4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
42 static struct list_head
*mount_hashtable __read_mostly
;
43 static struct kmem_cache
*mnt_cache __read_mostly
;
44 static struct rw_semaphore namespace_sem
;
47 struct kobject
*fs_kobj
;
48 EXPORT_SYMBOL_GPL(fs_kobj
);
50 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
52 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
53 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
54 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
55 return tmp
& (HASH_SIZE
- 1);
58 struct vfsmount
*alloc_vfsmnt(const char *name
)
60 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
62 atomic_set(&mnt
->mnt_count
, 1);
63 INIT_LIST_HEAD(&mnt
->mnt_hash
);
64 INIT_LIST_HEAD(&mnt
->mnt_child
);
65 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
66 INIT_LIST_HEAD(&mnt
->mnt_list
);
67 INIT_LIST_HEAD(&mnt
->mnt_expire
);
68 INIT_LIST_HEAD(&mnt
->mnt_share
);
69 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
70 INIT_LIST_HEAD(&mnt
->mnt_slave
);
72 int size
= strlen(name
) + 1;
73 char *newname
= kmalloc(size
, GFP_KERNEL
);
75 memcpy(newname
, name
, size
);
76 mnt
->mnt_devname
= newname
;
83 int simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
86 mnt
->mnt_root
= dget(sb
->s_root
);
90 EXPORT_SYMBOL(simple_set_mnt
);
92 void free_vfsmnt(struct vfsmount
*mnt
)
94 kfree(mnt
->mnt_devname
);
95 kmem_cache_free(mnt_cache
, mnt
);
99 * find the first or last mount at @dentry on vfsmount @mnt depending on
100 * @dir. If @dir is set return the first mount else return the last mount.
102 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
105 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
106 struct list_head
*tmp
= head
;
107 struct vfsmount
*p
, *found
= NULL
;
110 tmp
= dir
? tmp
->next
: tmp
->prev
;
114 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
115 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
124 * lookup_mnt increments the ref count before returning
125 * the vfsmount struct.
127 struct vfsmount
*lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
129 struct vfsmount
*child_mnt
;
130 spin_lock(&vfsmount_lock
);
131 if ((child_mnt
= __lookup_mnt(mnt
, dentry
, 1)))
133 spin_unlock(&vfsmount_lock
);
137 static inline int check_mnt(struct vfsmount
*mnt
)
139 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
142 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
146 wake_up_interruptible(&ns
->poll
);
150 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
152 if (ns
&& ns
->event
!= event
) {
154 wake_up_interruptible(&ns
->poll
);
158 static void detach_mnt(struct vfsmount
*mnt
, struct nameidata
*old_nd
)
160 old_nd
->dentry
= mnt
->mnt_mountpoint
;
161 old_nd
->mnt
= mnt
->mnt_parent
;
162 mnt
->mnt_parent
= mnt
;
163 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
164 list_del_init(&mnt
->mnt_child
);
165 list_del_init(&mnt
->mnt_hash
);
166 old_nd
->dentry
->d_mounted
--;
169 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
170 struct vfsmount
*child_mnt
)
172 child_mnt
->mnt_parent
= mntget(mnt
);
173 child_mnt
->mnt_mountpoint
= dget(dentry
);
177 static void attach_mnt(struct vfsmount
*mnt
, struct nameidata
*nd
)
179 mnt_set_mountpoint(nd
->mnt
, nd
->dentry
, mnt
);
180 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
181 hash(nd
->mnt
, nd
->dentry
));
182 list_add_tail(&mnt
->mnt_child
, &nd
->mnt
->mnt_mounts
);
186 * the caller must hold vfsmount_lock
188 static void commit_tree(struct vfsmount
*mnt
)
190 struct vfsmount
*parent
= mnt
->mnt_parent
;
193 struct mnt_namespace
*n
= parent
->mnt_ns
;
195 BUG_ON(parent
== mnt
);
197 list_add_tail(&head
, &mnt
->mnt_list
);
198 list_for_each_entry(m
, &head
, mnt_list
)
200 list_splice(&head
, n
->list
.prev
);
202 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
203 hash(parent
, mnt
->mnt_mountpoint
));
204 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
205 touch_mnt_namespace(n
);
208 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
210 struct list_head
*next
= p
->mnt_mounts
.next
;
211 if (next
== &p
->mnt_mounts
) {
215 next
= p
->mnt_child
.next
;
216 if (next
!= &p
->mnt_parent
->mnt_mounts
)
221 return list_entry(next
, struct vfsmount
, mnt_child
);
224 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
226 struct list_head
*prev
= p
->mnt_mounts
.prev
;
227 while (prev
!= &p
->mnt_mounts
) {
228 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
229 prev
= p
->mnt_mounts
.prev
;
234 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
237 struct super_block
*sb
= old
->mnt_sb
;
238 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
241 mnt
->mnt_flags
= old
->mnt_flags
;
242 atomic_inc(&sb
->s_active
);
244 mnt
->mnt_root
= dget(root
);
245 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
246 mnt
->mnt_parent
= mnt
;
248 if (flag
& CL_SLAVE
) {
249 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
250 mnt
->mnt_master
= old
;
251 CLEAR_MNT_SHARED(mnt
);
252 } else if (!(flag
& CL_PRIVATE
)) {
253 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
254 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
255 if (IS_MNT_SLAVE(old
))
256 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
257 mnt
->mnt_master
= old
->mnt_master
;
259 if (flag
& CL_MAKE_SHARED
)
262 /* stick the duplicate mount on the same expiry list
263 * as the original if that was on one */
264 if (flag
& CL_EXPIRE
) {
265 spin_lock(&vfsmount_lock
);
266 if (!list_empty(&old
->mnt_expire
))
267 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
268 spin_unlock(&vfsmount_lock
);
274 static inline void __mntput(struct vfsmount
*mnt
)
276 struct super_block
*sb
= mnt
->mnt_sb
;
279 deactivate_super(sb
);
282 void mntput_no_expire(struct vfsmount
*mnt
)
285 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
286 if (likely(!mnt
->mnt_pinned
)) {
287 spin_unlock(&vfsmount_lock
);
291 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
293 spin_unlock(&vfsmount_lock
);
294 acct_auto_close_mnt(mnt
);
295 security_sb_umount_close(mnt
);
300 EXPORT_SYMBOL(mntput_no_expire
);
302 void mnt_pin(struct vfsmount
*mnt
)
304 spin_lock(&vfsmount_lock
);
306 spin_unlock(&vfsmount_lock
);
309 EXPORT_SYMBOL(mnt_pin
);
311 void mnt_unpin(struct vfsmount
*mnt
)
313 spin_lock(&vfsmount_lock
);
314 if (mnt
->mnt_pinned
) {
315 atomic_inc(&mnt
->mnt_count
);
318 spin_unlock(&vfsmount_lock
);
321 EXPORT_SYMBOL(mnt_unpin
);
324 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
326 struct mnt_namespace
*n
= m
->private;
328 down_read(&namespace_sem
);
329 return seq_list_start(&n
->list
, *pos
);
332 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
334 struct mnt_namespace
*n
= m
->private;
336 return seq_list_next(v
, &n
->list
, pos
);
339 static void m_stop(struct seq_file
*m
, void *v
)
341 up_read(&namespace_sem
);
344 static inline void mangle(struct seq_file
*m
, const char *s
)
346 seq_escape(m
, s
, " \t\n\\");
349 static int show_vfsmnt(struct seq_file
*m
, void *v
)
351 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
353 static struct proc_fs_info
{
357 { MS_SYNCHRONOUS
, ",sync" },
358 { MS_DIRSYNC
, ",dirsync" },
359 { MS_MANDLOCK
, ",mand" },
362 static struct proc_fs_info mnt_info
[] = {
363 { MNT_NOSUID
, ",nosuid" },
364 { MNT_NODEV
, ",nodev" },
365 { MNT_NOEXEC
, ",noexec" },
366 { MNT_NOATIME
, ",noatime" },
367 { MNT_NODIRATIME
, ",nodiratime" },
368 { MNT_RELATIME
, ",relatime" },
371 struct proc_fs_info
*fs_infop
;
373 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
375 seq_path(m
, mnt
, mnt
->mnt_root
, " \t\n\\");
377 mangle(m
, mnt
->mnt_sb
->s_type
->name
);
378 if (mnt
->mnt_sb
->s_subtype
&& mnt
->mnt_sb
->s_subtype
[0]) {
380 mangle(m
, mnt
->mnt_sb
->s_subtype
);
382 seq_puts(m
, mnt
->mnt_sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
383 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
384 if (mnt
->mnt_sb
->s_flags
& fs_infop
->flag
)
385 seq_puts(m
, fs_infop
->str
);
387 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
388 if (mnt
->mnt_flags
& fs_infop
->flag
)
389 seq_puts(m
, fs_infop
->str
);
391 if (mnt
->mnt_sb
->s_op
->show_options
)
392 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
393 seq_puts(m
, " 0 0\n");
397 struct seq_operations mounts_op
= {
404 static int show_vfsstat(struct seq_file
*m
, void *v
)
406 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
410 if (mnt
->mnt_devname
) {
411 seq_puts(m
, "device ");
412 mangle(m
, mnt
->mnt_devname
);
414 seq_puts(m
, "no device");
417 seq_puts(m
, " mounted on ");
418 seq_path(m
, mnt
, mnt
->mnt_root
, " \t\n\\");
421 /* file system type */
422 seq_puts(m
, "with fstype ");
423 mangle(m
, mnt
->mnt_sb
->s_type
->name
);
425 /* optional statistics */
426 if (mnt
->mnt_sb
->s_op
->show_stats
) {
428 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
435 struct seq_operations mountstats_op
= {
439 .show
= show_vfsstat
,
443 * may_umount_tree - check if a mount tree is busy
444 * @mnt: root of mount tree
446 * This is called to check if a tree of mounts has any
447 * open files, pwds, chroots or sub mounts that are
450 int may_umount_tree(struct vfsmount
*mnt
)
453 int minimum_refs
= 0;
456 spin_lock(&vfsmount_lock
);
457 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
458 actual_refs
+= atomic_read(&p
->mnt_count
);
461 spin_unlock(&vfsmount_lock
);
463 if (actual_refs
> minimum_refs
)
469 EXPORT_SYMBOL(may_umount_tree
);
472 * may_umount - check if a mount point is busy
473 * @mnt: root of mount
475 * This is called to check if a mount point has any
476 * open files, pwds, chroots or sub mounts. If the
477 * mount has sub mounts this will return busy
478 * regardless of whether the sub mounts are busy.
480 * Doesn't take quota and stuff into account. IOW, in some cases it will
481 * give false negatives. The main reason why it's here is that we need
482 * a non-destructive way to look for easily umountable filesystems.
484 int may_umount(struct vfsmount
*mnt
)
487 spin_lock(&vfsmount_lock
);
488 if (propagate_mount_busy(mnt
, 2))
490 spin_unlock(&vfsmount_lock
);
494 EXPORT_SYMBOL(may_umount
);
496 void release_mounts(struct list_head
*head
)
498 struct vfsmount
*mnt
;
499 while (!list_empty(head
)) {
500 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
501 list_del_init(&mnt
->mnt_hash
);
502 if (mnt
->mnt_parent
!= mnt
) {
503 struct dentry
*dentry
;
505 spin_lock(&vfsmount_lock
);
506 dentry
= mnt
->mnt_mountpoint
;
508 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
509 mnt
->mnt_parent
= mnt
;
510 spin_unlock(&vfsmount_lock
);
518 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
522 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
523 list_move(&p
->mnt_hash
, kill
);
526 propagate_umount(kill
);
528 list_for_each_entry(p
, kill
, mnt_hash
) {
529 list_del_init(&p
->mnt_expire
);
530 list_del_init(&p
->mnt_list
);
531 __touch_mnt_namespace(p
->mnt_ns
);
533 list_del_init(&p
->mnt_child
);
534 if (p
->mnt_parent
!= p
)
535 p
->mnt_mountpoint
->d_mounted
--;
536 change_mnt_propagation(p
, MS_PRIVATE
);
540 static int do_umount(struct vfsmount
*mnt
, int flags
)
542 struct super_block
*sb
= mnt
->mnt_sb
;
544 LIST_HEAD(umount_list
);
546 retval
= security_sb_umount(mnt
, flags
);
551 * Allow userspace to request a mountpoint be expired rather than
552 * unmounting unconditionally. Unmount only happens if:
553 * (1) the mark is already set (the mark is cleared by mntput())
554 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
556 if (flags
& MNT_EXPIRE
) {
557 if (mnt
== current
->fs
->rootmnt
||
558 flags
& (MNT_FORCE
| MNT_DETACH
))
561 if (atomic_read(&mnt
->mnt_count
) != 2)
564 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
569 * If we may have to abort operations to get out of this
570 * mount, and they will themselves hold resources we must
571 * allow the fs to do things. In the Unix tradition of
572 * 'Gee thats tricky lets do it in userspace' the umount_begin
573 * might fail to complete on the first run through as other tasks
574 * must return, and the like. Thats for the mount program to worry
575 * about for the moment.
579 if (sb
->s_op
->umount_begin
)
580 sb
->s_op
->umount_begin(mnt
, flags
);
584 * No sense to grab the lock for this test, but test itself looks
585 * somewhat bogus. Suggestions for better replacement?
586 * Ho-hum... In principle, we might treat that as umount + switch
587 * to rootfs. GC would eventually take care of the old vfsmount.
588 * Actually it makes sense, especially if rootfs would contain a
589 * /reboot - static binary that would close all descriptors and
590 * call reboot(9). Then init(8) could umount root and exec /reboot.
592 if (mnt
== current
->fs
->rootmnt
&& !(flags
& MNT_DETACH
)) {
594 * Special case for "unmounting" root ...
595 * we just try to remount it readonly.
597 down_write(&sb
->s_umount
);
598 if (!(sb
->s_flags
& MS_RDONLY
)) {
601 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
604 up_write(&sb
->s_umount
);
608 down_write(&namespace_sem
);
609 spin_lock(&vfsmount_lock
);
613 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
614 if (!list_empty(&mnt
->mnt_list
))
615 umount_tree(mnt
, 1, &umount_list
);
618 spin_unlock(&vfsmount_lock
);
620 security_sb_umount_busy(mnt
);
621 up_write(&namespace_sem
);
622 release_mounts(&umount_list
);
627 * Now umount can handle mount points as well as block devices.
628 * This is important for filesystems which use unnamed block devices.
630 * We now support a flag for forced unmount like the other 'big iron'
631 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
634 asmlinkage
long sys_umount(char __user
* name
, int flags
)
639 retval
= __user_walk(name
, LOOKUP_FOLLOW
, &nd
);
643 if (nd
.dentry
!= nd
.mnt
->mnt_root
)
645 if (!check_mnt(nd
.mnt
))
649 if (!capable(CAP_SYS_ADMIN
))
652 retval
= do_umount(nd
.mnt
, flags
);
654 path_release_on_umount(&nd
);
659 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
662 * The 2.0 compatible umount. No flags.
664 asmlinkage
long sys_oldumount(char __user
* name
)
666 return sys_umount(name
, 0);
671 static int mount_is_safe(struct nameidata
*nd
)
673 if (capable(CAP_SYS_ADMIN
))
677 if (S_ISLNK(nd
->dentry
->d_inode
->i_mode
))
679 if (nd
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
680 if (current
->uid
!= nd
->dentry
->d_inode
->i_uid
)
683 if (vfs_permission(nd
, MAY_WRITE
))
689 static int lives_below_in_same_fs(struct dentry
*d
, struct dentry
*dentry
)
694 if (d
== NULL
|| d
== d
->d_parent
)
700 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
703 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
706 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
709 res
= q
= clone_mnt(mnt
, dentry
, flag
);
712 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
715 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
716 if (!lives_below_in_same_fs(r
->mnt_mountpoint
, dentry
))
719 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
720 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
721 s
= skip_mnt_tree(s
);
724 while (p
!= s
->mnt_parent
) {
730 nd
.dentry
= p
->mnt_mountpoint
;
731 q
= clone_mnt(p
, p
->mnt_root
, flag
);
734 spin_lock(&vfsmount_lock
);
735 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
737 spin_unlock(&vfsmount_lock
);
743 LIST_HEAD(umount_list
);
744 spin_lock(&vfsmount_lock
);
745 umount_tree(res
, 0, &umount_list
);
746 spin_unlock(&vfsmount_lock
);
747 release_mounts(&umount_list
);
752 struct vfsmount
*collect_mounts(struct vfsmount
*mnt
, struct dentry
*dentry
)
754 struct vfsmount
*tree
;
755 down_read(&namespace_sem
);
756 tree
= copy_tree(mnt
, dentry
, CL_COPY_ALL
| CL_PRIVATE
);
757 up_read(&namespace_sem
);
761 void drop_collected_mounts(struct vfsmount
*mnt
)
763 LIST_HEAD(umount_list
);
764 down_read(&namespace_sem
);
765 spin_lock(&vfsmount_lock
);
766 umount_tree(mnt
, 0, &umount_list
);
767 spin_unlock(&vfsmount_lock
);
768 up_read(&namespace_sem
);
769 release_mounts(&umount_list
);
773 * @source_mnt : mount tree to be attached
774 * @nd : place the mount tree @source_mnt is attached
775 * @parent_nd : if non-null, detach the source_mnt from its parent and
776 * store the parent mount and mountpoint dentry.
777 * (done when source_mnt is moved)
779 * NOTE: in the table below explains the semantics when a source mount
780 * of a given type is attached to a destination mount of a given type.
781 * ---------------------------------------------------------------------------
782 * | BIND MOUNT OPERATION |
783 * |**************************************************************************
784 * | source-->| shared | private | slave | unbindable |
788 * |**************************************************************************
789 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
791 * |non-shared| shared (+) | private | slave (*) | invalid |
792 * ***************************************************************************
793 * A bind operation clones the source mount and mounts the clone on the
796 * (++) the cloned mount is propagated to all the mounts in the propagation
797 * tree of the destination mount and the cloned mount is added to
798 * the peer group of the source mount.
799 * (+) the cloned mount is created under the destination mount and is marked
800 * as shared. The cloned mount is added to the peer group of the source
802 * (+++) the mount is propagated to all the mounts in the propagation tree
803 * of the destination mount and the cloned mount is made slave
804 * of the same master as that of the source mount. The cloned mount
805 * is marked as 'shared and slave'.
806 * (*) the cloned mount is made a slave of the same master as that of the
809 * ---------------------------------------------------------------------------
810 * | MOVE MOUNT OPERATION |
811 * |**************************************************************************
812 * | source-->| shared | private | slave | unbindable |
816 * |**************************************************************************
817 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
819 * |non-shared| shared (+*) | private | slave (*) | unbindable |
820 * ***************************************************************************
822 * (+) the mount is moved to the destination. And is then propagated to
823 * all the mounts in the propagation tree of the destination mount.
824 * (+*) the mount is moved to the destination.
825 * (+++) the mount is moved to the destination and is then propagated to
826 * all the mounts belonging to the destination mount's propagation tree.
827 * the mount is marked as 'shared and slave'.
828 * (*) the mount continues to be a slave at the new location.
830 * if the source mount is a tree, the operations explained above is
831 * applied to each mount in the tree.
832 * Must be called without spinlocks held, since this function can sleep
835 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
836 struct nameidata
*nd
, struct nameidata
*parent_nd
)
838 LIST_HEAD(tree_list
);
839 struct vfsmount
*dest_mnt
= nd
->mnt
;
840 struct dentry
*dest_dentry
= nd
->dentry
;
841 struct vfsmount
*child
, *p
;
843 if (propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
))
846 if (IS_MNT_SHARED(dest_mnt
)) {
847 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
851 spin_lock(&vfsmount_lock
);
853 detach_mnt(source_mnt
, parent_nd
);
854 attach_mnt(source_mnt
, nd
);
855 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
857 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
858 commit_tree(source_mnt
);
861 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
862 list_del_init(&child
->mnt_hash
);
865 spin_unlock(&vfsmount_lock
);
869 static int graft_tree(struct vfsmount
*mnt
, struct nameidata
*nd
)
872 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
875 if (S_ISDIR(nd
->dentry
->d_inode
->i_mode
) !=
876 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
880 mutex_lock(&nd
->dentry
->d_inode
->i_mutex
);
881 if (IS_DEADDIR(nd
->dentry
->d_inode
))
884 err
= security_sb_check_sb(mnt
, nd
);
889 if (IS_ROOT(nd
->dentry
) || !d_unhashed(nd
->dentry
))
890 err
= attach_recursive_mnt(mnt
, nd
, NULL
);
892 mutex_unlock(&nd
->dentry
->d_inode
->i_mutex
);
894 security_sb_post_addmount(mnt
, nd
);
899 * recursively change the type of the mountpoint.
901 static int do_change_type(struct nameidata
*nd
, int flag
)
903 struct vfsmount
*m
, *mnt
= nd
->mnt
;
904 int recurse
= flag
& MS_REC
;
905 int type
= flag
& ~MS_REC
;
907 if (!capable(CAP_SYS_ADMIN
))
910 if (nd
->dentry
!= nd
->mnt
->mnt_root
)
913 down_write(&namespace_sem
);
914 spin_lock(&vfsmount_lock
);
915 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
916 change_mnt_propagation(m
, type
);
917 spin_unlock(&vfsmount_lock
);
918 up_write(&namespace_sem
);
925 static int do_loopback(struct nameidata
*nd
, char *old_name
, int recurse
)
927 struct nameidata old_nd
;
928 struct vfsmount
*mnt
= NULL
;
929 int err
= mount_is_safe(nd
);
932 if (!old_name
|| !*old_name
)
934 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
938 down_write(&namespace_sem
);
940 if (IS_MNT_UNBINDABLE(old_nd
.mnt
))
943 if (!check_mnt(nd
->mnt
) || !check_mnt(old_nd
.mnt
))
948 mnt
= copy_tree(old_nd
.mnt
, old_nd
.dentry
, 0);
950 mnt
= clone_mnt(old_nd
.mnt
, old_nd
.dentry
, 0);
955 err
= graft_tree(mnt
, nd
);
957 LIST_HEAD(umount_list
);
958 spin_lock(&vfsmount_lock
);
959 umount_tree(mnt
, 0, &umount_list
);
960 spin_unlock(&vfsmount_lock
);
961 release_mounts(&umount_list
);
965 up_write(&namespace_sem
);
966 path_release(&old_nd
);
971 * change filesystem flags. dir should be a physical root of filesystem.
972 * If you've mounted a non-root directory somewhere and want to do remount
973 * on it - tough luck.
975 static int do_remount(struct nameidata
*nd
, int flags
, int mnt_flags
,
979 struct super_block
*sb
= nd
->mnt
->mnt_sb
;
981 if (!capable(CAP_SYS_ADMIN
))
984 if (!check_mnt(nd
->mnt
))
987 if (nd
->dentry
!= nd
->mnt
->mnt_root
)
990 down_write(&sb
->s_umount
);
991 err
= do_remount_sb(sb
, flags
, data
, 0);
993 nd
->mnt
->mnt_flags
= mnt_flags
;
994 up_write(&sb
->s_umount
);
996 security_sb_post_remount(nd
->mnt
, flags
, data
);
1000 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1003 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1004 if (IS_MNT_UNBINDABLE(p
))
1010 static int do_move_mount(struct nameidata
*nd
, char *old_name
)
1012 struct nameidata old_nd
, parent_nd
;
1015 if (!capable(CAP_SYS_ADMIN
))
1017 if (!old_name
|| !*old_name
)
1019 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
1023 down_write(&namespace_sem
);
1024 while (d_mountpoint(nd
->dentry
) && follow_down(&nd
->mnt
, &nd
->dentry
))
1027 if (!check_mnt(nd
->mnt
) || !check_mnt(old_nd
.mnt
))
1031 mutex_lock(&nd
->dentry
->d_inode
->i_mutex
);
1032 if (IS_DEADDIR(nd
->dentry
->d_inode
))
1035 if (!IS_ROOT(nd
->dentry
) && d_unhashed(nd
->dentry
))
1039 if (old_nd
.dentry
!= old_nd
.mnt
->mnt_root
)
1042 if (old_nd
.mnt
== old_nd
.mnt
->mnt_parent
)
1045 if (S_ISDIR(nd
->dentry
->d_inode
->i_mode
) !=
1046 S_ISDIR(old_nd
.dentry
->d_inode
->i_mode
))
1049 * Don't move a mount residing in a shared parent.
1051 if (old_nd
.mnt
->mnt_parent
&& IS_MNT_SHARED(old_nd
.mnt
->mnt_parent
))
1054 * Don't move a mount tree containing unbindable mounts to a destination
1055 * mount which is shared.
1057 if (IS_MNT_SHARED(nd
->mnt
) && tree_contains_unbindable(old_nd
.mnt
))
1060 for (p
= nd
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1061 if (p
== old_nd
.mnt
)
1064 if ((err
= attach_recursive_mnt(old_nd
.mnt
, nd
, &parent_nd
)))
1067 spin_lock(&vfsmount_lock
);
1068 /* if the mount is moved, it should no longer be expire
1070 list_del_init(&old_nd
.mnt
->mnt_expire
);
1071 spin_unlock(&vfsmount_lock
);
1073 mutex_unlock(&nd
->dentry
->d_inode
->i_mutex
);
1075 up_write(&namespace_sem
);
1077 path_release(&parent_nd
);
1078 path_release(&old_nd
);
1083 * create a new mount for userspace and request it to be added into the
1086 static int do_new_mount(struct nameidata
*nd
, char *type
, int flags
,
1087 int mnt_flags
, char *name
, void *data
)
1089 struct vfsmount
*mnt
;
1091 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1094 /* we need capabilities... */
1095 if (!capable(CAP_SYS_ADMIN
))
1098 mnt
= do_kern_mount(type
, flags
, name
, data
);
1100 return PTR_ERR(mnt
);
1102 return do_add_mount(mnt
, nd
, mnt_flags
, NULL
);
1106 * add a mount into a namespace's mount tree
1107 * - provide the option of adding the new mount to an expiration list
1109 int do_add_mount(struct vfsmount
*newmnt
, struct nameidata
*nd
,
1110 int mnt_flags
, struct list_head
*fslist
)
1114 down_write(&namespace_sem
);
1115 /* Something was mounted here while we slept */
1116 while (d_mountpoint(nd
->dentry
) && follow_down(&nd
->mnt
, &nd
->dentry
))
1119 if (!check_mnt(nd
->mnt
))
1122 /* Refuse the same filesystem on the same mount point */
1124 if (nd
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1125 nd
->mnt
->mnt_root
== nd
->dentry
)
1129 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1132 newmnt
->mnt_flags
= mnt_flags
;
1133 if ((err
= graft_tree(newmnt
, nd
)))
1137 /* add to the specified expiration list */
1138 spin_lock(&vfsmount_lock
);
1139 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1140 spin_unlock(&vfsmount_lock
);
1142 up_write(&namespace_sem
);
1146 up_write(&namespace_sem
);
1151 EXPORT_SYMBOL_GPL(do_add_mount
);
1153 static void expire_mount(struct vfsmount
*mnt
, struct list_head
*mounts
,
1154 struct list_head
*umounts
)
1156 spin_lock(&vfsmount_lock
);
1159 * Check if mount is still attached, if not, let whoever holds it deal
1162 if (mnt
->mnt_parent
== mnt
) {
1163 spin_unlock(&vfsmount_lock
);
1168 * Check that it is still dead: the count should now be 2 - as
1169 * contributed by the vfsmount parent and the mntget above
1171 if (!propagate_mount_busy(mnt
, 2)) {
1172 /* delete from the namespace */
1173 touch_mnt_namespace(mnt
->mnt_ns
);
1174 list_del_init(&mnt
->mnt_list
);
1176 umount_tree(mnt
, 1, umounts
);
1177 spin_unlock(&vfsmount_lock
);
1180 * Someone brought it back to life whilst we didn't have any
1181 * locks held so return it to the expiration list
1183 list_add_tail(&mnt
->mnt_expire
, mounts
);
1184 spin_unlock(&vfsmount_lock
);
1189 * go through the vfsmounts we've just consigned to the graveyard to
1190 * - check that they're still dead
1191 * - delete the vfsmount from the appropriate namespace under lock
1192 * - dispose of the corpse
1194 static void expire_mount_list(struct list_head
*graveyard
, struct list_head
*mounts
)
1196 struct mnt_namespace
*ns
;
1197 struct vfsmount
*mnt
;
1199 while (!list_empty(graveyard
)) {
1201 mnt
= list_first_entry(graveyard
, struct vfsmount
, mnt_expire
);
1202 list_del_init(&mnt
->mnt_expire
);
1204 /* don't do anything if the namespace is dead - all the
1205 * vfsmounts from it are going away anyway */
1207 if (!ns
|| !ns
->root
)
1211 spin_unlock(&vfsmount_lock
);
1212 down_write(&namespace_sem
);
1213 expire_mount(mnt
, mounts
, &umounts
);
1214 up_write(&namespace_sem
);
1215 release_mounts(&umounts
);
1218 spin_lock(&vfsmount_lock
);
1223 * process a list of expirable mountpoints with the intent of discarding any
1224 * mountpoints that aren't in use and haven't been touched since last we came
1227 void mark_mounts_for_expiry(struct list_head
*mounts
)
1229 struct vfsmount
*mnt
, *next
;
1230 LIST_HEAD(graveyard
);
1232 if (list_empty(mounts
))
1235 spin_lock(&vfsmount_lock
);
1237 /* extract from the expiration list every vfsmount that matches the
1238 * following criteria:
1239 * - only referenced by its parent vfsmount
1240 * - still marked for expiry (marked on the last call here; marks are
1241 * cleared by mntput())
1243 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1244 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1245 atomic_read(&mnt
->mnt_count
) != 1)
1249 list_move(&mnt
->mnt_expire
, &graveyard
);
1252 expire_mount_list(&graveyard
, mounts
);
1254 spin_unlock(&vfsmount_lock
);
1257 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1260 * Ripoff of 'select_parent()'
1262 * search the list of submounts for a given mountpoint, and move any
1263 * shrinkable submounts to the 'graveyard' list.
1265 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1267 struct vfsmount
*this_parent
= parent
;
1268 struct list_head
*next
;
1272 next
= this_parent
->mnt_mounts
.next
;
1274 while (next
!= &this_parent
->mnt_mounts
) {
1275 struct list_head
*tmp
= next
;
1276 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1279 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1282 * Descend a level if the d_mounts list is non-empty.
1284 if (!list_empty(&mnt
->mnt_mounts
)) {
1289 if (!propagate_mount_busy(mnt
, 1)) {
1291 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1296 * All done at this level ... ascend and resume the search
1298 if (this_parent
!= parent
) {
1299 next
= this_parent
->mnt_child
.next
;
1300 this_parent
= this_parent
->mnt_parent
;
1307 * process a list of expirable mountpoints with the intent of discarding any
1308 * submounts of a specific parent mountpoint
1310 void shrink_submounts(struct vfsmount
*mountpoint
, struct list_head
*mounts
)
1312 LIST_HEAD(graveyard
);
1315 spin_lock(&vfsmount_lock
);
1317 /* extract submounts of 'mountpoint' from the expiration list */
1318 while ((found
= select_submounts(mountpoint
, &graveyard
)) != 0)
1319 expire_mount_list(&graveyard
, mounts
);
1321 spin_unlock(&vfsmount_lock
);
1324 EXPORT_SYMBOL_GPL(shrink_submounts
);
1327 * Some copy_from_user() implementations do not return the exact number of
1328 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1329 * Note that this function differs from copy_from_user() in that it will oops
1330 * on bad values of `to', rather than returning a short copy.
1332 static long exact_copy_from_user(void *to
, const void __user
* from
,
1336 const char __user
*f
= from
;
1339 if (!access_ok(VERIFY_READ
, from
, n
))
1343 if (__get_user(c
, f
)) {
1354 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1364 if (!(page
= __get_free_page(GFP_KERNEL
)))
1367 /* We only care that *some* data at the address the user
1368 * gave us is valid. Just in case, we'll zero
1369 * the remainder of the page.
1371 /* copy_from_user cannot cross TASK_SIZE ! */
1372 size
= TASK_SIZE
- (unsigned long)data
;
1373 if (size
> PAGE_SIZE
)
1376 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1382 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1388 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1389 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1391 * data is a (void *) that can point to any structure up to
1392 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1393 * information (or be NULL).
1395 * Pre-0.97 versions of mount() didn't have a flags word.
1396 * When the flags word was introduced its top half was required
1397 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1398 * Therefore, if this magic number is present, it carries no information
1399 * and must be discarded.
1401 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1402 unsigned long flags
, void *data_page
)
1404 struct nameidata nd
;
1409 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1410 flags
&= ~MS_MGC_MSK
;
1412 /* Basic sanity checks */
1414 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1416 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1420 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1422 /* Separate the per-mountpoint flags */
1423 if (flags
& MS_NOSUID
)
1424 mnt_flags
|= MNT_NOSUID
;
1425 if (flags
& MS_NODEV
)
1426 mnt_flags
|= MNT_NODEV
;
1427 if (flags
& MS_NOEXEC
)
1428 mnt_flags
|= MNT_NOEXEC
;
1429 if (flags
& MS_NOATIME
)
1430 mnt_flags
|= MNT_NOATIME
;
1431 if (flags
& MS_NODIRATIME
)
1432 mnt_flags
|= MNT_NODIRATIME
;
1433 if (flags
& MS_RELATIME
)
1434 mnt_flags
|= MNT_RELATIME
;
1436 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
|
1437 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
);
1439 /* ... and get the mountpoint */
1440 retval
= path_lookup(dir_name
, LOOKUP_FOLLOW
, &nd
);
1444 retval
= security_sb_mount(dev_name
, &nd
, type_page
, flags
, data_page
);
1448 if (flags
& MS_REMOUNT
)
1449 retval
= do_remount(&nd
, flags
& ~MS_REMOUNT
, mnt_flags
,
1451 else if (flags
& MS_BIND
)
1452 retval
= do_loopback(&nd
, dev_name
, flags
& MS_REC
);
1453 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1454 retval
= do_change_type(&nd
, flags
);
1455 else if (flags
& MS_MOVE
)
1456 retval
= do_move_mount(&nd
, dev_name
);
1458 retval
= do_new_mount(&nd
, type_page
, flags
, mnt_flags
,
1459 dev_name
, data_page
);
1466 * Allocate a new namespace structure and populate it with contents
1467 * copied from the namespace of the passed in task structure.
1469 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
1470 struct fs_struct
*fs
)
1472 struct mnt_namespace
*new_ns
;
1473 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
, *altrootmnt
= NULL
;
1474 struct vfsmount
*p
, *q
;
1476 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
1478 return ERR_PTR(-ENOMEM
);
1480 atomic_set(&new_ns
->count
, 1);
1481 INIT_LIST_HEAD(&new_ns
->list
);
1482 init_waitqueue_head(&new_ns
->poll
);
1485 down_write(&namespace_sem
);
1486 /* First pass: copy the tree topology */
1487 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
1488 CL_COPY_ALL
| CL_EXPIRE
);
1489 if (!new_ns
->root
) {
1490 up_write(&namespace_sem
);
1492 return ERR_PTR(-ENOMEM
);;
1494 spin_lock(&vfsmount_lock
);
1495 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
1496 spin_unlock(&vfsmount_lock
);
1499 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1500 * as belonging to new namespace. We have already acquired a private
1501 * fs_struct, so tsk->fs->lock is not needed.
1508 if (p
== fs
->rootmnt
) {
1510 fs
->rootmnt
= mntget(q
);
1512 if (p
== fs
->pwdmnt
) {
1514 fs
->pwdmnt
= mntget(q
);
1516 if (p
== fs
->altrootmnt
) {
1518 fs
->altrootmnt
= mntget(q
);
1521 p
= next_mnt(p
, mnt_ns
->root
);
1522 q
= next_mnt(q
, new_ns
->root
);
1524 up_write(&namespace_sem
);
1536 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
1537 struct fs_struct
*new_fs
)
1539 struct mnt_namespace
*new_ns
;
1544 if (!(flags
& CLONE_NEWNS
))
1547 new_ns
= dup_mnt_ns(ns
, new_fs
);
1553 asmlinkage
long sys_mount(char __user
* dev_name
, char __user
* dir_name
,
1554 char __user
* type
, unsigned long flags
,
1558 unsigned long data_page
;
1559 unsigned long type_page
;
1560 unsigned long dev_page
;
1563 retval
= copy_mount_options(type
, &type_page
);
1567 dir_page
= getname(dir_name
);
1568 retval
= PTR_ERR(dir_page
);
1569 if (IS_ERR(dir_page
))
1572 retval
= copy_mount_options(dev_name
, &dev_page
);
1576 retval
= copy_mount_options(data
, &data_page
);
1581 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
1582 flags
, (void *)data_page
);
1584 free_page(data_page
);
1587 free_page(dev_page
);
1591 free_page(type_page
);
1596 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1597 * It can block. Requires the big lock held.
1599 void set_fs_root(struct fs_struct
*fs
, struct vfsmount
*mnt
,
1600 struct dentry
*dentry
)
1602 struct dentry
*old_root
;
1603 struct vfsmount
*old_rootmnt
;
1604 write_lock(&fs
->lock
);
1605 old_root
= fs
->root
;
1606 old_rootmnt
= fs
->rootmnt
;
1607 fs
->rootmnt
= mntget(mnt
);
1608 fs
->root
= dget(dentry
);
1609 write_unlock(&fs
->lock
);
1612 mntput(old_rootmnt
);
1617 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1618 * It can block. Requires the big lock held.
1620 void set_fs_pwd(struct fs_struct
*fs
, struct vfsmount
*mnt
,
1621 struct dentry
*dentry
)
1623 struct dentry
*old_pwd
;
1624 struct vfsmount
*old_pwdmnt
;
1626 write_lock(&fs
->lock
);
1628 old_pwdmnt
= fs
->pwdmnt
;
1629 fs
->pwdmnt
= mntget(mnt
);
1630 fs
->pwd
= dget(dentry
);
1631 write_unlock(&fs
->lock
);
1639 static void chroot_fs_refs(struct nameidata
*old_nd
, struct nameidata
*new_nd
)
1641 struct task_struct
*g
, *p
;
1642 struct fs_struct
*fs
;
1644 read_lock(&tasklist_lock
);
1645 do_each_thread(g
, p
) {
1649 atomic_inc(&fs
->count
);
1651 if (fs
->root
== old_nd
->dentry
1652 && fs
->rootmnt
== old_nd
->mnt
)
1653 set_fs_root(fs
, new_nd
->mnt
, new_nd
->dentry
);
1654 if (fs
->pwd
== old_nd
->dentry
1655 && fs
->pwdmnt
== old_nd
->mnt
)
1656 set_fs_pwd(fs
, new_nd
->mnt
, new_nd
->dentry
);
1660 } while_each_thread(g
, p
);
1661 read_unlock(&tasklist_lock
);
1665 * pivot_root Semantics:
1666 * Moves the root file system of the current process to the directory put_old,
1667 * makes new_root as the new root file system of the current process, and sets
1668 * root/cwd of all processes which had them on the current root to new_root.
1671 * The new_root and put_old must be directories, and must not be on the
1672 * same file system as the current process root. The put_old must be
1673 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1674 * pointed to by put_old must yield the same directory as new_root. No other
1675 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1677 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1678 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1679 * in this situation.
1682 * - we don't move root/cwd if they are not at the root (reason: if something
1683 * cared enough to change them, it's probably wrong to force them elsewhere)
1684 * - it's okay to pick a root that isn't the root of a file system, e.g.
1685 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1686 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1689 asmlinkage
long sys_pivot_root(const char __user
* new_root
,
1690 const char __user
* put_old
)
1692 struct vfsmount
*tmp
;
1693 struct nameidata new_nd
, old_nd
, parent_nd
, root_parent
, user_nd
;
1696 if (!capable(CAP_SYS_ADMIN
))
1701 error
= __user_walk(new_root
, LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
,
1706 if (!check_mnt(new_nd
.mnt
))
1709 error
= __user_walk(put_old
, LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
, &old_nd
);
1713 error
= security_sb_pivotroot(&old_nd
, &new_nd
);
1715 path_release(&old_nd
);
1719 read_lock(¤t
->fs
->lock
);
1720 user_nd
.mnt
= mntget(current
->fs
->rootmnt
);
1721 user_nd
.dentry
= dget(current
->fs
->root
);
1722 read_unlock(¤t
->fs
->lock
);
1723 down_write(&namespace_sem
);
1724 mutex_lock(&old_nd
.dentry
->d_inode
->i_mutex
);
1726 if (IS_MNT_SHARED(old_nd
.mnt
) ||
1727 IS_MNT_SHARED(new_nd
.mnt
->mnt_parent
) ||
1728 IS_MNT_SHARED(user_nd
.mnt
->mnt_parent
))
1730 if (!check_mnt(user_nd
.mnt
))
1733 if (IS_DEADDIR(new_nd
.dentry
->d_inode
))
1735 if (d_unhashed(new_nd
.dentry
) && !IS_ROOT(new_nd
.dentry
))
1737 if (d_unhashed(old_nd
.dentry
) && !IS_ROOT(old_nd
.dentry
))
1740 if (new_nd
.mnt
== user_nd
.mnt
|| old_nd
.mnt
== user_nd
.mnt
)
1741 goto out2
; /* loop, on the same file system */
1743 if (user_nd
.mnt
->mnt_root
!= user_nd
.dentry
)
1744 goto out2
; /* not a mountpoint */
1745 if (user_nd
.mnt
->mnt_parent
== user_nd
.mnt
)
1746 goto out2
; /* not attached */
1747 if (new_nd
.mnt
->mnt_root
!= new_nd
.dentry
)
1748 goto out2
; /* not a mountpoint */
1749 if (new_nd
.mnt
->mnt_parent
== new_nd
.mnt
)
1750 goto out2
; /* not attached */
1751 tmp
= old_nd
.mnt
; /* make sure we can reach put_old from new_root */
1752 spin_lock(&vfsmount_lock
);
1753 if (tmp
!= new_nd
.mnt
) {
1755 if (tmp
->mnt_parent
== tmp
)
1756 goto out3
; /* already mounted on put_old */
1757 if (tmp
->mnt_parent
== new_nd
.mnt
)
1759 tmp
= tmp
->mnt_parent
;
1761 if (!is_subdir(tmp
->mnt_mountpoint
, new_nd
.dentry
))
1763 } else if (!is_subdir(old_nd
.dentry
, new_nd
.dentry
))
1765 detach_mnt(new_nd
.mnt
, &parent_nd
);
1766 detach_mnt(user_nd
.mnt
, &root_parent
);
1767 attach_mnt(user_nd
.mnt
, &old_nd
); /* mount old root on put_old */
1768 attach_mnt(new_nd
.mnt
, &root_parent
); /* mount new_root on / */
1769 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
1770 spin_unlock(&vfsmount_lock
);
1771 chroot_fs_refs(&user_nd
, &new_nd
);
1772 security_sb_post_pivotroot(&user_nd
, &new_nd
);
1774 path_release(&root_parent
);
1775 path_release(&parent_nd
);
1777 mutex_unlock(&old_nd
.dentry
->d_inode
->i_mutex
);
1778 up_write(&namespace_sem
);
1779 path_release(&user_nd
);
1780 path_release(&old_nd
);
1782 path_release(&new_nd
);
1787 spin_unlock(&vfsmount_lock
);
1791 static void __init
init_mount_tree(void)
1793 struct vfsmount
*mnt
;
1794 struct mnt_namespace
*ns
;
1796 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
1798 panic("Can't create rootfs");
1799 ns
= kmalloc(sizeof(*ns
), GFP_KERNEL
);
1801 panic("Can't allocate initial namespace");
1802 atomic_set(&ns
->count
, 1);
1803 INIT_LIST_HEAD(&ns
->list
);
1804 init_waitqueue_head(&ns
->poll
);
1806 list_add(&mnt
->mnt_list
, &ns
->list
);
1810 init_task
.nsproxy
->mnt_ns
= ns
;
1813 set_fs_pwd(current
->fs
, ns
->root
, ns
->root
->mnt_root
);
1814 set_fs_root(current
->fs
, ns
->root
, ns
->root
->mnt_root
);
1817 void __init
mnt_init(void)
1822 init_rwsem(&namespace_sem
);
1824 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
1825 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1827 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
1829 if (!mount_hashtable
)
1830 panic("Failed to allocate mount hash table\n");
1832 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
1834 for (u
= 0; u
< HASH_SIZE
; u
++)
1835 INIT_LIST_HEAD(&mount_hashtable
[u
]);
1839 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
1841 fs_kobj
= kobject_create_and_add("fs", NULL
);
1843 printk(KERN_WARNING
"%s: kobj create error\n", __FUNCTION__
);
1848 void __put_mnt_ns(struct mnt_namespace
*ns
)
1850 struct vfsmount
*root
= ns
->root
;
1851 LIST_HEAD(umount_list
);
1853 spin_unlock(&vfsmount_lock
);
1854 down_write(&namespace_sem
);
1855 spin_lock(&vfsmount_lock
);
1856 umount_tree(root
, 0, &umount_list
);
1857 spin_unlock(&vfsmount_lock
);
1858 up_write(&namespace_sem
);
1859 release_mounts(&umount_list
);