4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
64 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
65 int suid_dumpable
= 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats
);
70 static DEFINE_RWLOCK(binfmt_lock
);
72 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
76 write_lock(&binfmt_lock
);
77 insert
? list_add(&fmt
->lh
, &formats
) :
78 list_add_tail(&fmt
->lh
, &formats
);
79 write_unlock(&binfmt_lock
);
83 EXPORT_SYMBOL(__register_binfmt
);
85 void unregister_binfmt(struct linux_binfmt
* fmt
)
87 write_lock(&binfmt_lock
);
89 write_unlock(&binfmt_lock
);
92 EXPORT_SYMBOL(unregister_binfmt
);
94 static inline void put_binfmt(struct linux_binfmt
* fmt
)
96 module_put(fmt
->module
);
100 * Note that a shared library must be both readable and executable due to
103 * Also note that we take the address to load from from the file itself.
105 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
108 char *tmp
= getname(library
);
109 int error
= PTR_ERR(tmp
);
114 file
= do_filp_open(AT_FDCWD
, tmp
,
115 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
116 MAY_READ
| MAY_EXEC
| MAY_OPEN
);
118 error
= PTR_ERR(file
);
123 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
127 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
130 fsnotify_open(file
->f_path
.dentry
);
134 struct linux_binfmt
* fmt
;
136 read_lock(&binfmt_lock
);
137 list_for_each_entry(fmt
, &formats
, lh
) {
138 if (!fmt
->load_shlib
)
140 if (!try_module_get(fmt
->module
))
142 read_unlock(&binfmt_lock
);
143 error
= fmt
->load_shlib(file
);
144 read_lock(&binfmt_lock
);
146 if (error
!= -ENOEXEC
)
149 read_unlock(&binfmt_lock
);
159 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
165 #ifdef CONFIG_STACK_GROWSUP
167 ret
= expand_stack_downwards(bprm
->vma
, pos
);
172 ret
= get_user_pages(current
, bprm
->mm
, pos
,
173 1, write
, 1, &page
, NULL
);
178 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
182 * We've historically supported up to 32 pages (ARG_MAX)
183 * of argument strings even with small stacks
189 * Limit to 1/4-th the stack size for the argv+env strings.
191 * - the remaining binfmt code will not run out of stack space,
192 * - the program will have a reasonable amount of stack left
195 rlim
= current
->signal
->rlim
;
196 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
205 static void put_arg_page(struct page
*page
)
210 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
214 static void free_arg_pages(struct linux_binprm
*bprm
)
218 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
221 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
224 static int __bprm_mm_init(struct linux_binprm
*bprm
)
227 struct vm_area_struct
*vma
= NULL
;
228 struct mm_struct
*mm
= bprm
->mm
;
230 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
234 down_write(&mm
->mmap_sem
);
238 * Place the stack at the largest stack address the architecture
239 * supports. Later, we'll move this to an appropriate place. We don't
240 * use STACK_TOP because that can depend on attributes which aren't
243 vma
->vm_end
= STACK_TOP_MAX
;
244 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
245 vma
->vm_flags
= VM_STACK_FLAGS
;
246 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
247 err
= insert_vm_struct(mm
, vma
);
251 mm
->stack_vm
= mm
->total_vm
= 1;
252 up_write(&mm
->mmap_sem
);
253 bprm
->p
= vma
->vm_end
- sizeof(void *);
256 up_write(&mm
->mmap_sem
);
258 kmem_cache_free(vm_area_cachep
, vma
);
262 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
264 return len
<= MAX_ARG_STRLEN
;
269 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
274 page
= bprm
->page
[pos
/ PAGE_SIZE
];
275 if (!page
&& write
) {
276 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
279 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
285 static void put_arg_page(struct page
*page
)
289 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
292 __free_page(bprm
->page
[i
]);
293 bprm
->page
[i
] = NULL
;
297 static void free_arg_pages(struct linux_binprm
*bprm
)
301 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
302 free_arg_page(bprm
, i
);
305 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
310 static int __bprm_mm_init(struct linux_binprm
*bprm
)
312 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
316 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
318 return len
<= bprm
->p
;
321 #endif /* CONFIG_MMU */
324 * Create a new mm_struct and populate it with a temporary stack
325 * vm_area_struct. We don't have enough context at this point to set the stack
326 * flags, permissions, and offset, so we use temporary values. We'll update
327 * them later in setup_arg_pages().
329 int bprm_mm_init(struct linux_binprm
*bprm
)
332 struct mm_struct
*mm
= NULL
;
334 bprm
->mm
= mm
= mm_alloc();
339 err
= init_new_context(current
, mm
);
343 err
= __bprm_mm_init(bprm
);
359 * count() counts the number of strings in array ARGV.
361 static int count(char __user
* __user
* argv
, int max
)
369 if (get_user(p
, argv
))
383 * 'copy_strings()' copies argument/environment strings from the old
384 * processes's memory to the new process's stack. The call to get_user_pages()
385 * ensures the destination page is created and not swapped out.
387 static int copy_strings(int argc
, char __user
* __user
* argv
,
388 struct linux_binprm
*bprm
)
390 struct page
*kmapped_page
= NULL
;
392 unsigned long kpos
= 0;
400 if (get_user(str
, argv
+argc
) ||
401 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
406 if (!valid_arg_len(bprm
, len
)) {
411 /* We're going to work our way backwords. */
417 int offset
, bytes_to_copy
;
419 offset
= pos
% PAGE_SIZE
;
423 bytes_to_copy
= offset
;
424 if (bytes_to_copy
> len
)
427 offset
-= bytes_to_copy
;
428 pos
-= bytes_to_copy
;
429 str
-= bytes_to_copy
;
430 len
-= bytes_to_copy
;
432 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
435 page
= get_arg_page(bprm
, pos
, 1);
442 flush_kernel_dcache_page(kmapped_page
);
443 kunmap(kmapped_page
);
444 put_arg_page(kmapped_page
);
447 kaddr
= kmap(kmapped_page
);
448 kpos
= pos
& PAGE_MASK
;
449 flush_arg_page(bprm
, kpos
, kmapped_page
);
451 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
460 flush_kernel_dcache_page(kmapped_page
);
461 kunmap(kmapped_page
);
462 put_arg_page(kmapped_page
);
468 * Like copy_strings, but get argv and its values from kernel memory.
470 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
473 mm_segment_t oldfs
= get_fs();
475 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
479 EXPORT_SYMBOL(copy_strings_kernel
);
484 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
485 * the binfmt code determines where the new stack should reside, we shift it to
486 * its final location. The process proceeds as follows:
488 * 1) Use shift to calculate the new vma endpoints.
489 * 2) Extend vma to cover both the old and new ranges. This ensures the
490 * arguments passed to subsequent functions are consistent.
491 * 3) Move vma's page tables to the new range.
492 * 4) Free up any cleared pgd range.
493 * 5) Shrink the vma to cover only the new range.
495 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
497 struct mm_struct
*mm
= vma
->vm_mm
;
498 unsigned long old_start
= vma
->vm_start
;
499 unsigned long old_end
= vma
->vm_end
;
500 unsigned long length
= old_end
- old_start
;
501 unsigned long new_start
= old_start
- shift
;
502 unsigned long new_end
= old_end
- shift
;
503 struct mmu_gather
*tlb
;
505 BUG_ON(new_start
> new_end
);
508 * ensure there are no vmas between where we want to go
511 if (vma
!= find_vma(mm
, new_start
))
515 * cover the whole range: [new_start, old_end)
517 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
520 * move the page tables downwards, on failure we rely on
521 * process cleanup to remove whatever mess we made.
523 if (length
!= move_page_tables(vma
, old_start
,
524 vma
, new_start
, length
))
528 tlb
= tlb_gather_mmu(mm
, 0);
529 if (new_end
> old_start
) {
531 * when the old and new regions overlap clear from new_end.
533 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
534 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
537 * otherwise, clean from old_start; this is done to not touch
538 * the address space in [new_end, old_start) some architectures
539 * have constraints on va-space that make this illegal (IA64) -
540 * for the others its just a little faster.
542 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
543 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
545 tlb_finish_mmu(tlb
, new_end
, old_end
);
548 * shrink the vma to just the new range.
550 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
555 #define EXTRA_STACK_VM_PAGES 20 /* random */
558 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
559 * the stack is optionally relocated, and some extra space is added.
561 int setup_arg_pages(struct linux_binprm
*bprm
,
562 unsigned long stack_top
,
563 int executable_stack
)
566 unsigned long stack_shift
;
567 struct mm_struct
*mm
= current
->mm
;
568 struct vm_area_struct
*vma
= bprm
->vma
;
569 struct vm_area_struct
*prev
= NULL
;
570 unsigned long vm_flags
;
571 unsigned long stack_base
;
573 #ifdef CONFIG_STACK_GROWSUP
574 /* Limit stack size to 1GB */
575 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
576 if (stack_base
> (1 << 30))
577 stack_base
= 1 << 30;
579 /* Make sure we didn't let the argument array grow too large. */
580 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
583 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
585 stack_shift
= vma
->vm_start
- stack_base
;
586 mm
->arg_start
= bprm
->p
- stack_shift
;
587 bprm
->p
= vma
->vm_end
- stack_shift
;
589 stack_top
= arch_align_stack(stack_top
);
590 stack_top
= PAGE_ALIGN(stack_top
);
591 stack_shift
= vma
->vm_end
- stack_top
;
593 bprm
->p
-= stack_shift
;
594 mm
->arg_start
= bprm
->p
;
598 bprm
->loader
-= stack_shift
;
599 bprm
->exec
-= stack_shift
;
601 down_write(&mm
->mmap_sem
);
602 vm_flags
= VM_STACK_FLAGS
;
605 * Adjust stack execute permissions; explicitly enable for
606 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
607 * (arch default) otherwise.
609 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
611 else if (executable_stack
== EXSTACK_DISABLE_X
)
612 vm_flags
&= ~VM_EXEC
;
613 vm_flags
|= mm
->def_flags
;
615 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
621 /* Move stack pages down in memory. */
623 ret
= shift_arg_pages(vma
, stack_shift
);
625 up_write(&mm
->mmap_sem
);
630 #ifdef CONFIG_STACK_GROWSUP
631 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
633 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
635 ret
= expand_stack(vma
, stack_base
);
640 up_write(&mm
->mmap_sem
);
643 EXPORT_SYMBOL(setup_arg_pages
);
645 #endif /* CONFIG_MMU */
647 struct file
*open_exec(const char *name
)
652 file
= do_filp_open(AT_FDCWD
, name
,
653 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
654 MAY_EXEC
| MAY_OPEN
);
659 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
662 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
665 fsnotify_open(file
->f_path
.dentry
);
667 err
= deny_write_access(file
);
678 EXPORT_SYMBOL(open_exec
);
680 int kernel_read(struct file
*file
, unsigned long offset
,
681 char *addr
, unsigned long count
)
689 /* The cast to a user pointer is valid due to the set_fs() */
690 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
695 EXPORT_SYMBOL(kernel_read
);
697 static int exec_mmap(struct mm_struct
*mm
)
699 struct task_struct
*tsk
;
700 struct mm_struct
* old_mm
, *active_mm
;
702 /* Notify parent that we're no longer interested in the old VM */
704 old_mm
= current
->mm
;
705 mm_release(tsk
, old_mm
);
709 * Make sure that if there is a core dump in progress
710 * for the old mm, we get out and die instead of going
711 * through with the exec. We must hold mmap_sem around
712 * checking core_state and changing tsk->mm.
714 down_read(&old_mm
->mmap_sem
);
715 if (unlikely(old_mm
->core_state
)) {
716 up_read(&old_mm
->mmap_sem
);
721 active_mm
= tsk
->active_mm
;
724 activate_mm(active_mm
, mm
);
726 arch_pick_mmap_layout(mm
);
728 up_read(&old_mm
->mmap_sem
);
729 BUG_ON(active_mm
!= old_mm
);
730 mm_update_next_owner(old_mm
);
739 * This function makes sure the current process has its own signal table,
740 * so that flush_signal_handlers can later reset the handlers without
741 * disturbing other processes. (Other processes might share the signal
742 * table via the CLONE_SIGHAND option to clone().)
744 static int de_thread(struct task_struct
*tsk
)
746 struct signal_struct
*sig
= tsk
->signal
;
747 struct sighand_struct
*oldsighand
= tsk
->sighand
;
748 spinlock_t
*lock
= &oldsighand
->siglock
;
751 if (thread_group_empty(tsk
))
752 goto no_thread_group
;
755 * Kill all other threads in the thread group.
758 if (signal_group_exit(sig
)) {
760 * Another group action in progress, just
761 * return so that the signal is processed.
763 spin_unlock_irq(lock
);
766 sig
->group_exit_task
= tsk
;
767 zap_other_threads(tsk
);
769 /* Account for the thread group leader hanging around: */
770 count
= thread_group_leader(tsk
) ? 1 : 2;
771 sig
->notify_count
= count
;
772 while (atomic_read(&sig
->count
) > count
) {
773 __set_current_state(TASK_UNINTERRUPTIBLE
);
774 spin_unlock_irq(lock
);
778 spin_unlock_irq(lock
);
781 * At this point all other threads have exited, all we have to
782 * do is to wait for the thread group leader to become inactive,
783 * and to assume its PID:
785 if (!thread_group_leader(tsk
)) {
786 struct task_struct
*leader
= tsk
->group_leader
;
788 sig
->notify_count
= -1; /* for exit_notify() */
790 write_lock_irq(&tasklist_lock
);
791 if (likely(leader
->exit_state
))
793 __set_current_state(TASK_UNINTERRUPTIBLE
);
794 write_unlock_irq(&tasklist_lock
);
799 * The only record we have of the real-time age of a
800 * process, regardless of execs it's done, is start_time.
801 * All the past CPU time is accumulated in signal_struct
802 * from sister threads now dead. But in this non-leader
803 * exec, nothing survives from the original leader thread,
804 * whose birth marks the true age of this process now.
805 * When we take on its identity by switching to its PID, we
806 * also take its birthdate (always earlier than our own).
808 tsk
->start_time
= leader
->start_time
;
810 BUG_ON(!same_thread_group(leader
, tsk
));
811 BUG_ON(has_group_leader_pid(tsk
));
813 * An exec() starts a new thread group with the
814 * TGID of the previous thread group. Rehash the
815 * two threads with a switched PID, and release
816 * the former thread group leader:
819 /* Become a process group leader with the old leader's pid.
820 * The old leader becomes a thread of the this thread group.
821 * Note: The old leader also uses this pid until release_task
822 * is called. Odd but simple and correct.
824 detach_pid(tsk
, PIDTYPE_PID
);
825 tsk
->pid
= leader
->pid
;
826 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
827 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
828 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
829 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
831 tsk
->group_leader
= tsk
;
832 leader
->group_leader
= tsk
;
834 tsk
->exit_signal
= SIGCHLD
;
836 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
837 leader
->exit_state
= EXIT_DEAD
;
838 write_unlock_irq(&tasklist_lock
);
840 release_task(leader
);
843 sig
->group_exit_task
= NULL
;
844 sig
->notify_count
= 0;
848 flush_itimer_signals();
850 if (atomic_read(&oldsighand
->count
) != 1) {
851 struct sighand_struct
*newsighand
;
853 * This ->sighand is shared with the CLONE_SIGHAND
854 * but not CLONE_THREAD task, switch to the new one.
856 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
860 atomic_set(&newsighand
->count
, 1);
861 memcpy(newsighand
->action
, oldsighand
->action
,
862 sizeof(newsighand
->action
));
864 write_lock_irq(&tasklist_lock
);
865 spin_lock(&oldsighand
->siglock
);
866 rcu_assign_pointer(tsk
->sighand
, newsighand
);
867 spin_unlock(&oldsighand
->siglock
);
868 write_unlock_irq(&tasklist_lock
);
870 __cleanup_sighand(oldsighand
);
873 BUG_ON(!thread_group_leader(tsk
));
878 * These functions flushes out all traces of the currently running executable
879 * so that a new one can be started
881 static void flush_old_files(struct files_struct
* files
)
886 spin_lock(&files
->file_lock
);
888 unsigned long set
, i
;
892 fdt
= files_fdtable(files
);
893 if (i
>= fdt
->max_fds
)
895 set
= fdt
->close_on_exec
->fds_bits
[j
];
898 fdt
->close_on_exec
->fds_bits
[j
] = 0;
899 spin_unlock(&files
->file_lock
);
900 for ( ; set
; i
++,set
>>= 1) {
905 spin_lock(&files
->file_lock
);
908 spin_unlock(&files
->file_lock
);
911 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
913 /* buf must be at least sizeof(tsk->comm) in size */
915 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
920 void set_task_comm(struct task_struct
*tsk
, char *buf
)
923 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
927 int flush_old_exec(struct linux_binprm
* bprm
)
931 char tcomm
[sizeof(current
->comm
)];
934 * Make sure we have a private signal table and that
935 * we are unassociated from the previous thread group.
937 retval
= de_thread(current
);
941 set_mm_exe_file(bprm
->mm
, bprm
->file
);
944 * Release all of the old mmap stuff
946 retval
= exec_mmap(bprm
->mm
);
950 bprm
->mm
= NULL
; /* We're using it now */
952 /* This is the point of no return */
953 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
955 if (current_euid() == current_uid() && current_egid() == current_gid())
956 set_dumpable(current
->mm
, 1);
958 set_dumpable(current
->mm
, suid_dumpable
);
960 name
= bprm
->filename
;
962 /* Copies the binary name from after last slash */
963 for (i
=0; (ch
= *(name
++)) != '\0';) {
965 i
= 0; /* overwrite what we wrote */
967 if (i
< (sizeof(tcomm
) - 1))
971 set_task_comm(current
, tcomm
);
973 current
->flags
&= ~PF_RANDOMIZE
;
976 /* Set the new mm task size. We have to do that late because it may
977 * depend on TIF_32BIT which is only updated in flush_thread() on
978 * some architectures like powerpc
980 current
->mm
->task_size
= TASK_SIZE
;
982 /* install the new credentials */
983 if (bprm
->cred
->uid
!= current_euid() ||
984 bprm
->cred
->gid
!= current_egid()) {
985 current
->pdeath_signal
= 0;
986 } else if (file_permission(bprm
->file
, MAY_READ
) ||
987 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
988 set_dumpable(current
->mm
, suid_dumpable
);
991 current
->personality
&= ~bprm
->per_clear
;
993 /* An exec changes our domain. We are no longer part of the thread
996 current
->self_exec_id
++;
998 flush_signal_handlers(current
, 0);
999 flush_old_files(current
->files
);
1007 EXPORT_SYMBOL(flush_old_exec
);
1010 * install the new credentials for this executable
1012 void install_exec_creds(struct linux_binprm
*bprm
)
1014 security_bprm_committing_creds(bprm
);
1016 commit_creds(bprm
->cred
);
1019 /* cred_exec_mutex must be held at least to this point to prevent
1020 * ptrace_attach() from altering our determination of the task's
1021 * credentials; any time after this it may be unlocked */
1023 security_bprm_committed_creds(bprm
);
1025 EXPORT_SYMBOL(install_exec_creds
);
1028 * determine how safe it is to execute the proposed program
1029 * - the caller must hold current->cred_exec_mutex to protect against
1032 int check_unsafe_exec(struct linux_binprm
*bprm
)
1034 struct task_struct
*p
= current
, *t
;
1038 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1041 write_lock(&p
->fs
->lock
);
1043 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1049 if (p
->fs
->users
> n_fs
) {
1050 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1053 if (!p
->fs
->in_exec
) {
1058 write_unlock(&p
->fs
->lock
);
1064 * Fill the binprm structure from the inode.
1065 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1067 * This may be called multiple times for binary chains (scripts for example).
1069 int prepare_binprm(struct linux_binprm
*bprm
)
1072 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1075 mode
= inode
->i_mode
;
1076 if (bprm
->file
->f_op
== NULL
)
1079 /* clear any previous set[ug]id data from a previous binary */
1080 bprm
->cred
->euid
= current_euid();
1081 bprm
->cred
->egid
= current_egid();
1083 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1085 if (mode
& S_ISUID
) {
1086 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1087 bprm
->cred
->euid
= inode
->i_uid
;
1092 * If setgid is set but no group execute bit then this
1093 * is a candidate for mandatory locking, not a setgid
1096 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1097 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1098 bprm
->cred
->egid
= inode
->i_gid
;
1102 /* fill in binprm security blob */
1103 retval
= security_bprm_set_creds(bprm
);
1106 bprm
->cred_prepared
= 1;
1108 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1109 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1112 EXPORT_SYMBOL(prepare_binprm
);
1115 * Arguments are '\0' separated strings found at the location bprm->p
1116 * points to; chop off the first by relocating brpm->p to right after
1117 * the first '\0' encountered.
1119 int remove_arg_zero(struct linux_binprm
*bprm
)
1122 unsigned long offset
;
1130 offset
= bprm
->p
& ~PAGE_MASK
;
1131 page
= get_arg_page(bprm
, bprm
->p
, 0);
1136 kaddr
= kmap_atomic(page
, KM_USER0
);
1138 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1139 offset
++, bprm
->p
++)
1142 kunmap_atomic(kaddr
, KM_USER0
);
1145 if (offset
== PAGE_SIZE
)
1146 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1147 } while (offset
== PAGE_SIZE
);
1156 EXPORT_SYMBOL(remove_arg_zero
);
1159 * cycle the list of binary formats handler, until one recognizes the image
1161 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1163 unsigned int depth
= bprm
->recursion_depth
;
1165 struct linux_binfmt
*fmt
;
1167 retval
= security_bprm_check(bprm
);
1170 retval
= ima_bprm_check(bprm
);
1174 /* kernel module loader fixup */
1175 /* so we don't try to load run modprobe in kernel space. */
1178 retval
= audit_bprm(bprm
);
1183 for (try=0; try<2; try++) {
1184 read_lock(&binfmt_lock
);
1185 list_for_each_entry(fmt
, &formats
, lh
) {
1186 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1189 if (!try_module_get(fmt
->module
))
1191 read_unlock(&binfmt_lock
);
1192 retval
= fn(bprm
, regs
);
1194 * Restore the depth counter to its starting value
1195 * in this call, so we don't have to rely on every
1196 * load_binary function to restore it on return.
1198 bprm
->recursion_depth
= depth
;
1201 tracehook_report_exec(fmt
, bprm
, regs
);
1203 allow_write_access(bprm
->file
);
1207 current
->did_exec
= 1;
1208 proc_exec_connector(current
);
1211 read_lock(&binfmt_lock
);
1213 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1216 read_unlock(&binfmt_lock
);
1220 read_unlock(&binfmt_lock
);
1221 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1223 #ifdef CONFIG_MODULES
1225 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1226 if (printable(bprm
->buf
[0]) &&
1227 printable(bprm
->buf
[1]) &&
1228 printable(bprm
->buf
[2]) &&
1229 printable(bprm
->buf
[3]))
1230 break; /* -ENOEXEC */
1231 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1238 EXPORT_SYMBOL(search_binary_handler
);
1240 void free_bprm(struct linux_binprm
*bprm
)
1242 free_arg_pages(bprm
);
1244 abort_creds(bprm
->cred
);
1249 * sys_execve() executes a new program.
1251 int do_execve(char * filename
,
1252 char __user
*__user
*argv
,
1253 char __user
*__user
*envp
,
1254 struct pt_regs
* regs
)
1256 struct linux_binprm
*bprm
;
1258 struct files_struct
*displaced
;
1262 retval
= unshare_files(&displaced
);
1267 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1271 retval
= mutex_lock_interruptible(¤t
->cred_exec_mutex
);
1274 current
->in_execve
= 1;
1277 bprm
->cred
= prepare_exec_creds();
1281 retval
= check_unsafe_exec(bprm
);
1284 clear_in_exec
= retval
;
1286 file
= open_exec(filename
);
1287 retval
= PTR_ERR(file
);
1294 bprm
->filename
= filename
;
1295 bprm
->interp
= filename
;
1297 retval
= bprm_mm_init(bprm
);
1301 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1302 if ((retval
= bprm
->argc
) < 0)
1305 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1306 if ((retval
= bprm
->envc
) < 0)
1309 retval
= prepare_binprm(bprm
);
1313 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1317 bprm
->exec
= bprm
->p
;
1318 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1322 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1326 current
->flags
&= ~PF_KTHREAD
;
1327 retval
= search_binary_handler(bprm
,regs
);
1331 /* execve succeeded */
1332 current
->fs
->in_exec
= 0;
1333 current
->in_execve
= 0;
1334 mutex_unlock(¤t
->cred_exec_mutex
);
1335 acct_update_integrals(current
);
1338 put_files_struct(displaced
);
1347 allow_write_access(bprm
->file
);
1353 current
->fs
->in_exec
= 0;
1356 current
->in_execve
= 0;
1357 mutex_unlock(¤t
->cred_exec_mutex
);
1364 reset_files_struct(displaced
);
1369 int set_binfmt(struct linux_binfmt
*new)
1371 struct linux_binfmt
*old
= current
->binfmt
;
1374 if (!try_module_get(new->module
))
1377 current
->binfmt
= new;
1379 module_put(old
->module
);
1383 EXPORT_SYMBOL(set_binfmt
);
1385 /* format_corename will inspect the pattern parameter, and output a
1386 * name into corename, which must have space for at least
1387 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1389 static int format_corename(char *corename
, long signr
)
1391 const struct cred
*cred
= current_cred();
1392 const char *pat_ptr
= core_pattern
;
1393 int ispipe
= (*pat_ptr
== '|');
1394 char *out_ptr
= corename
;
1395 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1397 int pid_in_pattern
= 0;
1399 /* Repeat as long as we have more pattern to process and more output
1402 if (*pat_ptr
!= '%') {
1403 if (out_ptr
== out_end
)
1405 *out_ptr
++ = *pat_ptr
++;
1407 switch (*++pat_ptr
) {
1410 /* Double percent, output one percent */
1412 if (out_ptr
== out_end
)
1419 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1420 "%d", task_tgid_vnr(current
));
1421 if (rc
> out_end
- out_ptr
)
1427 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1429 if (rc
> out_end
- out_ptr
)
1435 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1437 if (rc
> out_end
- out_ptr
)
1441 /* signal that caused the coredump */
1443 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1445 if (rc
> out_end
- out_ptr
)
1449 /* UNIX time of coredump */
1452 do_gettimeofday(&tv
);
1453 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1455 if (rc
> out_end
- out_ptr
)
1462 down_read(&uts_sem
);
1463 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1464 "%s", utsname()->nodename
);
1466 if (rc
> out_end
- out_ptr
)
1472 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1473 "%s", current
->comm
);
1474 if (rc
> out_end
- out_ptr
)
1478 /* core limit size */
1480 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1481 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1482 if (rc
> out_end
- out_ptr
)
1492 /* Backward compatibility with core_uses_pid:
1494 * If core_pattern does not include a %p (as is the default)
1495 * and core_uses_pid is set, then .%pid will be appended to
1496 * the filename. Do not do this for piped commands. */
1497 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1498 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1499 ".%d", task_tgid_vnr(current
));
1500 if (rc
> out_end
- out_ptr
)
1509 static int zap_process(struct task_struct
*start
)
1511 struct task_struct
*t
;
1514 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1515 start
->signal
->group_stop_count
= 0;
1519 if (t
!= current
&& t
->mm
) {
1520 sigaddset(&t
->pending
.signal
, SIGKILL
);
1521 signal_wake_up(t
, 1);
1524 } while_each_thread(start
, t
);
1529 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1530 struct core_state
*core_state
, int exit_code
)
1532 struct task_struct
*g
, *p
;
1533 unsigned long flags
;
1536 spin_lock_irq(&tsk
->sighand
->siglock
);
1537 if (!signal_group_exit(tsk
->signal
)) {
1538 mm
->core_state
= core_state
;
1539 tsk
->signal
->group_exit_code
= exit_code
;
1540 nr
= zap_process(tsk
);
1542 spin_unlock_irq(&tsk
->sighand
->siglock
);
1543 if (unlikely(nr
< 0))
1546 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1549 * We should find and kill all tasks which use this mm, and we should
1550 * count them correctly into ->nr_threads. We don't take tasklist
1551 * lock, but this is safe wrt:
1554 * None of sub-threads can fork after zap_process(leader). All
1555 * processes which were created before this point should be
1556 * visible to zap_threads() because copy_process() adds the new
1557 * process to the tail of init_task.tasks list, and lock/unlock
1558 * of ->siglock provides a memory barrier.
1561 * The caller holds mm->mmap_sem. This means that the task which
1562 * uses this mm can't pass exit_mm(), so it can't exit or clear
1566 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1567 * we must see either old or new leader, this does not matter.
1568 * However, it can change p->sighand, so lock_task_sighand(p)
1569 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1572 * Note also that "g" can be the old leader with ->mm == NULL
1573 * and already unhashed and thus removed from ->thread_group.
1574 * This is OK, __unhash_process()->list_del_rcu() does not
1575 * clear the ->next pointer, we will find the new leader via
1579 for_each_process(g
) {
1580 if (g
== tsk
->group_leader
)
1582 if (g
->flags
& PF_KTHREAD
)
1587 if (unlikely(p
->mm
== mm
)) {
1588 lock_task_sighand(p
, &flags
);
1589 nr
+= zap_process(p
);
1590 unlock_task_sighand(p
, &flags
);
1594 } while_each_thread(g
, p
);
1598 atomic_set(&core_state
->nr_threads
, nr
);
1602 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1604 struct task_struct
*tsk
= current
;
1605 struct mm_struct
*mm
= tsk
->mm
;
1606 struct completion
*vfork_done
;
1609 init_completion(&core_state
->startup
);
1610 core_state
->dumper
.task
= tsk
;
1611 core_state
->dumper
.next
= NULL
;
1612 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1613 up_write(&mm
->mmap_sem
);
1615 if (unlikely(core_waiters
< 0))
1619 * Make sure nobody is waiting for us to release the VM,
1620 * otherwise we can deadlock when we wait on each other
1622 vfork_done
= tsk
->vfork_done
;
1624 tsk
->vfork_done
= NULL
;
1625 complete(vfork_done
);
1629 wait_for_completion(&core_state
->startup
);
1631 return core_waiters
;
1634 static void coredump_finish(struct mm_struct
*mm
)
1636 struct core_thread
*curr
, *next
;
1637 struct task_struct
*task
;
1639 next
= mm
->core_state
->dumper
.next
;
1640 while ((curr
= next
) != NULL
) {
1644 * see exit_mm(), curr->task must not see
1645 * ->task == NULL before we read ->next.
1649 wake_up_process(task
);
1652 mm
->core_state
= NULL
;
1656 * set_dumpable converts traditional three-value dumpable to two flags and
1657 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1658 * these bits are not changed atomically. So get_dumpable can observe the
1659 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1660 * return either old dumpable or new one by paying attention to the order of
1661 * modifying the bits.
1663 * dumpable | mm->flags (binary)
1664 * old new | initial interim final
1665 * ---------+-----------------------
1673 * (*) get_dumpable regards interim value of 10 as 11.
1675 void set_dumpable(struct mm_struct
*mm
, int value
)
1679 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1681 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1684 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1686 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1689 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1691 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1696 int get_dumpable(struct mm_struct
*mm
)
1700 ret
= mm
->flags
& 0x3;
1701 return (ret
>= 2) ? 2 : ret
;
1704 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
1706 struct core_state core_state
;
1707 char corename
[CORENAME_MAX_SIZE
+ 1];
1708 struct mm_struct
*mm
= current
->mm
;
1709 struct linux_binfmt
* binfmt
;
1710 struct inode
* inode
;
1712 const struct cred
*old_cred
;
1717 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1718 char **helper_argv
= NULL
;
1719 int helper_argc
= 0;
1722 audit_core_dumps(signr
);
1724 binfmt
= current
->binfmt
;
1725 if (!binfmt
|| !binfmt
->core_dump
)
1728 cred
= prepare_creds();
1734 down_write(&mm
->mmap_sem
);
1736 * If another thread got here first, or we are not dumpable, bail out.
1738 if (mm
->core_state
|| !get_dumpable(mm
)) {
1739 up_write(&mm
->mmap_sem
);
1745 * We cannot trust fsuid as being the "true" uid of the
1746 * process nor do we know its entire history. We only know it
1747 * was tainted so we dump it as root in mode 2.
1749 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1750 flag
= O_EXCL
; /* Stop rewrite attacks */
1751 cred
->fsuid
= 0; /* Dump root private */
1754 retval
= coredump_wait(exit_code
, &core_state
);
1760 old_cred
= override_creds(cred
);
1763 * Clear any false indication of pending signals that might
1764 * be seen by the filesystem code called to write the core file.
1766 clear_thread_flag(TIF_SIGPENDING
);
1769 * lock_kernel() because format_corename() is controlled by sysctl, which
1770 * uses lock_kernel()
1773 ispipe
= format_corename(corename
, signr
);
1776 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1777 * to a pipe. Since we're not writing directly to the filesystem
1778 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1779 * created unless the pipe reader choses to write out the core file
1780 * at which point file size limits and permissions will be imposed
1781 * as it does with any other process
1783 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1787 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1789 printk(KERN_WARNING
"%s failed to allocate memory\n",
1793 /* Terminate the string before the first option */
1794 delimit
= strchr(corename
, ' ');
1797 delimit
= strrchr(helper_argv
[0], '/');
1801 delimit
= helper_argv
[0];
1802 if (!strcmp(delimit
, current
->comm
)) {
1803 printk(KERN_NOTICE
"Recursive core dump detected, "
1808 core_limit
= RLIM_INFINITY
;
1810 /* SIGPIPE can happen, but it's just never processed */
1811 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1813 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1818 file
= filp_open(corename
,
1819 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1823 inode
= file
->f_path
.dentry
->d_inode
;
1824 if (inode
->i_nlink
> 1)
1825 goto close_fail
; /* multiple links - don't dump */
1826 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1829 /* AK: actually i see no reason to not allow this for named pipes etc.,
1830 but keep the previous behaviour for now. */
1831 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1834 * Dont allow local users get cute and trick others to coredump
1835 * into their pre-created files:
1837 if (inode
->i_uid
!= current_fsuid())
1841 if (!file
->f_op
->write
)
1843 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1846 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1849 current
->signal
->group_exit_code
|= 0x80;
1851 filp_close(file
, NULL
);
1854 argv_free(helper_argv
);
1856 revert_creds(old_cred
);
1858 coredump_finish(mm
);