2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00pci.h"
41 * Allow hardware encryption to be disabled.
43 static int modparam_nohwcrypt
= 0;
44 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
45 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
66 static void rt61pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
67 const unsigned int word
, const u8 value
)
71 mutex_lock(&rt2x00dev
->csr_mutex
);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
79 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
80 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
81 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
82 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
84 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
87 mutex_unlock(&rt2x00dev
->csr_mutex
);
90 static void rt61pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
91 const unsigned int word
, u8
*value
)
95 mutex_lock(&rt2x00dev
->csr_mutex
);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
107 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
108 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
109 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
111 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
113 WAIT_FOR_BBP(rt2x00dev
, ®
);
116 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
118 mutex_unlock(&rt2x00dev
->csr_mutex
);
121 static void rt61pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
122 const unsigned int word
, const u32 value
)
129 mutex_lock(&rt2x00dev
->csr_mutex
);
132 * Wait until the RF becomes available, afterwards we
133 * can safely write the new data into the register.
135 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
137 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
138 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
139 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
140 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
142 rt2x00pci_register_write(rt2x00dev
, PHY_CSR4
, reg
);
143 rt2x00_rf_write(rt2x00dev
, word
, value
);
146 mutex_unlock(&rt2x00dev
->csr_mutex
);
149 static void rt61pci_mcu_request(struct rt2x00_dev
*rt2x00dev
,
150 const u8 command
, const u8 token
,
151 const u8 arg0
, const u8 arg1
)
155 mutex_lock(&rt2x00dev
->csr_mutex
);
158 * Wait until the MCU becomes available, afterwards we
159 * can safely write the new data into the register.
161 if (WAIT_FOR_MCU(rt2x00dev
, ®
)) {
162 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
163 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
164 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
165 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
166 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
168 rt2x00pci_register_read(rt2x00dev
, HOST_CMD_CSR
, ®
);
169 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
170 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
171 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
174 mutex_unlock(&rt2x00dev
->csr_mutex
);
178 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
180 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
183 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
185 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
186 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
187 eeprom
->reg_data_clock
=
188 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
189 eeprom
->reg_chip_select
=
190 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
193 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
195 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
198 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
199 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
200 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
201 !!eeprom
->reg_data_clock
);
202 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
203 !!eeprom
->reg_chip_select
);
205 rt2x00pci_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static const struct rt2x00debug rt61pci_rt2x00debug
= {
210 .owner
= THIS_MODULE
,
212 .read
= rt2x00pci_register_read
,
213 .write
= rt2x00pci_register_write
,
214 .flags
= RT2X00DEBUGFS_OFFSET
,
215 .word_base
= CSR_REG_BASE
,
216 .word_size
= sizeof(u32
),
217 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
220 .read
= rt2x00_eeprom_read
,
221 .write
= rt2x00_eeprom_write
,
222 .word_base
= EEPROM_BASE
,
223 .word_size
= sizeof(u16
),
224 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
227 .read
= rt61pci_bbp_read
,
228 .write
= rt61pci_bbp_write
,
229 .word_base
= BBP_BASE
,
230 .word_size
= sizeof(u8
),
231 .word_count
= BBP_SIZE
/ sizeof(u8
),
234 .read
= rt2x00_rf_read
,
235 .write
= rt61pci_rf_write
,
236 .word_base
= RF_BASE
,
237 .word_size
= sizeof(u32
),
238 .word_count
= RF_SIZE
/ sizeof(u32
),
241 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
243 #ifdef CONFIG_RT2X00_LIB_RFKILL
244 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
248 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
249 return rt2x00_get_field32(reg
, MAC_CSR13_BIT5
);
252 #define rt61pci_rfkill_poll NULL
253 #endif /* CONFIG_RT2X00_LIB_RFKILL */
255 #ifdef CONFIG_RT2X00_LIB_LEDS
256 static void rt61pci_brightness_set(struct led_classdev
*led_cdev
,
257 enum led_brightness brightness
)
259 struct rt2x00_led
*led
=
260 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
261 unsigned int enabled
= brightness
!= LED_OFF
;
262 unsigned int a_mode
=
263 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
264 unsigned int bg_mode
=
265 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
267 if (led
->type
== LED_TYPE_RADIO
) {
268 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
269 MCU_LEDCS_RADIO_STATUS
, enabled
);
271 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
272 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
273 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
274 } else if (led
->type
== LED_TYPE_ASSOC
) {
275 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
276 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
277 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
278 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
280 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
281 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
282 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
283 } else if (led
->type
== LED_TYPE_QUALITY
) {
285 * The brightness is divided into 6 levels (0 - 5),
286 * this means we need to convert the brightness
287 * argument into the matching level within that range.
289 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
290 brightness
/ (LED_FULL
/ 6), 0);
294 static int rt61pci_blink_set(struct led_classdev
*led_cdev
,
295 unsigned long *delay_on
,
296 unsigned long *delay_off
)
298 struct rt2x00_led
*led
=
299 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
302 rt2x00pci_register_read(led
->rt2x00dev
, MAC_CSR14
, ®
);
303 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
304 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
305 rt2x00pci_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
310 static void rt61pci_init_led(struct rt2x00_dev
*rt2x00dev
,
311 struct rt2x00_led
*led
,
314 led
->rt2x00dev
= rt2x00dev
;
316 led
->led_dev
.brightness_set
= rt61pci_brightness_set
;
317 led
->led_dev
.blink_set
= rt61pci_blink_set
;
318 led
->flags
= LED_INITIALIZED
;
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
323 * Configuration handlers.
325 static int rt61pci_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
326 struct rt2x00lib_crypto
*crypto
,
327 struct ieee80211_key_conf
*key
)
329 struct hw_key_entry key_entry
;
330 struct rt2x00_field32 field
;
334 if (crypto
->cmd
== SET_KEY
) {
336 * rt2x00lib can't determine the correct free
337 * key_idx for shared keys. We have 1 register
338 * with key valid bits. The goal is simple, read
339 * the register, if that is full we have no slots
341 * Note that each BSS is allowed to have up to 4
342 * shared keys, so put a mask over the allowed
345 mask
= (0xf << crypto
->bssidx
);
347 rt2x00pci_register_read(rt2x00dev
, SEC_CSR0
, ®
);
350 if (reg
&& reg
== mask
)
353 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
356 * Upload key to hardware
358 memcpy(key_entry
.key
, crypto
->key
,
359 sizeof(key_entry
.key
));
360 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
361 sizeof(key_entry
.tx_mic
));
362 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
363 sizeof(key_entry
.rx_mic
));
365 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
366 rt2x00pci_register_multiwrite(rt2x00dev
, reg
,
367 &key_entry
, sizeof(key_entry
));
370 * The cipher types are stored over 2 registers.
371 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
372 * bssidx 1 and 2 keys are stored in SEC_CSR5.
373 * Using the correct defines correctly will cause overhead,
374 * so just calculate the correct offset.
376 if (key
->hw_key_idx
< 8) {
377 field
.bit_offset
= (3 * key
->hw_key_idx
);
378 field
.bit_mask
= 0x7 << field
.bit_offset
;
380 rt2x00pci_register_read(rt2x00dev
, SEC_CSR1
, ®
);
381 rt2x00_set_field32(®
, field
, crypto
->cipher
);
382 rt2x00pci_register_write(rt2x00dev
, SEC_CSR1
, reg
);
384 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
385 field
.bit_mask
= 0x7 << field
.bit_offset
;
387 rt2x00pci_register_read(rt2x00dev
, SEC_CSR5
, ®
);
388 rt2x00_set_field32(®
, field
, crypto
->cipher
);
389 rt2x00pci_register_write(rt2x00dev
, SEC_CSR5
, reg
);
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided seperately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
401 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
405 * SEC_CSR0 contains only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead we use
408 * a calculation to determine the correct bit directly.
410 mask
= 1 << key
->hw_key_idx
;
412 rt2x00pci_register_read(rt2x00dev
, SEC_CSR0
, ®
);
413 if (crypto
->cmd
== SET_KEY
)
415 else if (crypto
->cmd
== DISABLE_KEY
)
417 rt2x00pci_register_write(rt2x00dev
, SEC_CSR0
, reg
);
422 static int rt61pci_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
423 struct rt2x00lib_crypto
*crypto
,
424 struct ieee80211_key_conf
*key
)
426 struct hw_pairwise_ta_entry addr_entry
;
427 struct hw_key_entry key_entry
;
431 if (crypto
->cmd
== SET_KEY
) {
433 * rt2x00lib can't determine the correct free
434 * key_idx for pairwise keys. We have 2 registers
435 * with key valid bits. The goal is simple, read
436 * the first register, if that is full move to
438 * When both registers are full, we drop the key,
439 * otherwise we use the first invalid entry.
441 rt2x00pci_register_read(rt2x00dev
, SEC_CSR2
, ®
);
442 if (reg
&& reg
== ~0) {
443 key
->hw_key_idx
= 32;
444 rt2x00pci_register_read(rt2x00dev
, SEC_CSR3
, ®
);
445 if (reg
&& reg
== ~0)
449 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
452 * Upload key to hardware
454 memcpy(key_entry
.key
, crypto
->key
,
455 sizeof(key_entry
.key
));
456 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
457 sizeof(key_entry
.tx_mic
));
458 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
459 sizeof(key_entry
.rx_mic
));
461 memset(&addr_entry
, 0, sizeof(addr_entry
));
462 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
463 addr_entry
.cipher
= crypto
->cipher
;
465 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
466 rt2x00pci_register_multiwrite(rt2x00dev
, reg
,
467 &key_entry
, sizeof(key_entry
));
469 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
470 rt2x00pci_register_multiwrite(rt2x00dev
, reg
,
471 &addr_entry
, sizeof(addr_entry
));
474 * Enable pairwise lookup table for given BSS idx,
475 * without this received frames will not be decrypted
478 rt2x00pci_register_read(rt2x00dev
, SEC_CSR4
, ®
);
479 reg
|= (1 << crypto
->bssidx
);
480 rt2x00pci_register_write(rt2x00dev
, SEC_CSR4
, reg
);
483 * The driver does not support the IV/EIV generation
484 * in hardware. However it doesn't support the IV/EIV
485 * inside the ieee80211 frame either, but requires it
486 * to be provided seperately for the descriptor.
487 * rt2x00lib will cut the IV/EIV data out of all frames
488 * given to us by mac80211, but we must tell mac80211
489 * to generate the IV/EIV data.
491 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
495 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
496 * a particular key is valid. Because using the FIELD32()
497 * defines directly will cause a lot of overhead we use
498 * a calculation to determine the correct bit directly.
500 if (key
->hw_key_idx
< 32) {
501 mask
= 1 << key
->hw_key_idx
;
503 rt2x00pci_register_read(rt2x00dev
, SEC_CSR2
, ®
);
504 if (crypto
->cmd
== SET_KEY
)
506 else if (crypto
->cmd
== DISABLE_KEY
)
508 rt2x00pci_register_write(rt2x00dev
, SEC_CSR2
, reg
);
510 mask
= 1 << (key
->hw_key_idx
- 32);
512 rt2x00pci_register_read(rt2x00dev
, SEC_CSR3
, ®
);
513 if (crypto
->cmd
== SET_KEY
)
515 else if (crypto
->cmd
== DISABLE_KEY
)
517 rt2x00pci_register_write(rt2x00dev
, SEC_CSR3
, reg
);
523 static void rt61pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
524 const unsigned int filter_flags
)
529 * Start configuration steps.
530 * Note that the version error will always be dropped
531 * and broadcast frames will always be accepted since
532 * there is no filter for it at this time.
534 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
535 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
536 !(filter_flags
& FIF_FCSFAIL
));
537 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
538 !(filter_flags
& FIF_PLCPFAIL
));
539 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
540 !(filter_flags
& FIF_CONTROL
));
541 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
542 !(filter_flags
& FIF_PROMISC_IN_BSS
));
543 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
544 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
545 !rt2x00dev
->intf_ap_count
);
546 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
547 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
548 !(filter_flags
& FIF_ALLMULTI
));
549 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
550 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
551 !(filter_flags
& FIF_CONTROL
));
552 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
555 static void rt61pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
556 struct rt2x00_intf
*intf
,
557 struct rt2x00intf_conf
*conf
,
558 const unsigned int flags
)
560 unsigned int beacon_base
;
563 if (flags
& CONFIG_UPDATE_TYPE
) {
565 * Clear current synchronisation setup.
566 * For the Beacon base registers we only need to clear
567 * the first byte since that byte contains the VALID and OWNER
568 * bits which (when set to 0) will invalidate the entire beacon.
570 beacon_base
= HW_BEACON_OFFSET(intf
->beacon
->entry_idx
);
571 rt2x00pci_register_write(rt2x00dev
, beacon_base
, 0);
574 * Enable synchronisation.
576 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
577 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
578 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
579 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
580 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
583 if (flags
& CONFIG_UPDATE_MAC
) {
584 reg
= le32_to_cpu(conf
->mac
[1]);
585 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
586 conf
->mac
[1] = cpu_to_le32(reg
);
588 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR2
,
589 conf
->mac
, sizeof(conf
->mac
));
592 if (flags
& CONFIG_UPDATE_BSSID
) {
593 reg
= le32_to_cpu(conf
->bssid
[1]);
594 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
595 conf
->bssid
[1] = cpu_to_le32(reg
);
597 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR4
,
598 conf
->bssid
, sizeof(conf
->bssid
));
602 static void rt61pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
603 struct rt2x00lib_erp
*erp
)
607 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
608 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, erp
->ack_timeout
);
609 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
611 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
612 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
613 !!erp
->short_preamble
);
614 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
616 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR5
, erp
->basic_rates
);
618 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
619 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
620 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
622 rt2x00pci_register_read(rt2x00dev
, MAC_CSR8
, ®
);
623 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
624 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
625 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
626 rt2x00pci_register_write(rt2x00dev
, MAC_CSR8
, reg
);
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
630 struct antenna_setup
*ant
)
636 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
637 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
638 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
640 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
641 rt2x00_rf(&rt2x00dev
->chip
, RF5325
));
644 * Configure the RX antenna.
647 case ANTENNA_HW_DIVERSITY
:
648 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
649 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
650 (rt2x00dev
->curr_band
!= IEEE80211_BAND_5GHZ
));
653 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
654 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
655 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
656 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
658 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
662 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
663 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
664 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
665 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
667 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
671 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
672 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
673 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
677 struct antenna_setup
*ant
)
683 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
684 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
685 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
687 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
688 rt2x00_rf(&rt2x00dev
->chip
, RF2529
));
689 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
690 !test_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
));
693 * Configure the RX antenna.
696 case ANTENNA_HW_DIVERSITY
:
697 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
700 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
701 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
705 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
706 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
710 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
711 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
712 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
715 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
716 const int p1
, const int p2
)
720 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
722 rt2x00_set_field32(®
, MAC_CSR13_BIT4
, p1
);
723 rt2x00_set_field32(®
, MAC_CSR13_BIT12
, 0);
725 rt2x00_set_field32(®
, MAC_CSR13_BIT3
, !p2
);
726 rt2x00_set_field32(®
, MAC_CSR13_BIT11
, 0);
728 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, reg
);
731 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
732 struct antenna_setup
*ant
)
738 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
739 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
740 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
743 * Configure the RX antenna.
747 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
748 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
749 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
751 case ANTENNA_HW_DIVERSITY
:
753 * FIXME: Antenna selection for the rf 2529 is very confusing
754 * in the legacy driver. Just default to antenna B until the
755 * legacy code can be properly translated into rt2x00 code.
759 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
760 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
761 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
765 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
766 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
767 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
773 * value[0] -> non-LNA
779 static const struct antenna_sel antenna_sel_a
[] = {
780 { 96, { 0x58, 0x78 } },
781 { 104, { 0x38, 0x48 } },
782 { 75, { 0xfe, 0x80 } },
783 { 86, { 0xfe, 0x80 } },
784 { 88, { 0xfe, 0x80 } },
785 { 35, { 0x60, 0x60 } },
786 { 97, { 0x58, 0x58 } },
787 { 98, { 0x58, 0x58 } },
790 static const struct antenna_sel antenna_sel_bg
[] = {
791 { 96, { 0x48, 0x68 } },
792 { 104, { 0x2c, 0x3c } },
793 { 75, { 0xfe, 0x80 } },
794 { 86, { 0xfe, 0x80 } },
795 { 88, { 0xfe, 0x80 } },
796 { 35, { 0x50, 0x50 } },
797 { 97, { 0x48, 0x48 } },
798 { 98, { 0x48, 0x48 } },
801 static void rt61pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
802 struct antenna_setup
*ant
)
804 const struct antenna_sel
*sel
;
810 * We should never come here because rt2x00lib is supposed
811 * to catch this and send us the correct antenna explicitely.
813 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
814 ant
->tx
== ANTENNA_SW_DIVERSITY
);
816 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
818 lna
= test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
820 sel
= antenna_sel_bg
;
821 lna
= test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
824 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
825 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
827 rt2x00pci_register_read(rt2x00dev
, PHY_CSR0
, ®
);
829 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
830 rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
831 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
832 rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
834 rt2x00pci_register_write(rt2x00dev
, PHY_CSR0
, reg
);
836 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
837 rt2x00_rf(&rt2x00dev
->chip
, RF5325
))
838 rt61pci_config_antenna_5x(rt2x00dev
, ant
);
839 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2527
))
840 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
841 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
842 if (test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
))
843 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
845 rt61pci_config_antenna_2529(rt2x00dev
, ant
);
849 static void rt61pci_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
850 struct rt2x00lib_conf
*libconf
)
855 if (libconf
->conf
->channel
->band
== IEEE80211_BAND_2GHZ
) {
856 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
))
859 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
860 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
862 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
))
865 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
866 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
869 rt2x00dev
->lna_gain
= lna_gain
;
872 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
873 struct rf_channel
*rf
, const int txpower
)
879 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
880 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
882 smart
= !(rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
883 rt2x00_rf(&rt2x00dev
->chip
, RF2527
));
885 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
886 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
887 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
890 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
891 r94
+= txpower
- MAX_TXPOWER
;
892 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
894 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
896 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
897 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
898 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
899 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
903 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
904 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
905 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
906 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
910 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
911 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
912 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
913 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
918 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
921 struct rf_channel rf
;
923 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
924 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
925 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
926 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
928 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
931 static void rt61pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
932 struct rt2x00lib_conf
*libconf
)
936 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
937 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
938 libconf
->conf
->long_frame_max_tx_count
);
939 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
940 libconf
->conf
->short_frame_max_tx_count
);
941 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
944 static void rt61pci_config_duration(struct rt2x00_dev
*rt2x00dev
,
945 struct rt2x00lib_conf
*libconf
)
949 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
950 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
951 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
953 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
954 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
955 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
957 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
958 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
959 libconf
->conf
->beacon_int
* 16);
960 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
963 static void rt61pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
964 struct rt2x00lib_conf
*libconf
)
966 enum dev_state state
=
967 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
968 STATE_SLEEP
: STATE_AWAKE
;
971 if (state
== STATE_SLEEP
) {
972 rt2x00pci_register_read(rt2x00dev
, MAC_CSR11
, ®
);
973 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
974 libconf
->conf
->beacon_int
- 10);
975 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
976 libconf
->conf
->listen_interval
- 1);
977 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
979 /* We must first disable autowake before it can be enabled */
980 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
981 rt2x00pci_register_write(rt2x00dev
, MAC_CSR11
, reg
);
983 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
984 rt2x00pci_register_write(rt2x00dev
, MAC_CSR11
, reg
);
986 rt2x00pci_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000005);
987 rt2x00pci_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x0000001c);
988 rt2x00pci_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000060);
990 rt61pci_mcu_request(rt2x00dev
, MCU_SLEEP
, 0xff, 0, 0);
992 rt2x00pci_register_read(rt2x00dev
, MAC_CSR11
, ®
);
993 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
994 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
995 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
996 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
997 rt2x00pci_register_write(rt2x00dev
, MAC_CSR11
, reg
);
999 rt2x00pci_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000007);
1000 rt2x00pci_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x00000018);
1001 rt2x00pci_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000020);
1003 rt61pci_mcu_request(rt2x00dev
, MCU_WAKEUP
, 0xff, 0, 0);
1007 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
1008 struct rt2x00lib_conf
*libconf
,
1009 const unsigned int flags
)
1011 /* Always recalculate LNA gain before changing configuration */
1012 rt61pci_config_lna_gain(rt2x00dev
, libconf
);
1014 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
1015 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
1016 libconf
->conf
->power_level
);
1017 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
1018 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
1019 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
1020 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
1021 rt61pci_config_retry_limit(rt2x00dev
, libconf
);
1022 if (flags
& IEEE80211_CONF_CHANGE_BEACON_INTERVAL
)
1023 rt61pci_config_duration(rt2x00dev
, libconf
);
1024 if (flags
& IEEE80211_CONF_CHANGE_PS
)
1025 rt61pci_config_ps(rt2x00dev
, libconf
);
1031 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
1032 struct link_qual
*qual
)
1037 * Update FCS error count from register.
1039 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
1040 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
1043 * Update False CCA count from register.
1045 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
1046 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
1049 static inline void rt61pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
1050 struct link_qual
*qual
, u8 vgc_level
)
1052 if (qual
->vgc_level
!= vgc_level
) {
1053 rt61pci_bbp_write(rt2x00dev
, 17, vgc_level
);
1054 qual
->vgc_level
= vgc_level
;
1055 qual
->vgc_level_reg
= vgc_level
;
1059 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
1060 struct link_qual
*qual
)
1062 rt61pci_set_vgc(rt2x00dev
, qual
, 0x20);
1065 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
1066 struct link_qual
*qual
, const u32 count
)
1072 * Determine r17 bounds.
1074 if (rt2x00dev
->rx_status
.band
== IEEE80211_BAND_5GHZ
) {
1077 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
)) {
1084 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
)) {
1091 * If we are not associated, we should go straight to the
1092 * dynamic CCA tuning.
1094 if (!rt2x00dev
->intf_associated
)
1095 goto dynamic_cca_tune
;
1098 * Special big-R17 for very short distance
1100 if (qual
->rssi
>= -35) {
1101 rt61pci_set_vgc(rt2x00dev
, qual
, 0x60);
1106 * Special big-R17 for short distance
1108 if (qual
->rssi
>= -58) {
1109 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1114 * Special big-R17 for middle-short distance
1116 if (qual
->rssi
>= -66) {
1117 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
1122 * Special mid-R17 for middle distance
1124 if (qual
->rssi
>= -74) {
1125 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
1130 * Special case: Change up_bound based on the rssi.
1131 * Lower up_bound when rssi is weaker then -74 dBm.
1133 up_bound
-= 2 * (-74 - qual
->rssi
);
1134 if (low_bound
> up_bound
)
1135 up_bound
= low_bound
;
1137 if (qual
->vgc_level
> up_bound
) {
1138 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1145 * r17 does not yet exceed upper limit, continue and base
1146 * the r17 tuning on the false CCA count.
1148 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1149 rt61pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level
);
1150 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1151 rt61pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level
);
1155 * Firmware functions
1157 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1161 switch (rt2x00dev
->chip
.rt
) {
1163 fw_name
= FIRMWARE_RT2561
;
1166 fw_name
= FIRMWARE_RT2561s
;
1169 fw_name
= FIRMWARE_RT2661
;
1179 static u16
rt61pci_get_firmware_crc(const void *data
, const size_t len
)
1184 * Use the crc itu-t algorithm.
1185 * The last 2 bytes in the firmware array are the crc checksum itself,
1186 * this means that we should never pass those 2 bytes to the crc
1189 crc
= crc_itu_t(0, data
, len
- 2);
1190 crc
= crc_itu_t_byte(crc
, 0);
1191 crc
= crc_itu_t_byte(crc
, 0);
1196 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
, const void *data
,
1203 * Wait for stable hardware.
1205 for (i
= 0; i
< 100; i
++) {
1206 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1213 ERROR(rt2x00dev
, "Unstable hardware.\n");
1218 * Prepare MCU and mailbox for firmware loading.
1221 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1222 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1223 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1224 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
1225 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
1228 * Write firmware to device.
1231 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1232 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
1233 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1235 rt2x00pci_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
1238 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
1239 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1241 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
1242 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1244 for (i
= 0; i
< 100; i
++) {
1245 rt2x00pci_register_read(rt2x00dev
, MCU_CNTL_CSR
, ®
);
1246 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
1252 ERROR(rt2x00dev
, "MCU Control register not ready.\n");
1257 * Hardware needs another millisecond before it is ready.
1262 * Reset MAC and BBP registers.
1265 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1266 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1267 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1269 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1270 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1271 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1272 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1274 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1275 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1276 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1282 * Initialization functions.
1284 static bool rt61pci_get_entry_state(struct queue_entry
*entry
)
1286 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1289 if (entry
->queue
->qid
== QID_RX
) {
1290 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1292 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
1294 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1296 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1297 rt2x00_get_field32(word
, TXD_W0_VALID
));
1301 static void rt61pci_clear_entry(struct queue_entry
*entry
)
1303 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1304 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1307 if (entry
->queue
->qid
== QID_RX
) {
1308 rt2x00_desc_read(entry_priv
->desc
, 5, &word
);
1309 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1311 rt2x00_desc_write(entry_priv
->desc
, 5, word
);
1313 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1314 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1315 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1317 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1318 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1319 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1320 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1324 static int rt61pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
1326 struct queue_entry_priv_pci
*entry_priv
;
1330 * Initialize registers.
1332 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR0
, ®
);
1333 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1334 rt2x00dev
->tx
[0].limit
);
1335 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1336 rt2x00dev
->tx
[1].limit
);
1337 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1338 rt2x00dev
->tx
[2].limit
);
1339 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1340 rt2x00dev
->tx
[3].limit
);
1341 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1343 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR1
, ®
);
1344 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1345 rt2x00dev
->tx
[0].desc_size
/ 4);
1346 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1348 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
1349 rt2x00pci_register_read(rt2x00dev
, AC0_BASE_CSR
, ®
);
1350 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1351 entry_priv
->desc_dma
);
1352 rt2x00pci_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1354 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
1355 rt2x00pci_register_read(rt2x00dev
, AC1_BASE_CSR
, ®
);
1356 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1357 entry_priv
->desc_dma
);
1358 rt2x00pci_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1360 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
1361 rt2x00pci_register_read(rt2x00dev
, AC2_BASE_CSR
, ®
);
1362 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1363 entry_priv
->desc_dma
);
1364 rt2x00pci_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1366 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
1367 rt2x00pci_register_read(rt2x00dev
, AC3_BASE_CSR
, ®
);
1368 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1369 entry_priv
->desc_dma
);
1370 rt2x00pci_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1372 rt2x00pci_register_read(rt2x00dev
, RX_RING_CSR
, ®
);
1373 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
, rt2x00dev
->rx
->limit
);
1374 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1375 rt2x00dev
->rx
->desc_size
/ 4);
1376 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1377 rt2x00pci_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1379 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
1380 rt2x00pci_register_read(rt2x00dev
, RX_BASE_CSR
, ®
);
1381 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1382 entry_priv
->desc_dma
);
1383 rt2x00pci_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1385 rt2x00pci_register_read(rt2x00dev
, TX_DMA_DST_CSR
, ®
);
1386 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1387 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1388 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1389 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1390 rt2x00pci_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1392 rt2x00pci_register_read(rt2x00dev
, LOAD_TX_RING_CSR
, ®
);
1393 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1394 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1395 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1396 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1397 rt2x00pci_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1399 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1400 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1401 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1406 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1410 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1411 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1412 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1413 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1414 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1416 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1417 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1418 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1419 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1420 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1421 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1422 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1423 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1424 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1425 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1428 * CCK TXD BBP registers
1430 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1431 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1432 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1433 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1434 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1435 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1436 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1437 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1438 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1439 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1442 * OFDM TXD BBP registers
1444 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1445 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1446 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1447 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1448 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1449 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1450 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1451 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1453 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1454 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1455 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1456 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1457 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1458 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1460 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1461 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1462 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1463 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1464 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1465 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1467 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1468 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1469 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1470 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1471 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1472 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1473 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1474 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1476 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1478 rt2x00pci_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1480 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1481 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1482 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1484 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1486 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1489 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1492 * Invalidate all Shared Keys (SEC_CSR0),
1493 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1495 rt2x00pci_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1496 rt2x00pci_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1497 rt2x00pci_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1499 rt2x00pci_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1500 rt2x00pci_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1501 rt2x00pci_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1502 rt2x00pci_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1504 rt2x00pci_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1506 rt2x00pci_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1508 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1512 * For the Beacon base registers we only need to clear
1513 * the first byte since that byte contains the VALID and OWNER
1514 * bits which (when set to 0) will invalidate the entire beacon.
1516 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1517 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1518 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1519 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1522 * We must clear the error counters.
1523 * These registers are cleared on read,
1524 * so we may pass a useless variable to store the value.
1526 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
1527 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
1528 rt2x00pci_register_read(rt2x00dev
, STA_CSR2
, ®
);
1531 * Reset MAC and BBP registers.
1533 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1534 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1535 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1536 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1538 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1539 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1540 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1541 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1543 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1544 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1545 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1550 static int rt61pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1555 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1556 rt61pci_bbp_read(rt2x00dev
, 0, &value
);
1557 if ((value
!= 0xff) && (value
!= 0x00))
1559 udelay(REGISTER_BUSY_DELAY
);
1562 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
1566 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1573 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev
)))
1576 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1577 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1578 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1579 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1580 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1581 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1582 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1583 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1584 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1585 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1586 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1587 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1588 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1589 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1590 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1591 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1592 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1593 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1594 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1595 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1596 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1597 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1598 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1599 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1601 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1602 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1604 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1605 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1606 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1607 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1615 * Device state switch handlers.
1617 static void rt61pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1618 enum dev_state state
)
1622 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1623 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
,
1624 (state
== STATE_RADIO_RX_OFF
) ||
1625 (state
== STATE_RADIO_RX_OFF_LINK
));
1626 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1629 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1630 enum dev_state state
)
1632 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1636 * When interrupts are being enabled, the interrupt registers
1637 * should clear the register to assure a clean state.
1639 if (state
== STATE_RADIO_IRQ_ON
) {
1640 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1641 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1643 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®
);
1644 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1648 * Only toggle the interrupts bits we are going to use.
1649 * Non-checked interrupt bits are disabled by default.
1651 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
1652 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1653 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1654 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1655 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1656 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1658 rt2x00pci_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
1659 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1660 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1661 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1662 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1663 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1664 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1665 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1666 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1667 rt2x00pci_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1670 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1675 * Initialize all registers.
1677 if (unlikely(rt61pci_init_queues(rt2x00dev
) ||
1678 rt61pci_init_registers(rt2x00dev
) ||
1679 rt61pci_init_bbp(rt2x00dev
)))
1685 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1686 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1687 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1692 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1696 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1699 * Disable synchronisation.
1701 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1706 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1707 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1708 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1709 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1710 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1711 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1714 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1720 put_to_sleep
= (state
!= STATE_AWAKE
);
1722 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1723 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1724 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1725 rt2x00pci_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1728 * Device is not guaranteed to be in the requested state yet.
1729 * We must wait until the register indicates that the
1730 * device has entered the correct state.
1732 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1733 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1734 state
= rt2x00_get_field32(reg
, MAC_CSR12_BBP_CURRENT_STATE
);
1735 if (state
== !put_to_sleep
)
1743 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1744 enum dev_state state
)
1749 case STATE_RADIO_ON
:
1750 retval
= rt61pci_enable_radio(rt2x00dev
);
1752 case STATE_RADIO_OFF
:
1753 rt61pci_disable_radio(rt2x00dev
);
1755 case STATE_RADIO_RX_ON
:
1756 case STATE_RADIO_RX_ON_LINK
:
1757 case STATE_RADIO_RX_OFF
:
1758 case STATE_RADIO_RX_OFF_LINK
:
1759 rt61pci_toggle_rx(rt2x00dev
, state
);
1761 case STATE_RADIO_IRQ_ON
:
1762 case STATE_RADIO_IRQ_OFF
:
1763 rt61pci_toggle_irq(rt2x00dev
, state
);
1765 case STATE_DEEP_SLEEP
:
1769 retval
= rt61pci_set_state(rt2x00dev
, state
);
1776 if (unlikely(retval
))
1777 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1784 * TX descriptor initialization
1786 static void rt61pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1787 struct sk_buff
*skb
,
1788 struct txentry_desc
*txdesc
)
1790 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1791 __le32
*txd
= skbdesc
->desc
;
1795 * Start writing the descriptor words.
1797 rt2x00_desc_read(txd
, 1, &word
);
1798 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, txdesc
->queue
);
1799 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, txdesc
->aifs
);
1800 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, txdesc
->cw_min
);
1801 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, txdesc
->cw_max
);
1802 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1803 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1804 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1805 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1806 rt2x00_desc_write(txd
, 1, word
);
1808 rt2x00_desc_read(txd
, 2, &word
);
1809 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->signal
);
1810 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->service
);
1811 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1812 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1813 rt2x00_desc_write(txd
, 2, word
);
1815 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1816 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1817 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1820 rt2x00_desc_read(txd
, 5, &word
);
1821 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, skbdesc
->entry
->queue
->qid
);
1822 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
,
1823 skbdesc
->entry
->entry_idx
);
1824 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1825 TXPOWER_TO_DEV(rt2x00dev
->tx_power
));
1826 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1827 rt2x00_desc_write(txd
, 5, word
);
1829 rt2x00_desc_read(txd
, 6, &word
);
1830 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1832 rt2x00_desc_write(txd
, 6, word
);
1834 if (skbdesc
->desc_len
> TXINFO_SIZE
) {
1835 rt2x00_desc_read(txd
, 11, &word
);
1836 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
, skb
->len
);
1837 rt2x00_desc_write(txd
, 11, word
);
1840 rt2x00_desc_read(txd
, 0, &word
);
1841 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1842 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1843 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1844 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1845 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1846 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1847 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1848 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1849 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1850 test_bit(ENTRY_TXD_OFDM_RATE
, &txdesc
->flags
));
1851 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1852 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1853 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1854 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1855 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1856 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1857 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1858 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1859 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skb
->len
);
1860 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1861 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1862 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1863 rt2x00_desc_write(txd
, 0, word
);
1867 * TX data initialization
1869 static void rt61pci_write_beacon(struct queue_entry
*entry
)
1871 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1872 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1873 unsigned int beacon_base
;
1877 * Disable beaconing while we are reloading the beacon data,
1878 * otherwise we might be sending out invalid data.
1880 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1881 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1882 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1883 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1884 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1887 * Write entire beacon with descriptor to register.
1889 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1890 rt2x00pci_register_multiwrite(rt2x00dev
,
1892 skbdesc
->desc
, skbdesc
->desc_len
);
1893 rt2x00pci_register_multiwrite(rt2x00dev
,
1894 beacon_base
+ skbdesc
->desc_len
,
1895 entry
->skb
->data
, entry
->skb
->len
);
1898 * Clean up beacon skb.
1900 dev_kfree_skb_any(entry
->skb
);
1904 static void rt61pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1905 const enum data_queue_qid queue
)
1909 if (queue
== QID_BEACON
) {
1911 * For Wi-Fi faily generated beacons between participating
1912 * stations. Set TBTT phase adaptive adjustment step to 8us.
1914 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1916 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1917 if (!rt2x00_get_field32(reg
, TXRX_CSR9_BEACON_GEN
)) {
1918 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1919 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1920 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1921 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1926 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1927 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
, (queue
== QID_AC_BE
));
1928 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
, (queue
== QID_AC_BK
));
1929 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
, (queue
== QID_AC_VI
));
1930 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
, (queue
== QID_AC_VO
));
1931 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1935 * RX control handlers
1937 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1939 u8 offset
= rt2x00dev
->lna_gain
;
1942 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1957 if (rt2x00dev
->rx_status
.band
== IEEE80211_BAND_5GHZ
) {
1958 if (lna
== 3 || lna
== 2)
1962 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1965 static void rt61pci_fill_rxdone(struct queue_entry
*entry
,
1966 struct rxdone_entry_desc
*rxdesc
)
1968 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1969 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1973 rt2x00_desc_read(entry_priv
->desc
, 0, &word0
);
1974 rt2x00_desc_read(entry_priv
->desc
, 1, &word1
);
1976 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1977 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1979 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
)) {
1981 rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
1982 rxdesc
->cipher_status
=
1983 rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
1986 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1987 _rt2x00_desc_read(entry_priv
->desc
, 2, &rxdesc
->iv
[0]);
1988 _rt2x00_desc_read(entry_priv
->desc
, 3, &rxdesc
->iv
[1]);
1989 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1991 _rt2x00_desc_read(entry_priv
->desc
, 4, &rxdesc
->icv
);
1992 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
1995 * Hardware has stripped IV/EIV data from 802.11 frame during
1996 * decryption. It has provided the data seperately but rt2x00lib
1997 * should decide if it should be reinserted.
1999 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
2002 * FIXME: Legacy driver indicates that the frame does
2003 * contain the Michael Mic. Unfortunately, in rt2x00
2004 * the MIC seems to be missing completely...
2006 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
2008 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
2009 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
2010 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
2011 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
2015 * Obtain the status about this packet.
2016 * When frame was received with an OFDM bitrate,
2017 * the signal is the PLCP value. If it was received with
2018 * a CCK bitrate the signal is the rate in 100kbit/s.
2020 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
2021 rxdesc
->rssi
= rt61pci_agc_to_rssi(rt2x00dev
, word1
);
2022 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
2024 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
2025 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
2027 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
2028 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
2029 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
2033 * Interrupt functions.
2035 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
2037 struct data_queue
*queue
;
2038 struct queue_entry
*entry
;
2039 struct queue_entry
*entry_done
;
2040 struct queue_entry_priv_pci
*entry_priv
;
2041 struct txdone_entry_desc txdesc
;
2049 * During each loop we will compare the freshly read
2050 * STA_CSR4 register value with the value read from
2051 * the previous loop. If the 2 values are equal then
2052 * we should stop processing because the chance it
2053 * quite big that the device has been unplugged and
2054 * we risk going into an endless loop.
2059 rt2x00pci_register_read(rt2x00dev
, STA_CSR4
, ®
);
2060 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
2068 * Skip this entry when it contains an invalid
2069 * queue identication number.
2071 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
2072 queue
= rt2x00queue_get_queue(rt2x00dev
, type
);
2073 if (unlikely(!queue
))
2077 * Skip this entry when it contains an invalid
2080 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
2081 if (unlikely(index
>= queue
->limit
))
2084 entry
= &queue
->entries
[index
];
2085 entry_priv
= entry
->priv_data
;
2086 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
2088 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
2089 !rt2x00_get_field32(word
, TXD_W0_VALID
))
2092 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2093 while (entry
!= entry_done
) {
2095 * Just report any entries we missed as failed.
2098 "TX status report missed for entry %d\n",
2099 entry_done
->entry_idx
);
2102 __set_bit(TXDONE_UNKNOWN
, &txdesc
.flags
);
2105 rt2x00lib_txdone(entry_done
, &txdesc
);
2106 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2110 * Obtain the status about this packet.
2113 switch (rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
)) {
2114 case 0: /* Success, maybe with retry */
2115 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
2117 case 6: /* Failure, excessive retries */
2118 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
2119 /* Don't break, this is a failed frame! */
2120 default: /* Failure */
2121 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
2123 txdesc
.retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
2125 rt2x00lib_txdone(entry
, &txdesc
);
2129 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
2131 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
2136 * Get the interrupt sources & saved to local variable.
2137 * Write register value back to clear pending interrupts.
2139 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®_mcu
);
2140 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
2142 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
2143 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
2145 if (!reg
&& !reg_mcu
)
2148 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2152 * Handle interrupts, walk through all bits
2153 * and run the tasks, the bits are checked in order of
2158 * 1 - Rx ring done interrupt.
2160 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
2161 rt2x00pci_rxdone(rt2x00dev
);
2164 * 2 - Tx ring done interrupt.
2166 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
2167 rt61pci_txdone(rt2x00dev
);
2170 * 3 - Handle MCU command done.
2173 rt2x00pci_register_write(rt2x00dev
,
2174 M2H_CMD_DONE_CSR
, 0xffffffff);
2180 * Device probe functions.
2182 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
2184 struct eeprom_93cx6 eeprom
;
2190 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
2192 eeprom
.data
= rt2x00dev
;
2193 eeprom
.register_read
= rt61pci_eepromregister_read
;
2194 eeprom
.register_write
= rt61pci_eepromregister_write
;
2195 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
2196 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
2197 eeprom
.reg_data_in
= 0;
2198 eeprom
.reg_data_out
= 0;
2199 eeprom
.reg_data_clock
= 0;
2200 eeprom
.reg_chip_select
= 0;
2202 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
2203 EEPROM_SIZE
/ sizeof(u16
));
2206 * Start validation of the data that has been read.
2208 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
2209 if (!is_valid_ether_addr(mac
)) {
2210 random_ether_addr(mac
);
2211 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
2214 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
2215 if (word
== 0xffff) {
2216 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
2217 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
2219 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
2221 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
2222 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
2223 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
2224 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
2225 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
2226 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
2229 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
2230 if (word
== 0xffff) {
2231 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
2232 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
2233 rt2x00_set_field16(&word
, EEPROM_NIC_TX_RX_FIXED
, 0);
2234 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
2235 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
2236 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
2237 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
2238 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
2241 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
2242 if (word
== 0xffff) {
2243 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
2245 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
2246 EEPROM(rt2x00dev
, "Led: 0x%04x\n", word
);
2249 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
2250 if (word
== 0xffff) {
2251 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
2252 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
2253 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
2254 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
2257 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
2258 if (word
== 0xffff) {
2259 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2260 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2261 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2262 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
2264 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
2265 if (value
< -10 || value
> 10)
2266 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2267 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
2268 if (value
< -10 || value
> 10)
2269 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2270 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2273 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
2274 if (word
== 0xffff) {
2275 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2276 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2277 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2278 EEPROM(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
2280 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
2281 if (value
< -10 || value
> 10)
2282 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2283 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
2284 if (value
< -10 || value
> 10)
2285 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2286 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2292 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
2300 * Read EEPROM word for configuration.
2302 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
2305 * Identify RF chipset.
2306 * To determine the RT chip we have to read the
2307 * PCI header of the device.
2309 pci_read_config_word(to_pci_dev(rt2x00dev
->dev
),
2310 PCI_CONFIG_HEADER_DEVICE
, &device
);
2311 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
2312 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
2313 rt2x00_set_chip(rt2x00dev
, device
, value
, reg
);
2315 if (!rt2x00_rf(&rt2x00dev
->chip
, RF5225
) &&
2316 !rt2x00_rf(&rt2x00dev
->chip
, RF5325
) &&
2317 !rt2x00_rf(&rt2x00dev
->chip
, RF2527
) &&
2318 !rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
2319 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
2324 * Determine number of antenna's.
2326 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
2327 __set_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
);
2330 * Identify default antenna configuration.
2332 rt2x00dev
->default_ant
.tx
=
2333 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
2334 rt2x00dev
->default_ant
.rx
=
2335 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
2338 * Read the Frame type.
2340 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
2341 __set_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
);
2344 * Detect if this device has an hardware controlled radio.
2346 #ifdef CONFIG_RT2X00_LIB_RFKILL
2347 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
2348 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
2349 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2352 * Read frequency offset and RF programming sequence.
2354 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
2355 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
2356 __set_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
);
2358 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
2361 * Read external LNA informations.
2363 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
2365 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
2366 __set_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
2367 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
2368 __set_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
2371 * When working with a RF2529 chip without double antenna
2372 * the antenna settings should be gathered from the NIC
2375 if (rt2x00_rf(&rt2x00dev
->chip
, RF2529
) &&
2376 !test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
)) {
2377 switch (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_RX_FIXED
)) {
2379 rt2x00dev
->default_ant
.tx
= ANTENNA_B
;
2380 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
2383 rt2x00dev
->default_ant
.tx
= ANTENNA_B
;
2384 rt2x00dev
->default_ant
.rx
= ANTENNA_B
;
2387 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
2388 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
2391 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
2392 rt2x00dev
->default_ant
.rx
= ANTENNA_B
;
2396 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
))
2397 rt2x00dev
->default_ant
.tx
= ANTENNA_SW_DIVERSITY
;
2398 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
))
2399 rt2x00dev
->default_ant
.rx
= ANTENNA_SW_DIVERSITY
;
2403 * Store led settings, for correct led behaviour.
2404 * If the eeprom value is invalid,
2405 * switch to default led mode.
2407 #ifdef CONFIG_RT2X00_LIB_LEDS
2408 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
2409 value
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2411 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
2412 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
2413 if (value
== LED_MODE_SIGNAL_STRENGTH
)
2414 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
2417 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
2418 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2419 rt2x00_get_field16(eeprom
,
2420 EEPROM_LED_POLARITY_GPIO_0
));
2421 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2422 rt2x00_get_field16(eeprom
,
2423 EEPROM_LED_POLARITY_GPIO_1
));
2424 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2425 rt2x00_get_field16(eeprom
,
2426 EEPROM_LED_POLARITY_GPIO_2
));
2427 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2428 rt2x00_get_field16(eeprom
,
2429 EEPROM_LED_POLARITY_GPIO_3
));
2430 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2431 rt2x00_get_field16(eeprom
,
2432 EEPROM_LED_POLARITY_GPIO_4
));
2433 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
2434 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2435 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2436 rt2x00_get_field16(eeprom
,
2437 EEPROM_LED_POLARITY_RDY_G
));
2438 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
2439 rt2x00_get_field16(eeprom
,
2440 EEPROM_LED_POLARITY_RDY_A
));
2441 #endif /* CONFIG_RT2X00_LIB_LEDS */
2447 * RF value list for RF5225 & RF5325
2448 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2450 static const struct rf_channel rf_vals_noseq
[] = {
2451 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2452 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2453 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2454 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2455 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2456 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2457 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2458 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2459 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2460 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2461 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2462 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2463 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2464 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2466 /* 802.11 UNI / HyperLan 2 */
2467 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2468 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2469 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2470 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2471 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2472 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2473 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2474 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2476 /* 802.11 HyperLan 2 */
2477 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2478 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2479 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2480 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2481 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2482 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2483 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2484 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2485 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2486 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2489 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2490 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2491 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2492 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2493 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2494 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2496 /* MMAC(Japan)J52 ch 34,38,42,46 */
2497 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2498 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2499 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2500 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2504 * RF value list for RF5225 & RF5325
2505 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2507 static const struct rf_channel rf_vals_seq
[] = {
2508 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2509 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2510 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2511 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2512 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2513 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2514 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2515 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2516 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2517 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2518 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2519 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2520 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2521 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2523 /* 802.11 UNI / HyperLan 2 */
2524 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2525 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2526 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2527 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2528 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2529 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2530 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2531 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2533 /* 802.11 HyperLan 2 */
2534 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2535 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2536 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2537 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2538 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2539 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2540 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2541 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2542 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2543 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2546 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2547 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2548 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2549 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2550 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2551 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2553 /* MMAC(Japan)J52 ch 34,38,42,46 */
2554 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2555 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2556 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2557 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2560 static int rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2562 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2563 struct channel_info
*info
;
2568 * Initialize all hw fields.
2570 rt2x00dev
->hw
->flags
=
2571 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
2572 IEEE80211_HW_SIGNAL_DBM
;
2573 rt2x00dev
->hw
->extra_tx_headroom
= 0;
2575 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2576 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2577 rt2x00_eeprom_addr(rt2x00dev
,
2578 EEPROM_MAC_ADDR_0
));
2581 * Initialize hw_mode information.
2583 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2584 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2586 if (!test_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
)) {
2587 spec
->num_channels
= 14;
2588 spec
->channels
= rf_vals_noseq
;
2590 spec
->num_channels
= 14;
2591 spec
->channels
= rf_vals_seq
;
2594 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
2595 rt2x00_rf(&rt2x00dev
->chip
, RF5325
)) {
2596 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2597 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2601 * Create channel information array
2603 info
= kzalloc(spec
->num_channels
* sizeof(*info
), GFP_KERNEL
);
2607 spec
->channels_info
= info
;
2609 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2610 for (i
= 0; i
< 14; i
++)
2611 info
[i
].tx_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2613 if (spec
->num_channels
> 14) {
2614 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2615 for (i
= 14; i
< spec
->num_channels
; i
++)
2616 info
[i
].tx_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2622 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2627 * Allocate eeprom data.
2629 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2633 retval
= rt61pci_init_eeprom(rt2x00dev
);
2638 * Initialize hw specifications.
2640 retval
= rt61pci_probe_hw_mode(rt2x00dev
);
2645 * This device requires firmware and DMA mapped skbs.
2647 __set_bit(DRIVER_REQUIRE_FIRMWARE
, &rt2x00dev
->flags
);
2648 __set_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
);
2649 if (!modparam_nohwcrypt
)
2650 __set_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
);
2653 * Set the rssi offset.
2655 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2661 * IEEE80211 stack callback functions.
2663 static int rt61pci_conf_tx(struct ieee80211_hw
*hw
, u16 queue_idx
,
2664 const struct ieee80211_tx_queue_params
*params
)
2666 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2667 struct data_queue
*queue
;
2668 struct rt2x00_field32 field
;
2673 * First pass the configuration through rt2x00lib, that will
2674 * update the queue settings and validate the input. After that
2675 * we are free to update the registers based on the value
2676 * in the queue parameter.
2678 retval
= rt2x00mac_conf_tx(hw
, queue_idx
, params
);
2682 queue
= rt2x00queue_get_queue(rt2x00dev
, queue_idx
);
2684 /* Update WMM TXOP register */
2685 if (queue_idx
< 2) {
2686 field
.bit_offset
= queue_idx
* 16;
2687 field
.bit_mask
= 0xffff << field
.bit_offset
;
2689 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR0
, ®
);
2690 rt2x00_set_field32(®
, field
, queue
->txop
);
2691 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR0
, reg
);
2692 } else if (queue_idx
< 4) {
2693 field
.bit_offset
= (queue_idx
- 2) * 16;
2694 field
.bit_mask
= 0xffff << field
.bit_offset
;
2696 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR1
, ®
);
2697 rt2x00_set_field32(®
, field
, queue
->txop
);
2698 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR1
, reg
);
2701 /* Update WMM registers */
2702 field
.bit_offset
= queue_idx
* 4;
2703 field
.bit_mask
= 0xf << field
.bit_offset
;
2705 rt2x00pci_register_read(rt2x00dev
, AIFSN_CSR
, ®
);
2706 rt2x00_set_field32(®
, field
, queue
->aifs
);
2707 rt2x00pci_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2709 rt2x00pci_register_read(rt2x00dev
, CWMIN_CSR
, ®
);
2710 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2711 rt2x00pci_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2713 rt2x00pci_register_read(rt2x00dev
, CWMAX_CSR
, ®
);
2714 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2715 rt2x00pci_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2720 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
)
2722 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2726 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2727 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2728 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2729 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2734 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2736 .start
= rt2x00mac_start
,
2737 .stop
= rt2x00mac_stop
,
2738 .add_interface
= rt2x00mac_add_interface
,
2739 .remove_interface
= rt2x00mac_remove_interface
,
2740 .config
= rt2x00mac_config
,
2741 .config_interface
= rt2x00mac_config_interface
,
2742 .configure_filter
= rt2x00mac_configure_filter
,
2743 .set_key
= rt2x00mac_set_key
,
2744 .get_stats
= rt2x00mac_get_stats
,
2745 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2746 .conf_tx
= rt61pci_conf_tx
,
2747 .get_tx_stats
= rt2x00mac_get_tx_stats
,
2748 .get_tsf
= rt61pci_get_tsf
,
2751 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2752 .irq_handler
= rt61pci_interrupt
,
2753 .probe_hw
= rt61pci_probe_hw
,
2754 .get_firmware_name
= rt61pci_get_firmware_name
,
2755 .get_firmware_crc
= rt61pci_get_firmware_crc
,
2756 .load_firmware
= rt61pci_load_firmware
,
2757 .initialize
= rt2x00pci_initialize
,
2758 .uninitialize
= rt2x00pci_uninitialize
,
2759 .get_entry_state
= rt61pci_get_entry_state
,
2760 .clear_entry
= rt61pci_clear_entry
,
2761 .set_device_state
= rt61pci_set_device_state
,
2762 .rfkill_poll
= rt61pci_rfkill_poll
,
2763 .link_stats
= rt61pci_link_stats
,
2764 .reset_tuner
= rt61pci_reset_tuner
,
2765 .link_tuner
= rt61pci_link_tuner
,
2766 .write_tx_desc
= rt61pci_write_tx_desc
,
2767 .write_tx_data
= rt2x00pci_write_tx_data
,
2768 .write_beacon
= rt61pci_write_beacon
,
2769 .kick_tx_queue
= rt61pci_kick_tx_queue
,
2770 .fill_rxdone
= rt61pci_fill_rxdone
,
2771 .config_shared_key
= rt61pci_config_shared_key
,
2772 .config_pairwise_key
= rt61pci_config_pairwise_key
,
2773 .config_filter
= rt61pci_config_filter
,
2774 .config_intf
= rt61pci_config_intf
,
2775 .config_erp
= rt61pci_config_erp
,
2776 .config_ant
= rt61pci_config_ant
,
2777 .config
= rt61pci_config
,
2780 static const struct data_queue_desc rt61pci_queue_rx
= {
2781 .entry_num
= RX_ENTRIES
,
2782 .data_size
= DATA_FRAME_SIZE
,
2783 .desc_size
= RXD_DESC_SIZE
,
2784 .priv_size
= sizeof(struct queue_entry_priv_pci
),
2787 static const struct data_queue_desc rt61pci_queue_tx
= {
2788 .entry_num
= TX_ENTRIES
,
2789 .data_size
= DATA_FRAME_SIZE
,
2790 .desc_size
= TXD_DESC_SIZE
,
2791 .priv_size
= sizeof(struct queue_entry_priv_pci
),
2794 static const struct data_queue_desc rt61pci_queue_bcn
= {
2795 .entry_num
= 4 * BEACON_ENTRIES
,
2796 .data_size
= 0, /* No DMA required for beacons */
2797 .desc_size
= TXINFO_SIZE
,
2798 .priv_size
= sizeof(struct queue_entry_priv_pci
),
2801 static const struct rt2x00_ops rt61pci_ops
= {
2802 .name
= KBUILD_MODNAME
,
2805 .eeprom_size
= EEPROM_SIZE
,
2807 .tx_queues
= NUM_TX_QUEUES
,
2808 .rx
= &rt61pci_queue_rx
,
2809 .tx
= &rt61pci_queue_tx
,
2810 .bcn
= &rt61pci_queue_bcn
,
2811 .lib
= &rt61pci_rt2x00_ops
,
2812 .hw
= &rt61pci_mac80211_ops
,
2813 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2814 .debugfs
= &rt61pci_rt2x00debug
,
2815 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2819 * RT61pci module information.
2821 static struct pci_device_id rt61pci_device_table
[] = {
2823 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops
) },
2825 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops
) },
2827 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops
) },
2831 MODULE_AUTHOR(DRV_PROJECT
);
2832 MODULE_VERSION(DRV_VERSION
);
2833 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2834 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2835 "PCI & PCMCIA chipset based cards");
2836 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
2837 MODULE_FIRMWARE(FIRMWARE_RT2561
);
2838 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
2839 MODULE_FIRMWARE(FIRMWARE_RT2661
);
2840 MODULE_LICENSE("GPL");
2842 static struct pci_driver rt61pci_driver
= {
2843 .name
= KBUILD_MODNAME
,
2844 .id_table
= rt61pci_device_table
,
2845 .probe
= rt2x00pci_probe
,
2846 .remove
= __devexit_p(rt2x00pci_remove
),
2847 .suspend
= rt2x00pci_suspend
,
2848 .resume
= rt2x00pci_resume
,
2851 static int __init
rt61pci_init(void)
2853 return pci_register_driver(&rt61pci_driver
);
2856 static void __exit
rt61pci_exit(void)
2858 pci_unregister_driver(&rt61pci_driver
);
2861 module_init(rt61pci_init
);
2862 module_exit(rt61pci_exit
);