const enum data_queue_qid queue)
1907 u32 reg;
1909 if (queue == QID_BEACON) {
1911 * For Wi-Fi faily generated beacons between participating
1912 * stations. Set TBTT phase adaptive adjustment step to 8us.
1914 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1916 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1917 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1918 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1919 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1920 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1921 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1923 return;
1926 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1927 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1928 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1929 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1930 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1931 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1935 * RX control handlers
1937 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1939 u8 offset = rt2x00dev->lna_gain;
1940 u8 lna;
1942 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1943 switch (lna) {
1944 case 3:
1945 offset += 90;
1946 break;
1947 case 2:
1948 offset += 74;
1949 break;
1950 case 1:
1951 offset += 64;
1952 break;
1953 default:
1954 return 0;
1957 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1958 if (lna == 3 || lna == 2)
1959 offset += 10;
1962 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1965 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1966 struct rxdone_entry_desc *rxdesc)
1968 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1969 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1970 u32 word0;
1971 u32 word1;
1973 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1974 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1976 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1977 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1979 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1980 rxdesc->cipher =
1981 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1982 rxdesc->cipher_status =
1983 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1986 if (rxdesc->cipher != CIPHER_NONE) {
1987 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1988 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1989 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1991 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1992 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1995 * Hardware has stripped IV/EIV data from 802.11 frame during
1996 * decryption. It has provided the data seperately but rt2x00lib
1997 * should decide if it should be reinserted.
1999 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2002 * FIXME: Legacy driver indicates that the frame does
2003 * contain the Michael Mic. Unfortunately, in rt2x00
2004 * the MIC seems to be missing completely...
2006 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2008 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2009 rxdesc->flags |= RX_FLAG_DECRYPTED;
2010 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2011 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2015 * Obtain the status about this packet.
2016 * When frame was received with an OFDM bitrate,
2017 * the signal is the PLCP value. If it was received with
2018 * a CCK bitrate the signal is the rate in 100kbit/s.
2020 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2021 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2022 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2024 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2025 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2026 else
2027 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2028 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2029 rxdesc->dev_flags |= RXDONE_MY_BSS;
2033 * Interrupt functions.
2035 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2037 struct data_queue *queue;
2038 struct queue_entry *entry;
2039 struct queue_entry *entry_done;
2040 struct queue_entry_priv_pci *entry_priv;
2041 struct txdone_entry_desc txdesc;
2042 u32 word;
2043 u32 reg;
2044 u32 old_reg;
2045 int type;
2046 int index;
2049 * During each loop we will compare the freshly read
2050 * STA_CSR4 register value with the value read from
2051 * the previous loop. If the 2 values are equal then
2052 * we should stop processing because the chance it
2053 * quite big that the device has been unplugged and
2054 * we risk going into an endless loop.
2056 old_reg = 0;
2058 while (1) {
2059 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2060 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2061 break;
2063 if (old_reg == reg)
2064 break;
2065 old_reg = reg;
2068 * Skip this entry when it contains an invalid
2069 * queue identication number.
2071 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2072 queue = rt2x00queue_get_queue(rt2x00dev, type);
2073 if (unlikely(!queue))
2074 continue;
2077 * Skip this entry when it contains an invalid
2078 * index number.
2080 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2081 if (unlikely(index >= queue->limit))
2082 continue;
2084 entry = &queue->entries[index];
2085 entry_priv = entry->priv_data;
2086 rt2x00_desc_read(entry_priv->desc, 0, &word);
2088 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2089 !rt2x00_get_field32(word, TXD_W0_VALID))
2090 return;
2092 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2093 while (entry != entry_done) {
2094 /* Catch up.
2095 * Just report any entries we missed as failed.
2097 WARNING(rt2x00dev,
2098 "TX status report missed for entry %d\n",
2099 entry_done->entry_idx);
2101 txdesc.flags = 0;
2102 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2103 txdesc.retry = 0;
2105 rt2x00lib_txdone(entry_done, &txdesc);
2106 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2110 * Obtain the status about this packet.
2112 txdesc.flags = 0;
2113 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2114 case 0: /* Success, maybe with retry */
2115 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2116 break;
2117 case 6: /* Failure, excessive retries */
2118 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2119 /* Don't break, this is a failed frame! */
2120 default: /* Failure */
2121 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2123 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2125 rt2x00lib_txdone(entry, &txdesc);
2129 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2131 struct rt2x00_dev *rt2x00dev = dev_instance;
2132 u32 reg_mcu;
2133 u32 reg;
2136 * Get the interrupt sources & saved to local variable.
2137 * Write register value back to clear pending interrupts.
2139 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2140 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2142 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2143 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2145 if (!reg && !reg_mcu)
2146 return IRQ_NONE;
2148 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2149 return IRQ_HANDLED;
2152 * Handle interrupts, walk through all bits
2153 * and run the tasks, the bits are checked in order of
2154 * priority.
2158 * 1 - Rx ring done interrupt.
2160 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2161 rt2x00pci_rxdone(rt2x00dev);
2164 * 2 - Tx ring done interrupt.
2166 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2167 rt61pci_txdone(rt2x00dev);
2170 * 3 - Handle MCU command done.
2172 if (reg_mcu)
2173 rt2x00pci_register_write(rt2x00dev,
2174 M2H_CMD_DONE_CSR, 0xffffffff);
2176 return IRQ_HANDLED;
2180 * Device probe functions.
2182 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2184 struct eeprom_93cx6 eeprom;
2185 u32 reg;
2186 u16 word;
2187 u8 *mac;
2188 s8 value;
2190 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2192 eeprom.data = rt2x00dev;
2193 eeprom.register_read = rt61pci_eepromregister_read;
2194 eeprom.register_write = rt61pci_eepromregister_write;
2195 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2196 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2197 eeprom.reg_data_in = 0;
2198 eeprom.reg_data_out = 0;
2199 eeprom.reg_data_clock = 0;
2200 eeprom.reg_chip_select = 0;
2202 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2203 EEPROM_SIZE / sizeof(u16));
2206 * Start validation of the data that has been read.
2208 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2209 if (!is_valid_ether_addr(mac)) {
2210 random_ether_addr(mac);
2211 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2214 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2215 if (word == 0xffff) {
2216 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2217 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2218 ANTENNA_B);
2219 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2220 ANTENNA_B);
2221 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2222 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2223 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2224 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2225 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2226 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2229 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2230 if (word == 0xffff) {
2231 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2232 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2233 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2234 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2235 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2236 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2237 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2238 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2241 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2242 if (word == 0xffff) {
2243 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2244 LED_MODE_DEFAULT);
2245 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2246 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2249 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2250 if (word == 0xffff) {
2251 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2252 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2253 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2254 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2257 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2258 if (word == 0xffff) {
2259 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2260 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2261 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2262 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2263 } else {
2264 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2265 if (value < -10 || value > 10)
2266 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2267 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2268 if (value < -10 || value > 10)
2269 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2270 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2273 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2274 if (word == 0xffff) {
2275 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2276 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2277 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2278 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2279 } else {
2280 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2281 if (value < -10 || value > 10)
2282 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2283 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2284 if (value < -10 || value > 10)
2285 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2286 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2289 return 0;
2292 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2294 u32 reg;
2295 u16 value;
2296 u16 eeprom;
2297 u16 device;
2300 * Read EEPROM word for configuration.
2302 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2305 * Identify RF chipset.
2306 * To determine the RT chip we have to read the
2307 * PCI header of the device.
2309 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2310 PCI_CONFIG_HEADER_DEVICE, &device);
2311 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2312 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2313 rt2x00_set_chip(rt2x00dev, device, value, reg);
2315 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2316 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2317 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2318 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2319 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2320 return -ENODEV;
2324 * Determine number of antenna's.
2326 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2327 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2330 * Identify default antenna configuration.
2332 rt2x00dev->default_ant.tx =
2333 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2334 rt2x00dev->default_ant.rx =
2335 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2338 * Read the Frame type.
2340 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2341 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2344 * Detect if this device has an hardware controlled radio.
2346 #ifdef CONFIG_RT2X00_LIB_RFKILL
2347 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2348 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2349 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2352 * Read frequency offset and RF programming sequence.
2354 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2355 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2356 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2358 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2361 * Read external LNA informations.
2363 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2365 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2366 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2367 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2368 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2371 * When working with a RF2529 chip without double antenna
2372 * the antenna settings should be gathered from the NIC
2373 * eeprom word.
2375 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2376 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2377 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2378 case 0:
2379 rt2x00dev->default_ant.tx = ANTENNA_B;
2380 rt2x00dev->default_ant.rx = ANTENNA_A;
2381 break;
2382 case 1:
2383 rt2x00dev->default_ant.tx = ANTENNA_B;
2384 rt2x00dev->default_ant.rx = ANTENNA_B;
2385 break;
2386 case 2:
2387 rt2x00dev->default_ant.tx = ANTENNA_A;
2388 rt2x00dev->default_ant.rx = ANTENNA_A;
2389 break;
2390 case 3:
2391 rt2x00dev->default_ant.tx = ANTENNA_A;
2392 rt2x00dev->default_ant.rx = ANTENNA_B;
2393 break;
2396 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2397 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2398 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2399 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2403 * Store led settings, for correct led behaviour.
2404 * If the eeprom value is invalid,
2405 * switch to default led mode.
2407 #ifdef CONFIG_RT2X00_LIB_LEDS
2408 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2409 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2411 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2412 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2413 if (value == LED_MODE_SIGNAL_STRENGTH)
2414 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2415 LED_TYPE_QUALITY);
2417 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2418 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2419 rt2x00_get_field16(eeprom,
2420 EEPROM_LED_POLARITY_GPIO_0));
2421 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2422 rt2x00_get_field16(eeprom,
2423 EEPROM_LED_POLARITY_GPIO_1));
2424 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2425 rt2x00_get_field16(eeprom,
2426 EEPROM_LED_POLARITY_GPIO_2));
2427 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2428 rt2x00_get_field16(eeprom,
2429 EEPROM_LED_POLARITY_GPIO_3));
2430 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2431 rt2x00_get_field16(eeprom,
2432 EEPROM_LED_POLARITY_GPIO_4));
2433 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2434 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2435 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2436 rt2x00_get_field16(eeprom,
2437 EEPROM_LED_POLARITY_RDY_G));
2438 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2439 rt2x00_get_field16(eeprom,
2440 EEPROM_LED_POLARITY_RDY_A));
2441 #endif /* CONFIG_RT2X00_LIB_LEDS */
2443 return 0;
2447 * RF value list for RF5225 & RF5325
2448 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2450 static const struct rf_channel rf_vals_noseq[] = {
2451 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2452 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2453 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2454 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2455 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2456 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2457 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2458 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2459 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2460 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2461 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2462 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2463 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2464 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2466 /* 802.11 UNI / HyperLan 2 */
2467 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2468 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2469 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2470 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2471 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2472 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2473 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2474 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2476 /* 802.11 HyperLan 2 */
2477 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2478 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2479 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2480 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2481 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2482 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2483 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2484 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2485 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2486 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2488 /* 802.11 UNII */
2489 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2490 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2491 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2492 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2493 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2494 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2496 /* MMAC(Japan)J52 ch 34,38,42,46 */
2497 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2498 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2499 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2500 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2504 * RF value list for RF5225 & RF5325
2505 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2507 static const struct rf_channel rf_vals_seq[] = {
2508 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2509 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2510 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2511 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2512 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2513 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2514 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2515 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2516 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2517 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2518 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2519 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2520 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2521 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2523 /* 802.11 UNI / HyperLan 2 */
2524 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2525 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2526 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2527 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2528 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2529 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2530 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2531 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2533 /* 802.11 HyperLan 2 */
2534 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2535 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2536 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2537 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2538 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2539 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2540 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2541 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2542 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2543 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2545 /* 802.11 UNII */
2546 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2547 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2548 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2549 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2550 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2551 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2553 /* MMAC(Japan)J52 ch 34,38,42,46 */
2554 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2555 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2556 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2557 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2560 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2562 struct hw_mode_spec *spec = &rt2x00dev->spec;
2563 struct channel_info *info;
2564 char *tx_power;
2565 unsigned int i;
2568 * Initialize all hw fields.
2570 rt2x00dev->hw->flags =
2571 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2572 IEEE80211_HW_SIGNAL_DBM;
2573 rt2x00dev->hw->extra_tx_headroom = 0;
2575 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2576 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2577 rt2x00_eeprom_addr(rt2x00dev,
2578 EEPROM_MAC_ADDR_0));
2581 * Initialize hw_mode information.
2583 spec->supported_bands = SUPPORT_BAND_2GHZ;
2584 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2586 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2587 spec->num_channels = 14;
2588 spec->channels = rf_vals_noseq;
2589 } else {
2590 spec->num_channels = 14;
2591 spec->channels = rf_vals_seq;
2594 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2595 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2596 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2597 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2601 * Create channel information array
2603 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2604 if (!info)
2605 return -ENOMEM;
2607 spec->channels_info = info;
2609 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2610 for (i = 0; i < 14; i++)
2611 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2613 if (spec->num_channels > 14) {
2614 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2615 for (i = 14; i < spec->num_channels; i++)
2616 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2619 return 0;
2622 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2624 int retval;
2627 * Allocate eeprom data.
2629 retval = rt61pci_validate_eeprom(rt2x00dev);
2630 if (retval)
2631 return retval;
2633 retval = rt61pci_init_eeprom(rt2x00dev);
2634 if (retval)
2635 return retval;
2638 * Initialize hw specifications.
2640 retval = rt61pci_probe_hw_mode(rt2x00dev);
2641 if (retval)
2642 return retval;
2645 * This device requires firmware and DMA mapped skbs.
2647 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2648 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2649 if (!modparam_nohwcrypt)
2650 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2653 * Set the rssi offset.
2655 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2657 return 0;
2661 * IEEE80211 stack callback functions.
2663 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2664 const struct ieee80211_tx_queue_params *params)
2666 struct rt2x00_dev *rt2x00dev = hw->priv;
2667 struct data_queue *queue;
2668 struct rt2x00_field32 field;
2669 int retval;
2670 u32 reg;
2673 * First pass the configuration through rt2x00lib, that will
2674 * update the queue settings and validate the input. After that
2675 * we are free to update the registers based on the value
2676 * in the queue parameter.
2678 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2679 if (retval)
2680 return retval;
2682 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2684 /* Update WMM TXOP register */
2685 if (queue_idx < 2) {
2686 field.bit_offset = queue_idx * 16;
2687 field.bit_mask = 0xffff << field.bit_offset;
2689 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2690 rt2x00_set_field32(&reg, field, queue->txop);
2691 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2692 } else if (queue_idx < 4) {
2693 field.bit_offset = (queue_idx - 2) * 16;
2694 field.bit_mask = 0xffff << field.bit_offset;
2696 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2697 rt2x00_set_field32(&reg, field, queue->txop);
2698 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2701 /* Update WMM registers */
2702 field.bit_offset = queue_idx * 4;
2703 field.bit_mask = 0xf << field.bit_offset;
2705 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2706 rt2x00_set_field32(&reg, field, queue->aifs);
2707 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2709 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2710 rt2x00_set_field32(&reg, field, queue->cw_min);
2711 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2713 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2714 rt2x00_set_field32(&reg, field, queue->cw_max);
2715 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2717 return 0;
2720 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2722 struct rt2x00_dev *rt2x00dev = hw->priv;
2723 u64 tsf;
2724 u32 reg;
2726 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2727 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2728 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2729 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2731 return tsf;
2734 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2735 .tx = rt2x00mac_tx,
2736 .start = rt2x00mac_start,
2737 .stop = rt2x00mac_stop,
2738 .add_interface = rt2x00mac_add_interface,
2739 .remove_interface = rt2x00mac_remove_interface,
2740 .config = rt2x00mac_config,
2741 .config_interface = rt2x00mac_config_interface,
2742 .configure_filter = rt2x00mac_configure_filter,
2743 .set_key = rt2x00mac_set_key,
2744 .get_stats = rt2x00mac_get_stats,
2745 .bss_info_changed = rt2x00mac_bss_info_changed,
2746 .conf_tx = rt61pci_conf_tx,
2747 .get_tx_stats = rt2x00mac_get_tx_stats,
2748 .get_tsf = rt61pci_get_tsf,
2751 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2752 .irq_handler = rt61pci_interrupt,
2753 .probe_hw = rt61pci_probe_hw,
2754 .get_firmware_name = rt61pci_get_firmware_name,
2755 .get_firmware_crc = rt61pci_get_firmware_crc,
2756 .load_firmware = rt61pci_load_firmware,
2757 .initialize = rt2x00pci_initialize,
2758 .uninitialize = rt2x00pci_uninitialize,
2759 .get_entry_state = rt61pci_get_entry_state,
2760 .clear_entry = rt61pci_clear_entry,
2761 .set_device_state = rt61pci_set_device_state,
2762 .rfkill_poll = rt61pci_rfkill_poll,
2763 .link_stats = rt61pci_link_stats,
2764 .reset_tuner = rt61pci_reset_tuner,
2765 .link_tuner = rt61pci_link_tuner,
2766 .write_tx_desc = rt61pci_write_tx_desc,
2767 .write_tx_data = rt2x00pci_write_tx_data,
2768 .write_beacon = rt61pci_write_beacon,
2769 .kick_tx_queue = rt61pci_kick_tx_queue,
2770 .fill_rxdone = rt61pci_fill_rxdone,
2771 .config_shared_key = rt61pci_config_shared_key,
2772 .config_pairwise_key = rt61pci_config_pairwise_key,
2773 .config_filter = rt61pci_config_filter,
2774 .config_intf = rt61pci_config_intf,
2775 .config_erp = rt61pci_config_erp,
2776 .config_ant = rt61pci_config_ant,
2777 .config = rt61pci_config,
2780 static const struct data_queue_desc rt61pci_queue_rx = {
2781 .entry_num = RX_ENTRIES,
2782 .data_size = DATA_FRAME_SIZE,
2783 .desc_size = RXD_DESC_SIZE,
2784 .priv_size = sizeof(struct queue_entry_priv_pci),
2787 static const struct data_queue_desc rt61pci_queue_tx = {
2788 .entry_num = TX_ENTRIES,
2789 .data_size = DATA_FRAME_SIZE,
2790 .desc_size = TXD_DESC_SIZE,
2791 .priv_size = sizeof(struct queue_entry_priv_pci),
2794 static const struct data_queue_desc rt61pci_queue_bcn = {
2795 .entry_num = 4 * BEACON_ENTRIES,
2796 .data_size = 0, /* No DMA required for beacons */
2797 .desc_size = TXINFO_SIZE,
2798 .priv_size = sizeof(struct queue_entry_priv_pci),
2801 static const struct rt2x00_ops rt61pci_ops = {
2802 .name = KBUILD_MODNAME,
2803 .max_sta_intf = 1,
2804 .max_ap_intf = 4,
2805 .eeprom_size = EEPROM_SIZE,
2806 .rf_size = RF_SIZE,
2807 .tx_queues = NUM_TX_QUEUES,
2808 .rx = &rt61pci_queue_rx,
2809 .tx = &rt61pci_queue_tx,
2810 .bcn = &rt61pci_queue_bcn,
2811 .lib = &rt61pci_rt2x00_ops,
2812 .hw = &rt61pci_mac80211_ops,
2813 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2814 .debugfs = &rt61pci_rt2x00debug,
2815 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2819 * RT61pci module information.
2821 static struct pci_device_id rt61pci_device_table[] = {
2822 /* RT2561s */
2823 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2824 /* RT2561 v2 */
2825 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2826 /* RT2661 */
2827 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2828 { 0, }
2831 MODULE_AUTHOR(DRV_PROJECT);
2832 MODULE_VERSION(DRV_VERSION);
2833 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2834 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2835 "PCI & PCMCIA chipset based cards");
2836 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2837 MODULE_FIRMWARE(FIRMWARE_RT2561);
2838 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2839 MODULE_FIRMWARE(FIRMWARE_RT2661);
2840 MODULE_LICENSE("GPL");
2842 static struct pci_driver rt61pci_driver = {
2843 .name = KBUILD_MODNAME,
2844 .id_table = rt61pci_device_table,
2845 .probe = rt2x00pci_probe,
2846 .remove = __devexit_p(rt2x00pci_remove),
2847 .suspend = rt2x00pci_suspend,
2848 .resume = rt2x00pci_resume,
2851 static int __init rt61pci_init(void)
2853 return pci_register_driver(&rt61pci_driver);
2856 static void __exit rt61pci_exit(void)
2858 pci_unregister_driver(&rt61pci_driver);
2861 module_init(rt61pci_init);
2862 module_exit(rt61pci_exit);