ixgb: fix spelling errors
[linux-2.6/mini2440.git] / drivers / net / ixgb / ixgb_hw.c
blob3694e8c7b00517dafd5f6c8b940ba1af14b3891f
1 /*******************************************************************************
3 Intel PRO/10GbE Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ixgb_hw.c
30 * Shared functions for accessing and configuring the adapter
33 #include "ixgb_hw.h"
34 #include "ixgb_ids.h"
36 /* Local function prototypes */
38 static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
40 static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
42 static void ixgb_get_bus_info(struct ixgb_hw *hw);
44 static bool ixgb_link_reset(struct ixgb_hw *hw);
46 static void ixgb_optics_reset(struct ixgb_hw *hw);
48 static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
50 static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
52 static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
54 static void ixgb_clear_vfta(struct ixgb_hw *hw);
56 static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
58 static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
59 u32 reg_address,
60 u32 phy_address,
61 u32 device_type);
63 static bool ixgb_setup_fc(struct ixgb_hw *hw);
65 static bool mac_addr_valid(u8 *mac_addr);
67 static u32 ixgb_mac_reset(struct ixgb_hw *hw)
69 u32 ctrl_reg;
71 ctrl_reg = IXGB_CTRL0_RST |
72 IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */
73 IXGB_CTRL0_SDP2_DIR |
74 IXGB_CTRL0_SDP1_DIR |
75 IXGB_CTRL0_SDP0_DIR |
76 IXGB_CTRL0_SDP3 | /* Initial value 1101 */
77 IXGB_CTRL0_SDP2 |
78 IXGB_CTRL0_SDP0;
80 #ifdef HP_ZX1
81 /* Workaround for 82597EX reset errata */
82 IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
83 #else
84 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
85 #endif
87 /* Delay a few ms just to allow the reset to complete */
88 msleep(IXGB_DELAY_AFTER_RESET);
89 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
90 #ifdef DBG
91 /* Make sure the self-clearing global reset bit did self clear */
92 ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
93 #endif
95 if (hw->subsystem_vendor_id == SUN_SUBVENDOR_ID) {
96 ctrl_reg = /* Enable interrupt from XFP and SerDes */
97 IXGB_CTRL1_GPI0_EN |
98 IXGB_CTRL1_SDP6_DIR |
99 IXGB_CTRL1_SDP7_DIR |
100 IXGB_CTRL1_SDP6 |
101 IXGB_CTRL1_SDP7;
102 IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
103 ixgb_optics_reset_bcm(hw);
106 if (hw->phy_type == ixgb_phy_type_txn17401)
107 ixgb_optics_reset(hw);
109 return ctrl_reg;
112 /******************************************************************************
113 * Reset the transmit and receive units; mask and clear all interrupts.
115 * hw - Struct containing variables accessed by shared code
116 *****************************************************************************/
117 bool
118 ixgb_adapter_stop(struct ixgb_hw *hw)
120 u32 ctrl_reg;
121 u32 icr_reg;
123 DEBUGFUNC("ixgb_adapter_stop");
125 /* If we are stopped or resetting exit gracefully and wait to be
126 * started again before accessing the hardware.
128 if (hw->adapter_stopped) {
129 DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
130 return false;
133 /* Set the Adapter Stopped flag so other driver functions stop
134 * touching the Hardware.
136 hw->adapter_stopped = true;
138 /* Clear interrupt mask to stop board from generating interrupts */
139 DEBUGOUT("Masking off all interrupts\n");
140 IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
142 /* Disable the Transmit and Receive units. Then delay to allow
143 * any pending transactions to complete before we hit the MAC with
144 * the global reset.
146 IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
147 IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
148 msleep(IXGB_DELAY_BEFORE_RESET);
150 /* Issue a global reset to the MAC. This will reset the chip's
151 * transmit, receive, DMA, and link units. It will not effect
152 * the current PCI configuration. The global reset bit is self-
153 * clearing, and should clear within a microsecond.
155 DEBUGOUT("Issuing a global reset to MAC\n");
157 ctrl_reg = ixgb_mac_reset(hw);
159 /* Clear interrupt mask to stop board from generating interrupts */
160 DEBUGOUT("Masking off all interrupts\n");
161 IXGB_WRITE_REG(hw, IMC, 0xffffffff);
163 /* Clear any pending interrupt events. */
164 icr_reg = IXGB_READ_REG(hw, ICR);
166 return (ctrl_reg & IXGB_CTRL0_RST);
170 /******************************************************************************
171 * Identifies the vendor of the optics module on the adapter. The SR adapters
172 * support two different types of XPAK optics, so it is necessary to determine
173 * which optics are present before applying any optics-specific workarounds.
175 * hw - Struct containing variables accessed by shared code.
177 * Returns: the vendor of the XPAK optics module.
178 *****************************************************************************/
179 static ixgb_xpak_vendor
180 ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
182 u32 i;
183 u16 vendor_name[5];
184 ixgb_xpak_vendor xpak_vendor;
186 DEBUGFUNC("ixgb_identify_xpak_vendor");
188 /* Read the first few bytes of the vendor string from the XPAK NVR
189 * registers. These are standard XENPAK/XPAK registers, so all XPAK
190 * devices should implement them. */
191 for (i = 0; i < 5; i++) {
192 vendor_name[i] = ixgb_read_phy_reg(hw,
193 MDIO_PMA_PMD_XPAK_VENDOR_NAME
194 + i, IXGB_PHY_ADDRESS,
195 MDIO_PMA_PMD_DID);
198 /* Determine the actual vendor */
199 if (vendor_name[0] == 'I' &&
200 vendor_name[1] == 'N' &&
201 vendor_name[2] == 'T' &&
202 vendor_name[3] == 'E' && vendor_name[4] == 'L') {
203 xpak_vendor = ixgb_xpak_vendor_intel;
204 } else {
205 xpak_vendor = ixgb_xpak_vendor_infineon;
208 return (xpak_vendor);
211 /******************************************************************************
212 * Determine the physical layer module on the adapter.
214 * hw - Struct containing variables accessed by shared code. The device_id
215 * field must be (correctly) populated before calling this routine.
217 * Returns: the phy type of the adapter.
218 *****************************************************************************/
219 static ixgb_phy_type
220 ixgb_identify_phy(struct ixgb_hw *hw)
222 ixgb_phy_type phy_type;
223 ixgb_xpak_vendor xpak_vendor;
225 DEBUGFUNC("ixgb_identify_phy");
227 /* Infer the transceiver/phy type from the device id */
228 switch (hw->device_id) {
229 case IXGB_DEVICE_ID_82597EX:
230 DEBUGOUT("Identified TXN17401 optics\n");
231 phy_type = ixgb_phy_type_txn17401;
232 break;
234 case IXGB_DEVICE_ID_82597EX_SR:
235 /* The SR adapters carry two different types of XPAK optics
236 * modules; read the vendor identifier to determine the exact
237 * type of optics. */
238 xpak_vendor = ixgb_identify_xpak_vendor(hw);
239 if (xpak_vendor == ixgb_xpak_vendor_intel) {
240 DEBUGOUT("Identified TXN17201 optics\n");
241 phy_type = ixgb_phy_type_txn17201;
242 } else {
243 DEBUGOUT("Identified G6005 optics\n");
244 phy_type = ixgb_phy_type_g6005;
246 break;
247 case IXGB_DEVICE_ID_82597EX_LR:
248 DEBUGOUT("Identified G6104 optics\n");
249 phy_type = ixgb_phy_type_g6104;
250 break;
251 case IXGB_DEVICE_ID_82597EX_CX4:
252 DEBUGOUT("Identified CX4\n");
253 xpak_vendor = ixgb_identify_xpak_vendor(hw);
254 if (xpak_vendor == ixgb_xpak_vendor_intel) {
255 DEBUGOUT("Identified TXN17201 optics\n");
256 phy_type = ixgb_phy_type_txn17201;
257 } else {
258 DEBUGOUT("Identified G6005 optics\n");
259 phy_type = ixgb_phy_type_g6005;
261 break;
262 default:
263 DEBUGOUT("Unknown physical layer module\n");
264 phy_type = ixgb_phy_type_unknown;
265 break;
268 /* update phy type for sun specific board */
269 if (hw->subsystem_vendor_id == SUN_SUBVENDOR_ID)
270 phy_type = ixgb_phy_type_bcm;
272 return (phy_type);
275 /******************************************************************************
276 * Performs basic configuration of the adapter.
278 * hw - Struct containing variables accessed by shared code
280 * Resets the controller.
281 * Reads and validates the EEPROM.
282 * Initializes the receive address registers.
283 * Initializes the multicast table.
284 * Clears all on-chip counters.
285 * Calls routine to setup flow control settings.
286 * Leaves the transmit and receive units disabled and uninitialized.
288 * Returns:
289 * true if successful,
290 * false if unrecoverable problems were encountered.
291 *****************************************************************************/
292 bool
293 ixgb_init_hw(struct ixgb_hw *hw)
295 u32 i;
296 u32 ctrl_reg;
297 bool status;
299 DEBUGFUNC("ixgb_init_hw");
301 /* Issue a global reset to the MAC. This will reset the chip's
302 * transmit, receive, DMA, and link units. It will not effect
303 * the current PCI configuration. The global reset bit is self-
304 * clearing, and should clear within a microsecond.
306 DEBUGOUT("Issuing a global reset to MAC\n");
308 ctrl_reg = ixgb_mac_reset(hw);
310 DEBUGOUT("Issuing an EE reset to MAC\n");
311 #ifdef HP_ZX1
312 /* Workaround for 82597EX reset errata */
313 IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
314 #else
315 IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
316 #endif
318 /* Delay a few ms just to allow the reset to complete */
319 msleep(IXGB_DELAY_AFTER_EE_RESET);
321 if (!ixgb_get_eeprom_data(hw))
322 return false;
324 /* Use the device id to determine the type of phy/transceiver. */
325 hw->device_id = ixgb_get_ee_device_id(hw);
326 hw->phy_type = ixgb_identify_phy(hw);
328 /* Setup the receive addresses.
329 * Receive Address Registers (RARs 0 - 15).
331 ixgb_init_rx_addrs(hw);
334 * Check that a valid MAC address has been set.
335 * If it is not valid, we fail hardware init.
337 if (!mac_addr_valid(hw->curr_mac_addr)) {
338 DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
339 return(false);
342 /* tell the routines in this file they can access hardware again */
343 hw->adapter_stopped = false;
345 /* Fill in the bus_info structure */
346 ixgb_get_bus_info(hw);
348 /* Zero out the Multicast HASH table */
349 DEBUGOUT("Zeroing the MTA\n");
350 for(i = 0; i < IXGB_MC_TBL_SIZE; i++)
351 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
353 /* Zero out the VLAN Filter Table Array */
354 ixgb_clear_vfta(hw);
356 /* Zero all of the hardware counters */
357 ixgb_clear_hw_cntrs(hw);
359 /* Call a subroutine to setup flow control. */
360 status = ixgb_setup_fc(hw);
362 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
363 ixgb_check_for_link(hw);
365 return (status);
368 /******************************************************************************
369 * Initializes receive address filters.
371 * hw - Struct containing variables accessed by shared code
373 * Places the MAC address in receive address register 0 and clears the rest
374 * of the receive address registers. Clears the multicast table. Assumes
375 * the receiver is in reset when the routine is called.
376 *****************************************************************************/
377 static void
378 ixgb_init_rx_addrs(struct ixgb_hw *hw)
380 u32 i;
382 DEBUGFUNC("ixgb_init_rx_addrs");
385 * If the current mac address is valid, assume it is a software override
386 * to the permanent address.
387 * Otherwise, use the permanent address from the eeprom.
389 if (!mac_addr_valid(hw->curr_mac_addr)) {
391 /* Get the MAC address from the eeprom for later reference */
392 ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
394 DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
395 hw->curr_mac_addr[0],
396 hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
397 DEBUGOUT3("%.2X %.2X %.2X\n",
398 hw->curr_mac_addr[3],
399 hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
400 } else {
402 /* Setup the receive address. */
403 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
404 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
405 hw->curr_mac_addr[0],
406 hw->curr_mac_addr[1], hw->curr_mac_addr[2]);
407 DEBUGOUT3("%.2X %.2X %.2X\n",
408 hw->curr_mac_addr[3],
409 hw->curr_mac_addr[4], hw->curr_mac_addr[5]);
411 ixgb_rar_set(hw, hw->curr_mac_addr, 0);
414 /* Zero out the other 15 receive addresses. */
415 DEBUGOUT("Clearing RAR[1-15]\n");
416 for(i = 1; i < IXGB_RAR_ENTRIES; i++) {
417 /* Write high reg first to disable the AV bit first */
418 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
419 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
422 return;
425 /******************************************************************************
426 * Updates the MAC's list of multicast addresses.
428 * hw - Struct containing variables accessed by shared code
429 * mc_addr_list - the list of new multicast addresses
430 * mc_addr_count - number of addresses
431 * pad - number of bytes between addresses in the list
433 * The given list replaces any existing list. Clears the last 15 receive
434 * address registers and the multicast table. Uses receive address registers
435 * for the first 15 multicast addresses, and hashes the rest into the
436 * multicast table.
437 *****************************************************************************/
438 void
439 ixgb_mc_addr_list_update(struct ixgb_hw *hw,
440 u8 *mc_addr_list,
441 u32 mc_addr_count,
442 u32 pad)
444 u32 hash_value;
445 u32 i;
446 u32 rar_used_count = 1; /* RAR[0] is used for our MAC address */
448 DEBUGFUNC("ixgb_mc_addr_list_update");
450 /* Set the new number of MC addresses that we are being requested to use. */
451 hw->num_mc_addrs = mc_addr_count;
453 /* Clear RAR[1-15] */
454 DEBUGOUT(" Clearing RAR[1-15]\n");
455 for(i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
456 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
457 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
460 /* Clear the MTA */
461 DEBUGOUT(" Clearing MTA\n");
462 for(i = 0; i < IXGB_MC_TBL_SIZE; i++) {
463 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
466 /* Add the new addresses */
467 for(i = 0; i < mc_addr_count; i++) {
468 DEBUGOUT(" Adding the multicast addresses:\n");
469 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
470 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)],
471 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
473 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
475 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
477 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
479 mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) +
480 5]);
482 /* Place this multicast address in the RAR if there is room, *
483 * else put it in the MTA
485 if (rar_used_count < IXGB_RAR_ENTRIES) {
486 ixgb_rar_set(hw,
487 mc_addr_list +
488 (i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)),
489 rar_used_count);
490 DEBUGOUT1("Added a multicast address to RAR[%d]\n", i);
491 rar_used_count++;
492 } else {
493 hash_value = ixgb_hash_mc_addr(hw,
494 mc_addr_list +
495 (i *
496 (IXGB_ETH_LENGTH_OF_ADDRESS
497 + pad)));
499 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
501 ixgb_mta_set(hw, hash_value);
505 DEBUGOUT("MC Update Complete\n");
506 return;
509 /******************************************************************************
510 * Hashes an address to determine its location in the multicast table
512 * hw - Struct containing variables accessed by shared code
513 * mc_addr - the multicast address to hash
515 * Returns:
516 * The hash value
517 *****************************************************************************/
518 static u32
519 ixgb_hash_mc_addr(struct ixgb_hw *hw,
520 u8 *mc_addr)
522 u32 hash_value = 0;
524 DEBUGFUNC("ixgb_hash_mc_addr");
526 /* The portion of the address that is used for the hash table is
527 * determined by the mc_filter_type setting.
529 switch (hw->mc_filter_type) {
530 /* [0] [1] [2] [3] [4] [5]
531 * 01 AA 00 12 34 56
532 * LSB MSB - According to H/W docs */
533 case 0:
534 /* [47:36] i.e. 0x563 for above example address */
535 hash_value =
536 ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
537 break;
538 case 1: /* [46:35] i.e. 0xAC6 for above example address */
539 hash_value =
540 ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
541 break;
542 case 2: /* [45:34] i.e. 0x5D8 for above example address */
543 hash_value =
544 ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
545 break;
546 case 3: /* [43:32] i.e. 0x634 for above example address */
547 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
548 break;
549 default:
550 /* Invalid mc_filter_type, what should we do? */
551 DEBUGOUT("MC filter type param set incorrectly\n");
552 ASSERT(0);
553 break;
556 hash_value &= 0xFFF;
557 return (hash_value);
560 /******************************************************************************
561 * Sets the bit in the multicast table corresponding to the hash value.
563 * hw - Struct containing variables accessed by shared code
564 * hash_value - Multicast address hash value
565 *****************************************************************************/
566 static void
567 ixgb_mta_set(struct ixgb_hw *hw,
568 u32 hash_value)
570 u32 hash_bit, hash_reg;
571 u32 mta_reg;
573 /* The MTA is a register array of 128 32-bit registers.
574 * It is treated like an array of 4096 bits. We want to set
575 * bit BitArray[hash_value]. So we figure out what register
576 * the bit is in, read it, OR in the new bit, then write
577 * back the new value. The register is determined by the
578 * upper 7 bits of the hash value and the bit within that
579 * register are determined by the lower 5 bits of the value.
581 hash_reg = (hash_value >> 5) & 0x7F;
582 hash_bit = hash_value & 0x1F;
584 mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
586 mta_reg |= (1 << hash_bit);
588 IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
590 return;
593 /******************************************************************************
594 * Puts an ethernet address into a receive address register.
596 * hw - Struct containing variables accessed by shared code
597 * addr - Address to put into receive address register
598 * index - Receive address register to write
599 *****************************************************************************/
600 void
601 ixgb_rar_set(struct ixgb_hw *hw,
602 u8 *addr,
603 u32 index)
605 u32 rar_low, rar_high;
607 DEBUGFUNC("ixgb_rar_set");
609 /* HW expects these in little endian so we reverse the byte order
610 * from network order (big endian) to little endian
612 rar_low = ((u32) addr[0] |
613 ((u32)addr[1] << 8) |
614 ((u32)addr[2] << 16) |
615 ((u32)addr[3] << 24));
617 rar_high = ((u32) addr[4] |
618 ((u32)addr[5] << 8) |
619 IXGB_RAH_AV);
621 IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
622 IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
623 return;
626 /******************************************************************************
627 * Writes a value to the specified offset in the VLAN filter table.
629 * hw - Struct containing variables accessed by shared code
630 * offset - Offset in VLAN filer table to write
631 * value - Value to write into VLAN filter table
632 *****************************************************************************/
633 void
634 ixgb_write_vfta(struct ixgb_hw *hw,
635 u32 offset,
636 u32 value)
638 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
639 return;
642 /******************************************************************************
643 * Clears the VLAN filer table
645 * hw - Struct containing variables accessed by shared code
646 *****************************************************************************/
647 static void
648 ixgb_clear_vfta(struct ixgb_hw *hw)
650 u32 offset;
652 for(offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
653 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
654 return;
657 /******************************************************************************
658 * Configures the flow control settings based on SW configuration.
660 * hw - Struct containing variables accessed by shared code
661 *****************************************************************************/
663 static bool
664 ixgb_setup_fc(struct ixgb_hw *hw)
666 u32 ctrl_reg;
667 u32 pap_reg = 0; /* by default, assume no pause time */
668 bool status = true;
670 DEBUGFUNC("ixgb_setup_fc");
672 /* Get the current control reg 0 settings */
673 ctrl_reg = IXGB_READ_REG(hw, CTRL0);
675 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
676 ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
678 /* The possible values of the "flow_control" parameter are:
679 * 0: Flow control is completely disabled
680 * 1: Rx flow control is enabled (we can receive pause frames
681 * but not send pause frames).
682 * 2: Tx flow control is enabled (we can send pause frames
683 * but we do not support receiving pause frames).
684 * 3: Both Rx and TX flow control (symmetric) are enabled.
685 * other: Invalid.
687 switch (hw->fc.type) {
688 case ixgb_fc_none: /* 0 */
689 /* Set CMDC bit to disable Rx Flow control */
690 ctrl_reg |= (IXGB_CTRL0_CMDC);
691 break;
692 case ixgb_fc_rx_pause: /* 1 */
693 /* RX Flow control is enabled, and TX Flow control is
694 * disabled.
696 ctrl_reg |= (IXGB_CTRL0_RPE);
697 break;
698 case ixgb_fc_tx_pause: /* 2 */
699 /* TX Flow control is enabled, and RX Flow control is
700 * disabled, by a software over-ride.
702 ctrl_reg |= (IXGB_CTRL0_TPE);
703 pap_reg = hw->fc.pause_time;
704 break;
705 case ixgb_fc_full: /* 3 */
706 /* Flow control (both RX and TX) is enabled by a software
707 * over-ride.
709 ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
710 pap_reg = hw->fc.pause_time;
711 break;
712 default:
713 /* We should never get here. The value should be 0-3. */
714 DEBUGOUT("Flow control param set incorrectly\n");
715 ASSERT(0);
716 break;
719 /* Write the new settings */
720 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
722 if (pap_reg != 0)
723 IXGB_WRITE_REG(hw, PAP, pap_reg);
725 /* Set the flow control receive threshold registers. Normally,
726 * these registers will be set to a default threshold that may be
727 * adjusted later by the driver's runtime code. However, if the
728 * ability to transmit pause frames in not enabled, then these
729 * registers will be set to 0.
731 if (!(hw->fc.type & ixgb_fc_tx_pause)) {
732 IXGB_WRITE_REG(hw, FCRTL, 0);
733 IXGB_WRITE_REG(hw, FCRTH, 0);
734 } else {
735 /* We need to set up the Receive Threshold high and low water
736 * marks as well as (optionally) enabling the transmission of XON
737 * frames. */
738 if (hw->fc.send_xon) {
739 IXGB_WRITE_REG(hw, FCRTL,
740 (hw->fc.low_water | IXGB_FCRTL_XONE));
741 } else {
742 IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
744 IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
746 return (status);
749 /******************************************************************************
750 * Reads a word from a device over the Management Data Interface (MDI) bus.
751 * This interface is used to manage Physical layer devices.
753 * hw - Struct containing variables accessed by hw code
754 * reg_address - Offset of device register being read.
755 * phy_address - Address of device on MDI.
757 * Returns: Data word (16 bits) from MDI device.
759 * The 82597EX has support for several MDI access methods. This routine
760 * uses the new protocol MDI Single Command and Address Operation.
761 * This requires that first an address cycle command is sent, followed by a
762 * read command.
763 *****************************************************************************/
764 static u16
765 ixgb_read_phy_reg(struct ixgb_hw *hw,
766 u32 reg_address,
767 u32 phy_address,
768 u32 device_type)
770 u32 i;
771 u32 data;
772 u32 command = 0;
774 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
775 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
776 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
778 /* Setup and write the address cycle command */
779 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
780 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
781 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
782 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
784 IXGB_WRITE_REG(hw, MSCA, command);
786 /**************************************************************
787 ** Check every 10 usec to see if the address cycle completed
788 ** The COMMAND bit will clear when the operation is complete.
789 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
790 ** from the CPU Write to the Ready bit assertion.
791 **************************************************************/
793 for(i = 0; i < 10; i++)
795 udelay(10);
797 command = IXGB_READ_REG(hw, MSCA);
799 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
800 break;
803 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
805 /* Address cycle complete, setup and write the read command */
806 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
807 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
808 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
809 (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
811 IXGB_WRITE_REG(hw, MSCA, command);
813 /**************************************************************
814 ** Check every 10 usec to see if the read command completed
815 ** The COMMAND bit will clear when the operation is complete.
816 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
817 ** from the CPU Write to the Ready bit assertion.
818 **************************************************************/
820 for(i = 0; i < 10; i++)
822 udelay(10);
824 command = IXGB_READ_REG(hw, MSCA);
826 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
827 break;
830 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
832 /* Operation is complete, get the data from the MDIO Read/Write Data
833 * register and return.
835 data = IXGB_READ_REG(hw, MSRWD);
836 data >>= IXGB_MSRWD_READ_DATA_SHIFT;
837 return((u16) data);
840 /******************************************************************************
841 * Writes a word to a device over the Management Data Interface (MDI) bus.
842 * This interface is used to manage Physical layer devices.
844 * hw - Struct containing variables accessed by hw code
845 * reg_address - Offset of device register being read.
846 * phy_address - Address of device on MDI.
847 * device_type - Also known as the Device ID or DID.
848 * data - 16-bit value to be written
850 * Returns: void.
852 * The 82597EX has support for several MDI access methods. This routine
853 * uses the new protocol MDI Single Command and Address Operation.
854 * This requires that first an address cycle command is sent, followed by a
855 * write command.
856 *****************************************************************************/
857 static void
858 ixgb_write_phy_reg(struct ixgb_hw *hw,
859 u32 reg_address,
860 u32 phy_address,
861 u32 device_type,
862 u16 data)
864 u32 i;
865 u32 command = 0;
867 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
868 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
869 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
871 /* Put the data in the MDIO Read/Write Data register */
872 IXGB_WRITE_REG(hw, MSRWD, (u32)data);
874 /* Setup and write the address cycle command */
875 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
876 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
877 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
878 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
880 IXGB_WRITE_REG(hw, MSCA, command);
882 /**************************************************************
883 ** Check every 10 usec to see if the address cycle completed
884 ** The COMMAND bit will clear when the operation is complete.
885 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
886 ** from the CPU Write to the Ready bit assertion.
887 **************************************************************/
889 for(i = 0; i < 10; i++)
891 udelay(10);
893 command = IXGB_READ_REG(hw, MSCA);
895 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
896 break;
899 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
901 /* Address cycle complete, setup and write the write command */
902 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
903 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
904 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
905 (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
907 IXGB_WRITE_REG(hw, MSCA, command);
909 /**************************************************************
910 ** Check every 10 usec to see if the read command completed
911 ** The COMMAND bit will clear when the operation is complete.
912 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
913 ** from the CPU Write to the Ready bit assertion.
914 **************************************************************/
916 for(i = 0; i < 10; i++)
918 udelay(10);
920 command = IXGB_READ_REG(hw, MSCA);
922 if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
923 break;
926 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
928 /* Operation is complete, return. */
931 /******************************************************************************
932 * Checks to see if the link status of the hardware has changed.
934 * hw - Struct containing variables accessed by hw code
936 * Called by any function that needs to check the link status of the adapter.
937 *****************************************************************************/
938 void
939 ixgb_check_for_link(struct ixgb_hw *hw)
941 u32 status_reg;
942 u32 xpcss_reg;
944 DEBUGFUNC("ixgb_check_for_link");
946 xpcss_reg = IXGB_READ_REG(hw, XPCSS);
947 status_reg = IXGB_READ_REG(hw, STATUS);
949 if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
950 (status_reg & IXGB_STATUS_LU)) {
951 hw->link_up = true;
952 } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
953 (status_reg & IXGB_STATUS_LU)) {
954 DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
955 hw->link_up = ixgb_link_reset(hw);
956 } else {
958 * 82597EX errata. Since the lane deskew problem may prevent
959 * link, reset the link before reporting link down.
961 hw->link_up = ixgb_link_reset(hw);
963 /* Anything else for 10 Gig?? */
966 /******************************************************************************
967 * Check for a bad link condition that may have occurred.
968 * The indication is that the RFC / LFC registers may be incrementing
969 * continually. A full adapter reset is required to recover.
971 * hw - Struct containing variables accessed by hw code
973 * Called by any function that needs to check the link status of the adapter.
974 *****************************************************************************/
975 bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
977 u32 newLFC, newRFC;
978 bool bad_link_returncode = false;
980 if (hw->phy_type == ixgb_phy_type_txn17401) {
981 newLFC = IXGB_READ_REG(hw, LFC);
982 newRFC = IXGB_READ_REG(hw, RFC);
983 if ((hw->lastLFC + 250 < newLFC)
984 || (hw->lastRFC + 250 < newRFC)) {
985 DEBUGOUT
986 ("BAD LINK! too many LFC/RFC since last check\n");
987 bad_link_returncode = true;
989 hw->lastLFC = newLFC;
990 hw->lastRFC = newRFC;
993 return bad_link_returncode;
996 /******************************************************************************
997 * Clears all hardware statistics counters.
999 * hw - Struct containing variables accessed by shared code
1000 *****************************************************************************/
1001 static void
1002 ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
1004 volatile u32 temp_reg;
1006 DEBUGFUNC("ixgb_clear_hw_cntrs");
1008 /* if we are stopped or resetting exit gracefully */
1009 if (hw->adapter_stopped) {
1010 DEBUGOUT("Exiting because the adapter is stopped!!!\n");
1011 return;
1014 temp_reg = IXGB_READ_REG(hw, TPRL);
1015 temp_reg = IXGB_READ_REG(hw, TPRH);
1016 temp_reg = IXGB_READ_REG(hw, GPRCL);
1017 temp_reg = IXGB_READ_REG(hw, GPRCH);
1018 temp_reg = IXGB_READ_REG(hw, BPRCL);
1019 temp_reg = IXGB_READ_REG(hw, BPRCH);
1020 temp_reg = IXGB_READ_REG(hw, MPRCL);
1021 temp_reg = IXGB_READ_REG(hw, MPRCH);
1022 temp_reg = IXGB_READ_REG(hw, UPRCL);
1023 temp_reg = IXGB_READ_REG(hw, UPRCH);
1024 temp_reg = IXGB_READ_REG(hw, VPRCL);
1025 temp_reg = IXGB_READ_REG(hw, VPRCH);
1026 temp_reg = IXGB_READ_REG(hw, JPRCL);
1027 temp_reg = IXGB_READ_REG(hw, JPRCH);
1028 temp_reg = IXGB_READ_REG(hw, GORCL);
1029 temp_reg = IXGB_READ_REG(hw, GORCH);
1030 temp_reg = IXGB_READ_REG(hw, TORL);
1031 temp_reg = IXGB_READ_REG(hw, TORH);
1032 temp_reg = IXGB_READ_REG(hw, RNBC);
1033 temp_reg = IXGB_READ_REG(hw, RUC);
1034 temp_reg = IXGB_READ_REG(hw, ROC);
1035 temp_reg = IXGB_READ_REG(hw, RLEC);
1036 temp_reg = IXGB_READ_REG(hw, CRCERRS);
1037 temp_reg = IXGB_READ_REG(hw, ICBC);
1038 temp_reg = IXGB_READ_REG(hw, ECBC);
1039 temp_reg = IXGB_READ_REG(hw, MPC);
1040 temp_reg = IXGB_READ_REG(hw, TPTL);
1041 temp_reg = IXGB_READ_REG(hw, TPTH);
1042 temp_reg = IXGB_READ_REG(hw, GPTCL);
1043 temp_reg = IXGB_READ_REG(hw, GPTCH);
1044 temp_reg = IXGB_READ_REG(hw, BPTCL);
1045 temp_reg = IXGB_READ_REG(hw, BPTCH);
1046 temp_reg = IXGB_READ_REG(hw, MPTCL);
1047 temp_reg = IXGB_READ_REG(hw, MPTCH);
1048 temp_reg = IXGB_READ_REG(hw, UPTCL);
1049 temp_reg = IXGB_READ_REG(hw, UPTCH);
1050 temp_reg = IXGB_READ_REG(hw, VPTCL);
1051 temp_reg = IXGB_READ_REG(hw, VPTCH);
1052 temp_reg = IXGB_READ_REG(hw, JPTCL);
1053 temp_reg = IXGB_READ_REG(hw, JPTCH);
1054 temp_reg = IXGB_READ_REG(hw, GOTCL);
1055 temp_reg = IXGB_READ_REG(hw, GOTCH);
1056 temp_reg = IXGB_READ_REG(hw, TOTL);
1057 temp_reg = IXGB_READ_REG(hw, TOTH);
1058 temp_reg = IXGB_READ_REG(hw, DC);
1059 temp_reg = IXGB_READ_REG(hw, PLT64C);
1060 temp_reg = IXGB_READ_REG(hw, TSCTC);
1061 temp_reg = IXGB_READ_REG(hw, TSCTFC);
1062 temp_reg = IXGB_READ_REG(hw, IBIC);
1063 temp_reg = IXGB_READ_REG(hw, RFC);
1064 temp_reg = IXGB_READ_REG(hw, LFC);
1065 temp_reg = IXGB_READ_REG(hw, PFRC);
1066 temp_reg = IXGB_READ_REG(hw, PFTC);
1067 temp_reg = IXGB_READ_REG(hw, MCFRC);
1068 temp_reg = IXGB_READ_REG(hw, MCFTC);
1069 temp_reg = IXGB_READ_REG(hw, XONRXC);
1070 temp_reg = IXGB_READ_REG(hw, XONTXC);
1071 temp_reg = IXGB_READ_REG(hw, XOFFRXC);
1072 temp_reg = IXGB_READ_REG(hw, XOFFTXC);
1073 temp_reg = IXGB_READ_REG(hw, RJC);
1074 return;
1077 /******************************************************************************
1078 * Turns on the software controllable LED
1080 * hw - Struct containing variables accessed by shared code
1081 *****************************************************************************/
1082 void
1083 ixgb_led_on(struct ixgb_hw *hw)
1085 u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1087 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1088 ctrl0_reg &= ~IXGB_CTRL0_SDP0;
1089 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1090 return;
1093 /******************************************************************************
1094 * Turns off the software controllable LED
1096 * hw - Struct containing variables accessed by shared code
1097 *****************************************************************************/
1098 void
1099 ixgb_led_off(struct ixgb_hw *hw)
1101 u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
1103 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1104 ctrl0_reg |= IXGB_CTRL0_SDP0;
1105 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
1106 return;
1109 /******************************************************************************
1110 * Gets the current PCI bus type, speed, and width of the hardware
1112 * hw - Struct containing variables accessed by shared code
1113 *****************************************************************************/
1114 static void
1115 ixgb_get_bus_info(struct ixgb_hw *hw)
1117 u32 status_reg;
1119 status_reg = IXGB_READ_REG(hw, STATUS);
1121 hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
1122 ixgb_bus_type_pcix : ixgb_bus_type_pci;
1124 if (hw->bus.type == ixgb_bus_type_pci) {
1125 hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
1126 ixgb_bus_speed_66 : ixgb_bus_speed_33;
1127 } else {
1128 switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
1129 case IXGB_STATUS_PCIX_SPD_66:
1130 hw->bus.speed = ixgb_bus_speed_66;
1131 break;
1132 case IXGB_STATUS_PCIX_SPD_100:
1133 hw->bus.speed = ixgb_bus_speed_100;
1134 break;
1135 case IXGB_STATUS_PCIX_SPD_133:
1136 hw->bus.speed = ixgb_bus_speed_133;
1137 break;
1138 default:
1139 hw->bus.speed = ixgb_bus_speed_reserved;
1140 break;
1144 hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
1145 ixgb_bus_width_64 : ixgb_bus_width_32;
1147 return;
1150 /******************************************************************************
1151 * Tests a MAC address to ensure it is a valid Individual Address
1153 * mac_addr - pointer to MAC address.
1155 *****************************************************************************/
1156 static bool
1157 mac_addr_valid(u8 *mac_addr)
1159 bool is_valid = true;
1160 DEBUGFUNC("mac_addr_valid");
1162 /* Make sure it is not a multicast address */
1163 if (IS_MULTICAST(mac_addr)) {
1164 DEBUGOUT("MAC address is multicast\n");
1165 is_valid = false;
1167 /* Not a broadcast address */
1168 else if (IS_BROADCAST(mac_addr)) {
1169 DEBUGOUT("MAC address is broadcast\n");
1170 is_valid = false;
1172 /* Reject the zero address */
1173 else if (mac_addr[0] == 0 &&
1174 mac_addr[1] == 0 &&
1175 mac_addr[2] == 0 &&
1176 mac_addr[3] == 0 &&
1177 mac_addr[4] == 0 &&
1178 mac_addr[5] == 0) {
1179 DEBUGOUT("MAC address is all zeros\n");
1180 is_valid = false;
1182 return (is_valid);
1185 /******************************************************************************
1186 * Resets the 10GbE link. Waits the settle time and returns the state of
1187 * the link.
1189 * hw - Struct containing variables accessed by shared code
1190 *****************************************************************************/
1191 static bool
1192 ixgb_link_reset(struct ixgb_hw *hw)
1194 bool link_status = false;
1195 u8 wait_retries = MAX_RESET_ITERATIONS;
1196 u8 lrst_retries = MAX_RESET_ITERATIONS;
1198 do {
1199 /* Reset the link */
1200 IXGB_WRITE_REG(hw, CTRL0,
1201 IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
1203 /* Wait for link-up and lane re-alignment */
1204 do {
1205 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
1206 link_status =
1207 ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
1208 && (IXGB_READ_REG(hw, XPCSS) &
1209 IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
1210 } while (!link_status && --wait_retries);
1212 } while (!link_status && --lrst_retries);
1214 return link_status;
1217 /******************************************************************************
1218 * Resets the 10GbE optics module.
1220 * hw - Struct containing variables accessed by shared code
1221 *****************************************************************************/
1222 static void
1223 ixgb_optics_reset(struct ixgb_hw *hw)
1225 if (hw->phy_type == ixgb_phy_type_txn17401) {
1226 u16 mdio_reg;
1228 ixgb_write_phy_reg(hw,
1229 MDIO_PMA_PMD_CR1,
1230 IXGB_PHY_ADDRESS,
1231 MDIO_PMA_PMD_DID,
1232 MDIO_PMA_PMD_CR1_RESET);
1234 mdio_reg = ixgb_read_phy_reg( hw,
1235 MDIO_PMA_PMD_CR1,
1236 IXGB_PHY_ADDRESS,
1237 MDIO_PMA_PMD_DID);
1240 return;
1243 /******************************************************************************
1244 * Resets the 10GbE optics module for Sun variant NIC.
1246 * hw - Struct containing variables accessed by shared code
1247 *****************************************************************************/
1249 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG 0xC803
1250 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL 0x0164
1251 #define IXGB_BCM8704_USER_CTRL_REG 0xC800
1252 #define IXGB_BCM8704_USER_CTRL_REG_VAL 0x7FBF
1253 #define IXGB_BCM8704_USER_DEV3_ADDR 0x0003
1254 #define IXGB_SUN_PHY_ADDRESS 0x0000
1255 #define IXGB_SUN_PHY_RESET_DELAY 305
1257 static void
1258 ixgb_optics_reset_bcm(struct ixgb_hw *hw)
1260 u32 ctrl = IXGB_READ_REG(hw, CTRL0);
1261 ctrl &= ~IXGB_CTRL0_SDP2;
1262 ctrl |= IXGB_CTRL0_SDP3;
1263 IXGB_WRITE_REG(hw, CTRL0, ctrl);
1265 /* SerDes needs extra delay */
1266 msleep(IXGB_SUN_PHY_RESET_DELAY);
1268 /* Broadcom 7408L configuration */
1269 /* Reference clock config */
1270 ixgb_write_phy_reg(hw,
1271 IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1272 IXGB_SUN_PHY_ADDRESS,
1273 IXGB_BCM8704_USER_DEV3_ADDR,
1274 IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
1275 /* we must read the registers twice */
1276 ixgb_read_phy_reg(hw,
1277 IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1278 IXGB_SUN_PHY_ADDRESS,
1279 IXGB_BCM8704_USER_DEV3_ADDR);
1280 ixgb_read_phy_reg(hw,
1281 IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
1282 IXGB_SUN_PHY_ADDRESS,
1283 IXGB_BCM8704_USER_DEV3_ADDR);
1285 ixgb_write_phy_reg(hw,
1286 IXGB_BCM8704_USER_CTRL_REG,
1287 IXGB_SUN_PHY_ADDRESS,
1288 IXGB_BCM8704_USER_DEV3_ADDR,
1289 IXGB_BCM8704_USER_CTRL_REG_VAL);
1290 ixgb_read_phy_reg(hw,
1291 IXGB_BCM8704_USER_CTRL_REG,
1292 IXGB_SUN_PHY_ADDRESS,
1293 IXGB_BCM8704_USER_DEV3_ADDR);
1294 ixgb_read_phy_reg(hw,
1295 IXGB_BCM8704_USER_CTRL_REG,
1296 IXGB_SUN_PHY_ADDRESS,
1297 IXGB_BCM8704_USER_DEV3_ADDR);
1299 /* SerDes needs extra delay */
1300 msleep(IXGB_SUN_PHY_RESET_DELAY);
1302 return;