4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
132 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
134 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
141 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
143 sg
->__cpu_power
+= val
;
144 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
148 static inline int rt_policy(int policy
)
150 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
155 static inline int task_has_rt_policy(struct task_struct
*p
)
157 return rt_policy(p
->policy
);
161 * This is the priority-queue data structure of the RT scheduling class:
163 struct rt_prio_array
{
164 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
165 struct list_head queue
[MAX_RT_PRIO
];
168 struct rt_bandwidth
{
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock
;
173 struct hrtimer rt_period_timer
;
176 static struct rt_bandwidth def_rt_bandwidth
;
178 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
180 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
182 struct rt_bandwidth
*rt_b
=
183 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
189 now
= hrtimer_cb_get_time(timer
);
190 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
195 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
198 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
202 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
204 rt_b
->rt_period
= ns_to_ktime(period
);
205 rt_b
->rt_runtime
= runtime
;
207 spin_lock_init(&rt_b
->rt_runtime_lock
);
209 hrtimer_init(&rt_b
->rt_period_timer
,
210 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
211 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
212 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_UNLOCKED
;
215 static inline int rt_bandwidth_enabled(void)
217 return sysctl_sched_rt_runtime
>= 0;
220 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
224 if (rt_bandwidth_enabled() && rt_b
->rt_runtime
== RUNTIME_INF
)
227 if (hrtimer_active(&rt_b
->rt_period_timer
))
230 spin_lock(&rt_b
->rt_runtime_lock
);
232 if (hrtimer_active(&rt_b
->rt_period_timer
))
235 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
236 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
237 hrtimer_start_expires(&rt_b
->rt_period_timer
,
240 spin_unlock(&rt_b
->rt_runtime_lock
);
243 #ifdef CONFIG_RT_GROUP_SCHED
244 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
246 hrtimer_cancel(&rt_b
->rt_period_timer
);
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
254 static DEFINE_MUTEX(sched_domains_mutex
);
256 #ifdef CONFIG_GROUP_SCHED
258 #include <linux/cgroup.h>
262 static LIST_HEAD(task_groups
);
264 /* task group related information */
266 #ifdef CONFIG_CGROUP_SCHED
267 struct cgroup_subsys_state css
;
270 #ifdef CONFIG_USER_SCHED
274 #ifdef CONFIG_FAIR_GROUP_SCHED
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity
**se
;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq
**cfs_rq
;
279 unsigned long shares
;
282 #ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity
**rt_se
;
284 struct rt_rq
**rt_rq
;
286 struct rt_bandwidth rt_bandwidth
;
290 struct list_head list
;
292 struct task_group
*parent
;
293 struct list_head siblings
;
294 struct list_head children
;
297 #ifdef CONFIG_USER_SCHED
299 /* Helper function to pass uid information to create_sched_user() */
300 void set_tg_uid(struct user_struct
*user
)
302 user
->tg
->uid
= user
->uid
;
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
310 struct task_group root_task_group
;
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313 /* Default task group's sched entity on each cpu */
314 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
315 /* Default task group's cfs_rq on each cpu */
316 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
317 #endif /* CONFIG_FAIR_GROUP_SCHED */
319 #ifdef CONFIG_RT_GROUP_SCHED
320 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
321 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
322 #endif /* CONFIG_RT_GROUP_SCHED */
323 #else /* !CONFIG_USER_SCHED */
324 #define root_task_group init_task_group
325 #endif /* CONFIG_USER_SCHED */
327 /* task_group_lock serializes add/remove of task groups and also changes to
328 * a task group's cpu shares.
330 static DEFINE_SPINLOCK(task_group_lock
);
332 #ifdef CONFIG_FAIR_GROUP_SCHED
333 #ifdef CONFIG_USER_SCHED
334 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
335 #else /* !CONFIG_USER_SCHED */
336 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
337 #endif /* CONFIG_USER_SCHED */
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
348 #define MAX_SHARES (1UL << 18)
350 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
353 /* Default task group.
354 * Every task in system belong to this group at bootup.
356 struct task_group init_task_group
;
358 /* return group to which a task belongs */
359 static inline struct task_group
*task_group(struct task_struct
*p
)
361 struct task_group
*tg
;
363 #ifdef CONFIG_USER_SCHED
365 tg
= __task_cred(p
)->user
->tg
;
367 #elif defined(CONFIG_CGROUP_SCHED)
368 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
369 struct task_group
, css
);
371 tg
= &init_task_group
;
376 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
377 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
381 p
->se
.parent
= task_group(p
)->se
[cpu
];
384 #ifdef CONFIG_RT_GROUP_SCHED
385 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
386 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
392 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
393 static inline struct task_group
*task_group(struct task_struct
*p
)
398 #endif /* CONFIG_GROUP_SCHED */
400 /* CFS-related fields in a runqueue */
402 struct load_weight load
;
403 unsigned long nr_running
;
408 struct rb_root tasks_timeline
;
409 struct rb_node
*rb_leftmost
;
411 struct list_head tasks
;
412 struct list_head
*balance_iterator
;
415 * 'curr' points to currently running entity on this cfs_rq.
416 * It is set to NULL otherwise (i.e when none are currently running).
418 struct sched_entity
*curr
, *next
, *last
;
420 unsigned int nr_spread_over
;
422 #ifdef CONFIG_FAIR_GROUP_SCHED
423 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
426 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
427 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
428 * (like users, containers etc.)
430 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
431 * list is used during load balance.
433 struct list_head leaf_cfs_rq_list
;
434 struct task_group
*tg
; /* group that "owns" this runqueue */
438 * the part of load.weight contributed by tasks
440 unsigned long task_weight
;
443 * h_load = weight * f(tg)
445 * Where f(tg) is the recursive weight fraction assigned to
448 unsigned long h_load
;
451 * this cpu's part of tg->shares
453 unsigned long shares
;
456 * load.weight at the time we set shares
458 unsigned long rq_weight
;
463 /* Real-Time classes' related field in a runqueue: */
465 struct rt_prio_array active
;
466 unsigned long rt_nr_running
;
467 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
468 int highest_prio
; /* highest queued rt task prio */
471 unsigned long rt_nr_migratory
;
477 /* Nests inside the rq lock: */
478 spinlock_t rt_runtime_lock
;
480 #ifdef CONFIG_RT_GROUP_SCHED
481 unsigned long rt_nr_boosted
;
484 struct list_head leaf_rt_rq_list
;
485 struct task_group
*tg
;
486 struct sched_rt_entity
*rt_se
;
493 * We add the notion of a root-domain which will be used to define per-domain
494 * variables. Each exclusive cpuset essentially defines an island domain by
495 * fully partitioning the member cpus from any other cpuset. Whenever a new
496 * exclusive cpuset is created, we also create and attach a new root-domain
506 * The "RT overload" flag: it gets set if a CPU has more than
507 * one runnable RT task.
512 struct cpupri cpupri
;
517 * By default the system creates a single root-domain with all cpus as
518 * members (mimicking the global state we have today).
520 static struct root_domain def_root_domain
;
525 * This is the main, per-CPU runqueue data structure.
527 * Locking rule: those places that want to lock multiple runqueues
528 * (such as the load balancing or the thread migration code), lock
529 * acquire operations must be ordered by ascending &runqueue.
536 * nr_running and cpu_load should be in the same cacheline because
537 * remote CPUs use both these fields when doing load calculation.
539 unsigned long nr_running
;
540 #define CPU_LOAD_IDX_MAX 5
541 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
542 unsigned char idle_at_tick
;
544 unsigned long last_tick_seen
;
545 unsigned char in_nohz_recently
;
547 /* capture load from *all* tasks on this cpu: */
548 struct load_weight load
;
549 unsigned long nr_load_updates
;
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 /* list of leaf cfs_rq on this cpu: */
557 struct list_head leaf_cfs_rq_list
;
559 #ifdef CONFIG_RT_GROUP_SCHED
560 struct list_head leaf_rt_rq_list
;
564 * This is part of a global counter where only the total sum
565 * over all CPUs matters. A task can increase this counter on
566 * one CPU and if it got migrated afterwards it may decrease
567 * it on another CPU. Always updated under the runqueue lock:
569 unsigned long nr_uninterruptible
;
571 struct task_struct
*curr
, *idle
;
572 unsigned long next_balance
;
573 struct mm_struct
*prev_mm
;
580 struct root_domain
*rd
;
581 struct sched_domain
*sd
;
583 /* For active balancing */
586 /* cpu of this runqueue: */
590 unsigned long avg_load_per_task
;
592 struct task_struct
*migration_thread
;
593 struct list_head migration_queue
;
596 #ifdef CONFIG_SCHED_HRTICK
598 int hrtick_csd_pending
;
599 struct call_single_data hrtick_csd
;
601 struct hrtimer hrtick_timer
;
604 #ifdef CONFIG_SCHEDSTATS
606 struct sched_info rq_sched_info
;
607 unsigned long long rq_cpu_time
;
608 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
610 /* sys_sched_yield() stats */
611 unsigned int yld_exp_empty
;
612 unsigned int yld_act_empty
;
613 unsigned int yld_both_empty
;
614 unsigned int yld_count
;
616 /* schedule() stats */
617 unsigned int sched_switch
;
618 unsigned int sched_count
;
619 unsigned int sched_goidle
;
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count
;
623 unsigned int ttwu_local
;
626 unsigned int bkl_count
;
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
632 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
634 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
637 static inline int cpu_of(struct rq
*rq
)
647 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
648 * See detach_destroy_domains: synchronize_sched for details.
650 * The domain tree of any CPU may only be accessed from within
651 * preempt-disabled sections.
653 #define for_each_domain(cpu, __sd) \
654 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
656 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
657 #define this_rq() (&__get_cpu_var(runqueues))
658 #define task_rq(p) cpu_rq(task_cpu(p))
659 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 static inline void update_rq_clock(struct rq
*rq
)
663 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
667 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
669 #ifdef CONFIG_SCHED_DEBUG
670 # define const_debug __read_mostly
672 # define const_debug static const
678 * Returns true if the current cpu runqueue is locked.
679 * This interface allows printk to be called with the runqueue lock
680 * held and know whether or not it is OK to wake up the klogd.
682 int runqueue_is_locked(void)
685 struct rq
*rq
= cpu_rq(cpu
);
688 ret
= spin_is_locked(&rq
->lock
);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
701 #include "sched_features.h"
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug
unsigned int sysctl_sched_features
=
710 #include "sched_features.h"
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
719 static __read_mostly
char *sched_feat_names
[] = {
720 #include "sched_features.h"
726 static int sched_feat_show(struct seq_file
*m
, void *v
)
730 for (i
= 0; sched_feat_names
[i
]; i
++) {
731 if (!(sysctl_sched_features
& (1UL << i
)))
733 seq_printf(m
, "%s ", sched_feat_names
[i
]);
741 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
742 size_t cnt
, loff_t
*ppos
)
752 if (copy_from_user(&buf
, ubuf
, cnt
))
757 if (strncmp(buf
, "NO_", 3) == 0) {
762 for (i
= 0; sched_feat_names
[i
]; i
++) {
763 int len
= strlen(sched_feat_names
[i
]);
765 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
767 sysctl_sched_features
&= ~(1UL << i
);
769 sysctl_sched_features
|= (1UL << i
);
774 if (!sched_feat_names
[i
])
782 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
784 return single_open(filp
, sched_feat_show
, NULL
);
787 static struct file_operations sched_feat_fops
= {
788 .open
= sched_feat_open
,
789 .write
= sched_feat_write
,
792 .release
= single_release
,
795 static __init
int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
802 late_initcall(sched_init_debug
);
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
815 * ratelimit for updating the group shares.
818 unsigned int sysctl_sched_shares_ratelimit
= 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
825 unsigned int sysctl_sched_shares_thresh
= 4;
828 * period over which we measure -rt task cpu usage in us.
831 unsigned int sysctl_sched_rt_period
= 1000000;
833 static __read_mostly
int scheduler_running
;
836 * part of the period that we allow rt tasks to run in us.
839 int sysctl_sched_rt_runtime
= 950000;
841 static inline u64
global_rt_period(void)
843 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
846 static inline u64
global_rt_runtime(void)
848 if (sysctl_sched_rt_runtime
< 0)
851 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
861 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
863 return rq
->curr
== p
;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
869 return task_current(rq
, p
);
872 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
876 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq
->lock
.owner
= current
;
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
887 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
889 spin_unlock_irq(&rq
->lock
);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
898 return task_current(rq
, p
);
902 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq
->lock
);
915 spin_unlock(&rq
->lock
);
919 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
944 struct rq
*rq
= task_rq(p
);
945 spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
963 local_irq_save(*flags
);
965 spin_lock(&rq
->lock
);
966 if (likely(rq
== task_rq(p
)))
968 spin_unlock_irqrestore(&rq
->lock
, *flags
);
972 void task_rq_unlock_wait(struct task_struct
*p
)
974 struct rq
*rq
= task_rq(p
);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq
->lock
);
980 static void __task_rq_unlock(struct rq
*rq
)
983 spin_unlock(&rq
->lock
);
986 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
989 spin_unlock_irqrestore(&rq
->lock
, *flags
);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq
*this_rq_lock(void)
1000 local_irq_disable();
1002 spin_lock(&rq
->lock
);
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq
*rq
)
1026 if (!sched_feat(HRTICK
))
1028 if (!cpu_active(cpu_of(rq
)))
1030 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1033 static void hrtick_clear(struct rq
*rq
)
1035 if (hrtimer_active(&rq
->hrtick_timer
))
1036 hrtimer_cancel(&rq
->hrtick_timer
);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1045 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1047 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1049 spin_lock(&rq
->lock
);
1050 update_rq_clock(rq
);
1051 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1052 spin_unlock(&rq
->lock
);
1054 return HRTIMER_NORESTART
;
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg
)
1063 struct rq
*rq
= arg
;
1065 spin_lock(&rq
->lock
);
1066 hrtimer_restart(&rq
->hrtick_timer
);
1067 rq
->hrtick_csd_pending
= 0;
1068 spin_unlock(&rq
->lock
);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq
*rq
, u64 delay
)
1078 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1079 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1081 hrtimer_set_expires(timer
, time
);
1083 if (rq
== this_rq()) {
1084 hrtimer_restart(timer
);
1085 } else if (!rq
->hrtick_csd_pending
) {
1086 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1087 rq
->hrtick_csd_pending
= 1;
1092 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1094 int cpu
= (int)(long)hcpu
;
1097 case CPU_UP_CANCELED
:
1098 case CPU_UP_CANCELED_FROZEN
:
1099 case CPU_DOWN_PREPARE
:
1100 case CPU_DOWN_PREPARE_FROZEN
:
1102 case CPU_DEAD_FROZEN
:
1103 hrtick_clear(cpu_rq(cpu
));
1110 static __init
void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick
, 0);
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq
*rq
, u64 delay
)
1122 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq
*rq
)
1133 rq
->hrtick_csd_pending
= 0;
1135 rq
->hrtick_csd
.flags
= 0;
1136 rq
->hrtick_csd
.func
= __hrtick_start
;
1137 rq
->hrtick_csd
.info
= rq
;
1140 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1141 rq
->hrtick_timer
.function
= hrtick
;
1142 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_PERCPU
;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq
*rq
)
1149 static inline void init_rq_hrtick(struct rq
*rq
)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1171 static void resched_task(struct task_struct
*p
)
1175 assert_spin_locked(&task_rq(p
)->lock
);
1177 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1180 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1183 if (cpu
== smp_processor_id())
1186 /* NEED_RESCHED must be visible before we test polling */
1188 if (!tsk_is_polling(p
))
1189 smp_send_reschedule(cpu
);
1192 static void resched_cpu(int cpu
)
1194 struct rq
*rq
= cpu_rq(cpu
);
1195 unsigned long flags
;
1197 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1199 resched_task(cpu_curr(cpu
));
1200 spin_unlock_irqrestore(&rq
->lock
, flags
);
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu
)
1216 struct rq
*rq
= cpu_rq(cpu
);
1218 if (cpu
== smp_processor_id())
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq
->curr
!= rq
->idle
)
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1238 /* NEED_RESCHED must be visible before we test polling */
1240 if (!tsk_is_polling(rq
->idle
))
1241 smp_send_reschedule(cpu
);
1243 #endif /* CONFIG_NO_HZ */
1245 #else /* !CONFIG_SMP */
1246 static void resched_task(struct task_struct
*p
)
1248 assert_spin_locked(&task_rq(p
)->lock
);
1249 set_tsk_need_resched(p
);
1251 #endif /* CONFIG_SMP */
1253 #if BITS_PER_LONG == 32
1254 # define WMULT_CONST (~0UL)
1256 # define WMULT_CONST (1UL << 32)
1259 #define WMULT_SHIFT 32
1262 * Shift right and round:
1264 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1267 * delta *= weight / lw
1269 static unsigned long
1270 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1271 struct load_weight
*lw
)
1275 if (!lw
->inv_weight
) {
1276 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1279 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1283 tmp
= (u64
)delta_exec
* weight
;
1285 * Check whether we'd overflow the 64-bit multiplication:
1287 if (unlikely(tmp
> WMULT_CONST
))
1288 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1291 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1293 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1296 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1302 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 * scaled version of the new time slice allocation that they receive on time
1317 #define WEIGHT_IDLEPRIO 2
1318 #define WMULT_IDLEPRIO (1 << 31)
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
1332 static const int prio_to_weight
[40] = {
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1350 static const u32 prio_to_wmult
[40] = {
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1361 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1368 struct rq_iterator
{
1370 struct task_struct
*(*start
)(void *);
1371 struct task_struct
*(*next
)(void *);
1375 static unsigned long
1376 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1377 unsigned long max_load_move
, struct sched_domain
*sd
,
1378 enum cpu_idle_type idle
, int *all_pinned
,
1379 int *this_best_prio
, struct rq_iterator
*iterator
);
1382 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1383 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1384 struct rq_iterator
*iterator
);
1387 #ifdef CONFIG_CGROUP_CPUACCT
1388 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1390 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1393 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1395 update_load_add(&rq
->load
, load
);
1398 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1400 update_load_sub(&rq
->load
, load
);
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor
)(struct task_group
*, void *);
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1410 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1412 struct task_group
*parent
, *child
;
1416 parent
= &root_task_group
;
1418 ret
= (*down
)(parent
, data
);
1421 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1428 ret
= (*up
)(parent
, data
);
1433 parent
= parent
->parent
;
1442 static int tg_nop(struct task_group
*tg
, void *data
)
1449 static unsigned long source_load(int cpu
, int type
);
1450 static unsigned long target_load(int cpu
, int type
);
1451 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1453 static unsigned long cpu_avg_load_per_task(int cpu
)
1455 struct rq
*rq
= cpu_rq(cpu
);
1456 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1459 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1461 rq
->avg_load_per_task
= 0;
1463 return rq
->avg_load_per_task
;
1466 #ifdef CONFIG_FAIR_GROUP_SCHED
1468 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1471 * Calculate and set the cpu's group shares.
1474 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1475 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1477 unsigned long shares
;
1478 unsigned long rq_weight
;
1483 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1486 * \Sum shares * rq_weight
1487 * shares = -----------------------
1491 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1492 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1494 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1495 sysctl_sched_shares_thresh
) {
1496 struct rq
*rq
= cpu_rq(cpu
);
1497 unsigned long flags
;
1499 spin_lock_irqsave(&rq
->lock
, flags
);
1500 tg
->cfs_rq
[cpu
]->shares
= shares
;
1502 __set_se_shares(tg
->se
[cpu
], shares
);
1503 spin_unlock_irqrestore(&rq
->lock
, flags
);
1508 * Re-compute the task group their per cpu shares over the given domain.
1509 * This needs to be done in a bottom-up fashion because the rq weight of a
1510 * parent group depends on the shares of its child groups.
1512 static int tg_shares_up(struct task_group
*tg
, void *data
)
1514 unsigned long weight
, rq_weight
= 0;
1515 unsigned long shares
= 0;
1516 struct sched_domain
*sd
= data
;
1519 for_each_cpu_mask(i
, sd
->span
) {
1521 * If there are currently no tasks on the cpu pretend there
1522 * is one of average load so that when a new task gets to
1523 * run here it will not get delayed by group starvation.
1525 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1527 weight
= NICE_0_LOAD
;
1529 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1530 rq_weight
+= weight
;
1531 shares
+= tg
->cfs_rq
[i
]->shares
;
1534 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1535 shares
= tg
->shares
;
1537 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1538 shares
= tg
->shares
;
1540 for_each_cpu_mask(i
, sd
->span
)
1541 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1547 * Compute the cpu's hierarchical load factor for each task group.
1548 * This needs to be done in a top-down fashion because the load of a child
1549 * group is a fraction of its parents load.
1551 static int tg_load_down(struct task_group
*tg
, void *data
)
1554 long cpu
= (long)data
;
1557 load
= cpu_rq(cpu
)->load
.weight
;
1559 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1560 load
*= tg
->cfs_rq
[cpu
]->shares
;
1561 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1564 tg
->cfs_rq
[cpu
]->h_load
= load
;
1569 static void update_shares(struct sched_domain
*sd
)
1571 u64 now
= cpu_clock(raw_smp_processor_id());
1572 s64 elapsed
= now
- sd
->last_update
;
1574 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1575 sd
->last_update
= now
;
1576 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1580 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1582 spin_unlock(&rq
->lock
);
1584 spin_lock(&rq
->lock
);
1587 static void update_h_load(long cpu
)
1589 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1594 static inline void update_shares(struct sched_domain
*sd
)
1598 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1605 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1607 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1608 __releases(this_rq
->lock
)
1609 __acquires(busiest
->lock
)
1610 __acquires(this_rq
->lock
)
1614 if (unlikely(!irqs_disabled())) {
1615 /* printk() doesn't work good under rq->lock */
1616 spin_unlock(&this_rq
->lock
);
1619 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1620 if (busiest
< this_rq
) {
1621 spin_unlock(&this_rq
->lock
);
1622 spin_lock(&busiest
->lock
);
1623 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1626 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1631 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1632 __releases(busiest
->lock
)
1634 spin_unlock(&busiest
->lock
);
1635 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1639 #ifdef CONFIG_FAIR_GROUP_SCHED
1640 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1643 cfs_rq
->shares
= shares
;
1648 #include "sched_stats.h"
1649 #include "sched_idletask.c"
1650 #include "sched_fair.c"
1651 #include "sched_rt.c"
1652 #ifdef CONFIG_SCHED_DEBUG
1653 # include "sched_debug.c"
1656 #define sched_class_highest (&rt_sched_class)
1657 #define for_each_class(class) \
1658 for (class = sched_class_highest; class; class = class->next)
1660 static void inc_nr_running(struct rq
*rq
)
1665 static void dec_nr_running(struct rq
*rq
)
1670 static void set_load_weight(struct task_struct
*p
)
1672 if (task_has_rt_policy(p
)) {
1673 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1674 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1679 * SCHED_IDLE tasks get minimal weight:
1681 if (p
->policy
== SCHED_IDLE
) {
1682 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1683 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1687 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1688 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1691 static void update_avg(u64
*avg
, u64 sample
)
1693 s64 diff
= sample
- *avg
;
1697 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1699 sched_info_queued(p
);
1700 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1704 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1706 if (sleep
&& p
->se
.last_wakeup
) {
1707 update_avg(&p
->se
.avg_overlap
,
1708 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1709 p
->se
.last_wakeup
= 0;
1712 sched_info_dequeued(p
);
1713 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1718 * __normal_prio - return the priority that is based on the static prio
1720 static inline int __normal_prio(struct task_struct
*p
)
1722 return p
->static_prio
;
1726 * Calculate the expected normal priority: i.e. priority
1727 * without taking RT-inheritance into account. Might be
1728 * boosted by interactivity modifiers. Changes upon fork,
1729 * setprio syscalls, and whenever the interactivity
1730 * estimator recalculates.
1732 static inline int normal_prio(struct task_struct
*p
)
1736 if (task_has_rt_policy(p
))
1737 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1739 prio
= __normal_prio(p
);
1744 * Calculate the current priority, i.e. the priority
1745 * taken into account by the scheduler. This value might
1746 * be boosted by RT tasks, or might be boosted by
1747 * interactivity modifiers. Will be RT if the task got
1748 * RT-boosted. If not then it returns p->normal_prio.
1750 static int effective_prio(struct task_struct
*p
)
1752 p
->normal_prio
= normal_prio(p
);
1754 * If we are RT tasks or we were boosted to RT priority,
1755 * keep the priority unchanged. Otherwise, update priority
1756 * to the normal priority:
1758 if (!rt_prio(p
->prio
))
1759 return p
->normal_prio
;
1764 * activate_task - move a task to the runqueue.
1766 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1768 if (task_contributes_to_load(p
))
1769 rq
->nr_uninterruptible
--;
1771 enqueue_task(rq
, p
, wakeup
);
1776 * deactivate_task - remove a task from the runqueue.
1778 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1780 if (task_contributes_to_load(p
))
1781 rq
->nr_uninterruptible
++;
1783 dequeue_task(rq
, p
, sleep
);
1788 * task_curr - is this task currently executing on a CPU?
1789 * @p: the task in question.
1791 inline int task_curr(const struct task_struct
*p
)
1793 return cpu_curr(task_cpu(p
)) == p
;
1796 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1798 set_task_rq(p
, cpu
);
1801 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1802 * successfuly executed on another CPU. We must ensure that updates of
1803 * per-task data have been completed by this moment.
1806 task_thread_info(p
)->cpu
= cpu
;
1810 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1811 const struct sched_class
*prev_class
,
1812 int oldprio
, int running
)
1814 if (prev_class
!= p
->sched_class
) {
1815 if (prev_class
->switched_from
)
1816 prev_class
->switched_from(rq
, p
, running
);
1817 p
->sched_class
->switched_to(rq
, p
, running
);
1819 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1824 /* Used instead of source_load when we know the type == 0 */
1825 static unsigned long weighted_cpuload(const int cpu
)
1827 return cpu_rq(cpu
)->load
.weight
;
1831 * Is this task likely cache-hot:
1834 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1839 * Buddy candidates are cache hot:
1841 if (sched_feat(CACHE_HOT_BUDDY
) &&
1842 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1843 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1846 if (p
->sched_class
!= &fair_sched_class
)
1849 if (sysctl_sched_migration_cost
== -1)
1851 if (sysctl_sched_migration_cost
== 0)
1854 delta
= now
- p
->se
.exec_start
;
1856 return delta
< (s64
)sysctl_sched_migration_cost
;
1860 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1862 int old_cpu
= task_cpu(p
);
1863 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1864 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1865 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1868 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1870 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1872 #ifdef CONFIG_SCHEDSTATS
1873 if (p
->se
.wait_start
)
1874 p
->se
.wait_start
-= clock_offset
;
1875 if (p
->se
.sleep_start
)
1876 p
->se
.sleep_start
-= clock_offset
;
1877 if (p
->se
.block_start
)
1878 p
->se
.block_start
-= clock_offset
;
1879 if (old_cpu
!= new_cpu
) {
1880 schedstat_inc(p
, se
.nr_migrations
);
1881 if (task_hot(p
, old_rq
->clock
, NULL
))
1882 schedstat_inc(p
, se
.nr_forced2_migrations
);
1885 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1886 new_cfsrq
->min_vruntime
;
1888 __set_task_cpu(p
, new_cpu
);
1891 struct migration_req
{
1892 struct list_head list
;
1894 struct task_struct
*task
;
1897 struct completion done
;
1901 * The task's runqueue lock must be held.
1902 * Returns true if you have to wait for migration thread.
1905 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1907 struct rq
*rq
= task_rq(p
);
1910 * If the task is not on a runqueue (and not running), then
1911 * it is sufficient to simply update the task's cpu field.
1913 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1914 set_task_cpu(p
, dest_cpu
);
1918 init_completion(&req
->done
);
1920 req
->dest_cpu
= dest_cpu
;
1921 list_add(&req
->list
, &rq
->migration_queue
);
1927 * wait_task_inactive - wait for a thread to unschedule.
1929 * If @match_state is nonzero, it's the @p->state value just checked and
1930 * not expected to change. If it changes, i.e. @p might have woken up,
1931 * then return zero. When we succeed in waiting for @p to be off its CPU,
1932 * we return a positive number (its total switch count). If a second call
1933 * a short while later returns the same number, the caller can be sure that
1934 * @p has remained unscheduled the whole time.
1936 * The caller must ensure that the task *will* unschedule sometime soon,
1937 * else this function might spin for a *long* time. This function can't
1938 * be called with interrupts off, or it may introduce deadlock with
1939 * smp_call_function() if an IPI is sent by the same process we are
1940 * waiting to become inactive.
1942 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1944 unsigned long flags
;
1951 * We do the initial early heuristics without holding
1952 * any task-queue locks at all. We'll only try to get
1953 * the runqueue lock when things look like they will
1959 * If the task is actively running on another CPU
1960 * still, just relax and busy-wait without holding
1963 * NOTE! Since we don't hold any locks, it's not
1964 * even sure that "rq" stays as the right runqueue!
1965 * But we don't care, since "task_running()" will
1966 * return false if the runqueue has changed and p
1967 * is actually now running somewhere else!
1969 while (task_running(rq
, p
)) {
1970 if (match_state
&& unlikely(p
->state
!= match_state
))
1976 * Ok, time to look more closely! We need the rq
1977 * lock now, to be *sure*. If we're wrong, we'll
1978 * just go back and repeat.
1980 rq
= task_rq_lock(p
, &flags
);
1981 trace_sched_wait_task(rq
, p
);
1982 running
= task_running(rq
, p
);
1983 on_rq
= p
->se
.on_rq
;
1985 if (!match_state
|| p
->state
== match_state
)
1986 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1987 task_rq_unlock(rq
, &flags
);
1990 * If it changed from the expected state, bail out now.
1992 if (unlikely(!ncsw
))
1996 * Was it really running after all now that we
1997 * checked with the proper locks actually held?
1999 * Oops. Go back and try again..
2001 if (unlikely(running
)) {
2007 * It's not enough that it's not actively running,
2008 * it must be off the runqueue _entirely_, and not
2011 * So if it wa still runnable (but just not actively
2012 * running right now), it's preempted, and we should
2013 * yield - it could be a while.
2015 if (unlikely(on_rq
)) {
2016 schedule_timeout_uninterruptible(1);
2021 * Ahh, all good. It wasn't running, and it wasn't
2022 * runnable, which means that it will never become
2023 * running in the future either. We're all done!
2032 * kick_process - kick a running thread to enter/exit the kernel
2033 * @p: the to-be-kicked thread
2035 * Cause a process which is running on another CPU to enter
2036 * kernel-mode, without any delay. (to get signals handled.)
2038 * NOTE: this function doesnt have to take the runqueue lock,
2039 * because all it wants to ensure is that the remote task enters
2040 * the kernel. If the IPI races and the task has been migrated
2041 * to another CPU then no harm is done and the purpose has been
2044 void kick_process(struct task_struct
*p
)
2050 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2051 smp_send_reschedule(cpu
);
2056 * Return a low guess at the load of a migration-source cpu weighted
2057 * according to the scheduling class and "nice" value.
2059 * We want to under-estimate the load of migration sources, to
2060 * balance conservatively.
2062 static unsigned long source_load(int cpu
, int type
)
2064 struct rq
*rq
= cpu_rq(cpu
);
2065 unsigned long total
= weighted_cpuload(cpu
);
2067 if (type
== 0 || !sched_feat(LB_BIAS
))
2070 return min(rq
->cpu_load
[type
-1], total
);
2074 * Return a high guess at the load of a migration-target cpu weighted
2075 * according to the scheduling class and "nice" value.
2077 static unsigned long target_load(int cpu
, int type
)
2079 struct rq
*rq
= cpu_rq(cpu
);
2080 unsigned long total
= weighted_cpuload(cpu
);
2082 if (type
== 0 || !sched_feat(LB_BIAS
))
2085 return max(rq
->cpu_load
[type
-1], total
);
2089 * find_idlest_group finds and returns the least busy CPU group within the
2092 static struct sched_group
*
2093 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2095 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2096 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2097 int load_idx
= sd
->forkexec_idx
;
2098 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2101 unsigned long load
, avg_load
;
2105 /* Skip over this group if it has no CPUs allowed */
2106 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2109 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2111 /* Tally up the load of all CPUs in the group */
2114 for_each_cpu_mask_nr(i
, group
->cpumask
) {
2115 /* Bias balancing toward cpus of our domain */
2117 load
= source_load(i
, load_idx
);
2119 load
= target_load(i
, load_idx
);
2124 /* Adjust by relative CPU power of the group */
2125 avg_load
= sg_div_cpu_power(group
,
2126 avg_load
* SCHED_LOAD_SCALE
);
2129 this_load
= avg_load
;
2131 } else if (avg_load
< min_load
) {
2132 min_load
= avg_load
;
2135 } while (group
= group
->next
, group
!= sd
->groups
);
2137 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2143 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2146 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2149 unsigned long load
, min_load
= ULONG_MAX
;
2153 /* Traverse only the allowed CPUs */
2154 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2156 for_each_cpu_mask_nr(i
, *tmp
) {
2157 load
= weighted_cpuload(i
);
2159 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2169 * sched_balance_self: balance the current task (running on cpu) in domains
2170 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2173 * Balance, ie. select the least loaded group.
2175 * Returns the target CPU number, or the same CPU if no balancing is needed.
2177 * preempt must be disabled.
2179 static int sched_balance_self(int cpu
, int flag
)
2181 struct task_struct
*t
= current
;
2182 struct sched_domain
*tmp
, *sd
= NULL
;
2184 for_each_domain(cpu
, tmp
) {
2186 * If power savings logic is enabled for a domain, stop there.
2188 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2190 if (tmp
->flags
& flag
)
2198 cpumask_t span
, tmpmask
;
2199 struct sched_group
*group
;
2200 int new_cpu
, weight
;
2202 if (!(sd
->flags
& flag
)) {
2208 group
= find_idlest_group(sd
, t
, cpu
);
2214 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2215 if (new_cpu
== -1 || new_cpu
== cpu
) {
2216 /* Now try balancing at a lower domain level of cpu */
2221 /* Now try balancing at a lower domain level of new_cpu */
2224 weight
= cpus_weight(span
);
2225 for_each_domain(cpu
, tmp
) {
2226 if (weight
<= cpus_weight(tmp
->span
))
2228 if (tmp
->flags
& flag
)
2231 /* while loop will break here if sd == NULL */
2237 #endif /* CONFIG_SMP */
2240 * try_to_wake_up - wake up a thread
2241 * @p: the to-be-woken-up thread
2242 * @state: the mask of task states that can be woken
2243 * @sync: do a synchronous wakeup?
2245 * Put it on the run-queue if it's not already there. The "current"
2246 * thread is always on the run-queue (except when the actual
2247 * re-schedule is in progress), and as such you're allowed to do
2248 * the simpler "current->state = TASK_RUNNING" to mark yourself
2249 * runnable without the overhead of this.
2251 * returns failure only if the task is already active.
2253 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2255 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2256 unsigned long flags
;
2260 if (!sched_feat(SYNC_WAKEUPS
))
2264 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2265 struct sched_domain
*sd
;
2267 this_cpu
= raw_smp_processor_id();
2270 for_each_domain(this_cpu
, sd
) {
2271 if (cpu_isset(cpu
, sd
->span
)) {
2280 rq
= task_rq_lock(p
, &flags
);
2281 update_rq_clock(rq
);
2282 old_state
= p
->state
;
2283 if (!(old_state
& state
))
2291 this_cpu
= smp_processor_id();
2294 if (unlikely(task_running(rq
, p
)))
2297 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2298 if (cpu
!= orig_cpu
) {
2299 set_task_cpu(p
, cpu
);
2300 task_rq_unlock(rq
, &flags
);
2301 /* might preempt at this point */
2302 rq
= task_rq_lock(p
, &flags
);
2303 old_state
= p
->state
;
2304 if (!(old_state
& state
))
2309 this_cpu
= smp_processor_id();
2313 #ifdef CONFIG_SCHEDSTATS
2314 schedstat_inc(rq
, ttwu_count
);
2315 if (cpu
== this_cpu
)
2316 schedstat_inc(rq
, ttwu_local
);
2318 struct sched_domain
*sd
;
2319 for_each_domain(this_cpu
, sd
) {
2320 if (cpu_isset(cpu
, sd
->span
)) {
2321 schedstat_inc(sd
, ttwu_wake_remote
);
2326 #endif /* CONFIG_SCHEDSTATS */
2329 #endif /* CONFIG_SMP */
2330 schedstat_inc(p
, se
.nr_wakeups
);
2332 schedstat_inc(p
, se
.nr_wakeups_sync
);
2333 if (orig_cpu
!= cpu
)
2334 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2335 if (cpu
== this_cpu
)
2336 schedstat_inc(p
, se
.nr_wakeups_local
);
2338 schedstat_inc(p
, se
.nr_wakeups_remote
);
2339 activate_task(rq
, p
, 1);
2343 trace_sched_wakeup(rq
, p
, success
);
2344 check_preempt_curr(rq
, p
, sync
);
2346 p
->state
= TASK_RUNNING
;
2348 if (p
->sched_class
->task_wake_up
)
2349 p
->sched_class
->task_wake_up(rq
, p
);
2352 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2354 task_rq_unlock(rq
, &flags
);
2359 int wake_up_process(struct task_struct
*p
)
2361 return try_to_wake_up(p
, TASK_ALL
, 0);
2363 EXPORT_SYMBOL(wake_up_process
);
2365 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2367 return try_to_wake_up(p
, state
, 0);
2371 * Perform scheduler related setup for a newly forked process p.
2372 * p is forked by current.
2374 * __sched_fork() is basic setup used by init_idle() too:
2376 static void __sched_fork(struct task_struct
*p
)
2378 p
->se
.exec_start
= 0;
2379 p
->se
.sum_exec_runtime
= 0;
2380 p
->se
.prev_sum_exec_runtime
= 0;
2381 p
->se
.last_wakeup
= 0;
2382 p
->se
.avg_overlap
= 0;
2384 #ifdef CONFIG_SCHEDSTATS
2385 p
->se
.wait_start
= 0;
2386 p
->se
.sum_sleep_runtime
= 0;
2387 p
->se
.sleep_start
= 0;
2388 p
->se
.block_start
= 0;
2389 p
->se
.sleep_max
= 0;
2390 p
->se
.block_max
= 0;
2392 p
->se
.slice_max
= 0;
2396 INIT_LIST_HEAD(&p
->rt
.run_list
);
2398 INIT_LIST_HEAD(&p
->se
.group_node
);
2400 #ifdef CONFIG_PREEMPT_NOTIFIERS
2401 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2405 * We mark the process as running here, but have not actually
2406 * inserted it onto the runqueue yet. This guarantees that
2407 * nobody will actually run it, and a signal or other external
2408 * event cannot wake it up and insert it on the runqueue either.
2410 p
->state
= TASK_RUNNING
;
2414 * fork()/clone()-time setup:
2416 void sched_fork(struct task_struct
*p
, int clone_flags
)
2418 int cpu
= get_cpu();
2423 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2425 set_task_cpu(p
, cpu
);
2428 * Make sure we do not leak PI boosting priority to the child:
2430 p
->prio
= current
->normal_prio
;
2431 if (!rt_prio(p
->prio
))
2432 p
->sched_class
= &fair_sched_class
;
2434 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2435 if (likely(sched_info_on()))
2436 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2438 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2441 #ifdef CONFIG_PREEMPT
2442 /* Want to start with kernel preemption disabled. */
2443 task_thread_info(p
)->preempt_count
= 1;
2449 * wake_up_new_task - wake up a newly created task for the first time.
2451 * This function will do some initial scheduler statistics housekeeping
2452 * that must be done for every newly created context, then puts the task
2453 * on the runqueue and wakes it.
2455 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2457 unsigned long flags
;
2460 rq
= task_rq_lock(p
, &flags
);
2461 BUG_ON(p
->state
!= TASK_RUNNING
);
2462 update_rq_clock(rq
);
2464 p
->prio
= effective_prio(p
);
2466 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2467 activate_task(rq
, p
, 0);
2470 * Let the scheduling class do new task startup
2471 * management (if any):
2473 p
->sched_class
->task_new(rq
, p
);
2476 trace_sched_wakeup_new(rq
, p
, 1);
2477 check_preempt_curr(rq
, p
, 0);
2479 if (p
->sched_class
->task_wake_up
)
2480 p
->sched_class
->task_wake_up(rq
, p
);
2482 task_rq_unlock(rq
, &flags
);
2485 #ifdef CONFIG_PREEMPT_NOTIFIERS
2488 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2489 * @notifier: notifier struct to register
2491 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2493 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2495 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2498 * preempt_notifier_unregister - no longer interested in preemption notifications
2499 * @notifier: notifier struct to unregister
2501 * This is safe to call from within a preemption notifier.
2503 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2505 hlist_del(¬ifier
->link
);
2507 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2509 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2511 struct preempt_notifier
*notifier
;
2512 struct hlist_node
*node
;
2514 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2515 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2519 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2520 struct task_struct
*next
)
2522 struct preempt_notifier
*notifier
;
2523 struct hlist_node
*node
;
2525 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2526 notifier
->ops
->sched_out(notifier
, next
);
2529 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2531 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2536 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2537 struct task_struct
*next
)
2541 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2544 * prepare_task_switch - prepare to switch tasks
2545 * @rq: the runqueue preparing to switch
2546 * @prev: the current task that is being switched out
2547 * @next: the task we are going to switch to.
2549 * This is called with the rq lock held and interrupts off. It must
2550 * be paired with a subsequent finish_task_switch after the context
2553 * prepare_task_switch sets up locking and calls architecture specific
2557 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2558 struct task_struct
*next
)
2560 fire_sched_out_preempt_notifiers(prev
, next
);
2561 prepare_lock_switch(rq
, next
);
2562 prepare_arch_switch(next
);
2566 * finish_task_switch - clean up after a task-switch
2567 * @rq: runqueue associated with task-switch
2568 * @prev: the thread we just switched away from.
2570 * finish_task_switch must be called after the context switch, paired
2571 * with a prepare_task_switch call before the context switch.
2572 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2573 * and do any other architecture-specific cleanup actions.
2575 * Note that we may have delayed dropping an mm in context_switch(). If
2576 * so, we finish that here outside of the runqueue lock. (Doing it
2577 * with the lock held can cause deadlocks; see schedule() for
2580 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2581 __releases(rq
->lock
)
2583 struct mm_struct
*mm
= rq
->prev_mm
;
2589 * A task struct has one reference for the use as "current".
2590 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2591 * schedule one last time. The schedule call will never return, and
2592 * the scheduled task must drop that reference.
2593 * The test for TASK_DEAD must occur while the runqueue locks are
2594 * still held, otherwise prev could be scheduled on another cpu, die
2595 * there before we look at prev->state, and then the reference would
2597 * Manfred Spraul <manfred@colorfullife.com>
2599 prev_state
= prev
->state
;
2600 finish_arch_switch(prev
);
2601 finish_lock_switch(rq
, prev
);
2603 if (current
->sched_class
->post_schedule
)
2604 current
->sched_class
->post_schedule(rq
);
2607 fire_sched_in_preempt_notifiers(current
);
2610 if (unlikely(prev_state
== TASK_DEAD
)) {
2612 * Remove function-return probe instances associated with this
2613 * task and put them back on the free list.
2615 kprobe_flush_task(prev
);
2616 put_task_struct(prev
);
2621 * schedule_tail - first thing a freshly forked thread must call.
2622 * @prev: the thread we just switched away from.
2624 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2625 __releases(rq
->lock
)
2627 struct rq
*rq
= this_rq();
2629 finish_task_switch(rq
, prev
);
2630 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2631 /* In this case, finish_task_switch does not reenable preemption */
2634 if (current
->set_child_tid
)
2635 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2639 * context_switch - switch to the new MM and the new
2640 * thread's register state.
2643 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2644 struct task_struct
*next
)
2646 struct mm_struct
*mm
, *oldmm
;
2648 prepare_task_switch(rq
, prev
, next
);
2649 trace_sched_switch(rq
, prev
, next
);
2651 oldmm
= prev
->active_mm
;
2653 * For paravirt, this is coupled with an exit in switch_to to
2654 * combine the page table reload and the switch backend into
2657 arch_enter_lazy_cpu_mode();
2659 if (unlikely(!mm
)) {
2660 next
->active_mm
= oldmm
;
2661 atomic_inc(&oldmm
->mm_count
);
2662 enter_lazy_tlb(oldmm
, next
);
2664 switch_mm(oldmm
, mm
, next
);
2666 if (unlikely(!prev
->mm
)) {
2667 prev
->active_mm
= NULL
;
2668 rq
->prev_mm
= oldmm
;
2671 * Since the runqueue lock will be released by the next
2672 * task (which is an invalid locking op but in the case
2673 * of the scheduler it's an obvious special-case), so we
2674 * do an early lockdep release here:
2676 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2677 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2680 /* Here we just switch the register state and the stack. */
2681 switch_to(prev
, next
, prev
);
2685 * this_rq must be evaluated again because prev may have moved
2686 * CPUs since it called schedule(), thus the 'rq' on its stack
2687 * frame will be invalid.
2689 finish_task_switch(this_rq(), prev
);
2693 * nr_running, nr_uninterruptible and nr_context_switches:
2695 * externally visible scheduler statistics: current number of runnable
2696 * threads, current number of uninterruptible-sleeping threads, total
2697 * number of context switches performed since bootup.
2699 unsigned long nr_running(void)
2701 unsigned long i
, sum
= 0;
2703 for_each_online_cpu(i
)
2704 sum
+= cpu_rq(i
)->nr_running
;
2709 unsigned long nr_uninterruptible(void)
2711 unsigned long i
, sum
= 0;
2713 for_each_possible_cpu(i
)
2714 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2717 * Since we read the counters lockless, it might be slightly
2718 * inaccurate. Do not allow it to go below zero though:
2720 if (unlikely((long)sum
< 0))
2726 unsigned long long nr_context_switches(void)
2729 unsigned long long sum
= 0;
2731 for_each_possible_cpu(i
)
2732 sum
+= cpu_rq(i
)->nr_switches
;
2737 unsigned long nr_iowait(void)
2739 unsigned long i
, sum
= 0;
2741 for_each_possible_cpu(i
)
2742 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2747 unsigned long nr_active(void)
2749 unsigned long i
, running
= 0, uninterruptible
= 0;
2751 for_each_online_cpu(i
) {
2752 running
+= cpu_rq(i
)->nr_running
;
2753 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2756 if (unlikely((long)uninterruptible
< 0))
2757 uninterruptible
= 0;
2759 return running
+ uninterruptible
;
2763 * Update rq->cpu_load[] statistics. This function is usually called every
2764 * scheduler tick (TICK_NSEC).
2766 static void update_cpu_load(struct rq
*this_rq
)
2768 unsigned long this_load
= this_rq
->load
.weight
;
2771 this_rq
->nr_load_updates
++;
2773 /* Update our load: */
2774 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2775 unsigned long old_load
, new_load
;
2777 /* scale is effectively 1 << i now, and >> i divides by scale */
2779 old_load
= this_rq
->cpu_load
[i
];
2780 new_load
= this_load
;
2782 * Round up the averaging division if load is increasing. This
2783 * prevents us from getting stuck on 9 if the load is 10, for
2786 if (new_load
> old_load
)
2787 new_load
+= scale
-1;
2788 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2795 * double_rq_lock - safely lock two runqueues
2797 * Note this does not disable interrupts like task_rq_lock,
2798 * you need to do so manually before calling.
2800 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2801 __acquires(rq1
->lock
)
2802 __acquires(rq2
->lock
)
2804 BUG_ON(!irqs_disabled());
2806 spin_lock(&rq1
->lock
);
2807 __acquire(rq2
->lock
); /* Fake it out ;) */
2810 spin_lock(&rq1
->lock
);
2811 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2813 spin_lock(&rq2
->lock
);
2814 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2817 update_rq_clock(rq1
);
2818 update_rq_clock(rq2
);
2822 * double_rq_unlock - safely unlock two runqueues
2824 * Note this does not restore interrupts like task_rq_unlock,
2825 * you need to do so manually after calling.
2827 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2828 __releases(rq1
->lock
)
2829 __releases(rq2
->lock
)
2831 spin_unlock(&rq1
->lock
);
2833 spin_unlock(&rq2
->lock
);
2835 __release(rq2
->lock
);
2839 * If dest_cpu is allowed for this process, migrate the task to it.
2840 * This is accomplished by forcing the cpu_allowed mask to only
2841 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2842 * the cpu_allowed mask is restored.
2844 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2846 struct migration_req req
;
2847 unsigned long flags
;
2850 rq
= task_rq_lock(p
, &flags
);
2851 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2852 || unlikely(!cpu_active(dest_cpu
)))
2855 /* force the process onto the specified CPU */
2856 if (migrate_task(p
, dest_cpu
, &req
)) {
2857 /* Need to wait for migration thread (might exit: take ref). */
2858 struct task_struct
*mt
= rq
->migration_thread
;
2860 get_task_struct(mt
);
2861 task_rq_unlock(rq
, &flags
);
2862 wake_up_process(mt
);
2863 put_task_struct(mt
);
2864 wait_for_completion(&req
.done
);
2869 task_rq_unlock(rq
, &flags
);
2873 * sched_exec - execve() is a valuable balancing opportunity, because at
2874 * this point the task has the smallest effective memory and cache footprint.
2876 void sched_exec(void)
2878 int new_cpu
, this_cpu
= get_cpu();
2879 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2881 if (new_cpu
!= this_cpu
)
2882 sched_migrate_task(current
, new_cpu
);
2886 * pull_task - move a task from a remote runqueue to the local runqueue.
2887 * Both runqueues must be locked.
2889 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2890 struct rq
*this_rq
, int this_cpu
)
2892 deactivate_task(src_rq
, p
, 0);
2893 set_task_cpu(p
, this_cpu
);
2894 activate_task(this_rq
, p
, 0);
2896 * Note that idle threads have a prio of MAX_PRIO, for this test
2897 * to be always true for them.
2899 check_preempt_curr(this_rq
, p
, 0);
2903 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2906 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2907 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2911 * We do not migrate tasks that are:
2912 * 1) running (obviously), or
2913 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2914 * 3) are cache-hot on their current CPU.
2916 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2917 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2922 if (task_running(rq
, p
)) {
2923 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2928 * Aggressive migration if:
2929 * 1) task is cache cold, or
2930 * 2) too many balance attempts have failed.
2933 if (!task_hot(p
, rq
->clock
, sd
) ||
2934 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2935 #ifdef CONFIG_SCHEDSTATS
2936 if (task_hot(p
, rq
->clock
, sd
)) {
2937 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2938 schedstat_inc(p
, se
.nr_forced_migrations
);
2944 if (task_hot(p
, rq
->clock
, sd
)) {
2945 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2951 static unsigned long
2952 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2953 unsigned long max_load_move
, struct sched_domain
*sd
,
2954 enum cpu_idle_type idle
, int *all_pinned
,
2955 int *this_best_prio
, struct rq_iterator
*iterator
)
2957 int loops
= 0, pulled
= 0, pinned
= 0;
2958 struct task_struct
*p
;
2959 long rem_load_move
= max_load_move
;
2961 if (max_load_move
== 0)
2967 * Start the load-balancing iterator:
2969 p
= iterator
->start(iterator
->arg
);
2971 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2974 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2975 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2976 p
= iterator
->next(iterator
->arg
);
2980 pull_task(busiest
, p
, this_rq
, this_cpu
);
2982 rem_load_move
-= p
->se
.load
.weight
;
2985 * We only want to steal up to the prescribed amount of weighted load.
2987 if (rem_load_move
> 0) {
2988 if (p
->prio
< *this_best_prio
)
2989 *this_best_prio
= p
->prio
;
2990 p
= iterator
->next(iterator
->arg
);
2995 * Right now, this is one of only two places pull_task() is called,
2996 * so we can safely collect pull_task() stats here rather than
2997 * inside pull_task().
2999 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3002 *all_pinned
= pinned
;
3004 return max_load_move
- rem_load_move
;
3008 * move_tasks tries to move up to max_load_move weighted load from busiest to
3009 * this_rq, as part of a balancing operation within domain "sd".
3010 * Returns 1 if successful and 0 otherwise.
3012 * Called with both runqueues locked.
3014 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3015 unsigned long max_load_move
,
3016 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3019 const struct sched_class
*class = sched_class_highest
;
3020 unsigned long total_load_moved
= 0;
3021 int this_best_prio
= this_rq
->curr
->prio
;
3025 class->load_balance(this_rq
, this_cpu
, busiest
,
3026 max_load_move
- total_load_moved
,
3027 sd
, idle
, all_pinned
, &this_best_prio
);
3028 class = class->next
;
3030 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3033 } while (class && max_load_move
> total_load_moved
);
3035 return total_load_moved
> 0;
3039 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3040 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3041 struct rq_iterator
*iterator
)
3043 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3047 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3048 pull_task(busiest
, p
, this_rq
, this_cpu
);
3050 * Right now, this is only the second place pull_task()
3051 * is called, so we can safely collect pull_task()
3052 * stats here rather than inside pull_task().
3054 schedstat_inc(sd
, lb_gained
[idle
]);
3058 p
= iterator
->next(iterator
->arg
);
3065 * move_one_task tries to move exactly one task from busiest to this_rq, as
3066 * part of active balancing operations within "domain".
3067 * Returns 1 if successful and 0 otherwise.
3069 * Called with both runqueues locked.
3071 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3072 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3074 const struct sched_class
*class;
3076 for (class = sched_class_highest
; class; class = class->next
)
3077 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3084 * find_busiest_group finds and returns the busiest CPU group within the
3085 * domain. It calculates and returns the amount of weighted load which
3086 * should be moved to restore balance via the imbalance parameter.
3088 static struct sched_group
*
3089 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3090 unsigned long *imbalance
, enum cpu_idle_type idle
,
3091 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3093 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3094 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3095 unsigned long max_pull
;
3096 unsigned long busiest_load_per_task
, busiest_nr_running
;
3097 unsigned long this_load_per_task
, this_nr_running
;
3098 int load_idx
, group_imb
= 0;
3099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3100 int power_savings_balance
= 1;
3101 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3102 unsigned long min_nr_running
= ULONG_MAX
;
3103 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3106 max_load
= this_load
= total_load
= total_pwr
= 0;
3107 busiest_load_per_task
= busiest_nr_running
= 0;
3108 this_load_per_task
= this_nr_running
= 0;
3110 if (idle
== CPU_NOT_IDLE
)
3111 load_idx
= sd
->busy_idx
;
3112 else if (idle
== CPU_NEWLY_IDLE
)
3113 load_idx
= sd
->newidle_idx
;
3115 load_idx
= sd
->idle_idx
;
3118 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3121 int __group_imb
= 0;
3122 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3123 unsigned long sum_nr_running
, sum_weighted_load
;
3124 unsigned long sum_avg_load_per_task
;
3125 unsigned long avg_load_per_task
;
3127 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3130 balance_cpu
= first_cpu(group
->cpumask
);
3132 /* Tally up the load of all CPUs in the group */
3133 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3134 sum_avg_load_per_task
= avg_load_per_task
= 0;
3137 min_cpu_load
= ~0UL;
3139 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3142 if (!cpu_isset(i
, *cpus
))
3147 if (*sd_idle
&& rq
->nr_running
)
3150 /* Bias balancing toward cpus of our domain */
3152 if (idle_cpu(i
) && !first_idle_cpu
) {
3157 load
= target_load(i
, load_idx
);
3159 load
= source_load(i
, load_idx
);
3160 if (load
> max_cpu_load
)
3161 max_cpu_load
= load
;
3162 if (min_cpu_load
> load
)
3163 min_cpu_load
= load
;
3167 sum_nr_running
+= rq
->nr_running
;
3168 sum_weighted_load
+= weighted_cpuload(i
);
3170 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3174 * First idle cpu or the first cpu(busiest) in this sched group
3175 * is eligible for doing load balancing at this and above
3176 * domains. In the newly idle case, we will allow all the cpu's
3177 * to do the newly idle load balance.
3179 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3180 balance_cpu
!= this_cpu
&& balance
) {
3185 total_load
+= avg_load
;
3186 total_pwr
+= group
->__cpu_power
;
3188 /* Adjust by relative CPU power of the group */
3189 avg_load
= sg_div_cpu_power(group
,
3190 avg_load
* SCHED_LOAD_SCALE
);
3194 * Consider the group unbalanced when the imbalance is larger
3195 * than the average weight of two tasks.
3197 * APZ: with cgroup the avg task weight can vary wildly and
3198 * might not be a suitable number - should we keep a
3199 * normalized nr_running number somewhere that negates
3202 avg_load_per_task
= sg_div_cpu_power(group
,
3203 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3205 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3208 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3211 this_load
= avg_load
;
3213 this_nr_running
= sum_nr_running
;
3214 this_load_per_task
= sum_weighted_load
;
3215 } else if (avg_load
> max_load
&&
3216 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3217 max_load
= avg_load
;
3219 busiest_nr_running
= sum_nr_running
;
3220 busiest_load_per_task
= sum_weighted_load
;
3221 group_imb
= __group_imb
;
3224 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3226 * Busy processors will not participate in power savings
3229 if (idle
== CPU_NOT_IDLE
||
3230 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3234 * If the local group is idle or completely loaded
3235 * no need to do power savings balance at this domain
3237 if (local_group
&& (this_nr_running
>= group_capacity
||
3239 power_savings_balance
= 0;
3242 * If a group is already running at full capacity or idle,
3243 * don't include that group in power savings calculations
3245 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3250 * Calculate the group which has the least non-idle load.
3251 * This is the group from where we need to pick up the load
3254 if ((sum_nr_running
< min_nr_running
) ||
3255 (sum_nr_running
== min_nr_running
&&
3256 first_cpu(group
->cpumask
) <
3257 first_cpu(group_min
->cpumask
))) {
3259 min_nr_running
= sum_nr_running
;
3260 min_load_per_task
= sum_weighted_load
/
3265 * Calculate the group which is almost near its
3266 * capacity but still has some space to pick up some load
3267 * from other group and save more power
3269 if (sum_nr_running
<= group_capacity
- 1) {
3270 if (sum_nr_running
> leader_nr_running
||
3271 (sum_nr_running
== leader_nr_running
&&
3272 first_cpu(group
->cpumask
) >
3273 first_cpu(group_leader
->cpumask
))) {
3274 group_leader
= group
;
3275 leader_nr_running
= sum_nr_running
;
3280 group
= group
->next
;
3281 } while (group
!= sd
->groups
);
3283 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3286 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3288 if (this_load
>= avg_load
||
3289 100*max_load
<= sd
->imbalance_pct
*this_load
)
3292 busiest_load_per_task
/= busiest_nr_running
;
3294 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3297 * We're trying to get all the cpus to the average_load, so we don't
3298 * want to push ourselves above the average load, nor do we wish to
3299 * reduce the max loaded cpu below the average load, as either of these
3300 * actions would just result in more rebalancing later, and ping-pong
3301 * tasks around. Thus we look for the minimum possible imbalance.
3302 * Negative imbalances (*we* are more loaded than anyone else) will
3303 * be counted as no imbalance for these purposes -- we can't fix that
3304 * by pulling tasks to us. Be careful of negative numbers as they'll
3305 * appear as very large values with unsigned longs.
3307 if (max_load
<= busiest_load_per_task
)
3311 * In the presence of smp nice balancing, certain scenarios can have
3312 * max load less than avg load(as we skip the groups at or below
3313 * its cpu_power, while calculating max_load..)
3315 if (max_load
< avg_load
) {
3317 goto small_imbalance
;
3320 /* Don't want to pull so many tasks that a group would go idle */
3321 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3323 /* How much load to actually move to equalise the imbalance */
3324 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3325 (avg_load
- this_load
) * this->__cpu_power
)
3329 * if *imbalance is less than the average load per runnable task
3330 * there is no gaurantee that any tasks will be moved so we'll have
3331 * a think about bumping its value to force at least one task to be
3334 if (*imbalance
< busiest_load_per_task
) {
3335 unsigned long tmp
, pwr_now
, pwr_move
;
3339 pwr_move
= pwr_now
= 0;
3341 if (this_nr_running
) {
3342 this_load_per_task
/= this_nr_running
;
3343 if (busiest_load_per_task
> this_load_per_task
)
3346 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3348 if (max_load
- this_load
+ busiest_load_per_task
>=
3349 busiest_load_per_task
* imbn
) {
3350 *imbalance
= busiest_load_per_task
;
3355 * OK, we don't have enough imbalance to justify moving tasks,
3356 * however we may be able to increase total CPU power used by
3360 pwr_now
+= busiest
->__cpu_power
*
3361 min(busiest_load_per_task
, max_load
);
3362 pwr_now
+= this->__cpu_power
*
3363 min(this_load_per_task
, this_load
);
3364 pwr_now
/= SCHED_LOAD_SCALE
;
3366 /* Amount of load we'd subtract */
3367 tmp
= sg_div_cpu_power(busiest
,
3368 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3370 pwr_move
+= busiest
->__cpu_power
*
3371 min(busiest_load_per_task
, max_load
- tmp
);
3373 /* Amount of load we'd add */
3374 if (max_load
* busiest
->__cpu_power
<
3375 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3376 tmp
= sg_div_cpu_power(this,
3377 max_load
* busiest
->__cpu_power
);
3379 tmp
= sg_div_cpu_power(this,
3380 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3381 pwr_move
+= this->__cpu_power
*
3382 min(this_load_per_task
, this_load
+ tmp
);
3383 pwr_move
/= SCHED_LOAD_SCALE
;
3385 /* Move if we gain throughput */
3386 if (pwr_move
> pwr_now
)
3387 *imbalance
= busiest_load_per_task
;
3393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3394 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3397 if (this == group_leader
&& group_leader
!= group_min
) {
3398 *imbalance
= min_load_per_task
;
3408 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3411 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3412 unsigned long imbalance
, const cpumask_t
*cpus
)
3414 struct rq
*busiest
= NULL
, *rq
;
3415 unsigned long max_load
= 0;
3418 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3421 if (!cpu_isset(i
, *cpus
))
3425 wl
= weighted_cpuload(i
);
3427 if (rq
->nr_running
== 1 && wl
> imbalance
)
3430 if (wl
> max_load
) {
3440 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3441 * so long as it is large enough.
3443 #define MAX_PINNED_INTERVAL 512
3446 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3447 * tasks if there is an imbalance.
3449 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3450 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3451 int *balance
, cpumask_t
*cpus
)
3453 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3454 struct sched_group
*group
;
3455 unsigned long imbalance
;
3457 unsigned long flags
;
3462 * When power savings policy is enabled for the parent domain, idle
3463 * sibling can pick up load irrespective of busy siblings. In this case,
3464 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3465 * portraying it as CPU_NOT_IDLE.
3467 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3468 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3471 schedstat_inc(sd
, lb_count
[idle
]);
3475 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3482 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3486 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3488 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3492 BUG_ON(busiest
== this_rq
);
3494 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3497 if (busiest
->nr_running
> 1) {
3499 * Attempt to move tasks. If find_busiest_group has found
3500 * an imbalance but busiest->nr_running <= 1, the group is
3501 * still unbalanced. ld_moved simply stays zero, so it is
3502 * correctly treated as an imbalance.
3504 local_irq_save(flags
);
3505 double_rq_lock(this_rq
, busiest
);
3506 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3507 imbalance
, sd
, idle
, &all_pinned
);
3508 double_rq_unlock(this_rq
, busiest
);
3509 local_irq_restore(flags
);
3512 * some other cpu did the load balance for us.
3514 if (ld_moved
&& this_cpu
!= smp_processor_id())
3515 resched_cpu(this_cpu
);
3517 /* All tasks on this runqueue were pinned by CPU affinity */
3518 if (unlikely(all_pinned
)) {
3519 cpu_clear(cpu_of(busiest
), *cpus
);
3520 if (!cpus_empty(*cpus
))
3527 schedstat_inc(sd
, lb_failed
[idle
]);
3528 sd
->nr_balance_failed
++;
3530 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3532 spin_lock_irqsave(&busiest
->lock
, flags
);
3534 /* don't kick the migration_thread, if the curr
3535 * task on busiest cpu can't be moved to this_cpu
3537 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3538 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3540 goto out_one_pinned
;
3543 if (!busiest
->active_balance
) {
3544 busiest
->active_balance
= 1;
3545 busiest
->push_cpu
= this_cpu
;
3548 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3550 wake_up_process(busiest
->migration_thread
);
3553 * We've kicked active balancing, reset the failure
3556 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3559 sd
->nr_balance_failed
= 0;
3561 if (likely(!active_balance
)) {
3562 /* We were unbalanced, so reset the balancing interval */
3563 sd
->balance_interval
= sd
->min_interval
;
3566 * If we've begun active balancing, start to back off. This
3567 * case may not be covered by the all_pinned logic if there
3568 * is only 1 task on the busy runqueue (because we don't call
3571 if (sd
->balance_interval
< sd
->max_interval
)
3572 sd
->balance_interval
*= 2;
3575 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3576 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3582 schedstat_inc(sd
, lb_balanced
[idle
]);
3584 sd
->nr_balance_failed
= 0;
3587 /* tune up the balancing interval */
3588 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3589 (sd
->balance_interval
< sd
->max_interval
))
3590 sd
->balance_interval
*= 2;
3592 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3593 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3604 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3605 * tasks if there is an imbalance.
3607 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3608 * this_rq is locked.
3611 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3614 struct sched_group
*group
;
3615 struct rq
*busiest
= NULL
;
3616 unsigned long imbalance
;
3624 * When power savings policy is enabled for the parent domain, idle
3625 * sibling can pick up load irrespective of busy siblings. In this case,
3626 * let the state of idle sibling percolate up as IDLE, instead of
3627 * portraying it as CPU_NOT_IDLE.
3629 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3630 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3633 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3635 update_shares_locked(this_rq
, sd
);
3636 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3637 &sd_idle
, cpus
, NULL
);
3639 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3643 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3645 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3649 BUG_ON(busiest
== this_rq
);
3651 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3654 if (busiest
->nr_running
> 1) {
3655 /* Attempt to move tasks */
3656 double_lock_balance(this_rq
, busiest
);
3657 /* this_rq->clock is already updated */
3658 update_rq_clock(busiest
);
3659 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3660 imbalance
, sd
, CPU_NEWLY_IDLE
,
3662 double_unlock_balance(this_rq
, busiest
);
3664 if (unlikely(all_pinned
)) {
3665 cpu_clear(cpu_of(busiest
), *cpus
);
3666 if (!cpus_empty(*cpus
))
3672 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3673 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3674 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3677 sd
->nr_balance_failed
= 0;
3679 update_shares_locked(this_rq
, sd
);
3683 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3684 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3685 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3687 sd
->nr_balance_failed
= 0;
3693 * idle_balance is called by schedule() if this_cpu is about to become
3694 * idle. Attempts to pull tasks from other CPUs.
3696 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3698 struct sched_domain
*sd
;
3699 int pulled_task
= 0;
3700 unsigned long next_balance
= jiffies
+ HZ
;
3703 for_each_domain(this_cpu
, sd
) {
3704 unsigned long interval
;
3706 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3709 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3710 /* If we've pulled tasks over stop searching: */
3711 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3714 interval
= msecs_to_jiffies(sd
->balance_interval
);
3715 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3716 next_balance
= sd
->last_balance
+ interval
;
3720 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3722 * We are going idle. next_balance may be set based on
3723 * a busy processor. So reset next_balance.
3725 this_rq
->next_balance
= next_balance
;
3730 * active_load_balance is run by migration threads. It pushes running tasks
3731 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3732 * running on each physical CPU where possible, and avoids physical /
3733 * logical imbalances.
3735 * Called with busiest_rq locked.
3737 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3739 int target_cpu
= busiest_rq
->push_cpu
;
3740 struct sched_domain
*sd
;
3741 struct rq
*target_rq
;
3743 /* Is there any task to move? */
3744 if (busiest_rq
->nr_running
<= 1)
3747 target_rq
= cpu_rq(target_cpu
);
3750 * This condition is "impossible", if it occurs
3751 * we need to fix it. Originally reported by
3752 * Bjorn Helgaas on a 128-cpu setup.
3754 BUG_ON(busiest_rq
== target_rq
);
3756 /* move a task from busiest_rq to target_rq */
3757 double_lock_balance(busiest_rq
, target_rq
);
3758 update_rq_clock(busiest_rq
);
3759 update_rq_clock(target_rq
);
3761 /* Search for an sd spanning us and the target CPU. */
3762 for_each_domain(target_cpu
, sd
) {
3763 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3764 cpu_isset(busiest_cpu
, sd
->span
))
3769 schedstat_inc(sd
, alb_count
);
3771 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3773 schedstat_inc(sd
, alb_pushed
);
3775 schedstat_inc(sd
, alb_failed
);
3777 double_unlock_balance(busiest_rq
, target_rq
);
3782 atomic_t load_balancer
;
3784 } nohz ____cacheline_aligned
= {
3785 .load_balancer
= ATOMIC_INIT(-1),
3786 .cpu_mask
= CPU_MASK_NONE
,
3790 * This routine will try to nominate the ilb (idle load balancing)
3791 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3792 * load balancing on behalf of all those cpus. If all the cpus in the system
3793 * go into this tickless mode, then there will be no ilb owner (as there is
3794 * no need for one) and all the cpus will sleep till the next wakeup event
3797 * For the ilb owner, tick is not stopped. And this tick will be used
3798 * for idle load balancing. ilb owner will still be part of
3801 * While stopping the tick, this cpu will become the ilb owner if there
3802 * is no other owner. And will be the owner till that cpu becomes busy
3803 * or if all cpus in the system stop their ticks at which point
3804 * there is no need for ilb owner.
3806 * When the ilb owner becomes busy, it nominates another owner, during the
3807 * next busy scheduler_tick()
3809 int select_nohz_load_balancer(int stop_tick
)
3811 int cpu
= smp_processor_id();
3814 cpu_set(cpu
, nohz
.cpu_mask
);
3815 cpu_rq(cpu
)->in_nohz_recently
= 1;
3818 * If we are going offline and still the leader, give up!
3820 if (!cpu_active(cpu
) &&
3821 atomic_read(&nohz
.load_balancer
) == cpu
) {
3822 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3827 /* time for ilb owner also to sleep */
3828 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3829 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3830 atomic_set(&nohz
.load_balancer
, -1);
3834 if (atomic_read(&nohz
.load_balancer
) == -1) {
3835 /* make me the ilb owner */
3836 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3838 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3841 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3844 cpu_clear(cpu
, nohz
.cpu_mask
);
3846 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3847 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3854 static DEFINE_SPINLOCK(balancing
);
3857 * It checks each scheduling domain to see if it is due to be balanced,
3858 * and initiates a balancing operation if so.
3860 * Balancing parameters are set up in arch_init_sched_domains.
3862 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3865 struct rq
*rq
= cpu_rq(cpu
);
3866 unsigned long interval
;
3867 struct sched_domain
*sd
;
3868 /* Earliest time when we have to do rebalance again */
3869 unsigned long next_balance
= jiffies
+ 60*HZ
;
3870 int update_next_balance
= 0;
3874 for_each_domain(cpu
, sd
) {
3875 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3878 interval
= sd
->balance_interval
;
3879 if (idle
!= CPU_IDLE
)
3880 interval
*= sd
->busy_factor
;
3882 /* scale ms to jiffies */
3883 interval
= msecs_to_jiffies(interval
);
3884 if (unlikely(!interval
))
3886 if (interval
> HZ
*NR_CPUS
/10)
3887 interval
= HZ
*NR_CPUS
/10;
3889 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3891 if (need_serialize
) {
3892 if (!spin_trylock(&balancing
))
3896 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3897 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3899 * We've pulled tasks over so either we're no
3900 * longer idle, or one of our SMT siblings is
3903 idle
= CPU_NOT_IDLE
;
3905 sd
->last_balance
= jiffies
;
3908 spin_unlock(&balancing
);
3910 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3911 next_balance
= sd
->last_balance
+ interval
;
3912 update_next_balance
= 1;
3916 * Stop the load balance at this level. There is another
3917 * CPU in our sched group which is doing load balancing more
3925 * next_balance will be updated only when there is a need.
3926 * When the cpu is attached to null domain for ex, it will not be
3929 if (likely(update_next_balance
))
3930 rq
->next_balance
= next_balance
;
3934 * run_rebalance_domains is triggered when needed from the scheduler tick.
3935 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3936 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3938 static void run_rebalance_domains(struct softirq_action
*h
)
3940 int this_cpu
= smp_processor_id();
3941 struct rq
*this_rq
= cpu_rq(this_cpu
);
3942 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3943 CPU_IDLE
: CPU_NOT_IDLE
;
3945 rebalance_domains(this_cpu
, idle
);
3949 * If this cpu is the owner for idle load balancing, then do the
3950 * balancing on behalf of the other idle cpus whose ticks are
3953 if (this_rq
->idle_at_tick
&&
3954 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3955 cpumask_t cpus
= nohz
.cpu_mask
;
3959 cpu_clear(this_cpu
, cpus
);
3960 for_each_cpu_mask_nr(balance_cpu
, cpus
) {
3962 * If this cpu gets work to do, stop the load balancing
3963 * work being done for other cpus. Next load
3964 * balancing owner will pick it up.
3969 rebalance_domains(balance_cpu
, CPU_IDLE
);
3971 rq
= cpu_rq(balance_cpu
);
3972 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3973 this_rq
->next_balance
= rq
->next_balance
;
3980 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3982 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3983 * idle load balancing owner or decide to stop the periodic load balancing,
3984 * if the whole system is idle.
3986 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3990 * If we were in the nohz mode recently and busy at the current
3991 * scheduler tick, then check if we need to nominate new idle
3994 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3995 rq
->in_nohz_recently
= 0;
3997 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3998 cpu_clear(cpu
, nohz
.cpu_mask
);
3999 atomic_set(&nohz
.load_balancer
, -1);
4002 if (atomic_read(&nohz
.load_balancer
) == -1) {
4004 * simple selection for now: Nominate the
4005 * first cpu in the nohz list to be the next
4008 * TBD: Traverse the sched domains and nominate
4009 * the nearest cpu in the nohz.cpu_mask.
4011 int ilb
= first_cpu(nohz
.cpu_mask
);
4013 if (ilb
< nr_cpu_ids
)
4019 * If this cpu is idle and doing idle load balancing for all the
4020 * cpus with ticks stopped, is it time for that to stop?
4022 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4023 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4029 * If this cpu is idle and the idle load balancing is done by
4030 * someone else, then no need raise the SCHED_SOFTIRQ
4032 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4033 cpu_isset(cpu
, nohz
.cpu_mask
))
4036 if (time_after_eq(jiffies
, rq
->next_balance
))
4037 raise_softirq(SCHED_SOFTIRQ
);
4040 #else /* CONFIG_SMP */
4043 * on UP we do not need to balance between CPUs:
4045 static inline void idle_balance(int cpu
, struct rq
*rq
)
4051 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4053 EXPORT_PER_CPU_SYMBOL(kstat
);
4056 * Return any ns on the sched_clock that have not yet been banked in
4057 * @p in case that task is currently running.
4059 unsigned long long task_delta_exec(struct task_struct
*p
)
4061 unsigned long flags
;
4065 rq
= task_rq_lock(p
, &flags
);
4067 if (task_current(rq
, p
)) {
4070 update_rq_clock(rq
);
4071 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4072 if ((s64
)delta_exec
> 0)
4076 task_rq_unlock(rq
, &flags
);
4082 * Account user cpu time to a process.
4083 * @p: the process that the cpu time gets accounted to
4084 * @cputime: the cpu time spent in user space since the last update
4086 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4088 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4091 p
->utime
= cputime_add(p
->utime
, cputime
);
4092 account_group_user_time(p
, cputime
);
4094 /* Add user time to cpustat. */
4095 tmp
= cputime_to_cputime64(cputime
);
4096 if (TASK_NICE(p
) > 0)
4097 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4099 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4100 /* Account for user time used */
4101 acct_update_integrals(p
);
4105 * Account guest cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @cputime: the cpu time spent in virtual machine since the last update
4109 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4112 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4114 tmp
= cputime_to_cputime64(cputime
);
4116 p
->utime
= cputime_add(p
->utime
, cputime
);
4117 account_group_user_time(p
, cputime
);
4118 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4120 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4121 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4125 * Account scaled user cpu time to a process.
4126 * @p: the process that the cpu time gets accounted to
4127 * @cputime: the cpu time spent in user space since the last update
4129 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4131 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4135 * Account system cpu time to a process.
4136 * @p: the process that the cpu time gets accounted to
4137 * @hardirq_offset: the offset to subtract from hardirq_count()
4138 * @cputime: the cpu time spent in kernel space since the last update
4140 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4143 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4144 struct rq
*rq
= this_rq();
4147 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4148 account_guest_time(p
, cputime
);
4152 p
->stime
= cputime_add(p
->stime
, cputime
);
4153 account_group_system_time(p
, cputime
);
4155 /* Add system time to cpustat. */
4156 tmp
= cputime_to_cputime64(cputime
);
4157 if (hardirq_count() - hardirq_offset
)
4158 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4159 else if (softirq_count())
4160 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4161 else if (p
!= rq
->idle
)
4162 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4163 else if (atomic_read(&rq
->nr_iowait
) > 0)
4164 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4166 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4167 /* Account for system time used */
4168 acct_update_integrals(p
);
4172 * Account scaled system cpu time to a process.
4173 * @p: the process that the cpu time gets accounted to
4174 * @hardirq_offset: the offset to subtract from hardirq_count()
4175 * @cputime: the cpu time spent in kernel space since the last update
4177 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4179 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4183 * Account for involuntary wait time.
4184 * @p: the process from which the cpu time has been stolen
4185 * @steal: the cpu time spent in involuntary wait
4187 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4189 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4190 cputime64_t tmp
= cputime_to_cputime64(steal
);
4191 struct rq
*rq
= this_rq();
4193 if (p
== rq
->idle
) {
4194 p
->stime
= cputime_add(p
->stime
, steal
);
4195 account_group_system_time(p
, steal
);
4196 if (atomic_read(&rq
->nr_iowait
) > 0)
4197 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4199 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4201 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4205 * Use precise platform statistics if available:
4207 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4208 cputime_t
task_utime(struct task_struct
*p
)
4213 cputime_t
task_stime(struct task_struct
*p
)
4218 cputime_t
task_utime(struct task_struct
*p
)
4220 clock_t utime
= cputime_to_clock_t(p
->utime
),
4221 total
= utime
+ cputime_to_clock_t(p
->stime
);
4225 * Use CFS's precise accounting:
4227 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4231 do_div(temp
, total
);
4233 utime
= (clock_t)temp
;
4235 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4236 return p
->prev_utime
;
4239 cputime_t
task_stime(struct task_struct
*p
)
4244 * Use CFS's precise accounting. (we subtract utime from
4245 * the total, to make sure the total observed by userspace
4246 * grows monotonically - apps rely on that):
4248 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4249 cputime_to_clock_t(task_utime(p
));
4252 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4254 return p
->prev_stime
;
4258 inline cputime_t
task_gtime(struct task_struct
*p
)
4264 * This function gets called by the timer code, with HZ frequency.
4265 * We call it with interrupts disabled.
4267 * It also gets called by the fork code, when changing the parent's
4270 void scheduler_tick(void)
4272 int cpu
= smp_processor_id();
4273 struct rq
*rq
= cpu_rq(cpu
);
4274 struct task_struct
*curr
= rq
->curr
;
4278 spin_lock(&rq
->lock
);
4279 update_rq_clock(rq
);
4280 update_cpu_load(rq
);
4281 curr
->sched_class
->task_tick(rq
, curr
, 0);
4282 spin_unlock(&rq
->lock
);
4285 rq
->idle_at_tick
= idle_cpu(cpu
);
4286 trigger_load_balance(rq
, cpu
);
4290 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4291 defined(CONFIG_PREEMPT_TRACER))
4293 static inline unsigned long get_parent_ip(unsigned long addr
)
4295 if (in_lock_functions(addr
)) {
4296 addr
= CALLER_ADDR2
;
4297 if (in_lock_functions(addr
))
4298 addr
= CALLER_ADDR3
;
4303 void __kprobes
add_preempt_count(int val
)
4305 #ifdef CONFIG_DEBUG_PREEMPT
4309 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4312 preempt_count() += val
;
4313 #ifdef CONFIG_DEBUG_PREEMPT
4315 * Spinlock count overflowing soon?
4317 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4320 if (preempt_count() == val
)
4321 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4323 EXPORT_SYMBOL(add_preempt_count
);
4325 void __kprobes
sub_preempt_count(int val
)
4327 #ifdef CONFIG_DEBUG_PREEMPT
4331 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4334 * Is the spinlock portion underflowing?
4336 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4337 !(preempt_count() & PREEMPT_MASK
)))
4341 if (preempt_count() == val
)
4342 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4343 preempt_count() -= val
;
4345 EXPORT_SYMBOL(sub_preempt_count
);
4350 * Print scheduling while atomic bug:
4352 static noinline
void __schedule_bug(struct task_struct
*prev
)
4354 struct pt_regs
*regs
= get_irq_regs();
4356 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4357 prev
->comm
, prev
->pid
, preempt_count());
4359 debug_show_held_locks(prev
);
4361 if (irqs_disabled())
4362 print_irqtrace_events(prev
);
4371 * Various schedule()-time debugging checks and statistics:
4373 static inline void schedule_debug(struct task_struct
*prev
)
4376 * Test if we are atomic. Since do_exit() needs to call into
4377 * schedule() atomically, we ignore that path for now.
4378 * Otherwise, whine if we are scheduling when we should not be.
4380 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4381 __schedule_bug(prev
);
4383 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4385 schedstat_inc(this_rq(), sched_count
);
4386 #ifdef CONFIG_SCHEDSTATS
4387 if (unlikely(prev
->lock_depth
>= 0)) {
4388 schedstat_inc(this_rq(), bkl_count
);
4389 schedstat_inc(prev
, sched_info
.bkl_count
);
4395 * Pick up the highest-prio task:
4397 static inline struct task_struct
*
4398 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4400 const struct sched_class
*class;
4401 struct task_struct
*p
;
4404 * Optimization: we know that if all tasks are in
4405 * the fair class we can call that function directly:
4407 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4408 p
= fair_sched_class
.pick_next_task(rq
);
4413 class = sched_class_highest
;
4415 p
= class->pick_next_task(rq
);
4419 * Will never be NULL as the idle class always
4420 * returns a non-NULL p:
4422 class = class->next
;
4427 * schedule() is the main scheduler function.
4429 asmlinkage
void __sched
schedule(void)
4431 struct task_struct
*prev
, *next
;
4432 unsigned long *switch_count
;
4438 cpu
= smp_processor_id();
4442 switch_count
= &prev
->nivcsw
;
4444 release_kernel_lock(prev
);
4445 need_resched_nonpreemptible
:
4447 schedule_debug(prev
);
4449 if (sched_feat(HRTICK
))
4452 spin_lock_irq(&rq
->lock
);
4453 update_rq_clock(rq
);
4454 clear_tsk_need_resched(prev
);
4456 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4457 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4458 prev
->state
= TASK_RUNNING
;
4460 deactivate_task(rq
, prev
, 1);
4461 switch_count
= &prev
->nvcsw
;
4465 if (prev
->sched_class
->pre_schedule
)
4466 prev
->sched_class
->pre_schedule(rq
, prev
);
4469 if (unlikely(!rq
->nr_running
))
4470 idle_balance(cpu
, rq
);
4472 prev
->sched_class
->put_prev_task(rq
, prev
);
4473 next
= pick_next_task(rq
, prev
);
4475 if (likely(prev
!= next
)) {
4476 sched_info_switch(prev
, next
);
4482 context_switch(rq
, prev
, next
); /* unlocks the rq */
4484 * the context switch might have flipped the stack from under
4485 * us, hence refresh the local variables.
4487 cpu
= smp_processor_id();
4490 spin_unlock_irq(&rq
->lock
);
4492 if (unlikely(reacquire_kernel_lock(current
) < 0))
4493 goto need_resched_nonpreemptible
;
4495 preempt_enable_no_resched();
4496 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4499 EXPORT_SYMBOL(schedule
);
4501 #ifdef CONFIG_PREEMPT
4503 * this is the entry point to schedule() from in-kernel preemption
4504 * off of preempt_enable. Kernel preemptions off return from interrupt
4505 * occur there and call schedule directly.
4507 asmlinkage
void __sched
preempt_schedule(void)
4509 struct thread_info
*ti
= current_thread_info();
4512 * If there is a non-zero preempt_count or interrupts are disabled,
4513 * we do not want to preempt the current task. Just return..
4515 if (likely(ti
->preempt_count
|| irqs_disabled()))
4519 add_preempt_count(PREEMPT_ACTIVE
);
4521 sub_preempt_count(PREEMPT_ACTIVE
);
4524 * Check again in case we missed a preemption opportunity
4525 * between schedule and now.
4528 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4530 EXPORT_SYMBOL(preempt_schedule
);
4533 * this is the entry point to schedule() from kernel preemption
4534 * off of irq context.
4535 * Note, that this is called and return with irqs disabled. This will
4536 * protect us against recursive calling from irq.
4538 asmlinkage
void __sched
preempt_schedule_irq(void)
4540 struct thread_info
*ti
= current_thread_info();
4542 /* Catch callers which need to be fixed */
4543 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4546 add_preempt_count(PREEMPT_ACTIVE
);
4549 local_irq_disable();
4550 sub_preempt_count(PREEMPT_ACTIVE
);
4553 * Check again in case we missed a preemption opportunity
4554 * between schedule and now.
4557 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4560 #endif /* CONFIG_PREEMPT */
4562 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4565 return try_to_wake_up(curr
->private, mode
, sync
);
4567 EXPORT_SYMBOL(default_wake_function
);
4570 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4571 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4572 * number) then we wake all the non-exclusive tasks and one exclusive task.
4574 * There are circumstances in which we can try to wake a task which has already
4575 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4576 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4578 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4579 int nr_exclusive
, int sync
, void *key
)
4581 wait_queue_t
*curr
, *next
;
4583 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4584 unsigned flags
= curr
->flags
;
4586 if (curr
->func(curr
, mode
, sync
, key
) &&
4587 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4593 * __wake_up - wake up threads blocked on a waitqueue.
4595 * @mode: which threads
4596 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4597 * @key: is directly passed to the wakeup function
4599 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4600 int nr_exclusive
, void *key
)
4602 unsigned long flags
;
4604 spin_lock_irqsave(&q
->lock
, flags
);
4605 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4606 spin_unlock_irqrestore(&q
->lock
, flags
);
4608 EXPORT_SYMBOL(__wake_up
);
4611 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4613 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4615 __wake_up_common(q
, mode
, 1, 0, NULL
);
4619 * __wake_up_sync - wake up threads blocked on a waitqueue.
4621 * @mode: which threads
4622 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4624 * The sync wakeup differs that the waker knows that it will schedule
4625 * away soon, so while the target thread will be woken up, it will not
4626 * be migrated to another CPU - ie. the two threads are 'synchronized'
4627 * with each other. This can prevent needless bouncing between CPUs.
4629 * On UP it can prevent extra preemption.
4632 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4634 unsigned long flags
;
4640 if (unlikely(!nr_exclusive
))
4643 spin_lock_irqsave(&q
->lock
, flags
);
4644 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4645 spin_unlock_irqrestore(&q
->lock
, flags
);
4647 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4650 * complete: - signals a single thread waiting on this completion
4651 * @x: holds the state of this particular completion
4653 * This will wake up a single thread waiting on this completion. Threads will be
4654 * awakened in the same order in which they were queued.
4656 * See also complete_all(), wait_for_completion() and related routines.
4658 void complete(struct completion
*x
)
4660 unsigned long flags
;
4662 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4664 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4665 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4667 EXPORT_SYMBOL(complete
);
4670 * complete_all: - signals all threads waiting on this completion
4671 * @x: holds the state of this particular completion
4673 * This will wake up all threads waiting on this particular completion event.
4675 void complete_all(struct completion
*x
)
4677 unsigned long flags
;
4679 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4680 x
->done
+= UINT_MAX
/2;
4681 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4682 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4684 EXPORT_SYMBOL(complete_all
);
4686 static inline long __sched
4687 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4690 DECLARE_WAITQUEUE(wait
, current
);
4692 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4693 __add_wait_queue_tail(&x
->wait
, &wait
);
4695 if (signal_pending_state(state
, current
)) {
4696 timeout
= -ERESTARTSYS
;
4699 __set_current_state(state
);
4700 spin_unlock_irq(&x
->wait
.lock
);
4701 timeout
= schedule_timeout(timeout
);
4702 spin_lock_irq(&x
->wait
.lock
);
4703 } while (!x
->done
&& timeout
);
4704 __remove_wait_queue(&x
->wait
, &wait
);
4709 return timeout
?: 1;
4713 wait_for_common(struct completion
*x
, long timeout
, int state
)
4717 spin_lock_irq(&x
->wait
.lock
);
4718 timeout
= do_wait_for_common(x
, timeout
, state
);
4719 spin_unlock_irq(&x
->wait
.lock
);
4724 * wait_for_completion: - waits for completion of a task
4725 * @x: holds the state of this particular completion
4727 * This waits to be signaled for completion of a specific task. It is NOT
4728 * interruptible and there is no timeout.
4730 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4731 * and interrupt capability. Also see complete().
4733 void __sched
wait_for_completion(struct completion
*x
)
4735 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4737 EXPORT_SYMBOL(wait_for_completion
);
4740 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4741 * @x: holds the state of this particular completion
4742 * @timeout: timeout value in jiffies
4744 * This waits for either a completion of a specific task to be signaled or for a
4745 * specified timeout to expire. The timeout is in jiffies. It is not
4748 unsigned long __sched
4749 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4751 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4753 EXPORT_SYMBOL(wait_for_completion_timeout
);
4756 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4757 * @x: holds the state of this particular completion
4759 * This waits for completion of a specific task to be signaled. It is
4762 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4764 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4765 if (t
== -ERESTARTSYS
)
4769 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4772 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4773 * @x: holds the state of this particular completion
4774 * @timeout: timeout value in jiffies
4776 * This waits for either a completion of a specific task to be signaled or for a
4777 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4779 unsigned long __sched
4780 wait_for_completion_interruptible_timeout(struct completion
*x
,
4781 unsigned long timeout
)
4783 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4785 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4788 * wait_for_completion_killable: - waits for completion of a task (killable)
4789 * @x: holds the state of this particular completion
4791 * This waits to be signaled for completion of a specific task. It can be
4792 * interrupted by a kill signal.
4794 int __sched
wait_for_completion_killable(struct completion
*x
)
4796 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4797 if (t
== -ERESTARTSYS
)
4801 EXPORT_SYMBOL(wait_for_completion_killable
);
4804 * try_wait_for_completion - try to decrement a completion without blocking
4805 * @x: completion structure
4807 * Returns: 0 if a decrement cannot be done without blocking
4808 * 1 if a decrement succeeded.
4810 * If a completion is being used as a counting completion,
4811 * attempt to decrement the counter without blocking. This
4812 * enables us to avoid waiting if the resource the completion
4813 * is protecting is not available.
4815 bool try_wait_for_completion(struct completion
*x
)
4819 spin_lock_irq(&x
->wait
.lock
);
4824 spin_unlock_irq(&x
->wait
.lock
);
4827 EXPORT_SYMBOL(try_wait_for_completion
);
4830 * completion_done - Test to see if a completion has any waiters
4831 * @x: completion structure
4833 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4834 * 1 if there are no waiters.
4837 bool completion_done(struct completion
*x
)
4841 spin_lock_irq(&x
->wait
.lock
);
4844 spin_unlock_irq(&x
->wait
.lock
);
4847 EXPORT_SYMBOL(completion_done
);
4850 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4852 unsigned long flags
;
4855 init_waitqueue_entry(&wait
, current
);
4857 __set_current_state(state
);
4859 spin_lock_irqsave(&q
->lock
, flags
);
4860 __add_wait_queue(q
, &wait
);
4861 spin_unlock(&q
->lock
);
4862 timeout
= schedule_timeout(timeout
);
4863 spin_lock_irq(&q
->lock
);
4864 __remove_wait_queue(q
, &wait
);
4865 spin_unlock_irqrestore(&q
->lock
, flags
);
4870 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4872 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4874 EXPORT_SYMBOL(interruptible_sleep_on
);
4877 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4879 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4881 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4883 void __sched
sleep_on(wait_queue_head_t
*q
)
4885 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4887 EXPORT_SYMBOL(sleep_on
);
4889 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4891 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4893 EXPORT_SYMBOL(sleep_on_timeout
);
4895 #ifdef CONFIG_RT_MUTEXES
4898 * rt_mutex_setprio - set the current priority of a task
4900 * @prio: prio value (kernel-internal form)
4902 * This function changes the 'effective' priority of a task. It does
4903 * not touch ->normal_prio like __setscheduler().
4905 * Used by the rt_mutex code to implement priority inheritance logic.
4907 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4909 unsigned long flags
;
4910 int oldprio
, on_rq
, running
;
4912 const struct sched_class
*prev_class
= p
->sched_class
;
4914 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4916 rq
= task_rq_lock(p
, &flags
);
4917 update_rq_clock(rq
);
4920 on_rq
= p
->se
.on_rq
;
4921 running
= task_current(rq
, p
);
4923 dequeue_task(rq
, p
, 0);
4925 p
->sched_class
->put_prev_task(rq
, p
);
4928 p
->sched_class
= &rt_sched_class
;
4930 p
->sched_class
= &fair_sched_class
;
4935 p
->sched_class
->set_curr_task(rq
);
4937 enqueue_task(rq
, p
, 0);
4939 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4941 task_rq_unlock(rq
, &flags
);
4946 void set_user_nice(struct task_struct
*p
, long nice
)
4948 int old_prio
, delta
, on_rq
;
4949 unsigned long flags
;
4952 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4955 * We have to be careful, if called from sys_setpriority(),
4956 * the task might be in the middle of scheduling on another CPU.
4958 rq
= task_rq_lock(p
, &flags
);
4959 update_rq_clock(rq
);
4961 * The RT priorities are set via sched_setscheduler(), but we still
4962 * allow the 'normal' nice value to be set - but as expected
4963 * it wont have any effect on scheduling until the task is
4964 * SCHED_FIFO/SCHED_RR:
4966 if (task_has_rt_policy(p
)) {
4967 p
->static_prio
= NICE_TO_PRIO(nice
);
4970 on_rq
= p
->se
.on_rq
;
4972 dequeue_task(rq
, p
, 0);
4974 p
->static_prio
= NICE_TO_PRIO(nice
);
4977 p
->prio
= effective_prio(p
);
4978 delta
= p
->prio
- old_prio
;
4981 enqueue_task(rq
, p
, 0);
4983 * If the task increased its priority or is running and
4984 * lowered its priority, then reschedule its CPU:
4986 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4987 resched_task(rq
->curr
);
4990 task_rq_unlock(rq
, &flags
);
4992 EXPORT_SYMBOL(set_user_nice
);
4995 * can_nice - check if a task can reduce its nice value
4999 int can_nice(const struct task_struct
*p
, const int nice
)
5001 /* convert nice value [19,-20] to rlimit style value [1,40] */
5002 int nice_rlim
= 20 - nice
;
5004 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5005 capable(CAP_SYS_NICE
));
5008 #ifdef __ARCH_WANT_SYS_NICE
5011 * sys_nice - change the priority of the current process.
5012 * @increment: priority increment
5014 * sys_setpriority is a more generic, but much slower function that
5015 * does similar things.
5017 asmlinkage
long sys_nice(int increment
)
5022 * Setpriority might change our priority at the same moment.
5023 * We don't have to worry. Conceptually one call occurs first
5024 * and we have a single winner.
5026 if (increment
< -40)
5031 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5037 if (increment
< 0 && !can_nice(current
, nice
))
5040 retval
= security_task_setnice(current
, nice
);
5044 set_user_nice(current
, nice
);
5051 * task_prio - return the priority value of a given task.
5052 * @p: the task in question.
5054 * This is the priority value as seen by users in /proc.
5055 * RT tasks are offset by -200. Normal tasks are centered
5056 * around 0, value goes from -16 to +15.
5058 int task_prio(const struct task_struct
*p
)
5060 return p
->prio
- MAX_RT_PRIO
;
5064 * task_nice - return the nice value of a given task.
5065 * @p: the task in question.
5067 int task_nice(const struct task_struct
*p
)
5069 return TASK_NICE(p
);
5071 EXPORT_SYMBOL(task_nice
);
5074 * idle_cpu - is a given cpu idle currently?
5075 * @cpu: the processor in question.
5077 int idle_cpu(int cpu
)
5079 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5083 * idle_task - return the idle task for a given cpu.
5084 * @cpu: the processor in question.
5086 struct task_struct
*idle_task(int cpu
)
5088 return cpu_rq(cpu
)->idle
;
5092 * find_process_by_pid - find a process with a matching PID value.
5093 * @pid: the pid in question.
5095 static struct task_struct
*find_process_by_pid(pid_t pid
)
5097 return pid
? find_task_by_vpid(pid
) : current
;
5100 /* Actually do priority change: must hold rq lock. */
5102 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5104 BUG_ON(p
->se
.on_rq
);
5107 switch (p
->policy
) {
5111 p
->sched_class
= &fair_sched_class
;
5115 p
->sched_class
= &rt_sched_class
;
5119 p
->rt_priority
= prio
;
5120 p
->normal_prio
= normal_prio(p
);
5121 /* we are holding p->pi_lock already */
5122 p
->prio
= rt_mutex_getprio(p
);
5127 * check the target process has a UID that matches the current process's
5129 static bool check_same_owner(struct task_struct
*p
)
5131 const struct cred
*cred
= current_cred(), *pcred
;
5135 pcred
= __task_cred(p
);
5136 match
= (cred
->euid
== pcred
->euid
||
5137 cred
->euid
== pcred
->uid
);
5142 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5143 struct sched_param
*param
, bool user
)
5145 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5146 unsigned long flags
;
5147 const struct sched_class
*prev_class
= p
->sched_class
;
5150 /* may grab non-irq protected spin_locks */
5151 BUG_ON(in_interrupt());
5153 /* double check policy once rq lock held */
5155 policy
= oldpolicy
= p
->policy
;
5156 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5157 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5158 policy
!= SCHED_IDLE
)
5161 * Valid priorities for SCHED_FIFO and SCHED_RR are
5162 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5163 * SCHED_BATCH and SCHED_IDLE is 0.
5165 if (param
->sched_priority
< 0 ||
5166 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5167 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5169 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5173 * Allow unprivileged RT tasks to decrease priority:
5175 if (user
&& !capable(CAP_SYS_NICE
)) {
5176 if (rt_policy(policy
)) {
5177 unsigned long rlim_rtprio
;
5179 if (!lock_task_sighand(p
, &flags
))
5181 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5182 unlock_task_sighand(p
, &flags
);
5184 /* can't set/change the rt policy */
5185 if (policy
!= p
->policy
&& !rlim_rtprio
)
5188 /* can't increase priority */
5189 if (param
->sched_priority
> p
->rt_priority
&&
5190 param
->sched_priority
> rlim_rtprio
)
5194 * Like positive nice levels, dont allow tasks to
5195 * move out of SCHED_IDLE either:
5197 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5200 /* can't change other user's priorities */
5201 if (!check_same_owner(p
))
5206 #ifdef CONFIG_RT_GROUP_SCHED
5208 * Do not allow realtime tasks into groups that have no runtime
5211 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5212 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5216 retval
= security_task_setscheduler(p
, policy
, param
);
5222 * make sure no PI-waiters arrive (or leave) while we are
5223 * changing the priority of the task:
5225 spin_lock_irqsave(&p
->pi_lock
, flags
);
5227 * To be able to change p->policy safely, the apropriate
5228 * runqueue lock must be held.
5230 rq
= __task_rq_lock(p
);
5231 /* recheck policy now with rq lock held */
5232 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5233 policy
= oldpolicy
= -1;
5234 __task_rq_unlock(rq
);
5235 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5238 update_rq_clock(rq
);
5239 on_rq
= p
->se
.on_rq
;
5240 running
= task_current(rq
, p
);
5242 deactivate_task(rq
, p
, 0);
5244 p
->sched_class
->put_prev_task(rq
, p
);
5247 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5250 p
->sched_class
->set_curr_task(rq
);
5252 activate_task(rq
, p
, 0);
5254 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5256 __task_rq_unlock(rq
);
5257 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5259 rt_mutex_adjust_pi(p
);
5265 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5266 * @p: the task in question.
5267 * @policy: new policy.
5268 * @param: structure containing the new RT priority.
5270 * NOTE that the task may be already dead.
5272 int sched_setscheduler(struct task_struct
*p
, int policy
,
5273 struct sched_param
*param
)
5275 return __sched_setscheduler(p
, policy
, param
, true);
5277 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5280 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5281 * @p: the task in question.
5282 * @policy: new policy.
5283 * @param: structure containing the new RT priority.
5285 * Just like sched_setscheduler, only don't bother checking if the
5286 * current context has permission. For example, this is needed in
5287 * stop_machine(): we create temporary high priority worker threads,
5288 * but our caller might not have that capability.
5290 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5291 struct sched_param
*param
)
5293 return __sched_setscheduler(p
, policy
, param
, false);
5297 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5299 struct sched_param lparam
;
5300 struct task_struct
*p
;
5303 if (!param
|| pid
< 0)
5305 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5310 p
= find_process_by_pid(pid
);
5312 retval
= sched_setscheduler(p
, policy
, &lparam
);
5319 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5320 * @pid: the pid in question.
5321 * @policy: new policy.
5322 * @param: structure containing the new RT priority.
5325 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5327 /* negative values for policy are not valid */
5331 return do_sched_setscheduler(pid
, policy
, param
);
5335 * sys_sched_setparam - set/change the RT priority of a thread
5336 * @pid: the pid in question.
5337 * @param: structure containing the new RT priority.
5339 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5341 return do_sched_setscheduler(pid
, -1, param
);
5345 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5346 * @pid: the pid in question.
5348 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5350 struct task_struct
*p
;
5357 read_lock(&tasklist_lock
);
5358 p
= find_process_by_pid(pid
);
5360 retval
= security_task_getscheduler(p
);
5364 read_unlock(&tasklist_lock
);
5369 * sys_sched_getscheduler - get the RT priority of a thread
5370 * @pid: the pid in question.
5371 * @param: structure containing the RT priority.
5373 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5375 struct sched_param lp
;
5376 struct task_struct
*p
;
5379 if (!param
|| pid
< 0)
5382 read_lock(&tasklist_lock
);
5383 p
= find_process_by_pid(pid
);
5388 retval
= security_task_getscheduler(p
);
5392 lp
.sched_priority
= p
->rt_priority
;
5393 read_unlock(&tasklist_lock
);
5396 * This one might sleep, we cannot do it with a spinlock held ...
5398 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5403 read_unlock(&tasklist_lock
);
5407 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5409 cpumask_t cpus_allowed
;
5410 cpumask_t new_mask
= *in_mask
;
5411 struct task_struct
*p
;
5415 read_lock(&tasklist_lock
);
5417 p
= find_process_by_pid(pid
);
5419 read_unlock(&tasklist_lock
);
5425 * It is not safe to call set_cpus_allowed with the
5426 * tasklist_lock held. We will bump the task_struct's
5427 * usage count and then drop tasklist_lock.
5430 read_unlock(&tasklist_lock
);
5433 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5436 retval
= security_task_setscheduler(p
, 0, NULL
);
5440 cpuset_cpus_allowed(p
, &cpus_allowed
);
5441 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5443 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5446 cpuset_cpus_allowed(p
, &cpus_allowed
);
5447 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5449 * We must have raced with a concurrent cpuset
5450 * update. Just reset the cpus_allowed to the
5451 * cpuset's cpus_allowed
5453 new_mask
= cpus_allowed
;
5463 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5464 cpumask_t
*new_mask
)
5466 if (len
< sizeof(cpumask_t
)) {
5467 memset(new_mask
, 0, sizeof(cpumask_t
));
5468 } else if (len
> sizeof(cpumask_t
)) {
5469 len
= sizeof(cpumask_t
);
5471 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5475 * sys_sched_setaffinity - set the cpu affinity of a process
5476 * @pid: pid of the process
5477 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5478 * @user_mask_ptr: user-space pointer to the new cpu mask
5480 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5481 unsigned long __user
*user_mask_ptr
)
5486 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5490 return sched_setaffinity(pid
, &new_mask
);
5493 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5495 struct task_struct
*p
;
5499 read_lock(&tasklist_lock
);
5502 p
= find_process_by_pid(pid
);
5506 retval
= security_task_getscheduler(p
);
5510 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5513 read_unlock(&tasklist_lock
);
5520 * sys_sched_getaffinity - get the cpu affinity of a process
5521 * @pid: pid of the process
5522 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5523 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5525 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5526 unsigned long __user
*user_mask_ptr
)
5531 if (len
< sizeof(cpumask_t
))
5534 ret
= sched_getaffinity(pid
, &mask
);
5538 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5541 return sizeof(cpumask_t
);
5545 * sys_sched_yield - yield the current processor to other threads.
5547 * This function yields the current CPU to other tasks. If there are no
5548 * other threads running on this CPU then this function will return.
5550 asmlinkage
long sys_sched_yield(void)
5552 struct rq
*rq
= this_rq_lock();
5554 schedstat_inc(rq
, yld_count
);
5555 current
->sched_class
->yield_task(rq
);
5558 * Since we are going to call schedule() anyway, there's
5559 * no need to preempt or enable interrupts:
5561 __release(rq
->lock
);
5562 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5563 _raw_spin_unlock(&rq
->lock
);
5564 preempt_enable_no_resched();
5571 static void __cond_resched(void)
5573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5574 __might_sleep(__FILE__
, __LINE__
);
5577 * The BKS might be reacquired before we have dropped
5578 * PREEMPT_ACTIVE, which could trigger a second
5579 * cond_resched() call.
5582 add_preempt_count(PREEMPT_ACTIVE
);
5584 sub_preempt_count(PREEMPT_ACTIVE
);
5585 } while (need_resched());
5588 int __sched
_cond_resched(void)
5590 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5591 system_state
== SYSTEM_RUNNING
) {
5597 EXPORT_SYMBOL(_cond_resched
);
5600 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5601 * call schedule, and on return reacquire the lock.
5603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5604 * operations here to prevent schedule() from being called twice (once via
5605 * spin_unlock(), once by hand).
5607 int cond_resched_lock(spinlock_t
*lock
)
5609 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5612 if (spin_needbreak(lock
) || resched
) {
5614 if (resched
&& need_resched())
5623 EXPORT_SYMBOL(cond_resched_lock
);
5625 int __sched
cond_resched_softirq(void)
5627 BUG_ON(!in_softirq());
5629 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5637 EXPORT_SYMBOL(cond_resched_softirq
);
5640 * yield - yield the current processor to other threads.
5642 * This is a shortcut for kernel-space yielding - it marks the
5643 * thread runnable and calls sys_sched_yield().
5645 void __sched
yield(void)
5647 set_current_state(TASK_RUNNING
);
5650 EXPORT_SYMBOL(yield
);
5653 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5654 * that process accounting knows that this is a task in IO wait state.
5656 * But don't do that if it is a deliberate, throttling IO wait (this task
5657 * has set its backing_dev_info: the queue against which it should throttle)
5659 void __sched
io_schedule(void)
5661 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5663 delayacct_blkio_start();
5664 atomic_inc(&rq
->nr_iowait
);
5666 atomic_dec(&rq
->nr_iowait
);
5667 delayacct_blkio_end();
5669 EXPORT_SYMBOL(io_schedule
);
5671 long __sched
io_schedule_timeout(long timeout
)
5673 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5676 delayacct_blkio_start();
5677 atomic_inc(&rq
->nr_iowait
);
5678 ret
= schedule_timeout(timeout
);
5679 atomic_dec(&rq
->nr_iowait
);
5680 delayacct_blkio_end();
5685 * sys_sched_get_priority_max - return maximum RT priority.
5686 * @policy: scheduling class.
5688 * this syscall returns the maximum rt_priority that can be used
5689 * by a given scheduling class.
5691 asmlinkage
long sys_sched_get_priority_max(int policy
)
5698 ret
= MAX_USER_RT_PRIO
-1;
5710 * sys_sched_get_priority_min - return minimum RT priority.
5711 * @policy: scheduling class.
5713 * this syscall returns the minimum rt_priority that can be used
5714 * by a given scheduling class.
5716 asmlinkage
long sys_sched_get_priority_min(int policy
)
5734 * sys_sched_rr_get_interval - return the default timeslice of a process.
5735 * @pid: pid of the process.
5736 * @interval: userspace pointer to the timeslice value.
5738 * this syscall writes the default timeslice value of a given process
5739 * into the user-space timespec buffer. A value of '0' means infinity.
5742 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5744 struct task_struct
*p
;
5745 unsigned int time_slice
;
5753 read_lock(&tasklist_lock
);
5754 p
= find_process_by_pid(pid
);
5758 retval
= security_task_getscheduler(p
);
5763 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5764 * tasks that are on an otherwise idle runqueue:
5767 if (p
->policy
== SCHED_RR
) {
5768 time_slice
= DEF_TIMESLICE
;
5769 } else if (p
->policy
!= SCHED_FIFO
) {
5770 struct sched_entity
*se
= &p
->se
;
5771 unsigned long flags
;
5774 rq
= task_rq_lock(p
, &flags
);
5775 if (rq
->cfs
.load
.weight
)
5776 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5777 task_rq_unlock(rq
, &flags
);
5779 read_unlock(&tasklist_lock
);
5780 jiffies_to_timespec(time_slice
, &t
);
5781 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5785 read_unlock(&tasklist_lock
);
5789 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5791 void sched_show_task(struct task_struct
*p
)
5793 unsigned long free
= 0;
5796 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5797 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5798 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5799 #if BITS_PER_LONG == 32
5800 if (state
== TASK_RUNNING
)
5801 printk(KERN_CONT
" running ");
5803 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5805 if (state
== TASK_RUNNING
)
5806 printk(KERN_CONT
" running task ");
5808 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5810 #ifdef CONFIG_DEBUG_STACK_USAGE
5812 unsigned long *n
= end_of_stack(p
);
5815 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5818 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5819 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5821 show_stack(p
, NULL
);
5824 void show_state_filter(unsigned long state_filter
)
5826 struct task_struct
*g
, *p
;
5828 #if BITS_PER_LONG == 32
5830 " task PC stack pid father\n");
5833 " task PC stack pid father\n");
5835 read_lock(&tasklist_lock
);
5836 do_each_thread(g
, p
) {
5838 * reset the NMI-timeout, listing all files on a slow
5839 * console might take alot of time:
5841 touch_nmi_watchdog();
5842 if (!state_filter
|| (p
->state
& state_filter
))
5844 } while_each_thread(g
, p
);
5846 touch_all_softlockup_watchdogs();
5848 #ifdef CONFIG_SCHED_DEBUG
5849 sysrq_sched_debug_show();
5851 read_unlock(&tasklist_lock
);
5853 * Only show locks if all tasks are dumped:
5855 if (state_filter
== -1)
5856 debug_show_all_locks();
5859 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5861 idle
->sched_class
= &idle_sched_class
;
5865 * init_idle - set up an idle thread for a given CPU
5866 * @idle: task in question
5867 * @cpu: cpu the idle task belongs to
5869 * NOTE: this function does not set the idle thread's NEED_RESCHED
5870 * flag, to make booting more robust.
5872 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5874 struct rq
*rq
= cpu_rq(cpu
);
5875 unsigned long flags
;
5877 spin_lock_irqsave(&rq
->lock
, flags
);
5880 idle
->se
.exec_start
= sched_clock();
5882 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5883 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5884 __set_task_cpu(idle
, cpu
);
5886 rq
->curr
= rq
->idle
= idle
;
5887 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5890 spin_unlock_irqrestore(&rq
->lock
, flags
);
5892 /* Set the preempt count _outside_ the spinlocks! */
5893 #if defined(CONFIG_PREEMPT)
5894 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5896 task_thread_info(idle
)->preempt_count
= 0;
5899 * The idle tasks have their own, simple scheduling class:
5901 idle
->sched_class
= &idle_sched_class
;
5902 ftrace_graph_init_task(idle
);
5906 * In a system that switches off the HZ timer nohz_cpu_mask
5907 * indicates which cpus entered this state. This is used
5908 * in the rcu update to wait only for active cpus. For system
5909 * which do not switch off the HZ timer nohz_cpu_mask should
5910 * always be CPU_MASK_NONE.
5912 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5915 * Increase the granularity value when there are more CPUs,
5916 * because with more CPUs the 'effective latency' as visible
5917 * to users decreases. But the relationship is not linear,
5918 * so pick a second-best guess by going with the log2 of the
5921 * This idea comes from the SD scheduler of Con Kolivas:
5923 static inline void sched_init_granularity(void)
5925 unsigned int factor
= 1 + ilog2(num_online_cpus());
5926 const unsigned long limit
= 200000000;
5928 sysctl_sched_min_granularity
*= factor
;
5929 if (sysctl_sched_min_granularity
> limit
)
5930 sysctl_sched_min_granularity
= limit
;
5932 sysctl_sched_latency
*= factor
;
5933 if (sysctl_sched_latency
> limit
)
5934 sysctl_sched_latency
= limit
;
5936 sysctl_sched_wakeup_granularity
*= factor
;
5938 sysctl_sched_shares_ratelimit
*= factor
;
5943 * This is how migration works:
5945 * 1) we queue a struct migration_req structure in the source CPU's
5946 * runqueue and wake up that CPU's migration thread.
5947 * 2) we down() the locked semaphore => thread blocks.
5948 * 3) migration thread wakes up (implicitly it forces the migrated
5949 * thread off the CPU)
5950 * 4) it gets the migration request and checks whether the migrated
5951 * task is still in the wrong runqueue.
5952 * 5) if it's in the wrong runqueue then the migration thread removes
5953 * it and puts it into the right queue.
5954 * 6) migration thread up()s the semaphore.
5955 * 7) we wake up and the migration is done.
5959 * Change a given task's CPU affinity. Migrate the thread to a
5960 * proper CPU and schedule it away if the CPU it's executing on
5961 * is removed from the allowed bitmask.
5963 * NOTE: the caller must have a valid reference to the task, the
5964 * task must not exit() & deallocate itself prematurely. The
5965 * call is not atomic; no spinlocks may be held.
5967 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5969 struct migration_req req
;
5970 unsigned long flags
;
5974 rq
= task_rq_lock(p
, &flags
);
5975 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5980 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5981 !cpus_equal(p
->cpus_allowed
, *new_mask
))) {
5986 if (p
->sched_class
->set_cpus_allowed
)
5987 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5989 p
->cpus_allowed
= *new_mask
;
5990 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5993 /* Can the task run on the task's current CPU? If so, we're done */
5994 if (cpu_isset(task_cpu(p
), *new_mask
))
5997 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5998 /* Need help from migration thread: drop lock and wait. */
5999 task_rq_unlock(rq
, &flags
);
6000 wake_up_process(rq
->migration_thread
);
6001 wait_for_completion(&req
.done
);
6002 tlb_migrate_finish(p
->mm
);
6006 task_rq_unlock(rq
, &flags
);
6010 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6013 * Move (not current) task off this cpu, onto dest cpu. We're doing
6014 * this because either it can't run here any more (set_cpus_allowed()
6015 * away from this CPU, or CPU going down), or because we're
6016 * attempting to rebalance this task on exec (sched_exec).
6018 * So we race with normal scheduler movements, but that's OK, as long
6019 * as the task is no longer on this CPU.
6021 * Returns non-zero if task was successfully migrated.
6023 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6025 struct rq
*rq_dest
, *rq_src
;
6028 if (unlikely(!cpu_active(dest_cpu
)))
6031 rq_src
= cpu_rq(src_cpu
);
6032 rq_dest
= cpu_rq(dest_cpu
);
6034 double_rq_lock(rq_src
, rq_dest
);
6035 /* Already moved. */
6036 if (task_cpu(p
) != src_cpu
)
6038 /* Affinity changed (again). */
6039 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
6042 on_rq
= p
->se
.on_rq
;
6044 deactivate_task(rq_src
, p
, 0);
6046 set_task_cpu(p
, dest_cpu
);
6048 activate_task(rq_dest
, p
, 0);
6049 check_preempt_curr(rq_dest
, p
, 0);
6054 double_rq_unlock(rq_src
, rq_dest
);
6059 * migration_thread - this is a highprio system thread that performs
6060 * thread migration by bumping thread off CPU then 'pushing' onto
6063 static int migration_thread(void *data
)
6065 int cpu
= (long)data
;
6069 BUG_ON(rq
->migration_thread
!= current
);
6071 set_current_state(TASK_INTERRUPTIBLE
);
6072 while (!kthread_should_stop()) {
6073 struct migration_req
*req
;
6074 struct list_head
*head
;
6076 spin_lock_irq(&rq
->lock
);
6078 if (cpu_is_offline(cpu
)) {
6079 spin_unlock_irq(&rq
->lock
);
6083 if (rq
->active_balance
) {
6084 active_load_balance(rq
, cpu
);
6085 rq
->active_balance
= 0;
6088 head
= &rq
->migration_queue
;
6090 if (list_empty(head
)) {
6091 spin_unlock_irq(&rq
->lock
);
6093 set_current_state(TASK_INTERRUPTIBLE
);
6096 req
= list_entry(head
->next
, struct migration_req
, list
);
6097 list_del_init(head
->next
);
6099 spin_unlock(&rq
->lock
);
6100 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6103 complete(&req
->done
);
6105 __set_current_state(TASK_RUNNING
);
6109 /* Wait for kthread_stop */
6110 set_current_state(TASK_INTERRUPTIBLE
);
6111 while (!kthread_should_stop()) {
6113 set_current_state(TASK_INTERRUPTIBLE
);
6115 __set_current_state(TASK_RUNNING
);
6119 #ifdef CONFIG_HOTPLUG_CPU
6121 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6125 local_irq_disable();
6126 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6132 * Figure out where task on dead CPU should go, use force if necessary.
6134 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6136 unsigned long flags
;
6143 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6144 cpus_and(mask
, mask
, p
->cpus_allowed
);
6145 dest_cpu
= any_online_cpu(mask
);
6147 /* On any allowed CPU? */
6148 if (dest_cpu
>= nr_cpu_ids
)
6149 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6151 /* No more Mr. Nice Guy. */
6152 if (dest_cpu
>= nr_cpu_ids
) {
6153 cpumask_t cpus_allowed
;
6155 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6157 * Try to stay on the same cpuset, where the
6158 * current cpuset may be a subset of all cpus.
6159 * The cpuset_cpus_allowed_locked() variant of
6160 * cpuset_cpus_allowed() will not block. It must be
6161 * called within calls to cpuset_lock/cpuset_unlock.
6163 rq
= task_rq_lock(p
, &flags
);
6164 p
->cpus_allowed
= cpus_allowed
;
6165 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6166 task_rq_unlock(rq
, &flags
);
6169 * Don't tell them about moving exiting tasks or
6170 * kernel threads (both mm NULL), since they never
6173 if (p
->mm
&& printk_ratelimit()) {
6174 printk(KERN_INFO
"process %d (%s) no "
6175 "longer affine to cpu%d\n",
6176 task_pid_nr(p
), p
->comm
, dead_cpu
);
6179 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6183 * While a dead CPU has no uninterruptible tasks queued at this point,
6184 * it might still have a nonzero ->nr_uninterruptible counter, because
6185 * for performance reasons the counter is not stricly tracking tasks to
6186 * their home CPUs. So we just add the counter to another CPU's counter,
6187 * to keep the global sum constant after CPU-down:
6189 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6191 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6192 unsigned long flags
;
6194 local_irq_save(flags
);
6195 double_rq_lock(rq_src
, rq_dest
);
6196 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6197 rq_src
->nr_uninterruptible
= 0;
6198 double_rq_unlock(rq_src
, rq_dest
);
6199 local_irq_restore(flags
);
6202 /* Run through task list and migrate tasks from the dead cpu. */
6203 static void migrate_live_tasks(int src_cpu
)
6205 struct task_struct
*p
, *t
;
6207 read_lock(&tasklist_lock
);
6209 do_each_thread(t
, p
) {
6213 if (task_cpu(p
) == src_cpu
)
6214 move_task_off_dead_cpu(src_cpu
, p
);
6215 } while_each_thread(t
, p
);
6217 read_unlock(&tasklist_lock
);
6221 * Schedules idle task to be the next runnable task on current CPU.
6222 * It does so by boosting its priority to highest possible.
6223 * Used by CPU offline code.
6225 void sched_idle_next(void)
6227 int this_cpu
= smp_processor_id();
6228 struct rq
*rq
= cpu_rq(this_cpu
);
6229 struct task_struct
*p
= rq
->idle
;
6230 unsigned long flags
;
6232 /* cpu has to be offline */
6233 BUG_ON(cpu_online(this_cpu
));
6236 * Strictly not necessary since rest of the CPUs are stopped by now
6237 * and interrupts disabled on the current cpu.
6239 spin_lock_irqsave(&rq
->lock
, flags
);
6241 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6243 update_rq_clock(rq
);
6244 activate_task(rq
, p
, 0);
6246 spin_unlock_irqrestore(&rq
->lock
, flags
);
6250 * Ensures that the idle task is using init_mm right before its cpu goes
6253 void idle_task_exit(void)
6255 struct mm_struct
*mm
= current
->active_mm
;
6257 BUG_ON(cpu_online(smp_processor_id()));
6260 switch_mm(mm
, &init_mm
, current
);
6264 /* called under rq->lock with disabled interrupts */
6265 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6267 struct rq
*rq
= cpu_rq(dead_cpu
);
6269 /* Must be exiting, otherwise would be on tasklist. */
6270 BUG_ON(!p
->exit_state
);
6272 /* Cannot have done final schedule yet: would have vanished. */
6273 BUG_ON(p
->state
== TASK_DEAD
);
6278 * Drop lock around migration; if someone else moves it,
6279 * that's OK. No task can be added to this CPU, so iteration is
6282 spin_unlock_irq(&rq
->lock
);
6283 move_task_off_dead_cpu(dead_cpu
, p
);
6284 spin_lock_irq(&rq
->lock
);
6289 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6290 static void migrate_dead_tasks(unsigned int dead_cpu
)
6292 struct rq
*rq
= cpu_rq(dead_cpu
);
6293 struct task_struct
*next
;
6296 if (!rq
->nr_running
)
6298 update_rq_clock(rq
);
6299 next
= pick_next_task(rq
, rq
->curr
);
6302 next
->sched_class
->put_prev_task(rq
, next
);
6303 migrate_dead(dead_cpu
, next
);
6307 #endif /* CONFIG_HOTPLUG_CPU */
6309 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6311 static struct ctl_table sd_ctl_dir
[] = {
6313 .procname
= "sched_domain",
6319 static struct ctl_table sd_ctl_root
[] = {
6321 .ctl_name
= CTL_KERN
,
6322 .procname
= "kernel",
6324 .child
= sd_ctl_dir
,
6329 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6331 struct ctl_table
*entry
=
6332 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6337 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6339 struct ctl_table
*entry
;
6342 * In the intermediate directories, both the child directory and
6343 * procname are dynamically allocated and could fail but the mode
6344 * will always be set. In the lowest directory the names are
6345 * static strings and all have proc handlers.
6347 for (entry
= *tablep
; entry
->mode
; entry
++) {
6349 sd_free_ctl_entry(&entry
->child
);
6350 if (entry
->proc_handler
== NULL
)
6351 kfree(entry
->procname
);
6359 set_table_entry(struct ctl_table
*entry
,
6360 const char *procname
, void *data
, int maxlen
,
6361 mode_t mode
, proc_handler
*proc_handler
)
6363 entry
->procname
= procname
;
6365 entry
->maxlen
= maxlen
;
6367 entry
->proc_handler
= proc_handler
;
6370 static struct ctl_table
*
6371 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6373 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6378 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6379 sizeof(long), 0644, proc_doulongvec_minmax
);
6380 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6381 sizeof(long), 0644, proc_doulongvec_minmax
);
6382 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6383 sizeof(int), 0644, proc_dointvec_minmax
);
6384 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6385 sizeof(int), 0644, proc_dointvec_minmax
);
6386 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6387 sizeof(int), 0644, proc_dointvec_minmax
);
6388 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6389 sizeof(int), 0644, proc_dointvec_minmax
);
6390 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6391 sizeof(int), 0644, proc_dointvec_minmax
);
6392 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6393 sizeof(int), 0644, proc_dointvec_minmax
);
6394 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6395 sizeof(int), 0644, proc_dointvec_minmax
);
6396 set_table_entry(&table
[9], "cache_nice_tries",
6397 &sd
->cache_nice_tries
,
6398 sizeof(int), 0644, proc_dointvec_minmax
);
6399 set_table_entry(&table
[10], "flags", &sd
->flags
,
6400 sizeof(int), 0644, proc_dointvec_minmax
);
6401 set_table_entry(&table
[11], "name", sd
->name
,
6402 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6403 /* &table[12] is terminator */
6408 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6410 struct ctl_table
*entry
, *table
;
6411 struct sched_domain
*sd
;
6412 int domain_num
= 0, i
;
6415 for_each_domain(cpu
, sd
)
6417 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6422 for_each_domain(cpu
, sd
) {
6423 snprintf(buf
, 32, "domain%d", i
);
6424 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6426 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6433 static struct ctl_table_header
*sd_sysctl_header
;
6434 static void register_sched_domain_sysctl(void)
6436 int i
, cpu_num
= num_online_cpus();
6437 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6440 WARN_ON(sd_ctl_dir
[0].child
);
6441 sd_ctl_dir
[0].child
= entry
;
6446 for_each_online_cpu(i
) {
6447 snprintf(buf
, 32, "cpu%d", i
);
6448 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6450 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6454 WARN_ON(sd_sysctl_header
);
6455 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6458 /* may be called multiple times per register */
6459 static void unregister_sched_domain_sysctl(void)
6461 if (sd_sysctl_header
)
6462 unregister_sysctl_table(sd_sysctl_header
);
6463 sd_sysctl_header
= NULL
;
6464 if (sd_ctl_dir
[0].child
)
6465 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6468 static void register_sched_domain_sysctl(void)
6471 static void unregister_sched_domain_sysctl(void)
6476 static void set_rq_online(struct rq
*rq
)
6479 const struct sched_class
*class;
6481 cpu_set(rq
->cpu
, rq
->rd
->online
);
6484 for_each_class(class) {
6485 if (class->rq_online
)
6486 class->rq_online(rq
);
6491 static void set_rq_offline(struct rq
*rq
)
6494 const struct sched_class
*class;
6496 for_each_class(class) {
6497 if (class->rq_offline
)
6498 class->rq_offline(rq
);
6501 cpu_clear(rq
->cpu
, rq
->rd
->online
);
6507 * migration_call - callback that gets triggered when a CPU is added.
6508 * Here we can start up the necessary migration thread for the new CPU.
6510 static int __cpuinit
6511 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6513 struct task_struct
*p
;
6514 int cpu
= (long)hcpu
;
6515 unsigned long flags
;
6520 case CPU_UP_PREPARE
:
6521 case CPU_UP_PREPARE_FROZEN
:
6522 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6525 kthread_bind(p
, cpu
);
6526 /* Must be high prio: stop_machine expects to yield to it. */
6527 rq
= task_rq_lock(p
, &flags
);
6528 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6529 task_rq_unlock(rq
, &flags
);
6530 cpu_rq(cpu
)->migration_thread
= p
;
6534 case CPU_ONLINE_FROZEN
:
6535 /* Strictly unnecessary, as first user will wake it. */
6536 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6538 /* Update our root-domain */
6540 spin_lock_irqsave(&rq
->lock
, flags
);
6542 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6546 spin_unlock_irqrestore(&rq
->lock
, flags
);
6549 #ifdef CONFIG_HOTPLUG_CPU
6550 case CPU_UP_CANCELED
:
6551 case CPU_UP_CANCELED_FROZEN
:
6552 if (!cpu_rq(cpu
)->migration_thread
)
6554 /* Unbind it from offline cpu so it can run. Fall thru. */
6555 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6556 any_online_cpu(cpu_online_map
));
6557 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6558 cpu_rq(cpu
)->migration_thread
= NULL
;
6562 case CPU_DEAD_FROZEN
:
6563 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6564 migrate_live_tasks(cpu
);
6566 kthread_stop(rq
->migration_thread
);
6567 rq
->migration_thread
= NULL
;
6568 /* Idle task back to normal (off runqueue, low prio) */
6569 spin_lock_irq(&rq
->lock
);
6570 update_rq_clock(rq
);
6571 deactivate_task(rq
, rq
->idle
, 0);
6572 rq
->idle
->static_prio
= MAX_PRIO
;
6573 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6574 rq
->idle
->sched_class
= &idle_sched_class
;
6575 migrate_dead_tasks(cpu
);
6576 spin_unlock_irq(&rq
->lock
);
6578 migrate_nr_uninterruptible(rq
);
6579 BUG_ON(rq
->nr_running
!= 0);
6582 * No need to migrate the tasks: it was best-effort if
6583 * they didn't take sched_hotcpu_mutex. Just wake up
6586 spin_lock_irq(&rq
->lock
);
6587 while (!list_empty(&rq
->migration_queue
)) {
6588 struct migration_req
*req
;
6590 req
= list_entry(rq
->migration_queue
.next
,
6591 struct migration_req
, list
);
6592 list_del_init(&req
->list
);
6593 spin_unlock_irq(&rq
->lock
);
6594 complete(&req
->done
);
6595 spin_lock_irq(&rq
->lock
);
6597 spin_unlock_irq(&rq
->lock
);
6601 case CPU_DYING_FROZEN
:
6602 /* Update our root-domain */
6604 spin_lock_irqsave(&rq
->lock
, flags
);
6606 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6609 spin_unlock_irqrestore(&rq
->lock
, flags
);
6616 /* Register at highest priority so that task migration (migrate_all_tasks)
6617 * happens before everything else.
6619 static struct notifier_block __cpuinitdata migration_notifier
= {
6620 .notifier_call
= migration_call
,
6624 static int __init
migration_init(void)
6626 void *cpu
= (void *)(long)smp_processor_id();
6629 /* Start one for the boot CPU: */
6630 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6631 BUG_ON(err
== NOTIFY_BAD
);
6632 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6633 register_cpu_notifier(&migration_notifier
);
6637 early_initcall(migration_init
);
6642 #ifdef CONFIG_SCHED_DEBUG
6644 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6645 cpumask_t
*groupmask
)
6647 struct sched_group
*group
= sd
->groups
;
6650 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6651 cpus_clear(*groupmask
);
6653 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6655 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6656 printk("does not load-balance\n");
6658 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6663 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6665 if (!cpu_isset(cpu
, sd
->span
)) {
6666 printk(KERN_ERR
"ERROR: domain->span does not contain "
6669 if (!cpu_isset(cpu
, group
->cpumask
)) {
6670 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6674 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6678 printk(KERN_ERR
"ERROR: group is NULL\n");
6682 if (!group
->__cpu_power
) {
6683 printk(KERN_CONT
"\n");
6684 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6689 if (!cpus_weight(group
->cpumask
)) {
6690 printk(KERN_CONT
"\n");
6691 printk(KERN_ERR
"ERROR: empty group\n");
6695 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6696 printk(KERN_CONT
"\n");
6697 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6701 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6703 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6704 printk(KERN_CONT
" %s", str
);
6706 group
= group
->next
;
6707 } while (group
!= sd
->groups
);
6708 printk(KERN_CONT
"\n");
6710 if (!cpus_equal(sd
->span
, *groupmask
))
6711 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6713 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6714 printk(KERN_ERR
"ERROR: parent span is not a superset "
6715 "of domain->span\n");
6719 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6721 cpumask_t
*groupmask
;
6725 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6729 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6731 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6733 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6738 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6747 #else /* !CONFIG_SCHED_DEBUG */
6748 # define sched_domain_debug(sd, cpu) do { } while (0)
6749 #endif /* CONFIG_SCHED_DEBUG */
6751 static int sd_degenerate(struct sched_domain
*sd
)
6753 if (cpus_weight(sd
->span
) == 1)
6756 /* Following flags need at least 2 groups */
6757 if (sd
->flags
& (SD_LOAD_BALANCE
|
6758 SD_BALANCE_NEWIDLE
|
6762 SD_SHARE_PKG_RESOURCES
)) {
6763 if (sd
->groups
!= sd
->groups
->next
)
6767 /* Following flags don't use groups */
6768 if (sd
->flags
& (SD_WAKE_IDLE
|
6777 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6779 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6781 if (sd_degenerate(parent
))
6784 if (!cpus_equal(sd
->span
, parent
->span
))
6787 /* Does parent contain flags not in child? */
6788 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6789 if (cflags
& SD_WAKE_AFFINE
)
6790 pflags
&= ~SD_WAKE_BALANCE
;
6791 /* Flags needing groups don't count if only 1 group in parent */
6792 if (parent
->groups
== parent
->groups
->next
) {
6793 pflags
&= ~(SD_LOAD_BALANCE
|
6794 SD_BALANCE_NEWIDLE
|
6798 SD_SHARE_PKG_RESOURCES
);
6799 if (nr_node_ids
== 1)
6800 pflags
&= ~SD_SERIALIZE
;
6802 if (~cflags
& pflags
)
6808 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6810 unsigned long flags
;
6812 spin_lock_irqsave(&rq
->lock
, flags
);
6815 struct root_domain
*old_rd
= rq
->rd
;
6817 if (cpu_isset(rq
->cpu
, old_rd
->online
))
6820 cpu_clear(rq
->cpu
, old_rd
->span
);
6822 if (atomic_dec_and_test(&old_rd
->refcount
))
6826 atomic_inc(&rd
->refcount
);
6829 cpu_set(rq
->cpu
, rd
->span
);
6830 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6833 spin_unlock_irqrestore(&rq
->lock
, flags
);
6836 static void init_rootdomain(struct root_domain
*rd
)
6838 memset(rd
, 0, sizeof(*rd
));
6840 cpus_clear(rd
->span
);
6841 cpus_clear(rd
->online
);
6843 cpupri_init(&rd
->cpupri
);
6846 static void init_defrootdomain(void)
6848 init_rootdomain(&def_root_domain
);
6849 atomic_set(&def_root_domain
.refcount
, 1);
6852 static struct root_domain
*alloc_rootdomain(void)
6854 struct root_domain
*rd
;
6856 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6860 init_rootdomain(rd
);
6866 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6867 * hold the hotplug lock.
6870 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6872 struct rq
*rq
= cpu_rq(cpu
);
6873 struct sched_domain
*tmp
;
6875 /* Remove the sched domains which do not contribute to scheduling. */
6876 for (tmp
= sd
; tmp
; ) {
6877 struct sched_domain
*parent
= tmp
->parent
;
6881 if (sd_parent_degenerate(tmp
, parent
)) {
6882 tmp
->parent
= parent
->parent
;
6884 parent
->parent
->child
= tmp
;
6889 if (sd
&& sd_degenerate(sd
)) {
6895 sched_domain_debug(sd
, cpu
);
6897 rq_attach_root(rq
, rd
);
6898 rcu_assign_pointer(rq
->sd
, sd
);
6901 /* cpus with isolated domains */
6902 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6904 /* Setup the mask of cpus configured for isolated domains */
6905 static int __init
isolated_cpu_setup(char *str
)
6907 static int __initdata ints
[NR_CPUS
];
6910 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6911 cpus_clear(cpu_isolated_map
);
6912 for (i
= 1; i
<= ints
[0]; i
++)
6913 if (ints
[i
] < NR_CPUS
)
6914 cpu_set(ints
[i
], cpu_isolated_map
);
6918 __setup("isolcpus=", isolated_cpu_setup
);
6921 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6922 * to a function which identifies what group(along with sched group) a CPU
6923 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6924 * (due to the fact that we keep track of groups covered with a cpumask_t).
6926 * init_sched_build_groups will build a circular linked list of the groups
6927 * covered by the given span, and will set each group's ->cpumask correctly,
6928 * and ->cpu_power to 0.
6931 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6932 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6933 struct sched_group
**sg
,
6934 cpumask_t
*tmpmask
),
6935 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6937 struct sched_group
*first
= NULL
, *last
= NULL
;
6940 cpus_clear(*covered
);
6942 for_each_cpu_mask_nr(i
, *span
) {
6943 struct sched_group
*sg
;
6944 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6947 if (cpu_isset(i
, *covered
))
6950 cpus_clear(sg
->cpumask
);
6951 sg
->__cpu_power
= 0;
6953 for_each_cpu_mask_nr(j
, *span
) {
6954 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6957 cpu_set(j
, *covered
);
6958 cpu_set(j
, sg
->cpumask
);
6969 #define SD_NODES_PER_DOMAIN 16
6974 * find_next_best_node - find the next node to include in a sched_domain
6975 * @node: node whose sched_domain we're building
6976 * @used_nodes: nodes already in the sched_domain
6978 * Find the next node to include in a given scheduling domain. Simply
6979 * finds the closest node not already in the @used_nodes map.
6981 * Should use nodemask_t.
6983 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6985 int i
, n
, val
, min_val
, best_node
= 0;
6989 for (i
= 0; i
< nr_node_ids
; i
++) {
6990 /* Start at @node */
6991 n
= (node
+ i
) % nr_node_ids
;
6993 if (!nr_cpus_node(n
))
6996 /* Skip already used nodes */
6997 if (node_isset(n
, *used_nodes
))
7000 /* Simple min distance search */
7001 val
= node_distance(node
, n
);
7003 if (val
< min_val
) {
7009 node_set(best_node
, *used_nodes
);
7014 * sched_domain_node_span - get a cpumask for a node's sched_domain
7015 * @node: node whose cpumask we're constructing
7016 * @span: resulting cpumask
7018 * Given a node, construct a good cpumask for its sched_domain to span. It
7019 * should be one that prevents unnecessary balancing, but also spreads tasks
7022 static void sched_domain_node_span(int node
, cpumask_t
*span
)
7024 nodemask_t used_nodes
;
7025 node_to_cpumask_ptr(nodemask
, node
);
7029 nodes_clear(used_nodes
);
7031 cpus_or(*span
, *span
, *nodemask
);
7032 node_set(node
, used_nodes
);
7034 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7035 int next_node
= find_next_best_node(node
, &used_nodes
);
7037 node_to_cpumask_ptr_next(nodemask
, next_node
);
7038 cpus_or(*span
, *span
, *nodemask
);
7041 #endif /* CONFIG_NUMA */
7043 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7046 * SMT sched-domains:
7048 #ifdef CONFIG_SCHED_SMT
7049 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
7050 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
7053 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7057 *sg
= &per_cpu(sched_group_cpus
, cpu
);
7060 #endif /* CONFIG_SCHED_SMT */
7063 * multi-core sched-domains:
7065 #ifdef CONFIG_SCHED_MC
7066 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
7067 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
7068 #endif /* CONFIG_SCHED_MC */
7070 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7072 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7077 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7078 cpus_and(*mask
, *mask
, *cpu_map
);
7079 group
= first_cpu(*mask
);
7081 *sg
= &per_cpu(sched_group_core
, group
);
7084 #elif defined(CONFIG_SCHED_MC)
7086 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7090 *sg
= &per_cpu(sched_group_core
, cpu
);
7095 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
7096 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
7099 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7103 #ifdef CONFIG_SCHED_MC
7104 *mask
= cpu_coregroup_map(cpu
);
7105 cpus_and(*mask
, *mask
, *cpu_map
);
7106 group
= first_cpu(*mask
);
7107 #elif defined(CONFIG_SCHED_SMT)
7108 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7109 cpus_and(*mask
, *mask
, *cpu_map
);
7110 group
= first_cpu(*mask
);
7115 *sg
= &per_cpu(sched_group_phys
, group
);
7121 * The init_sched_build_groups can't handle what we want to do with node
7122 * groups, so roll our own. Now each node has its own list of groups which
7123 * gets dynamically allocated.
7125 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7126 static struct sched_group
***sched_group_nodes_bycpu
;
7128 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7129 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
7131 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
7132 struct sched_group
**sg
, cpumask_t
*nodemask
)
7136 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7137 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7138 group
= first_cpu(*nodemask
);
7141 *sg
= &per_cpu(sched_group_allnodes
, group
);
7145 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7147 struct sched_group
*sg
= group_head
;
7153 for_each_cpu_mask_nr(j
, sg
->cpumask
) {
7154 struct sched_domain
*sd
;
7156 sd
= &per_cpu(phys_domains
, j
);
7157 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7159 * Only add "power" once for each
7165 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7168 } while (sg
!= group_head
);
7170 #endif /* CONFIG_NUMA */
7173 /* Free memory allocated for various sched_group structures */
7174 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7178 for_each_cpu_mask_nr(cpu
, *cpu_map
) {
7179 struct sched_group
**sched_group_nodes
7180 = sched_group_nodes_bycpu
[cpu
];
7182 if (!sched_group_nodes
)
7185 for (i
= 0; i
< nr_node_ids
; i
++) {
7186 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7188 *nodemask
= node_to_cpumask(i
);
7189 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7190 if (cpus_empty(*nodemask
))
7200 if (oldsg
!= sched_group_nodes
[i
])
7203 kfree(sched_group_nodes
);
7204 sched_group_nodes_bycpu
[cpu
] = NULL
;
7207 #else /* !CONFIG_NUMA */
7208 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7211 #endif /* CONFIG_NUMA */
7214 * Initialize sched groups cpu_power.
7216 * cpu_power indicates the capacity of sched group, which is used while
7217 * distributing the load between different sched groups in a sched domain.
7218 * Typically cpu_power for all the groups in a sched domain will be same unless
7219 * there are asymmetries in the topology. If there are asymmetries, group
7220 * having more cpu_power will pickup more load compared to the group having
7223 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7224 * the maximum number of tasks a group can handle in the presence of other idle
7225 * or lightly loaded groups in the same sched domain.
7227 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7229 struct sched_domain
*child
;
7230 struct sched_group
*group
;
7232 WARN_ON(!sd
|| !sd
->groups
);
7234 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7239 sd
->groups
->__cpu_power
= 0;
7242 * For perf policy, if the groups in child domain share resources
7243 * (for example cores sharing some portions of the cache hierarchy
7244 * or SMT), then set this domain groups cpu_power such that each group
7245 * can handle only one task, when there are other idle groups in the
7246 * same sched domain.
7248 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7250 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7251 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7256 * add cpu_power of each child group to this groups cpu_power
7258 group
= child
->groups
;
7260 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7261 group
= group
->next
;
7262 } while (group
!= child
->groups
);
7266 * Initializers for schedule domains
7267 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7270 #ifdef CONFIG_SCHED_DEBUG
7271 # define SD_INIT_NAME(sd, type) sd->name = #type
7273 # define SD_INIT_NAME(sd, type) do { } while (0)
7276 #define SD_INIT(sd, type) sd_init_##type(sd)
7278 #define SD_INIT_FUNC(type) \
7279 static noinline void sd_init_##type(struct sched_domain *sd) \
7281 memset(sd, 0, sizeof(*sd)); \
7282 *sd = SD_##type##_INIT; \
7283 sd->level = SD_LV_##type; \
7284 SD_INIT_NAME(sd, type); \
7289 SD_INIT_FUNC(ALLNODES
)
7292 #ifdef CONFIG_SCHED_SMT
7293 SD_INIT_FUNC(SIBLING
)
7295 #ifdef CONFIG_SCHED_MC
7300 * To minimize stack usage kmalloc room for cpumasks and share the
7301 * space as the usage in build_sched_domains() dictates. Used only
7302 * if the amount of space is significant.
7305 cpumask_t tmpmask
; /* make this one first */
7308 cpumask_t this_sibling_map
;
7309 cpumask_t this_core_map
;
7311 cpumask_t send_covered
;
7314 cpumask_t domainspan
;
7316 cpumask_t notcovered
;
7321 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7322 static inline void sched_cpumask_alloc(struct allmasks
**masks
)
7324 *masks
= kmalloc(sizeof(**masks
), GFP_KERNEL
);
7326 static inline void sched_cpumask_free(struct allmasks
*masks
)
7331 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7332 static inline void sched_cpumask_alloc(struct allmasks
**masks
)
7334 static inline void sched_cpumask_free(struct allmasks
*masks
)
7338 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7339 ((unsigned long)(a) + offsetof(struct allmasks, v))
7341 static int default_relax_domain_level
= -1;
7343 static int __init
setup_relax_domain_level(char *str
)
7347 val
= simple_strtoul(str
, NULL
, 0);
7348 if (val
< SD_LV_MAX
)
7349 default_relax_domain_level
= val
;
7353 __setup("relax_domain_level=", setup_relax_domain_level
);
7355 static void set_domain_attribute(struct sched_domain
*sd
,
7356 struct sched_domain_attr
*attr
)
7360 if (!attr
|| attr
->relax_domain_level
< 0) {
7361 if (default_relax_domain_level
< 0)
7364 request
= default_relax_domain_level
;
7366 request
= attr
->relax_domain_level
;
7367 if (request
< sd
->level
) {
7368 /* turn off idle balance on this domain */
7369 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7371 /* turn on idle balance on this domain */
7372 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7377 * Build sched domains for a given set of cpus and attach the sched domains
7378 * to the individual cpus
7380 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7381 struct sched_domain_attr
*attr
)
7384 struct root_domain
*rd
;
7385 SCHED_CPUMASK_DECLARE(allmasks
);
7388 struct sched_group
**sched_group_nodes
= NULL
;
7389 int sd_allnodes
= 0;
7392 * Allocate the per-node list of sched groups
7394 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7396 if (!sched_group_nodes
) {
7397 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7402 rd
= alloc_rootdomain();
7404 printk(KERN_WARNING
"Cannot alloc root domain\n");
7406 kfree(sched_group_nodes
);
7411 /* get space for all scratch cpumask variables */
7412 sched_cpumask_alloc(&allmasks
);
7414 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7417 kfree(sched_group_nodes
);
7422 tmpmask
= (cpumask_t
*)allmasks
;
7426 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7430 * Set up domains for cpus specified by the cpu_map.
7432 for_each_cpu_mask_nr(i
, *cpu_map
) {
7433 struct sched_domain
*sd
= NULL
, *p
;
7434 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7436 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7437 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7440 if (cpus_weight(*cpu_map
) >
7441 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7442 sd
= &per_cpu(allnodes_domains
, i
);
7443 SD_INIT(sd
, ALLNODES
);
7444 set_domain_attribute(sd
, attr
);
7445 sd
->span
= *cpu_map
;
7446 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7452 sd
= &per_cpu(node_domains
, i
);
7454 set_domain_attribute(sd
, attr
);
7455 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7459 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7463 sd
= &per_cpu(phys_domains
, i
);
7465 set_domain_attribute(sd
, attr
);
7466 sd
->span
= *nodemask
;
7470 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7472 #ifdef CONFIG_SCHED_MC
7474 sd
= &per_cpu(core_domains
, i
);
7476 set_domain_attribute(sd
, attr
);
7477 sd
->span
= cpu_coregroup_map(i
);
7478 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7481 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7484 #ifdef CONFIG_SCHED_SMT
7486 sd
= &per_cpu(cpu_domains
, i
);
7487 SD_INIT(sd
, SIBLING
);
7488 set_domain_attribute(sd
, attr
);
7489 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7490 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7493 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7497 #ifdef CONFIG_SCHED_SMT
7498 /* Set up CPU (sibling) groups */
7499 for_each_cpu_mask_nr(i
, *cpu_map
) {
7500 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7501 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7503 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7504 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7505 if (i
!= first_cpu(*this_sibling_map
))
7508 init_sched_build_groups(this_sibling_map
, cpu_map
,
7510 send_covered
, tmpmask
);
7514 #ifdef CONFIG_SCHED_MC
7515 /* Set up multi-core groups */
7516 for_each_cpu_mask_nr(i
, *cpu_map
) {
7517 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7518 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7520 *this_core_map
= cpu_coregroup_map(i
);
7521 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7522 if (i
!= first_cpu(*this_core_map
))
7525 init_sched_build_groups(this_core_map
, cpu_map
,
7527 send_covered
, tmpmask
);
7531 /* Set up physical groups */
7532 for (i
= 0; i
< nr_node_ids
; i
++) {
7533 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7534 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7536 *nodemask
= node_to_cpumask(i
);
7537 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7538 if (cpus_empty(*nodemask
))
7541 init_sched_build_groups(nodemask
, cpu_map
,
7543 send_covered
, tmpmask
);
7547 /* Set up node groups */
7549 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7551 init_sched_build_groups(cpu_map
, cpu_map
,
7552 &cpu_to_allnodes_group
,
7553 send_covered
, tmpmask
);
7556 for (i
= 0; i
< nr_node_ids
; i
++) {
7557 /* Set up node groups */
7558 struct sched_group
*sg
, *prev
;
7559 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7560 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7561 SCHED_CPUMASK_VAR(covered
, allmasks
);
7564 *nodemask
= node_to_cpumask(i
);
7565 cpus_clear(*covered
);
7567 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7568 if (cpus_empty(*nodemask
)) {
7569 sched_group_nodes
[i
] = NULL
;
7573 sched_domain_node_span(i
, domainspan
);
7574 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7576 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7578 printk(KERN_WARNING
"Can not alloc domain group for "
7582 sched_group_nodes
[i
] = sg
;
7583 for_each_cpu_mask_nr(j
, *nodemask
) {
7584 struct sched_domain
*sd
;
7586 sd
= &per_cpu(node_domains
, j
);
7589 sg
->__cpu_power
= 0;
7590 sg
->cpumask
= *nodemask
;
7592 cpus_or(*covered
, *covered
, *nodemask
);
7595 for (j
= 0; j
< nr_node_ids
; j
++) {
7596 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7597 int n
= (i
+ j
) % nr_node_ids
;
7598 node_to_cpumask_ptr(pnodemask
, n
);
7600 cpus_complement(*notcovered
, *covered
);
7601 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7602 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7603 if (cpus_empty(*tmpmask
))
7606 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7607 if (cpus_empty(*tmpmask
))
7610 sg
= kmalloc_node(sizeof(struct sched_group
),
7614 "Can not alloc domain group for node %d\n", j
);
7617 sg
->__cpu_power
= 0;
7618 sg
->cpumask
= *tmpmask
;
7619 sg
->next
= prev
->next
;
7620 cpus_or(*covered
, *covered
, *tmpmask
);
7627 /* Calculate CPU power for physical packages and nodes */
7628 #ifdef CONFIG_SCHED_SMT
7629 for_each_cpu_mask_nr(i
, *cpu_map
) {
7630 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7632 init_sched_groups_power(i
, sd
);
7635 #ifdef CONFIG_SCHED_MC
7636 for_each_cpu_mask_nr(i
, *cpu_map
) {
7637 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7639 init_sched_groups_power(i
, sd
);
7643 for_each_cpu_mask_nr(i
, *cpu_map
) {
7644 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7646 init_sched_groups_power(i
, sd
);
7650 for (i
= 0; i
< nr_node_ids
; i
++)
7651 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7654 struct sched_group
*sg
;
7656 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7658 init_numa_sched_groups_power(sg
);
7662 /* Attach the domains */
7663 for_each_cpu_mask_nr(i
, *cpu_map
) {
7664 struct sched_domain
*sd
;
7665 #ifdef CONFIG_SCHED_SMT
7666 sd
= &per_cpu(cpu_domains
, i
);
7667 #elif defined(CONFIG_SCHED_MC)
7668 sd
= &per_cpu(core_domains
, i
);
7670 sd
= &per_cpu(phys_domains
, i
);
7672 cpu_attach_domain(sd
, rd
, i
);
7675 sched_cpumask_free(allmasks
);
7680 free_sched_groups(cpu_map
, tmpmask
);
7681 sched_cpumask_free(allmasks
);
7687 static int build_sched_domains(const cpumask_t
*cpu_map
)
7689 return __build_sched_domains(cpu_map
, NULL
);
7692 static cpumask_t
*doms_cur
; /* current sched domains */
7693 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7694 static struct sched_domain_attr
*dattr_cur
;
7695 /* attribues of custom domains in 'doms_cur' */
7698 * Special case: If a kmalloc of a doms_cur partition (array of
7699 * cpumask_t) fails, then fallback to a single sched domain,
7700 * as determined by the single cpumask_t fallback_doms.
7702 static cpumask_t fallback_doms
;
7705 * arch_update_cpu_topology lets virtualized architectures update the
7706 * cpu core maps. It is supposed to return 1 if the topology changed
7707 * or 0 if it stayed the same.
7709 int __attribute__((weak
)) arch_update_cpu_topology(void)
7715 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7716 * For now this just excludes isolated cpus, but could be used to
7717 * exclude other special cases in the future.
7719 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7723 arch_update_cpu_topology();
7725 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7727 doms_cur
= &fallback_doms
;
7728 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7730 err
= build_sched_domains(doms_cur
);
7731 register_sched_domain_sysctl();
7736 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7739 free_sched_groups(cpu_map
, tmpmask
);
7743 * Detach sched domains from a group of cpus specified in cpu_map
7744 * These cpus will now be attached to the NULL domain
7746 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7751 for_each_cpu_mask_nr(i
, *cpu_map
)
7752 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7753 synchronize_sched();
7754 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7757 /* handle null as "default" */
7758 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7759 struct sched_domain_attr
*new, int idx_new
)
7761 struct sched_domain_attr tmp
;
7768 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7769 new ? (new + idx_new
) : &tmp
,
7770 sizeof(struct sched_domain_attr
));
7774 * Partition sched domains as specified by the 'ndoms_new'
7775 * cpumasks in the array doms_new[] of cpumasks. This compares
7776 * doms_new[] to the current sched domain partitioning, doms_cur[].
7777 * It destroys each deleted domain and builds each new domain.
7779 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7780 * The masks don't intersect (don't overlap.) We should setup one
7781 * sched domain for each mask. CPUs not in any of the cpumasks will
7782 * not be load balanced. If the same cpumask appears both in the
7783 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7786 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7787 * ownership of it and will kfree it when done with it. If the caller
7788 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7789 * ndoms_new == 1, and partition_sched_domains() will fallback to
7790 * the single partition 'fallback_doms', it also forces the domains
7793 * If doms_new == NULL it will be replaced with cpu_online_map.
7794 * ndoms_new == 0 is a special case for destroying existing domains,
7795 * and it will not create the default domain.
7797 * Call with hotplug lock held
7799 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7800 struct sched_domain_attr
*dattr_new
)
7805 mutex_lock(&sched_domains_mutex
);
7807 /* always unregister in case we don't destroy any domains */
7808 unregister_sched_domain_sysctl();
7810 /* Let architecture update cpu core mappings. */
7811 new_topology
= arch_update_cpu_topology();
7813 n
= doms_new
? ndoms_new
: 0;
7815 /* Destroy deleted domains */
7816 for (i
= 0; i
< ndoms_cur
; i
++) {
7817 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7818 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7819 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7822 /* no match - a current sched domain not in new doms_new[] */
7823 detach_destroy_domains(doms_cur
+ i
);
7828 if (doms_new
== NULL
) {
7830 doms_new
= &fallback_doms
;
7831 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7832 WARN_ON_ONCE(dattr_new
);
7835 /* Build new domains */
7836 for (i
= 0; i
< ndoms_new
; i
++) {
7837 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7838 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7839 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7842 /* no match - add a new doms_new */
7843 __build_sched_domains(doms_new
+ i
,
7844 dattr_new
? dattr_new
+ i
: NULL
);
7849 /* Remember the new sched domains */
7850 if (doms_cur
!= &fallback_doms
)
7852 kfree(dattr_cur
); /* kfree(NULL) is safe */
7853 doms_cur
= doms_new
;
7854 dattr_cur
= dattr_new
;
7855 ndoms_cur
= ndoms_new
;
7857 register_sched_domain_sysctl();
7859 mutex_unlock(&sched_domains_mutex
);
7862 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7863 int arch_reinit_sched_domains(void)
7867 /* Destroy domains first to force the rebuild */
7868 partition_sched_domains(0, NULL
, NULL
);
7870 rebuild_sched_domains();
7876 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7880 if (buf
[0] != '0' && buf
[0] != '1')
7884 sched_smt_power_savings
= (buf
[0] == '1');
7886 sched_mc_power_savings
= (buf
[0] == '1');
7888 ret
= arch_reinit_sched_domains();
7890 return ret
? ret
: count
;
7893 #ifdef CONFIG_SCHED_MC
7894 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7897 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7899 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7900 const char *buf
, size_t count
)
7902 return sched_power_savings_store(buf
, count
, 0);
7904 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7905 sched_mc_power_savings_show
,
7906 sched_mc_power_savings_store
);
7909 #ifdef CONFIG_SCHED_SMT
7910 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7913 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7915 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7916 const char *buf
, size_t count
)
7918 return sched_power_savings_store(buf
, count
, 1);
7920 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7921 sched_smt_power_savings_show
,
7922 sched_smt_power_savings_store
);
7925 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7929 #ifdef CONFIG_SCHED_SMT
7931 err
= sysfs_create_file(&cls
->kset
.kobj
,
7932 &attr_sched_smt_power_savings
.attr
);
7934 #ifdef CONFIG_SCHED_MC
7935 if (!err
&& mc_capable())
7936 err
= sysfs_create_file(&cls
->kset
.kobj
,
7937 &attr_sched_mc_power_savings
.attr
);
7941 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7943 #ifndef CONFIG_CPUSETS
7945 * Add online and remove offline CPUs from the scheduler domains.
7946 * When cpusets are enabled they take over this function.
7948 static int update_sched_domains(struct notifier_block
*nfb
,
7949 unsigned long action
, void *hcpu
)
7953 case CPU_ONLINE_FROZEN
:
7955 case CPU_DEAD_FROZEN
:
7956 partition_sched_domains(1, NULL
, NULL
);
7965 static int update_runtime(struct notifier_block
*nfb
,
7966 unsigned long action
, void *hcpu
)
7968 int cpu
= (int)(long)hcpu
;
7971 case CPU_DOWN_PREPARE
:
7972 case CPU_DOWN_PREPARE_FROZEN
:
7973 disable_runtime(cpu_rq(cpu
));
7976 case CPU_DOWN_FAILED
:
7977 case CPU_DOWN_FAILED_FROZEN
:
7979 case CPU_ONLINE_FROZEN
:
7980 enable_runtime(cpu_rq(cpu
));
7988 void __init
sched_init_smp(void)
7990 cpumask_t non_isolated_cpus
;
7992 #if defined(CONFIG_NUMA)
7993 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7995 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7998 mutex_lock(&sched_domains_mutex
);
7999 arch_init_sched_domains(&cpu_online_map
);
8000 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
8001 if (cpus_empty(non_isolated_cpus
))
8002 cpu_set(smp_processor_id(), non_isolated_cpus
);
8003 mutex_unlock(&sched_domains_mutex
);
8006 #ifndef CONFIG_CPUSETS
8007 /* XXX: Theoretical race here - CPU may be hotplugged now */
8008 hotcpu_notifier(update_sched_domains
, 0);
8011 /* RT runtime code needs to handle some hotplug events */
8012 hotcpu_notifier(update_runtime
, 0);
8016 /* Move init over to a non-isolated CPU */
8017 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
8019 sched_init_granularity();
8022 void __init
sched_init_smp(void)
8024 sched_init_granularity();
8026 #endif /* CONFIG_SMP */
8028 int in_sched_functions(unsigned long addr
)
8030 return in_lock_functions(addr
) ||
8031 (addr
>= (unsigned long)__sched_text_start
8032 && addr
< (unsigned long)__sched_text_end
);
8035 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8037 cfs_rq
->tasks_timeline
= RB_ROOT
;
8038 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8039 #ifdef CONFIG_FAIR_GROUP_SCHED
8042 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8045 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8047 struct rt_prio_array
*array
;
8050 array
= &rt_rq
->active
;
8051 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8052 INIT_LIST_HEAD(array
->queue
+ i
);
8053 __clear_bit(i
, array
->bitmap
);
8055 /* delimiter for bitsearch: */
8056 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8058 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8059 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8062 rt_rq
->rt_nr_migratory
= 0;
8063 rt_rq
->overloaded
= 0;
8067 rt_rq
->rt_throttled
= 0;
8068 rt_rq
->rt_runtime
= 0;
8069 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8071 #ifdef CONFIG_RT_GROUP_SCHED
8072 rt_rq
->rt_nr_boosted
= 0;
8077 #ifdef CONFIG_FAIR_GROUP_SCHED
8078 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8079 struct sched_entity
*se
, int cpu
, int add
,
8080 struct sched_entity
*parent
)
8082 struct rq
*rq
= cpu_rq(cpu
);
8083 tg
->cfs_rq
[cpu
] = cfs_rq
;
8084 init_cfs_rq(cfs_rq
, rq
);
8087 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8090 /* se could be NULL for init_task_group */
8095 se
->cfs_rq
= &rq
->cfs
;
8097 se
->cfs_rq
= parent
->my_q
;
8100 se
->load
.weight
= tg
->shares
;
8101 se
->load
.inv_weight
= 0;
8102 se
->parent
= parent
;
8106 #ifdef CONFIG_RT_GROUP_SCHED
8107 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8108 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8109 struct sched_rt_entity
*parent
)
8111 struct rq
*rq
= cpu_rq(cpu
);
8113 tg
->rt_rq
[cpu
] = rt_rq
;
8114 init_rt_rq(rt_rq
, rq
);
8116 rt_rq
->rt_se
= rt_se
;
8117 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8119 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8121 tg
->rt_se
[cpu
] = rt_se
;
8126 rt_se
->rt_rq
= &rq
->rt
;
8128 rt_se
->rt_rq
= parent
->my_q
;
8130 rt_se
->my_q
= rt_rq
;
8131 rt_se
->parent
= parent
;
8132 INIT_LIST_HEAD(&rt_se
->run_list
);
8136 void __init
sched_init(void)
8139 unsigned long alloc_size
= 0, ptr
;
8141 #ifdef CONFIG_FAIR_GROUP_SCHED
8142 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8144 #ifdef CONFIG_RT_GROUP_SCHED
8145 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8147 #ifdef CONFIG_USER_SCHED
8151 * As sched_init() is called before page_alloc is setup,
8152 * we use alloc_bootmem().
8155 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8157 #ifdef CONFIG_FAIR_GROUP_SCHED
8158 init_task_group
.se
= (struct sched_entity
**)ptr
;
8159 ptr
+= nr_cpu_ids
* sizeof(void **);
8161 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8162 ptr
+= nr_cpu_ids
* sizeof(void **);
8164 #ifdef CONFIG_USER_SCHED
8165 root_task_group
.se
= (struct sched_entity
**)ptr
;
8166 ptr
+= nr_cpu_ids
* sizeof(void **);
8168 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8169 ptr
+= nr_cpu_ids
* sizeof(void **);
8170 #endif /* CONFIG_USER_SCHED */
8171 #endif /* CONFIG_FAIR_GROUP_SCHED */
8172 #ifdef CONFIG_RT_GROUP_SCHED
8173 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8174 ptr
+= nr_cpu_ids
* sizeof(void **);
8176 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8177 ptr
+= nr_cpu_ids
* sizeof(void **);
8179 #ifdef CONFIG_USER_SCHED
8180 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8181 ptr
+= nr_cpu_ids
* sizeof(void **);
8183 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8184 ptr
+= nr_cpu_ids
* sizeof(void **);
8185 #endif /* CONFIG_USER_SCHED */
8186 #endif /* CONFIG_RT_GROUP_SCHED */
8190 init_defrootdomain();
8193 init_rt_bandwidth(&def_rt_bandwidth
,
8194 global_rt_period(), global_rt_runtime());
8196 #ifdef CONFIG_RT_GROUP_SCHED
8197 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8198 global_rt_period(), global_rt_runtime());
8199 #ifdef CONFIG_USER_SCHED
8200 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8201 global_rt_period(), RUNTIME_INF
);
8202 #endif /* CONFIG_USER_SCHED */
8203 #endif /* CONFIG_RT_GROUP_SCHED */
8205 #ifdef CONFIG_GROUP_SCHED
8206 list_add(&init_task_group
.list
, &task_groups
);
8207 INIT_LIST_HEAD(&init_task_group
.children
);
8209 #ifdef CONFIG_USER_SCHED
8210 INIT_LIST_HEAD(&root_task_group
.children
);
8211 init_task_group
.parent
= &root_task_group
;
8212 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8213 #endif /* CONFIG_USER_SCHED */
8214 #endif /* CONFIG_GROUP_SCHED */
8216 for_each_possible_cpu(i
) {
8220 spin_lock_init(&rq
->lock
);
8222 init_cfs_rq(&rq
->cfs
, rq
);
8223 init_rt_rq(&rq
->rt
, rq
);
8224 #ifdef CONFIG_FAIR_GROUP_SCHED
8225 init_task_group
.shares
= init_task_group_load
;
8226 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8227 #ifdef CONFIG_CGROUP_SCHED
8229 * How much cpu bandwidth does init_task_group get?
8231 * In case of task-groups formed thr' the cgroup filesystem, it
8232 * gets 100% of the cpu resources in the system. This overall
8233 * system cpu resource is divided among the tasks of
8234 * init_task_group and its child task-groups in a fair manner,
8235 * based on each entity's (task or task-group's) weight
8236 * (se->load.weight).
8238 * In other words, if init_task_group has 10 tasks of weight
8239 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8240 * then A0's share of the cpu resource is:
8242 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8244 * We achieve this by letting init_task_group's tasks sit
8245 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8247 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8248 #elif defined CONFIG_USER_SCHED
8249 root_task_group
.shares
= NICE_0_LOAD
;
8250 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8252 * In case of task-groups formed thr' the user id of tasks,
8253 * init_task_group represents tasks belonging to root user.
8254 * Hence it forms a sibling of all subsequent groups formed.
8255 * In this case, init_task_group gets only a fraction of overall
8256 * system cpu resource, based on the weight assigned to root
8257 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8258 * by letting tasks of init_task_group sit in a separate cfs_rq
8259 * (init_cfs_rq) and having one entity represent this group of
8260 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8262 init_tg_cfs_entry(&init_task_group
,
8263 &per_cpu(init_cfs_rq
, i
),
8264 &per_cpu(init_sched_entity
, i
), i
, 1,
8265 root_task_group
.se
[i
]);
8268 #endif /* CONFIG_FAIR_GROUP_SCHED */
8270 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8271 #ifdef CONFIG_RT_GROUP_SCHED
8272 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8273 #ifdef CONFIG_CGROUP_SCHED
8274 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8275 #elif defined CONFIG_USER_SCHED
8276 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8277 init_tg_rt_entry(&init_task_group
,
8278 &per_cpu(init_rt_rq
, i
),
8279 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8280 root_task_group
.rt_se
[i
]);
8284 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8285 rq
->cpu_load
[j
] = 0;
8289 rq
->active_balance
= 0;
8290 rq
->next_balance
= jiffies
;
8294 rq
->migration_thread
= NULL
;
8295 INIT_LIST_HEAD(&rq
->migration_queue
);
8296 rq_attach_root(rq
, &def_root_domain
);
8299 atomic_set(&rq
->nr_iowait
, 0);
8302 set_load_weight(&init_task
);
8304 #ifdef CONFIG_PREEMPT_NOTIFIERS
8305 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8309 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8312 #ifdef CONFIG_RT_MUTEXES
8313 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8317 * The boot idle thread does lazy MMU switching as well:
8319 atomic_inc(&init_mm
.mm_count
);
8320 enter_lazy_tlb(&init_mm
, current
);
8323 * Make us the idle thread. Technically, schedule() should not be
8324 * called from this thread, however somewhere below it might be,
8325 * but because we are the idle thread, we just pick up running again
8326 * when this runqueue becomes "idle".
8328 init_idle(current
, smp_processor_id());
8330 * During early bootup we pretend to be a normal task:
8332 current
->sched_class
= &fair_sched_class
;
8334 scheduler_running
= 1;
8337 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8338 void __might_sleep(char *file
, int line
)
8341 static unsigned long prev_jiffy
; /* ratelimiting */
8343 if ((!in_atomic() && !irqs_disabled()) ||
8344 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8346 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8348 prev_jiffy
= jiffies
;
8351 "BUG: sleeping function called from invalid context at %s:%d\n",
8354 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8355 in_atomic(), irqs_disabled(),
8356 current
->pid
, current
->comm
);
8358 debug_show_held_locks(current
);
8359 if (irqs_disabled())
8360 print_irqtrace_events(current
);
8364 EXPORT_SYMBOL(__might_sleep
);
8367 #ifdef CONFIG_MAGIC_SYSRQ
8368 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8372 update_rq_clock(rq
);
8373 on_rq
= p
->se
.on_rq
;
8375 deactivate_task(rq
, p
, 0);
8376 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8378 activate_task(rq
, p
, 0);
8379 resched_task(rq
->curr
);
8383 void normalize_rt_tasks(void)
8385 struct task_struct
*g
, *p
;
8386 unsigned long flags
;
8389 read_lock_irqsave(&tasklist_lock
, flags
);
8390 do_each_thread(g
, p
) {
8392 * Only normalize user tasks:
8397 p
->se
.exec_start
= 0;
8398 #ifdef CONFIG_SCHEDSTATS
8399 p
->se
.wait_start
= 0;
8400 p
->se
.sleep_start
= 0;
8401 p
->se
.block_start
= 0;
8406 * Renice negative nice level userspace
8409 if (TASK_NICE(p
) < 0 && p
->mm
)
8410 set_user_nice(p
, 0);
8414 spin_lock(&p
->pi_lock
);
8415 rq
= __task_rq_lock(p
);
8417 normalize_task(rq
, p
);
8419 __task_rq_unlock(rq
);
8420 spin_unlock(&p
->pi_lock
);
8421 } while_each_thread(g
, p
);
8423 read_unlock_irqrestore(&tasklist_lock
, flags
);
8426 #endif /* CONFIG_MAGIC_SYSRQ */
8430 * These functions are only useful for the IA64 MCA handling.
8432 * They can only be called when the whole system has been
8433 * stopped - every CPU needs to be quiescent, and no scheduling
8434 * activity can take place. Using them for anything else would
8435 * be a serious bug, and as a result, they aren't even visible
8436 * under any other configuration.
8440 * curr_task - return the current task for a given cpu.
8441 * @cpu: the processor in question.
8443 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8445 struct task_struct
*curr_task(int cpu
)
8447 return cpu_curr(cpu
);
8451 * set_curr_task - set the current task for a given cpu.
8452 * @cpu: the processor in question.
8453 * @p: the task pointer to set.
8455 * Description: This function must only be used when non-maskable interrupts
8456 * are serviced on a separate stack. It allows the architecture to switch the
8457 * notion of the current task on a cpu in a non-blocking manner. This function
8458 * must be called with all CPU's synchronized, and interrupts disabled, the
8459 * and caller must save the original value of the current task (see
8460 * curr_task() above) and restore that value before reenabling interrupts and
8461 * re-starting the system.
8463 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8465 void set_curr_task(int cpu
, struct task_struct
*p
)
8472 #ifdef CONFIG_FAIR_GROUP_SCHED
8473 static void free_fair_sched_group(struct task_group
*tg
)
8477 for_each_possible_cpu(i
) {
8479 kfree(tg
->cfs_rq
[i
]);
8489 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8491 struct cfs_rq
*cfs_rq
;
8492 struct sched_entity
*se
;
8496 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8499 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8503 tg
->shares
= NICE_0_LOAD
;
8505 for_each_possible_cpu(i
) {
8508 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8509 GFP_KERNEL
, cpu_to_node(i
));
8513 se
= kzalloc_node(sizeof(struct sched_entity
),
8514 GFP_KERNEL
, cpu_to_node(i
));
8518 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8527 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8529 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8530 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8533 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8535 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8537 #else /* !CONFG_FAIR_GROUP_SCHED */
8538 static inline void free_fair_sched_group(struct task_group
*tg
)
8543 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8548 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8552 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8555 #endif /* CONFIG_FAIR_GROUP_SCHED */
8557 #ifdef CONFIG_RT_GROUP_SCHED
8558 static void free_rt_sched_group(struct task_group
*tg
)
8562 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8564 for_each_possible_cpu(i
) {
8566 kfree(tg
->rt_rq
[i
]);
8568 kfree(tg
->rt_se
[i
]);
8576 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8578 struct rt_rq
*rt_rq
;
8579 struct sched_rt_entity
*rt_se
;
8583 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8586 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8590 init_rt_bandwidth(&tg
->rt_bandwidth
,
8591 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8593 for_each_possible_cpu(i
) {
8596 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8597 GFP_KERNEL
, cpu_to_node(i
));
8601 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8602 GFP_KERNEL
, cpu_to_node(i
));
8606 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8615 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8617 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8618 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8621 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8623 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8625 #else /* !CONFIG_RT_GROUP_SCHED */
8626 static inline void free_rt_sched_group(struct task_group
*tg
)
8631 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8636 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8640 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8643 #endif /* CONFIG_RT_GROUP_SCHED */
8645 #ifdef CONFIG_GROUP_SCHED
8646 static void free_sched_group(struct task_group
*tg
)
8648 free_fair_sched_group(tg
);
8649 free_rt_sched_group(tg
);
8653 /* allocate runqueue etc for a new task group */
8654 struct task_group
*sched_create_group(struct task_group
*parent
)
8656 struct task_group
*tg
;
8657 unsigned long flags
;
8660 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8662 return ERR_PTR(-ENOMEM
);
8664 if (!alloc_fair_sched_group(tg
, parent
))
8667 if (!alloc_rt_sched_group(tg
, parent
))
8670 spin_lock_irqsave(&task_group_lock
, flags
);
8671 for_each_possible_cpu(i
) {
8672 register_fair_sched_group(tg
, i
);
8673 register_rt_sched_group(tg
, i
);
8675 list_add_rcu(&tg
->list
, &task_groups
);
8677 WARN_ON(!parent
); /* root should already exist */
8679 tg
->parent
= parent
;
8680 INIT_LIST_HEAD(&tg
->children
);
8681 list_add_rcu(&tg
->siblings
, &parent
->children
);
8682 spin_unlock_irqrestore(&task_group_lock
, flags
);
8687 free_sched_group(tg
);
8688 return ERR_PTR(-ENOMEM
);
8691 /* rcu callback to free various structures associated with a task group */
8692 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8694 /* now it should be safe to free those cfs_rqs */
8695 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8698 /* Destroy runqueue etc associated with a task group */
8699 void sched_destroy_group(struct task_group
*tg
)
8701 unsigned long flags
;
8704 spin_lock_irqsave(&task_group_lock
, flags
);
8705 for_each_possible_cpu(i
) {
8706 unregister_fair_sched_group(tg
, i
);
8707 unregister_rt_sched_group(tg
, i
);
8709 list_del_rcu(&tg
->list
);
8710 list_del_rcu(&tg
->siblings
);
8711 spin_unlock_irqrestore(&task_group_lock
, flags
);
8713 /* wait for possible concurrent references to cfs_rqs complete */
8714 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8717 /* change task's runqueue when it moves between groups.
8718 * The caller of this function should have put the task in its new group
8719 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8720 * reflect its new group.
8722 void sched_move_task(struct task_struct
*tsk
)
8725 unsigned long flags
;
8728 rq
= task_rq_lock(tsk
, &flags
);
8730 update_rq_clock(rq
);
8732 running
= task_current(rq
, tsk
);
8733 on_rq
= tsk
->se
.on_rq
;
8736 dequeue_task(rq
, tsk
, 0);
8737 if (unlikely(running
))
8738 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8740 set_task_rq(tsk
, task_cpu(tsk
));
8742 #ifdef CONFIG_FAIR_GROUP_SCHED
8743 if (tsk
->sched_class
->moved_group
)
8744 tsk
->sched_class
->moved_group(tsk
);
8747 if (unlikely(running
))
8748 tsk
->sched_class
->set_curr_task(rq
);
8750 enqueue_task(rq
, tsk
, 0);
8752 task_rq_unlock(rq
, &flags
);
8754 #endif /* CONFIG_GROUP_SCHED */
8756 #ifdef CONFIG_FAIR_GROUP_SCHED
8757 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8759 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8764 dequeue_entity(cfs_rq
, se
, 0);
8766 se
->load
.weight
= shares
;
8767 se
->load
.inv_weight
= 0;
8770 enqueue_entity(cfs_rq
, se
, 0);
8773 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8775 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8776 struct rq
*rq
= cfs_rq
->rq
;
8777 unsigned long flags
;
8779 spin_lock_irqsave(&rq
->lock
, flags
);
8780 __set_se_shares(se
, shares
);
8781 spin_unlock_irqrestore(&rq
->lock
, flags
);
8784 static DEFINE_MUTEX(shares_mutex
);
8786 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8789 unsigned long flags
;
8792 * We can't change the weight of the root cgroup.
8797 if (shares
< MIN_SHARES
)
8798 shares
= MIN_SHARES
;
8799 else if (shares
> MAX_SHARES
)
8800 shares
= MAX_SHARES
;
8802 mutex_lock(&shares_mutex
);
8803 if (tg
->shares
== shares
)
8806 spin_lock_irqsave(&task_group_lock
, flags
);
8807 for_each_possible_cpu(i
)
8808 unregister_fair_sched_group(tg
, i
);
8809 list_del_rcu(&tg
->siblings
);
8810 spin_unlock_irqrestore(&task_group_lock
, flags
);
8812 /* wait for any ongoing reference to this group to finish */
8813 synchronize_sched();
8816 * Now we are free to modify the group's share on each cpu
8817 * w/o tripping rebalance_share or load_balance_fair.
8819 tg
->shares
= shares
;
8820 for_each_possible_cpu(i
) {
8824 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8825 set_se_shares(tg
->se
[i
], shares
);
8829 * Enable load balance activity on this group, by inserting it back on
8830 * each cpu's rq->leaf_cfs_rq_list.
8832 spin_lock_irqsave(&task_group_lock
, flags
);
8833 for_each_possible_cpu(i
)
8834 register_fair_sched_group(tg
, i
);
8835 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8836 spin_unlock_irqrestore(&task_group_lock
, flags
);
8838 mutex_unlock(&shares_mutex
);
8842 unsigned long sched_group_shares(struct task_group
*tg
)
8848 #ifdef CONFIG_RT_GROUP_SCHED
8850 * Ensure that the real time constraints are schedulable.
8852 static DEFINE_MUTEX(rt_constraints_mutex
);
8854 static unsigned long to_ratio(u64 period
, u64 runtime
)
8856 if (runtime
== RUNTIME_INF
)
8859 return div64_u64(runtime
<< 20, period
);
8862 /* Must be called with tasklist_lock held */
8863 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8865 struct task_struct
*g
, *p
;
8867 do_each_thread(g
, p
) {
8868 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8870 } while_each_thread(g
, p
);
8875 struct rt_schedulable_data
{
8876 struct task_group
*tg
;
8881 static int tg_schedulable(struct task_group
*tg
, void *data
)
8883 struct rt_schedulable_data
*d
= data
;
8884 struct task_group
*child
;
8885 unsigned long total
, sum
= 0;
8886 u64 period
, runtime
;
8888 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8889 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8892 period
= d
->rt_period
;
8893 runtime
= d
->rt_runtime
;
8897 * Cannot have more runtime than the period.
8899 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8903 * Ensure we don't starve existing RT tasks.
8905 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8908 total
= to_ratio(period
, runtime
);
8911 * Nobody can have more than the global setting allows.
8913 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8917 * The sum of our children's runtime should not exceed our own.
8919 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8920 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8921 runtime
= child
->rt_bandwidth
.rt_runtime
;
8923 if (child
== d
->tg
) {
8924 period
= d
->rt_period
;
8925 runtime
= d
->rt_runtime
;
8928 sum
+= to_ratio(period
, runtime
);
8937 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8939 struct rt_schedulable_data data
= {
8941 .rt_period
= period
,
8942 .rt_runtime
= runtime
,
8945 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8948 static int tg_set_bandwidth(struct task_group
*tg
,
8949 u64 rt_period
, u64 rt_runtime
)
8953 mutex_lock(&rt_constraints_mutex
);
8954 read_lock(&tasklist_lock
);
8955 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8959 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8960 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8961 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8963 for_each_possible_cpu(i
) {
8964 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8966 spin_lock(&rt_rq
->rt_runtime_lock
);
8967 rt_rq
->rt_runtime
= rt_runtime
;
8968 spin_unlock(&rt_rq
->rt_runtime_lock
);
8970 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8972 read_unlock(&tasklist_lock
);
8973 mutex_unlock(&rt_constraints_mutex
);
8978 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8980 u64 rt_runtime
, rt_period
;
8982 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8983 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8984 if (rt_runtime_us
< 0)
8985 rt_runtime
= RUNTIME_INF
;
8987 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8990 long sched_group_rt_runtime(struct task_group
*tg
)
8994 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8997 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8998 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8999 return rt_runtime_us
;
9002 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9004 u64 rt_runtime
, rt_period
;
9006 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9007 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9012 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9015 long sched_group_rt_period(struct task_group
*tg
)
9019 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9020 do_div(rt_period_us
, NSEC_PER_USEC
);
9021 return rt_period_us
;
9024 static int sched_rt_global_constraints(void)
9026 u64 runtime
, period
;
9029 if (sysctl_sched_rt_period
<= 0)
9032 runtime
= global_rt_runtime();
9033 period
= global_rt_period();
9036 * Sanity check on the sysctl variables.
9038 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9041 mutex_lock(&rt_constraints_mutex
);
9042 read_lock(&tasklist_lock
);
9043 ret
= __rt_schedulable(NULL
, 0, 0);
9044 read_unlock(&tasklist_lock
);
9045 mutex_unlock(&rt_constraints_mutex
);
9049 #else /* !CONFIG_RT_GROUP_SCHED */
9050 static int sched_rt_global_constraints(void)
9052 unsigned long flags
;
9055 if (sysctl_sched_rt_period
<= 0)
9058 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9059 for_each_possible_cpu(i
) {
9060 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9062 spin_lock(&rt_rq
->rt_runtime_lock
);
9063 rt_rq
->rt_runtime
= global_rt_runtime();
9064 spin_unlock(&rt_rq
->rt_runtime_lock
);
9066 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9070 #endif /* CONFIG_RT_GROUP_SCHED */
9072 int sched_rt_handler(struct ctl_table
*table
, int write
,
9073 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9077 int old_period
, old_runtime
;
9078 static DEFINE_MUTEX(mutex
);
9081 old_period
= sysctl_sched_rt_period
;
9082 old_runtime
= sysctl_sched_rt_runtime
;
9084 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9086 if (!ret
&& write
) {
9087 ret
= sched_rt_global_constraints();
9089 sysctl_sched_rt_period
= old_period
;
9090 sysctl_sched_rt_runtime
= old_runtime
;
9092 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9093 def_rt_bandwidth
.rt_period
=
9094 ns_to_ktime(global_rt_period());
9097 mutex_unlock(&mutex
);
9102 #ifdef CONFIG_CGROUP_SCHED
9104 /* return corresponding task_group object of a cgroup */
9105 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9107 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9108 struct task_group
, css
);
9111 static struct cgroup_subsys_state
*
9112 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9114 struct task_group
*tg
, *parent
;
9116 if (!cgrp
->parent
) {
9117 /* This is early initialization for the top cgroup */
9118 return &init_task_group
.css
;
9121 parent
= cgroup_tg(cgrp
->parent
);
9122 tg
= sched_create_group(parent
);
9124 return ERR_PTR(-ENOMEM
);
9130 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9132 struct task_group
*tg
= cgroup_tg(cgrp
);
9134 sched_destroy_group(tg
);
9138 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9139 struct task_struct
*tsk
)
9141 #ifdef CONFIG_RT_GROUP_SCHED
9142 /* Don't accept realtime tasks when there is no way for them to run */
9143 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9146 /* We don't support RT-tasks being in separate groups */
9147 if (tsk
->sched_class
!= &fair_sched_class
)
9155 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9156 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9158 sched_move_task(tsk
);
9161 #ifdef CONFIG_FAIR_GROUP_SCHED
9162 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9165 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9168 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9170 struct task_group
*tg
= cgroup_tg(cgrp
);
9172 return (u64
) tg
->shares
;
9174 #endif /* CONFIG_FAIR_GROUP_SCHED */
9176 #ifdef CONFIG_RT_GROUP_SCHED
9177 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9180 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9183 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9185 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9188 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9191 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9194 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9196 return sched_group_rt_period(cgroup_tg(cgrp
));
9198 #endif /* CONFIG_RT_GROUP_SCHED */
9200 static struct cftype cpu_files
[] = {
9201 #ifdef CONFIG_FAIR_GROUP_SCHED
9204 .read_u64
= cpu_shares_read_u64
,
9205 .write_u64
= cpu_shares_write_u64
,
9208 #ifdef CONFIG_RT_GROUP_SCHED
9210 .name
= "rt_runtime_us",
9211 .read_s64
= cpu_rt_runtime_read
,
9212 .write_s64
= cpu_rt_runtime_write
,
9215 .name
= "rt_period_us",
9216 .read_u64
= cpu_rt_period_read_uint
,
9217 .write_u64
= cpu_rt_period_write_uint
,
9222 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9224 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9227 struct cgroup_subsys cpu_cgroup_subsys
= {
9229 .create
= cpu_cgroup_create
,
9230 .destroy
= cpu_cgroup_destroy
,
9231 .can_attach
= cpu_cgroup_can_attach
,
9232 .attach
= cpu_cgroup_attach
,
9233 .populate
= cpu_cgroup_populate
,
9234 .subsys_id
= cpu_cgroup_subsys_id
,
9238 #endif /* CONFIG_CGROUP_SCHED */
9240 #ifdef CONFIG_CGROUP_CPUACCT
9243 * CPU accounting code for task groups.
9245 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9246 * (balbir@in.ibm.com).
9249 /* track cpu usage of a group of tasks and its child groups */
9251 struct cgroup_subsys_state css
;
9252 /* cpuusage holds pointer to a u64-type object on every cpu */
9254 struct cpuacct
*parent
;
9257 struct cgroup_subsys cpuacct_subsys
;
9259 /* return cpu accounting group corresponding to this container */
9260 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9262 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9263 struct cpuacct
, css
);
9266 /* return cpu accounting group to which this task belongs */
9267 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9269 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9270 struct cpuacct
, css
);
9273 /* create a new cpu accounting group */
9274 static struct cgroup_subsys_state
*cpuacct_create(
9275 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9277 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9280 return ERR_PTR(-ENOMEM
);
9282 ca
->cpuusage
= alloc_percpu(u64
);
9283 if (!ca
->cpuusage
) {
9285 return ERR_PTR(-ENOMEM
);
9289 ca
->parent
= cgroup_ca(cgrp
->parent
);
9294 /* destroy an existing cpu accounting group */
9296 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9298 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9300 free_percpu(ca
->cpuusage
);
9304 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9306 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9309 #ifndef CONFIG_64BIT
9311 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9313 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9315 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9323 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9325 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9327 #ifndef CONFIG_64BIT
9329 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9331 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9333 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9339 /* return total cpu usage (in nanoseconds) of a group */
9340 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9342 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9343 u64 totalcpuusage
= 0;
9346 for_each_present_cpu(i
)
9347 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9349 return totalcpuusage
;
9352 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9355 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9364 for_each_present_cpu(i
)
9365 cpuacct_cpuusage_write(ca
, i
, 0);
9371 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9374 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9378 for_each_present_cpu(i
) {
9379 percpu
= cpuacct_cpuusage_read(ca
, i
);
9380 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9382 seq_printf(m
, "\n");
9386 static struct cftype files
[] = {
9389 .read_u64
= cpuusage_read
,
9390 .write_u64
= cpuusage_write
,
9393 .name
= "usage_percpu",
9394 .read_seq_string
= cpuacct_percpu_seq_read
,
9399 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9401 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9405 * charge this task's execution time to its accounting group.
9407 * called with rq->lock held.
9409 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9414 if (!cpuacct_subsys
.active
)
9417 cpu
= task_cpu(tsk
);
9420 for (; ca
; ca
= ca
->parent
) {
9421 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9422 *cpuusage
+= cputime
;
9426 struct cgroup_subsys cpuacct_subsys
= {
9428 .create
= cpuacct_create
,
9429 .destroy
= cpuacct_destroy
,
9430 .populate
= cpuacct_populate
,
9431 .subsys_id
= cpuacct_subsys_id
,
9433 #endif /* CONFIG_CGROUP_CPUACCT */