2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
55 * Array of node states.
57 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
58 [N_POSSIBLE
] = NODE_MASK_ALL
,
59 [N_ONLINE
] = { { [0] = 1UL } },
61 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
63 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
65 [N_CPU
] = { { [0] = 1UL } },
68 EXPORT_SYMBOL(node_states
);
70 unsigned long totalram_pages __read_mostly
;
71 unsigned long totalreserve_pages __read_mostly
;
73 int percpu_pagelist_fraction
;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly
;
79 static void __free_pages_ok(struct page
*page
, unsigned int order
);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
93 #ifdef CONFIG_ZONE_DMA
96 #ifdef CONFIG_ZONE_DMA32
105 EXPORT_SYMBOL(totalram_pages
);
107 static char * const zone_names
[MAX_NR_ZONES
] = {
108 #ifdef CONFIG_ZONE_DMA
111 #ifdef CONFIG_ZONE_DMA32
115 #ifdef CONFIG_HIGHMEM
121 int min_free_kbytes
= 1024;
123 unsigned long __meminitdata nr_kernel_pages
;
124 unsigned long __meminitdata nr_all_pages
;
125 static unsigned long __meminitdata dma_reserve
;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
148 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
149 static int __meminitdata nr_nodemap_entries
;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
154 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore
;
157 static unsigned long __initdata required_movablecore
;
158 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone
);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
167 EXPORT_SYMBOL(nr_node_ids
);
170 int page_group_by_mobility_disabled __read_mostly
;
172 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
174 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
175 PB_migrate
, PB_migrate_end
);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
183 unsigned long pfn
= page_to_pfn(page
);
186 seq
= zone_span_seqbegin(zone
);
187 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
189 else if (pfn
< zone
->zone_start_pfn
)
191 } while (zone_span_seqretry(zone
, seq
));
196 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
198 if (!pfn_valid_within(page_to_pfn(page
)))
200 if (zone
!= page_zone(page
))
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone
*zone
, struct page
*page
)
210 if (page_outside_zone_boundaries(zone
, page
))
212 if (!page_is_consistent(zone
, page
))
218 static inline int bad_range(struct zone
*zone
, struct page
*page
)
224 static void bad_page(struct page
*page
)
226 void *pc
= page_get_page_cgroup(page
);
228 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page
->flags
, page
->mapping
,
232 page_mapcount(page
), page_count(page
));
234 printk(KERN_EMERG
"cgroup:%p\n", pc
);
235 page_reset_bad_cgroup(page
);
237 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG
"Backtrace:\n");
240 page
->flags
&= ~PAGE_FLAGS_CLEAR_WHEN_BAD
;
241 set_page_count(page
, 0);
242 reset_page_mapcount(page
);
243 page
->mapping
= NULL
;
244 add_taint(TAINT_BAD_PAGE
);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page
*page
)
264 __free_pages_ok(page
, compound_order(page
));
267 void prep_compound_page(struct page
*page
, unsigned long order
)
270 int nr_pages
= 1 << order
;
271 struct page
*p
= page
+ 1;
273 set_compound_page_dtor(page
, free_compound_page
);
274 set_compound_order(page
, order
);
276 for (i
= 1; i
< nr_pages
; i
++, p
++) {
277 if (unlikely((i
& (MAX_ORDER_NR_PAGES
- 1)) == 0))
278 p
= pfn_to_page(page_to_pfn(page
) + i
);
280 p
->first_page
= page
;
284 static void destroy_compound_page(struct page
*page
, unsigned long order
)
287 int nr_pages
= 1 << order
;
288 struct page
*p
= page
+ 1;
290 if (unlikely(compound_order(page
) != order
))
293 if (unlikely(!PageHead(page
)))
295 __ClearPageHead(page
);
296 for (i
= 1; i
< nr_pages
; i
++, p
++) {
297 if (unlikely((i
& (MAX_ORDER_NR_PAGES
- 1)) == 0))
298 p
= pfn_to_page(page_to_pfn(page
) + i
);
300 if (unlikely(!PageTail(p
) |
301 (p
->first_page
!= page
)))
307 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
312 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
313 * and __GFP_HIGHMEM from hard or soft interrupt context.
315 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
316 for (i
= 0; i
< (1 << order
); i
++)
317 clear_highpage(page
+ i
);
320 static inline void set_page_order(struct page
*page
, int order
)
322 set_page_private(page
, order
);
323 __SetPageBuddy(page
);
326 static inline void rmv_page_order(struct page
*page
)
328 __ClearPageBuddy(page
);
329 set_page_private(page
, 0);
333 * Locate the struct page for both the matching buddy in our
334 * pair (buddy1) and the combined O(n+1) page they form (page).
336 * 1) Any buddy B1 will have an order O twin B2 which satisfies
337 * the following equation:
339 * For example, if the starting buddy (buddy2) is #8 its order
341 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
343 * 2) Any buddy B will have an order O+1 parent P which
344 * satisfies the following equation:
347 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
349 static inline struct page
*
350 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
352 unsigned long buddy_idx
= page_idx
^ (1 << order
);
354 return page
+ (buddy_idx
- page_idx
);
357 static inline unsigned long
358 __find_combined_index(unsigned long page_idx
, unsigned int order
)
360 return (page_idx
& ~(1 << order
));
364 * This function checks whether a page is free && is the buddy
365 * we can do coalesce a page and its buddy if
366 * (a) the buddy is not in a hole &&
367 * (b) the buddy is in the buddy system &&
368 * (c) a page and its buddy have the same order &&
369 * (d) a page and its buddy are in the same zone.
371 * For recording whether a page is in the buddy system, we use PG_buddy.
372 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
374 * For recording page's order, we use page_private(page).
376 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
379 if (!pfn_valid_within(page_to_pfn(buddy
)))
382 if (page_zone_id(page
) != page_zone_id(buddy
))
385 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
386 BUG_ON(page_count(buddy
) != 0);
393 * Freeing function for a buddy system allocator.
395 * The concept of a buddy system is to maintain direct-mapped table
396 * (containing bit values) for memory blocks of various "orders".
397 * The bottom level table contains the map for the smallest allocatable
398 * units of memory (here, pages), and each level above it describes
399 * pairs of units from the levels below, hence, "buddies".
400 * At a high level, all that happens here is marking the table entry
401 * at the bottom level available, and propagating the changes upward
402 * as necessary, plus some accounting needed to play nicely with other
403 * parts of the VM system.
404 * At each level, we keep a list of pages, which are heads of continuous
405 * free pages of length of (1 << order) and marked with PG_buddy. Page's
406 * order is recorded in page_private(page) field.
407 * So when we are allocating or freeing one, we can derive the state of the
408 * other. That is, if we allocate a small block, and both were
409 * free, the remainder of the region must be split into blocks.
410 * If a block is freed, and its buddy is also free, then this
411 * triggers coalescing into a block of larger size.
416 static inline void __free_one_page(struct page
*page
,
417 struct zone
*zone
, unsigned int order
)
419 unsigned long page_idx
;
420 int order_size
= 1 << order
;
421 int migratetype
= get_pageblock_migratetype(page
);
423 if (unlikely(PageCompound(page
)))
424 destroy_compound_page(page
, order
);
426 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
428 VM_BUG_ON(page_idx
& (order_size
- 1));
429 VM_BUG_ON(bad_range(zone
, page
));
431 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
432 while (order
< MAX_ORDER
-1) {
433 unsigned long combined_idx
;
436 buddy
= __page_find_buddy(page
, page_idx
, order
);
437 if (!page_is_buddy(page
, buddy
, order
))
440 /* Our buddy is free, merge with it and move up one order. */
441 list_del(&buddy
->lru
);
442 zone
->free_area
[order
].nr_free
--;
443 rmv_page_order(buddy
);
444 combined_idx
= __find_combined_index(page_idx
, order
);
445 page
= page
+ (combined_idx
- page_idx
);
446 page_idx
= combined_idx
;
449 set_page_order(page
, order
);
451 &zone
->free_area
[order
].free_list
[migratetype
]);
452 zone
->free_area
[order
].nr_free
++;
455 static inline int free_pages_check(struct page
*page
)
457 if (unlikely(page_mapcount(page
) |
458 (page
->mapping
!= NULL
) |
459 (page_get_page_cgroup(page
) != NULL
) |
460 (page_count(page
) != 0) |
461 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)))
464 __ClearPageDirty(page
);
466 * For now, we report if PG_reserved was found set, but do not
467 * clear it, and do not free the page. But we shall soon need
468 * to do more, for when the ZERO_PAGE count wraps negative.
470 return PageReserved(page
);
474 * Frees a list of pages.
475 * Assumes all pages on list are in same zone, and of same order.
476 * count is the number of pages to free.
478 * If the zone was previously in an "all pages pinned" state then look to
479 * see if this freeing clears that state.
481 * And clear the zone's pages_scanned counter, to hold off the "all pages are
482 * pinned" detection logic.
484 static void free_pages_bulk(struct zone
*zone
, int count
,
485 struct list_head
*list
, int order
)
487 spin_lock(&zone
->lock
);
488 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
489 zone
->pages_scanned
= 0;
493 VM_BUG_ON(list_empty(list
));
494 page
= list_entry(list
->prev
, struct page
, lru
);
495 /* have to delete it as __free_one_page list manipulates */
496 list_del(&page
->lru
);
497 __free_one_page(page
, zone
, order
);
499 spin_unlock(&zone
->lock
);
502 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
504 spin_lock(&zone
->lock
);
505 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
506 zone
->pages_scanned
= 0;
507 __free_one_page(page
, zone
, order
);
508 spin_unlock(&zone
->lock
);
511 static void __free_pages_ok(struct page
*page
, unsigned int order
)
517 for (i
= 0 ; i
< (1 << order
) ; ++i
)
518 reserved
+= free_pages_check(page
+ i
);
522 if (!PageHighMem(page
)) {
523 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
524 debug_check_no_obj_freed(page_address(page
),
527 arch_free_page(page
, order
);
528 kernel_map_pages(page
, 1 << order
, 0);
530 local_irq_save(flags
);
531 __count_vm_events(PGFREE
, 1 << order
);
532 free_one_page(page_zone(page
), page
, order
);
533 local_irq_restore(flags
);
537 * permit the bootmem allocator to evade page validation on high-order frees
539 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
542 __ClearPageReserved(page
);
543 set_page_count(page
, 0);
544 set_page_refcounted(page
);
550 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
551 struct page
*p
= &page
[loop
];
553 if (loop
+ 1 < BITS_PER_LONG
)
555 __ClearPageReserved(p
);
556 set_page_count(p
, 0);
559 set_page_refcounted(page
);
560 __free_pages(page
, order
);
566 * The order of subdivision here is critical for the IO subsystem.
567 * Please do not alter this order without good reasons and regression
568 * testing. Specifically, as large blocks of memory are subdivided,
569 * the order in which smaller blocks are delivered depends on the order
570 * they're subdivided in this function. This is the primary factor
571 * influencing the order in which pages are delivered to the IO
572 * subsystem according to empirical testing, and this is also justified
573 * by considering the behavior of a buddy system containing a single
574 * large block of memory acted on by a series of small allocations.
575 * This behavior is a critical factor in sglist merging's success.
579 static inline void expand(struct zone
*zone
, struct page
*page
,
580 int low
, int high
, struct free_area
*area
,
583 unsigned long size
= 1 << high
;
589 VM_BUG_ON(bad_range(zone
, &page
[size
]));
590 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
592 set_page_order(&page
[size
], high
);
597 * This page is about to be returned from the page allocator
599 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
601 if (unlikely(page_mapcount(page
) |
602 (page
->mapping
!= NULL
) |
603 (page_get_page_cgroup(page
) != NULL
) |
604 (page_count(page
) != 0) |
605 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)))
609 * For now, we report if PG_reserved was found set, but do not
610 * clear it, and do not allocate the page: as a safety net.
612 if (PageReserved(page
))
615 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_reclaim
|
616 1 << PG_referenced
| 1 << PG_arch_1
|
617 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
618 set_page_private(page
, 0);
619 set_page_refcounted(page
);
621 arch_alloc_page(page
, order
);
622 kernel_map_pages(page
, 1 << order
, 1);
624 if (gfp_flags
& __GFP_ZERO
)
625 prep_zero_page(page
, order
, gfp_flags
);
627 if (order
&& (gfp_flags
& __GFP_COMP
))
628 prep_compound_page(page
, order
);
634 * Go through the free lists for the given migratetype and remove
635 * the smallest available page from the freelists
637 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
640 unsigned int current_order
;
641 struct free_area
* area
;
644 /* Find a page of the appropriate size in the preferred list */
645 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
646 area
= &(zone
->free_area
[current_order
]);
647 if (list_empty(&area
->free_list
[migratetype
]))
650 page
= list_entry(area
->free_list
[migratetype
].next
,
652 list_del(&page
->lru
);
653 rmv_page_order(page
);
655 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
656 expand(zone
, page
, order
, current_order
, area
, migratetype
);
665 * This array describes the order lists are fallen back to when
666 * the free lists for the desirable migrate type are depleted
668 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
669 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
670 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
671 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
672 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
676 * Move the free pages in a range to the free lists of the requested type.
677 * Note that start_page and end_pages are not aligned on a pageblock
678 * boundary. If alignment is required, use move_freepages_block()
680 static int move_freepages(struct zone
*zone
,
681 struct page
*start_page
, struct page
*end_page
,
688 #ifndef CONFIG_HOLES_IN_ZONE
690 * page_zone is not safe to call in this context when
691 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
692 * anyway as we check zone boundaries in move_freepages_block().
693 * Remove at a later date when no bug reports exist related to
694 * grouping pages by mobility
696 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
699 for (page
= start_page
; page
<= end_page
;) {
700 /* Make sure we are not inadvertently changing nodes */
701 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
703 if (!pfn_valid_within(page_to_pfn(page
))) {
708 if (!PageBuddy(page
)) {
713 order
= page_order(page
);
714 list_del(&page
->lru
);
716 &zone
->free_area
[order
].free_list
[migratetype
]);
718 pages_moved
+= 1 << order
;
724 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
727 unsigned long start_pfn
, end_pfn
;
728 struct page
*start_page
, *end_page
;
730 start_pfn
= page_to_pfn(page
);
731 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
732 start_page
= pfn_to_page(start_pfn
);
733 end_page
= start_page
+ pageblock_nr_pages
- 1;
734 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
736 /* Do not cross zone boundaries */
737 if (start_pfn
< zone
->zone_start_pfn
)
739 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
742 return move_freepages(zone
, start_page
, end_page
, migratetype
);
745 /* Remove an element from the buddy allocator from the fallback list */
746 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
747 int start_migratetype
)
749 struct free_area
* area
;
754 /* Find the largest possible block of pages in the other list */
755 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
757 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
758 migratetype
= fallbacks
[start_migratetype
][i
];
760 /* MIGRATE_RESERVE handled later if necessary */
761 if (migratetype
== MIGRATE_RESERVE
)
764 area
= &(zone
->free_area
[current_order
]);
765 if (list_empty(&area
->free_list
[migratetype
]))
768 page
= list_entry(area
->free_list
[migratetype
].next
,
773 * If breaking a large block of pages, move all free
774 * pages to the preferred allocation list. If falling
775 * back for a reclaimable kernel allocation, be more
776 * agressive about taking ownership of free pages
778 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
779 start_migratetype
== MIGRATE_RECLAIMABLE
) {
781 pages
= move_freepages_block(zone
, page
,
784 /* Claim the whole block if over half of it is free */
785 if (pages
>= (1 << (pageblock_order
-1)))
786 set_pageblock_migratetype(page
,
789 migratetype
= start_migratetype
;
792 /* Remove the page from the freelists */
793 list_del(&page
->lru
);
794 rmv_page_order(page
);
795 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
798 if (current_order
== pageblock_order
)
799 set_pageblock_migratetype(page
,
802 expand(zone
, page
, order
, current_order
, area
, migratetype
);
807 /* Use MIGRATE_RESERVE rather than fail an allocation */
808 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
812 * Do the hard work of removing an element from the buddy allocator.
813 * Call me with the zone->lock already held.
815 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
820 page
= __rmqueue_smallest(zone
, order
, migratetype
);
823 page
= __rmqueue_fallback(zone
, order
, migratetype
);
829 * Obtain a specified number of elements from the buddy allocator, all under
830 * a single hold of the lock, for efficiency. Add them to the supplied list.
831 * Returns the number of new pages which were placed at *list.
833 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
834 unsigned long count
, struct list_head
*list
,
839 spin_lock(&zone
->lock
);
840 for (i
= 0; i
< count
; ++i
) {
841 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
842 if (unlikely(page
== NULL
))
846 * Split buddy pages returned by expand() are received here
847 * in physical page order. The page is added to the callers and
848 * list and the list head then moves forward. From the callers
849 * perspective, the linked list is ordered by page number in
850 * some conditions. This is useful for IO devices that can
851 * merge IO requests if the physical pages are ordered
854 list_add(&page
->lru
, list
);
855 set_page_private(page
, migratetype
);
858 spin_unlock(&zone
->lock
);
864 * Called from the vmstat counter updater to drain pagesets of this
865 * currently executing processor on remote nodes after they have
868 * Note that this function must be called with the thread pinned to
869 * a single processor.
871 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
876 local_irq_save(flags
);
877 if (pcp
->count
>= pcp
->batch
)
878 to_drain
= pcp
->batch
;
880 to_drain
= pcp
->count
;
881 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
882 pcp
->count
-= to_drain
;
883 local_irq_restore(flags
);
888 * Drain pages of the indicated processor.
890 * The processor must either be the current processor and the
891 * thread pinned to the current processor or a processor that
894 static void drain_pages(unsigned int cpu
)
899 for_each_zone(zone
) {
900 struct per_cpu_pageset
*pset
;
901 struct per_cpu_pages
*pcp
;
903 if (!populated_zone(zone
))
906 pset
= zone_pcp(zone
, cpu
);
909 local_irq_save(flags
);
910 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
912 local_irq_restore(flags
);
917 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
919 void drain_local_pages(void *arg
)
921 drain_pages(smp_processor_id());
925 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
927 void drain_all_pages(void)
929 on_each_cpu(drain_local_pages
, NULL
, 1);
932 #ifdef CONFIG_HIBERNATION
934 void mark_free_pages(struct zone
*zone
)
936 unsigned long pfn
, max_zone_pfn
;
939 struct list_head
*curr
;
941 if (!zone
->spanned_pages
)
944 spin_lock_irqsave(&zone
->lock
, flags
);
946 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
947 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
948 if (pfn_valid(pfn
)) {
949 struct page
*page
= pfn_to_page(pfn
);
951 if (!swsusp_page_is_forbidden(page
))
952 swsusp_unset_page_free(page
);
955 for_each_migratetype_order(order
, t
) {
956 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
959 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
960 for (i
= 0; i
< (1UL << order
); i
++)
961 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
964 spin_unlock_irqrestore(&zone
->lock
, flags
);
966 #endif /* CONFIG_PM */
969 * Free a 0-order page
971 static void free_hot_cold_page(struct page
*page
, int cold
)
973 struct zone
*zone
= page_zone(page
);
974 struct per_cpu_pages
*pcp
;
978 page
->mapping
= NULL
;
979 if (free_pages_check(page
))
982 if (!PageHighMem(page
)) {
983 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
984 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
986 arch_free_page(page
, 0);
987 kernel_map_pages(page
, 1, 0);
989 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
990 local_irq_save(flags
);
991 __count_vm_event(PGFREE
);
993 list_add_tail(&page
->lru
, &pcp
->list
);
995 list_add(&page
->lru
, &pcp
->list
);
996 set_page_private(page
, get_pageblock_migratetype(page
));
998 if (pcp
->count
>= pcp
->high
) {
999 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1000 pcp
->count
-= pcp
->batch
;
1002 local_irq_restore(flags
);
1006 void free_hot_page(struct page
*page
)
1008 free_hot_cold_page(page
, 0);
1011 void free_cold_page(struct page
*page
)
1013 free_hot_cold_page(page
, 1);
1017 * split_page takes a non-compound higher-order page, and splits it into
1018 * n (1<<order) sub-pages: page[0..n]
1019 * Each sub-page must be freed individually.
1021 * Note: this is probably too low level an operation for use in drivers.
1022 * Please consult with lkml before using this in your driver.
1024 void split_page(struct page
*page
, unsigned int order
)
1028 VM_BUG_ON(PageCompound(page
));
1029 VM_BUG_ON(!page_count(page
));
1030 for (i
= 1; i
< (1 << order
); i
++)
1031 set_page_refcounted(page
+ i
);
1035 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1036 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1039 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1040 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1042 unsigned long flags
;
1044 int cold
= !!(gfp_flags
& __GFP_COLD
);
1046 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1050 if (likely(order
== 0)) {
1051 struct per_cpu_pages
*pcp
;
1053 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1054 local_irq_save(flags
);
1056 pcp
->count
= rmqueue_bulk(zone
, 0,
1057 pcp
->batch
, &pcp
->list
, migratetype
);
1058 if (unlikely(!pcp
->count
))
1062 /* Find a page of the appropriate migrate type */
1064 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1065 if (page_private(page
) == migratetype
)
1068 list_for_each_entry(page
, &pcp
->list
, lru
)
1069 if (page_private(page
) == migratetype
)
1073 /* Allocate more to the pcp list if necessary */
1074 if (unlikely(&page
->lru
== &pcp
->list
)) {
1075 pcp
->count
+= rmqueue_bulk(zone
, 0,
1076 pcp
->batch
, &pcp
->list
, migratetype
);
1077 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1080 list_del(&page
->lru
);
1083 spin_lock_irqsave(&zone
->lock
, flags
);
1084 page
= __rmqueue(zone
, order
, migratetype
);
1085 spin_unlock(&zone
->lock
);
1090 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1091 zone_statistics(preferred_zone
, zone
);
1092 local_irq_restore(flags
);
1095 VM_BUG_ON(bad_range(zone
, page
));
1096 if (prep_new_page(page
, order
, gfp_flags
))
1101 local_irq_restore(flags
);
1106 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1107 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1108 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1109 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1110 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1111 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1112 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1114 #ifdef CONFIG_FAIL_PAGE_ALLOC
1116 static struct fail_page_alloc_attr
{
1117 struct fault_attr attr
;
1119 u32 ignore_gfp_highmem
;
1120 u32 ignore_gfp_wait
;
1123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1125 struct dentry
*ignore_gfp_highmem_file
;
1126 struct dentry
*ignore_gfp_wait_file
;
1127 struct dentry
*min_order_file
;
1129 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1131 } fail_page_alloc
= {
1132 .attr
= FAULT_ATTR_INITIALIZER
,
1133 .ignore_gfp_wait
= 1,
1134 .ignore_gfp_highmem
= 1,
1138 static int __init
setup_fail_page_alloc(char *str
)
1140 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1142 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1144 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1146 if (order
< fail_page_alloc
.min_order
)
1148 if (gfp_mask
& __GFP_NOFAIL
)
1150 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1152 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1155 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1158 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1160 static int __init
fail_page_alloc_debugfs(void)
1162 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1166 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1170 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1172 fail_page_alloc
.ignore_gfp_wait_file
=
1173 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1174 &fail_page_alloc
.ignore_gfp_wait
);
1176 fail_page_alloc
.ignore_gfp_highmem_file
=
1177 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1178 &fail_page_alloc
.ignore_gfp_highmem
);
1179 fail_page_alloc
.min_order_file
=
1180 debugfs_create_u32("min-order", mode
, dir
,
1181 &fail_page_alloc
.min_order
);
1183 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1184 !fail_page_alloc
.ignore_gfp_highmem_file
||
1185 !fail_page_alloc
.min_order_file
) {
1187 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1188 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1189 debugfs_remove(fail_page_alloc
.min_order_file
);
1190 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1196 late_initcall(fail_page_alloc_debugfs
);
1198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1200 #else /* CONFIG_FAIL_PAGE_ALLOC */
1202 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1207 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1210 * Return 1 if free pages are above 'mark'. This takes into account the order
1211 * of the allocation.
1213 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1214 int classzone_idx
, int alloc_flags
)
1216 /* free_pages my go negative - that's OK */
1218 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1221 if (alloc_flags
& ALLOC_HIGH
)
1223 if (alloc_flags
& ALLOC_HARDER
)
1226 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1228 for (o
= 0; o
< order
; o
++) {
1229 /* At the next order, this order's pages become unavailable */
1230 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1232 /* Require fewer higher order pages to be free */
1235 if (free_pages
<= min
)
1243 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1244 * skip over zones that are not allowed by the cpuset, or that have
1245 * been recently (in last second) found to be nearly full. See further
1246 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1247 * that have to skip over a lot of full or unallowed zones.
1249 * If the zonelist cache is present in the passed in zonelist, then
1250 * returns a pointer to the allowed node mask (either the current
1251 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1253 * If the zonelist cache is not available for this zonelist, does
1254 * nothing and returns NULL.
1256 * If the fullzones BITMAP in the zonelist cache is stale (more than
1257 * a second since last zap'd) then we zap it out (clear its bits.)
1259 * We hold off even calling zlc_setup, until after we've checked the
1260 * first zone in the zonelist, on the theory that most allocations will
1261 * be satisfied from that first zone, so best to examine that zone as
1262 * quickly as we can.
1264 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1266 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1267 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1269 zlc
= zonelist
->zlcache_ptr
;
1273 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1274 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1275 zlc
->last_full_zap
= jiffies
;
1278 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1279 &cpuset_current_mems_allowed
:
1280 &node_states
[N_HIGH_MEMORY
];
1281 return allowednodes
;
1285 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1286 * if it is worth looking at further for free memory:
1287 * 1) Check that the zone isn't thought to be full (doesn't have its
1288 * bit set in the zonelist_cache fullzones BITMAP).
1289 * 2) Check that the zones node (obtained from the zonelist_cache
1290 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1291 * Return true (non-zero) if zone is worth looking at further, or
1292 * else return false (zero) if it is not.
1294 * This check -ignores- the distinction between various watermarks,
1295 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1296 * found to be full for any variation of these watermarks, it will
1297 * be considered full for up to one second by all requests, unless
1298 * we are so low on memory on all allowed nodes that we are forced
1299 * into the second scan of the zonelist.
1301 * In the second scan we ignore this zonelist cache and exactly
1302 * apply the watermarks to all zones, even it is slower to do so.
1303 * We are low on memory in the second scan, and should leave no stone
1304 * unturned looking for a free page.
1306 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1307 nodemask_t
*allowednodes
)
1309 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1310 int i
; /* index of *z in zonelist zones */
1311 int n
; /* node that zone *z is on */
1313 zlc
= zonelist
->zlcache_ptr
;
1317 i
= z
- zonelist
->_zonerefs
;
1320 /* This zone is worth trying if it is allowed but not full */
1321 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1325 * Given 'z' scanning a zonelist, set the corresponding bit in
1326 * zlc->fullzones, so that subsequent attempts to allocate a page
1327 * from that zone don't waste time re-examining it.
1329 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1331 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1332 int i
; /* index of *z in zonelist zones */
1334 zlc
= zonelist
->zlcache_ptr
;
1338 i
= z
- zonelist
->_zonerefs
;
1340 set_bit(i
, zlc
->fullzones
);
1343 #else /* CONFIG_NUMA */
1345 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1350 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1351 nodemask_t
*allowednodes
)
1356 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1359 #endif /* CONFIG_NUMA */
1362 * get_page_from_freelist goes through the zonelist trying to allocate
1365 static struct page
*
1366 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1367 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1370 struct page
*page
= NULL
;
1372 struct zone
*zone
, *preferred_zone
;
1373 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1374 int zlc_active
= 0; /* set if using zonelist_cache */
1375 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1377 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1379 if (!preferred_zone
)
1382 classzone_idx
= zone_idx(preferred_zone
);
1386 * Scan zonelist, looking for a zone with enough free.
1387 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1389 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1390 high_zoneidx
, nodemask
) {
1391 if (NUMA_BUILD
&& zlc_active
&&
1392 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1394 if ((alloc_flags
& ALLOC_CPUSET
) &&
1395 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1398 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1400 if (alloc_flags
& ALLOC_WMARK_MIN
)
1401 mark
= zone
->pages_min
;
1402 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1403 mark
= zone
->pages_low
;
1405 mark
= zone
->pages_high
;
1406 if (!zone_watermark_ok(zone
, order
, mark
,
1407 classzone_idx
, alloc_flags
)) {
1408 if (!zone_reclaim_mode
||
1409 !zone_reclaim(zone
, gfp_mask
, order
))
1410 goto this_zone_full
;
1414 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1419 zlc_mark_zone_full(zonelist
, z
);
1421 if (NUMA_BUILD
&& !did_zlc_setup
) {
1422 /* we do zlc_setup after the first zone is tried */
1423 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1429 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1430 /* Disable zlc cache for second zonelist scan */
1438 * This is the 'heart' of the zoned buddy allocator.
1441 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1442 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1444 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1445 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1449 struct reclaim_state reclaim_state
;
1450 struct task_struct
*p
= current
;
1453 unsigned long did_some_progress
;
1454 unsigned long pages_reclaimed
= 0;
1456 might_sleep_if(wait
);
1458 if (should_fail_alloc_page(gfp_mask
, order
))
1462 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1464 if (unlikely(!z
->zone
)) {
1466 * Happens if we have an empty zonelist as a result of
1467 * GFP_THISNODE being used on a memoryless node
1472 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1473 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1478 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1479 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1480 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1481 * using a larger set of nodes after it has established that the
1482 * allowed per node queues are empty and that nodes are
1485 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1488 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1489 wakeup_kswapd(zone
, order
);
1492 * OK, we're below the kswapd watermark and have kicked background
1493 * reclaim. Now things get more complex, so set up alloc_flags according
1494 * to how we want to proceed.
1496 * The caller may dip into page reserves a bit more if the caller
1497 * cannot run direct reclaim, or if the caller has realtime scheduling
1498 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1499 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1501 alloc_flags
= ALLOC_WMARK_MIN
;
1502 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1503 alloc_flags
|= ALLOC_HARDER
;
1504 if (gfp_mask
& __GFP_HIGH
)
1505 alloc_flags
|= ALLOC_HIGH
;
1507 alloc_flags
|= ALLOC_CPUSET
;
1510 * Go through the zonelist again. Let __GFP_HIGH and allocations
1511 * coming from realtime tasks go deeper into reserves.
1513 * This is the last chance, in general, before the goto nopage.
1514 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1515 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1517 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1518 high_zoneidx
, alloc_flags
);
1522 /* This allocation should allow future memory freeing. */
1525 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1526 && !in_interrupt()) {
1527 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1529 /* go through the zonelist yet again, ignoring mins */
1530 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1531 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1534 if (gfp_mask
& __GFP_NOFAIL
) {
1535 congestion_wait(WRITE
, HZ
/50);
1542 /* Atomic allocations - we can't balance anything */
1548 /* We now go into synchronous reclaim */
1549 cpuset_memory_pressure_bump();
1550 p
->flags
|= PF_MEMALLOC
;
1551 reclaim_state
.reclaimed_slab
= 0;
1552 p
->reclaim_state
= &reclaim_state
;
1554 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1556 p
->reclaim_state
= NULL
;
1557 p
->flags
&= ~PF_MEMALLOC
;
1564 if (likely(did_some_progress
)) {
1565 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1566 zonelist
, high_zoneidx
, alloc_flags
);
1569 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1570 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1571 schedule_timeout_uninterruptible(1);
1576 * Go through the zonelist yet one more time, keep
1577 * very high watermark here, this is only to catch
1578 * a parallel oom killing, we must fail if we're still
1579 * under heavy pressure.
1581 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1582 order
, zonelist
, high_zoneidx
,
1583 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1585 clear_zonelist_oom(zonelist
, gfp_mask
);
1589 /* The OOM killer will not help higher order allocs so fail */
1590 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1591 clear_zonelist_oom(zonelist
, gfp_mask
);
1595 out_of_memory(zonelist
, gfp_mask
, order
);
1596 clear_zonelist_oom(zonelist
, gfp_mask
);
1601 * Don't let big-order allocations loop unless the caller explicitly
1602 * requests that. Wait for some write requests to complete then retry.
1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 * means __GFP_NOFAIL, but that may not be true in other
1608 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1609 * specified, then we retry until we no longer reclaim any pages
1610 * (above), or we've reclaimed an order of pages at least as
1611 * large as the allocation's order. In both cases, if the
1612 * allocation still fails, we stop retrying.
1614 pages_reclaimed
+= did_some_progress
;
1616 if (!(gfp_mask
& __GFP_NORETRY
)) {
1617 if (order
<= PAGE_ALLOC_COSTLY_ORDER
) {
1620 if (gfp_mask
& __GFP_REPEAT
&&
1621 pages_reclaimed
< (1 << order
))
1624 if (gfp_mask
& __GFP_NOFAIL
)
1628 congestion_wait(WRITE
, HZ
/50);
1633 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1634 printk(KERN_WARNING
"%s: page allocation failure."
1635 " order:%d, mode:0x%x\n",
1636 p
->comm
, order
, gfp_mask
);
1643 EXPORT_SYMBOL(__alloc_pages_internal
);
1646 * Common helper functions.
1648 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1651 page
= alloc_pages(gfp_mask
, order
);
1654 return (unsigned long) page_address(page
);
1657 EXPORT_SYMBOL(__get_free_pages
);
1659 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1664 * get_zeroed_page() returns a 32-bit address, which cannot represent
1667 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1669 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1671 return (unsigned long) page_address(page
);
1675 EXPORT_SYMBOL(get_zeroed_page
);
1677 void __pagevec_free(struct pagevec
*pvec
)
1679 int i
= pagevec_count(pvec
);
1682 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1685 void __free_pages(struct page
*page
, unsigned int order
)
1687 if (put_page_testzero(page
)) {
1689 free_hot_page(page
);
1691 __free_pages_ok(page
, order
);
1695 EXPORT_SYMBOL(__free_pages
);
1697 void free_pages(unsigned long addr
, unsigned int order
)
1700 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1701 __free_pages(virt_to_page((void *)addr
), order
);
1705 EXPORT_SYMBOL(free_pages
);
1708 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1709 * @size: the number of bytes to allocate
1710 * @gfp_mask: GFP flags for the allocation
1712 * This function is similar to alloc_pages(), except that it allocates the
1713 * minimum number of pages to satisfy the request. alloc_pages() can only
1714 * allocate memory in power-of-two pages.
1716 * This function is also limited by MAX_ORDER.
1718 * Memory allocated by this function must be released by free_pages_exact().
1720 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
1722 unsigned int order
= get_order(size
);
1725 addr
= __get_free_pages(gfp_mask
, order
);
1727 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
1728 unsigned long used
= addr
+ PAGE_ALIGN(size
);
1730 split_page(virt_to_page(addr
), order
);
1731 while (used
< alloc_end
) {
1737 return (void *)addr
;
1739 EXPORT_SYMBOL(alloc_pages_exact
);
1742 * free_pages_exact - release memory allocated via alloc_pages_exact()
1743 * @virt: the value returned by alloc_pages_exact.
1744 * @size: size of allocation, same value as passed to alloc_pages_exact().
1746 * Release the memory allocated by a previous call to alloc_pages_exact.
1748 void free_pages_exact(void *virt
, size_t size
)
1750 unsigned long addr
= (unsigned long)virt
;
1751 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1753 while (addr
< end
) {
1758 EXPORT_SYMBOL(free_pages_exact
);
1760 static unsigned int nr_free_zone_pages(int offset
)
1765 /* Just pick one node, since fallback list is circular */
1766 unsigned int sum
= 0;
1768 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1770 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1771 unsigned long size
= zone
->present_pages
;
1772 unsigned long high
= zone
->pages_high
;
1781 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1783 unsigned int nr_free_buffer_pages(void)
1785 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1787 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1790 * Amount of free RAM allocatable within all zones
1792 unsigned int nr_free_pagecache_pages(void)
1794 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1797 static inline void show_node(struct zone
*zone
)
1800 printk("Node %d ", zone_to_nid(zone
));
1803 void si_meminfo(struct sysinfo
*val
)
1805 val
->totalram
= totalram_pages
;
1807 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1808 val
->bufferram
= nr_blockdev_pages();
1809 val
->totalhigh
= totalhigh_pages
;
1810 val
->freehigh
= nr_free_highpages();
1811 val
->mem_unit
= PAGE_SIZE
;
1814 EXPORT_SYMBOL(si_meminfo
);
1817 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1819 pg_data_t
*pgdat
= NODE_DATA(nid
);
1821 val
->totalram
= pgdat
->node_present_pages
;
1822 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1823 #ifdef CONFIG_HIGHMEM
1824 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1825 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1831 val
->mem_unit
= PAGE_SIZE
;
1835 #define K(x) ((x) << (PAGE_SHIFT-10))
1838 * Show free area list (used inside shift_scroll-lock stuff)
1839 * We also calculate the percentage fragmentation. We do this by counting the
1840 * memory on each free list with the exception of the first item on the list.
1842 void show_free_areas(void)
1847 for_each_zone(zone
) {
1848 if (!populated_zone(zone
))
1852 printk("%s per-cpu:\n", zone
->name
);
1854 for_each_online_cpu(cpu
) {
1855 struct per_cpu_pageset
*pageset
;
1857 pageset
= zone_pcp(zone
, cpu
);
1859 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1860 cpu
, pageset
->pcp
.high
,
1861 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1865 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1866 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1867 global_page_state(NR_ACTIVE
),
1868 global_page_state(NR_INACTIVE
),
1869 global_page_state(NR_FILE_DIRTY
),
1870 global_page_state(NR_WRITEBACK
),
1871 global_page_state(NR_UNSTABLE_NFS
),
1872 global_page_state(NR_FREE_PAGES
),
1873 global_page_state(NR_SLAB_RECLAIMABLE
) +
1874 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1875 global_page_state(NR_FILE_MAPPED
),
1876 global_page_state(NR_PAGETABLE
),
1877 global_page_state(NR_BOUNCE
));
1879 for_each_zone(zone
) {
1882 if (!populated_zone(zone
))
1894 " pages_scanned:%lu"
1895 " all_unreclaimable? %s"
1898 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1901 K(zone
->pages_high
),
1902 K(zone_page_state(zone
, NR_ACTIVE
)),
1903 K(zone_page_state(zone
, NR_INACTIVE
)),
1904 K(zone
->present_pages
),
1905 zone
->pages_scanned
,
1906 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1908 printk("lowmem_reserve[]:");
1909 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1910 printk(" %lu", zone
->lowmem_reserve
[i
]);
1914 for_each_zone(zone
) {
1915 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1917 if (!populated_zone(zone
))
1921 printk("%s: ", zone
->name
);
1923 spin_lock_irqsave(&zone
->lock
, flags
);
1924 for (order
= 0; order
< MAX_ORDER
; order
++) {
1925 nr
[order
] = zone
->free_area
[order
].nr_free
;
1926 total
+= nr
[order
] << order
;
1928 spin_unlock_irqrestore(&zone
->lock
, flags
);
1929 for (order
= 0; order
< MAX_ORDER
; order
++)
1930 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1931 printk("= %lukB\n", K(total
));
1934 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1936 show_swap_cache_info();
1939 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
1941 zoneref
->zone
= zone
;
1942 zoneref
->zone_idx
= zone_idx(zone
);
1946 * Builds allocation fallback zone lists.
1948 * Add all populated zones of a node to the zonelist.
1950 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1951 int nr_zones
, enum zone_type zone_type
)
1955 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1960 zone
= pgdat
->node_zones
+ zone_type
;
1961 if (populated_zone(zone
)) {
1962 zoneref_set_zone(zone
,
1963 &zonelist
->_zonerefs
[nr_zones
++]);
1964 check_highest_zone(zone_type
);
1967 } while (zone_type
);
1974 * 0 = automatic detection of better ordering.
1975 * 1 = order by ([node] distance, -zonetype)
1976 * 2 = order by (-zonetype, [node] distance)
1978 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1979 * the same zonelist. So only NUMA can configure this param.
1981 #define ZONELIST_ORDER_DEFAULT 0
1982 #define ZONELIST_ORDER_NODE 1
1983 #define ZONELIST_ORDER_ZONE 2
1985 /* zonelist order in the kernel.
1986 * set_zonelist_order() will set this to NODE or ZONE.
1988 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1989 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1993 /* The value user specified ....changed by config */
1994 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1995 /* string for sysctl */
1996 #define NUMA_ZONELIST_ORDER_LEN 16
1997 char numa_zonelist_order
[16] = "default";
2000 * interface for configure zonelist ordering.
2001 * command line option "numa_zonelist_order"
2002 * = "[dD]efault - default, automatic configuration.
2003 * = "[nN]ode - order by node locality, then by zone within node
2004 * = "[zZ]one - order by zone, then by locality within zone
2007 static int __parse_numa_zonelist_order(char *s
)
2009 if (*s
== 'd' || *s
== 'D') {
2010 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2011 } else if (*s
== 'n' || *s
== 'N') {
2012 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2013 } else if (*s
== 'z' || *s
== 'Z') {
2014 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2017 "Ignoring invalid numa_zonelist_order value: "
2024 static __init
int setup_numa_zonelist_order(char *s
)
2027 return __parse_numa_zonelist_order(s
);
2030 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2033 * sysctl handler for numa_zonelist_order
2035 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2036 struct file
*file
, void __user
*buffer
, size_t *length
,
2039 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2043 strncpy(saved_string
, (char*)table
->data
,
2044 NUMA_ZONELIST_ORDER_LEN
);
2045 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2049 int oldval
= user_zonelist_order
;
2050 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2052 * bogus value. restore saved string
2054 strncpy((char*)table
->data
, saved_string
,
2055 NUMA_ZONELIST_ORDER_LEN
);
2056 user_zonelist_order
= oldval
;
2057 } else if (oldval
!= user_zonelist_order
)
2058 build_all_zonelists();
2064 #define MAX_NODE_LOAD (num_online_nodes())
2065 static int node_load
[MAX_NUMNODES
];
2068 * find_next_best_node - find the next node that should appear in a given node's fallback list
2069 * @node: node whose fallback list we're appending
2070 * @used_node_mask: nodemask_t of already used nodes
2072 * We use a number of factors to determine which is the next node that should
2073 * appear on a given node's fallback list. The node should not have appeared
2074 * already in @node's fallback list, and it should be the next closest node
2075 * according to the distance array (which contains arbitrary distance values
2076 * from each node to each node in the system), and should also prefer nodes
2077 * with no CPUs, since presumably they'll have very little allocation pressure
2078 * on them otherwise.
2079 * It returns -1 if no node is found.
2081 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2084 int min_val
= INT_MAX
;
2086 node_to_cpumask_ptr(tmp
, 0);
2088 /* Use the local node if we haven't already */
2089 if (!node_isset(node
, *used_node_mask
)) {
2090 node_set(node
, *used_node_mask
);
2094 for_each_node_state(n
, N_HIGH_MEMORY
) {
2096 /* Don't want a node to appear more than once */
2097 if (node_isset(n
, *used_node_mask
))
2100 /* Use the distance array to find the distance */
2101 val
= node_distance(node
, n
);
2103 /* Penalize nodes under us ("prefer the next node") */
2106 /* Give preference to headless and unused nodes */
2107 node_to_cpumask_ptr_next(tmp
, n
);
2108 if (!cpus_empty(*tmp
))
2109 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2111 /* Slight preference for less loaded node */
2112 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2113 val
+= node_load
[n
];
2115 if (val
< min_val
) {
2122 node_set(best_node
, *used_node_mask
);
2129 * Build zonelists ordered by node and zones within node.
2130 * This results in maximum locality--normal zone overflows into local
2131 * DMA zone, if any--but risks exhausting DMA zone.
2133 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2136 struct zonelist
*zonelist
;
2138 zonelist
= &pgdat
->node_zonelists
[0];
2139 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2141 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2143 zonelist
->_zonerefs
[j
].zone
= NULL
;
2144 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2148 * Build gfp_thisnode zonelists
2150 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2153 struct zonelist
*zonelist
;
2155 zonelist
= &pgdat
->node_zonelists
[1];
2156 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2157 zonelist
->_zonerefs
[j
].zone
= NULL
;
2158 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2162 * Build zonelists ordered by zone and nodes within zones.
2163 * This results in conserving DMA zone[s] until all Normal memory is
2164 * exhausted, but results in overflowing to remote node while memory
2165 * may still exist in local DMA zone.
2167 static int node_order
[MAX_NUMNODES
];
2169 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2172 int zone_type
; /* needs to be signed */
2174 struct zonelist
*zonelist
;
2176 zonelist
= &pgdat
->node_zonelists
[0];
2178 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2179 for (j
= 0; j
< nr_nodes
; j
++) {
2180 node
= node_order
[j
];
2181 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2182 if (populated_zone(z
)) {
2184 &zonelist
->_zonerefs
[pos
++]);
2185 check_highest_zone(zone_type
);
2189 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2190 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2193 static int default_zonelist_order(void)
2196 unsigned long low_kmem_size
,total_size
;
2200 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2201 * If they are really small and used heavily, the system can fall
2202 * into OOM very easily.
2203 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2205 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2208 for_each_online_node(nid
) {
2209 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2210 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2211 if (populated_zone(z
)) {
2212 if (zone_type
< ZONE_NORMAL
)
2213 low_kmem_size
+= z
->present_pages
;
2214 total_size
+= z
->present_pages
;
2218 if (!low_kmem_size
|| /* there are no DMA area. */
2219 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2220 return ZONELIST_ORDER_NODE
;
2222 * look into each node's config.
2223 * If there is a node whose DMA/DMA32 memory is very big area on
2224 * local memory, NODE_ORDER may be suitable.
2226 average_size
= total_size
/
2227 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2228 for_each_online_node(nid
) {
2231 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2232 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2233 if (populated_zone(z
)) {
2234 if (zone_type
< ZONE_NORMAL
)
2235 low_kmem_size
+= z
->present_pages
;
2236 total_size
+= z
->present_pages
;
2239 if (low_kmem_size
&&
2240 total_size
> average_size
&& /* ignore small node */
2241 low_kmem_size
> total_size
* 70/100)
2242 return ZONELIST_ORDER_NODE
;
2244 return ZONELIST_ORDER_ZONE
;
2247 static void set_zonelist_order(void)
2249 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2250 current_zonelist_order
= default_zonelist_order();
2252 current_zonelist_order
= user_zonelist_order
;
2255 static void build_zonelists(pg_data_t
*pgdat
)
2259 nodemask_t used_mask
;
2260 int local_node
, prev_node
;
2261 struct zonelist
*zonelist
;
2262 int order
= current_zonelist_order
;
2264 /* initialize zonelists */
2265 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2266 zonelist
= pgdat
->node_zonelists
+ i
;
2267 zonelist
->_zonerefs
[0].zone
= NULL
;
2268 zonelist
->_zonerefs
[0].zone_idx
= 0;
2271 /* NUMA-aware ordering of nodes */
2272 local_node
= pgdat
->node_id
;
2273 load
= num_online_nodes();
2274 prev_node
= local_node
;
2275 nodes_clear(used_mask
);
2277 memset(node_load
, 0, sizeof(node_load
));
2278 memset(node_order
, 0, sizeof(node_order
));
2281 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2282 int distance
= node_distance(local_node
, node
);
2285 * If another node is sufficiently far away then it is better
2286 * to reclaim pages in a zone before going off node.
2288 if (distance
> RECLAIM_DISTANCE
)
2289 zone_reclaim_mode
= 1;
2292 * We don't want to pressure a particular node.
2293 * So adding penalty to the first node in same
2294 * distance group to make it round-robin.
2296 if (distance
!= node_distance(local_node
, prev_node
))
2297 node_load
[node
] = load
;
2301 if (order
== ZONELIST_ORDER_NODE
)
2302 build_zonelists_in_node_order(pgdat
, node
);
2304 node_order
[j
++] = node
; /* remember order */
2307 if (order
== ZONELIST_ORDER_ZONE
) {
2308 /* calculate node order -- i.e., DMA last! */
2309 build_zonelists_in_zone_order(pgdat
, j
);
2312 build_thisnode_zonelists(pgdat
);
2315 /* Construct the zonelist performance cache - see further mmzone.h */
2316 static void build_zonelist_cache(pg_data_t
*pgdat
)
2318 struct zonelist
*zonelist
;
2319 struct zonelist_cache
*zlc
;
2322 zonelist
= &pgdat
->node_zonelists
[0];
2323 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2324 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2325 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2326 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2330 #else /* CONFIG_NUMA */
2332 static void set_zonelist_order(void)
2334 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2337 static void build_zonelists(pg_data_t
*pgdat
)
2339 int node
, local_node
;
2341 struct zonelist
*zonelist
;
2343 local_node
= pgdat
->node_id
;
2345 zonelist
= &pgdat
->node_zonelists
[0];
2346 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2349 * Now we build the zonelist so that it contains the zones
2350 * of all the other nodes.
2351 * We don't want to pressure a particular node, so when
2352 * building the zones for node N, we make sure that the
2353 * zones coming right after the local ones are those from
2354 * node N+1 (modulo N)
2356 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2357 if (!node_online(node
))
2359 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2362 for (node
= 0; node
< local_node
; node
++) {
2363 if (!node_online(node
))
2365 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2369 zonelist
->_zonerefs
[j
].zone
= NULL
;
2370 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2373 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2374 static void build_zonelist_cache(pg_data_t
*pgdat
)
2376 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2379 #endif /* CONFIG_NUMA */
2381 /* return values int ....just for stop_machine() */
2382 static int __build_all_zonelists(void *dummy
)
2386 for_each_online_node(nid
) {
2387 pg_data_t
*pgdat
= NODE_DATA(nid
);
2389 build_zonelists(pgdat
);
2390 build_zonelist_cache(pgdat
);
2395 void build_all_zonelists(void)
2397 set_zonelist_order();
2399 if (system_state
== SYSTEM_BOOTING
) {
2400 __build_all_zonelists(NULL
);
2401 mminit_verify_zonelist();
2402 cpuset_init_current_mems_allowed();
2404 /* we have to stop all cpus to guarantee there is no user
2406 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2407 /* cpuset refresh routine should be here */
2409 vm_total_pages
= nr_free_pagecache_pages();
2411 * Disable grouping by mobility if the number of pages in the
2412 * system is too low to allow the mechanism to work. It would be
2413 * more accurate, but expensive to check per-zone. This check is
2414 * made on memory-hotadd so a system can start with mobility
2415 * disabled and enable it later
2417 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2418 page_group_by_mobility_disabled
= 1;
2420 page_group_by_mobility_disabled
= 0;
2422 printk("Built %i zonelists in %s order, mobility grouping %s. "
2423 "Total pages: %ld\n",
2425 zonelist_order_name
[current_zonelist_order
],
2426 page_group_by_mobility_disabled
? "off" : "on",
2429 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2434 * Helper functions to size the waitqueue hash table.
2435 * Essentially these want to choose hash table sizes sufficiently
2436 * large so that collisions trying to wait on pages are rare.
2437 * But in fact, the number of active page waitqueues on typical
2438 * systems is ridiculously low, less than 200. So this is even
2439 * conservative, even though it seems large.
2441 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2442 * waitqueues, i.e. the size of the waitq table given the number of pages.
2444 #define PAGES_PER_WAITQUEUE 256
2446 #ifndef CONFIG_MEMORY_HOTPLUG
2447 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2449 unsigned long size
= 1;
2451 pages
/= PAGES_PER_WAITQUEUE
;
2453 while (size
< pages
)
2457 * Once we have dozens or even hundreds of threads sleeping
2458 * on IO we've got bigger problems than wait queue collision.
2459 * Limit the size of the wait table to a reasonable size.
2461 size
= min(size
, 4096UL);
2463 return max(size
, 4UL);
2467 * A zone's size might be changed by hot-add, so it is not possible to determine
2468 * a suitable size for its wait_table. So we use the maximum size now.
2470 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2472 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2473 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2474 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2476 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2477 * or more by the traditional way. (See above). It equals:
2479 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2480 * ia64(16K page size) : = ( 8G + 4M)byte.
2481 * powerpc (64K page size) : = (32G +16M)byte.
2483 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2490 * This is an integer logarithm so that shifts can be used later
2491 * to extract the more random high bits from the multiplicative
2492 * hash function before the remainder is taken.
2494 static inline unsigned long wait_table_bits(unsigned long size
)
2499 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2502 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2503 * of blocks reserved is based on zone->pages_min. The memory within the
2504 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2505 * higher will lead to a bigger reserve which will get freed as contiguous
2506 * blocks as reclaim kicks in
2508 static void setup_zone_migrate_reserve(struct zone
*zone
)
2510 unsigned long start_pfn
, pfn
, end_pfn
;
2512 unsigned long reserve
, block_migratetype
;
2514 /* Get the start pfn, end pfn and the number of blocks to reserve */
2515 start_pfn
= zone
->zone_start_pfn
;
2516 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2517 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2520 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2521 if (!pfn_valid(pfn
))
2523 page
= pfn_to_page(pfn
);
2525 /* Watch out for overlapping nodes */
2526 if (page_to_nid(page
) != zone_to_nid(zone
))
2529 /* Blocks with reserved pages will never free, skip them. */
2530 if (PageReserved(page
))
2533 block_migratetype
= get_pageblock_migratetype(page
);
2535 /* If this block is reserved, account for it */
2536 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2541 /* Suitable for reserving if this block is movable */
2542 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2543 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2544 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2550 * If the reserve is met and this is a previous reserved block,
2553 if (block_migratetype
== MIGRATE_RESERVE
) {
2554 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2555 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2561 * Initially all pages are reserved - free ones are freed
2562 * up by free_all_bootmem() once the early boot process is
2563 * done. Non-atomic initialization, single-pass.
2565 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2566 unsigned long start_pfn
, enum memmap_context context
)
2569 unsigned long end_pfn
= start_pfn
+ size
;
2573 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2574 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2576 * There can be holes in boot-time mem_map[]s
2577 * handed to this function. They do not
2578 * exist on hotplugged memory.
2580 if (context
== MEMMAP_EARLY
) {
2581 if (!early_pfn_valid(pfn
))
2583 if (!early_pfn_in_nid(pfn
, nid
))
2586 page
= pfn_to_page(pfn
);
2587 set_page_links(page
, zone
, nid
, pfn
);
2588 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2589 init_page_count(page
);
2590 reset_page_mapcount(page
);
2591 SetPageReserved(page
);
2593 * Mark the block movable so that blocks are reserved for
2594 * movable at startup. This will force kernel allocations
2595 * to reserve their blocks rather than leaking throughout
2596 * the address space during boot when many long-lived
2597 * kernel allocations are made. Later some blocks near
2598 * the start are marked MIGRATE_RESERVE by
2599 * setup_zone_migrate_reserve()
2601 * bitmap is created for zone's valid pfn range. but memmap
2602 * can be created for invalid pages (for alignment)
2603 * check here not to call set_pageblock_migratetype() against
2606 if ((z
->zone_start_pfn
<= pfn
)
2607 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2608 && !(pfn
& (pageblock_nr_pages
- 1)))
2609 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2611 INIT_LIST_HEAD(&page
->lru
);
2612 #ifdef WANT_PAGE_VIRTUAL
2613 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2614 if (!is_highmem_idx(zone
))
2615 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2620 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2623 for_each_migratetype_order(order
, t
) {
2624 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2625 zone
->free_area
[order
].nr_free
= 0;
2629 #ifndef __HAVE_ARCH_MEMMAP_INIT
2630 #define memmap_init(size, nid, zone, start_pfn) \
2631 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2634 static int zone_batchsize(struct zone
*zone
)
2639 * The per-cpu-pages pools are set to around 1000th of the
2640 * size of the zone. But no more than 1/2 of a meg.
2642 * OK, so we don't know how big the cache is. So guess.
2644 batch
= zone
->present_pages
/ 1024;
2645 if (batch
* PAGE_SIZE
> 512 * 1024)
2646 batch
= (512 * 1024) / PAGE_SIZE
;
2647 batch
/= 4; /* We effectively *= 4 below */
2652 * Clamp the batch to a 2^n - 1 value. Having a power
2653 * of 2 value was found to be more likely to have
2654 * suboptimal cache aliasing properties in some cases.
2656 * For example if 2 tasks are alternately allocating
2657 * batches of pages, one task can end up with a lot
2658 * of pages of one half of the possible page colors
2659 * and the other with pages of the other colors.
2661 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2666 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2668 struct per_cpu_pages
*pcp
;
2670 memset(p
, 0, sizeof(*p
));
2674 pcp
->high
= 6 * batch
;
2675 pcp
->batch
= max(1UL, 1 * batch
);
2676 INIT_LIST_HEAD(&pcp
->list
);
2680 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2681 * to the value high for the pageset p.
2684 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2687 struct per_cpu_pages
*pcp
;
2691 pcp
->batch
= max(1UL, high
/4);
2692 if ((high
/4) > (PAGE_SHIFT
* 8))
2693 pcp
->batch
= PAGE_SHIFT
* 8;
2699 * Boot pageset table. One per cpu which is going to be used for all
2700 * zones and all nodes. The parameters will be set in such a way
2701 * that an item put on a list will immediately be handed over to
2702 * the buddy list. This is safe since pageset manipulation is done
2703 * with interrupts disabled.
2705 * Some NUMA counter updates may also be caught by the boot pagesets.
2707 * The boot_pagesets must be kept even after bootup is complete for
2708 * unused processors and/or zones. They do play a role for bootstrapping
2709 * hotplugged processors.
2711 * zoneinfo_show() and maybe other functions do
2712 * not check if the processor is online before following the pageset pointer.
2713 * Other parts of the kernel may not check if the zone is available.
2715 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2718 * Dynamically allocate memory for the
2719 * per cpu pageset array in struct zone.
2721 static int __cpuinit
process_zones(int cpu
)
2723 struct zone
*zone
, *dzone
;
2724 int node
= cpu_to_node(cpu
);
2726 node_set_state(node
, N_CPU
); /* this node has a cpu */
2728 for_each_zone(zone
) {
2730 if (!populated_zone(zone
))
2733 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2735 if (!zone_pcp(zone
, cpu
))
2738 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2740 if (percpu_pagelist_fraction
)
2741 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2742 (zone
->present_pages
/ percpu_pagelist_fraction
));
2747 for_each_zone(dzone
) {
2748 if (!populated_zone(dzone
))
2752 kfree(zone_pcp(dzone
, cpu
));
2753 zone_pcp(dzone
, cpu
) = NULL
;
2758 static inline void free_zone_pagesets(int cpu
)
2762 for_each_zone(zone
) {
2763 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2765 /* Free per_cpu_pageset if it is slab allocated */
2766 if (pset
!= &boot_pageset
[cpu
])
2768 zone_pcp(zone
, cpu
) = NULL
;
2772 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2773 unsigned long action
,
2776 int cpu
= (long)hcpu
;
2777 int ret
= NOTIFY_OK
;
2780 case CPU_UP_PREPARE
:
2781 case CPU_UP_PREPARE_FROZEN
:
2782 if (process_zones(cpu
))
2785 case CPU_UP_CANCELED
:
2786 case CPU_UP_CANCELED_FROZEN
:
2788 case CPU_DEAD_FROZEN
:
2789 free_zone_pagesets(cpu
);
2797 static struct notifier_block __cpuinitdata pageset_notifier
=
2798 { &pageset_cpuup_callback
, NULL
, 0 };
2800 void __init
setup_per_cpu_pageset(void)
2804 /* Initialize per_cpu_pageset for cpu 0.
2805 * A cpuup callback will do this for every cpu
2806 * as it comes online
2808 err
= process_zones(smp_processor_id());
2810 register_cpu_notifier(&pageset_notifier
);
2815 static noinline __init_refok
2816 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2819 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2823 * The per-page waitqueue mechanism uses hashed waitqueues
2826 zone
->wait_table_hash_nr_entries
=
2827 wait_table_hash_nr_entries(zone_size_pages
);
2828 zone
->wait_table_bits
=
2829 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2830 alloc_size
= zone
->wait_table_hash_nr_entries
2831 * sizeof(wait_queue_head_t
);
2833 if (!slab_is_available()) {
2834 zone
->wait_table
= (wait_queue_head_t
*)
2835 alloc_bootmem_node(pgdat
, alloc_size
);
2838 * This case means that a zone whose size was 0 gets new memory
2839 * via memory hot-add.
2840 * But it may be the case that a new node was hot-added. In
2841 * this case vmalloc() will not be able to use this new node's
2842 * memory - this wait_table must be initialized to use this new
2843 * node itself as well.
2844 * To use this new node's memory, further consideration will be
2847 zone
->wait_table
= vmalloc(alloc_size
);
2849 if (!zone
->wait_table
)
2852 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2853 init_waitqueue_head(zone
->wait_table
+ i
);
2858 static __meminit
void zone_pcp_init(struct zone
*zone
)
2861 unsigned long batch
= zone_batchsize(zone
);
2863 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2865 /* Early boot. Slab allocator not functional yet */
2866 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2867 setup_pageset(&boot_pageset
[cpu
],0);
2869 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2872 if (zone
->present_pages
)
2873 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2874 zone
->name
, zone
->present_pages
, batch
);
2877 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2878 unsigned long zone_start_pfn
,
2880 enum memmap_context context
)
2882 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2884 ret
= zone_wait_table_init(zone
, size
);
2887 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2889 zone
->zone_start_pfn
= zone_start_pfn
;
2891 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
2892 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2894 (unsigned long)zone_idx(zone
),
2895 zone_start_pfn
, (zone_start_pfn
+ size
));
2897 zone_init_free_lists(zone
);
2902 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2904 * Basic iterator support. Return the first range of PFNs for a node
2905 * Note: nid == MAX_NUMNODES returns first region regardless of node
2907 static int __meminit
first_active_region_index_in_nid(int nid
)
2911 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2912 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2919 * Basic iterator support. Return the next active range of PFNs for a node
2920 * Note: nid == MAX_NUMNODES returns next region regardless of node
2922 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2924 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2925 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2931 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2933 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2934 * Architectures may implement their own version but if add_active_range()
2935 * was used and there are no special requirements, this is a convenient
2938 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2942 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2943 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2944 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2946 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2947 return early_node_map
[i
].nid
;
2952 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2954 /* Basic iterator support to walk early_node_map[] */
2955 #define for_each_active_range_index_in_nid(i, nid) \
2956 for (i = first_active_region_index_in_nid(nid); i != -1; \
2957 i = next_active_region_index_in_nid(i, nid))
2960 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2961 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2962 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2964 * If an architecture guarantees that all ranges registered with
2965 * add_active_ranges() contain no holes and may be freed, this
2966 * this function may be used instead of calling free_bootmem() manually.
2968 void __init
free_bootmem_with_active_regions(int nid
,
2969 unsigned long max_low_pfn
)
2973 for_each_active_range_index_in_nid(i
, nid
) {
2974 unsigned long size_pages
= 0;
2975 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2977 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2980 if (end_pfn
> max_low_pfn
)
2981 end_pfn
= max_low_pfn
;
2983 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2984 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2985 PFN_PHYS(early_node_map
[i
].start_pfn
),
2986 size_pages
<< PAGE_SHIFT
);
2990 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
2995 for_each_active_range_index_in_nid(i
, nid
) {
2996 ret
= work_fn(early_node_map
[i
].start_pfn
,
2997 early_node_map
[i
].end_pfn
, data
);
3003 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3004 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3006 * If an architecture guarantees that all ranges registered with
3007 * add_active_ranges() contain no holes and may be freed, this
3008 * function may be used instead of calling memory_present() manually.
3010 void __init
sparse_memory_present_with_active_regions(int nid
)
3014 for_each_active_range_index_in_nid(i
, nid
)
3015 memory_present(early_node_map
[i
].nid
,
3016 early_node_map
[i
].start_pfn
,
3017 early_node_map
[i
].end_pfn
);
3021 * push_node_boundaries - Push node boundaries to at least the requested boundary
3022 * @nid: The nid of the node to push the boundary for
3023 * @start_pfn: The start pfn of the node
3024 * @end_pfn: The end pfn of the node
3026 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3027 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3028 * be hotplugged even though no physical memory exists. This function allows
3029 * an arch to push out the node boundaries so mem_map is allocated that can
3032 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3033 void __init
push_node_boundaries(unsigned int nid
,
3034 unsigned long start_pfn
, unsigned long end_pfn
)
3036 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3037 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3038 nid
, start_pfn
, end_pfn
);
3040 /* Initialise the boundary for this node if necessary */
3041 if (node_boundary_end_pfn
[nid
] == 0)
3042 node_boundary_start_pfn
[nid
] = -1UL;
3044 /* Update the boundaries */
3045 if (node_boundary_start_pfn
[nid
] > start_pfn
)
3046 node_boundary_start_pfn
[nid
] = start_pfn
;
3047 if (node_boundary_end_pfn
[nid
] < end_pfn
)
3048 node_boundary_end_pfn
[nid
] = end_pfn
;
3051 /* If necessary, push the node boundary out for reserve hotadd */
3052 static void __meminit
account_node_boundary(unsigned int nid
,
3053 unsigned long *start_pfn
, unsigned long *end_pfn
)
3055 mminit_dprintk(MMINIT_TRACE
, "zoneboundary",
3056 "Entering account_node_boundary(%u, %lu, %lu)\n",
3057 nid
, *start_pfn
, *end_pfn
);
3059 /* Return if boundary information has not been provided */
3060 if (node_boundary_end_pfn
[nid
] == 0)
3063 /* Check the boundaries and update if necessary */
3064 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3065 *start_pfn
= node_boundary_start_pfn
[nid
];
3066 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3067 *end_pfn
= node_boundary_end_pfn
[nid
];
3070 void __init
push_node_boundaries(unsigned int nid
,
3071 unsigned long start_pfn
, unsigned long end_pfn
) {}
3073 static void __meminit
account_node_boundary(unsigned int nid
,
3074 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3079 * get_pfn_range_for_nid - Return the start and end page frames for a node
3080 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3081 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3082 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3084 * It returns the start and end page frame of a node based on information
3085 * provided by an arch calling add_active_range(). If called for a node
3086 * with no available memory, a warning is printed and the start and end
3089 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3090 unsigned long *start_pfn
, unsigned long *end_pfn
)
3096 for_each_active_range_index_in_nid(i
, nid
) {
3097 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3098 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3101 if (*start_pfn
== -1UL)
3104 /* Push the node boundaries out if requested */
3105 account_node_boundary(nid
, start_pfn
, end_pfn
);
3109 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3110 * assumption is made that zones within a node are ordered in monotonic
3111 * increasing memory addresses so that the "highest" populated zone is used
3113 static void __init
find_usable_zone_for_movable(void)
3116 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3117 if (zone_index
== ZONE_MOVABLE
)
3120 if (arch_zone_highest_possible_pfn
[zone_index
] >
3121 arch_zone_lowest_possible_pfn
[zone_index
])
3125 VM_BUG_ON(zone_index
== -1);
3126 movable_zone
= zone_index
;
3130 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3131 * because it is sized independant of architecture. Unlike the other zones,
3132 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3133 * in each node depending on the size of each node and how evenly kernelcore
3134 * is distributed. This helper function adjusts the zone ranges
3135 * provided by the architecture for a given node by using the end of the
3136 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3137 * zones within a node are in order of monotonic increases memory addresses
3139 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3140 unsigned long zone_type
,
3141 unsigned long node_start_pfn
,
3142 unsigned long node_end_pfn
,
3143 unsigned long *zone_start_pfn
,
3144 unsigned long *zone_end_pfn
)
3146 /* Only adjust if ZONE_MOVABLE is on this node */
3147 if (zone_movable_pfn
[nid
]) {
3148 /* Size ZONE_MOVABLE */
3149 if (zone_type
== ZONE_MOVABLE
) {
3150 *zone_start_pfn
= zone_movable_pfn
[nid
];
3151 *zone_end_pfn
= min(node_end_pfn
,
3152 arch_zone_highest_possible_pfn
[movable_zone
]);
3154 /* Adjust for ZONE_MOVABLE starting within this range */
3155 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3156 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3157 *zone_end_pfn
= zone_movable_pfn
[nid
];
3159 /* Check if this whole range is within ZONE_MOVABLE */
3160 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3161 *zone_start_pfn
= *zone_end_pfn
;
3166 * Return the number of pages a zone spans in a node, including holes
3167 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3169 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3170 unsigned long zone_type
,
3171 unsigned long *ignored
)
3173 unsigned long node_start_pfn
, node_end_pfn
;
3174 unsigned long zone_start_pfn
, zone_end_pfn
;
3176 /* Get the start and end of the node and zone */
3177 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3178 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3179 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3180 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3181 node_start_pfn
, node_end_pfn
,
3182 &zone_start_pfn
, &zone_end_pfn
);
3184 /* Check that this node has pages within the zone's required range */
3185 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3188 /* Move the zone boundaries inside the node if necessary */
3189 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3190 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3192 /* Return the spanned pages */
3193 return zone_end_pfn
- zone_start_pfn
;
3197 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3198 * then all holes in the requested range will be accounted for.
3200 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3201 unsigned long range_start_pfn
,
3202 unsigned long range_end_pfn
)
3205 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3206 unsigned long start_pfn
;
3208 /* Find the end_pfn of the first active range of pfns in the node */
3209 i
= first_active_region_index_in_nid(nid
);
3213 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3215 /* Account for ranges before physical memory on this node */
3216 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3217 hole_pages
= prev_end_pfn
- range_start_pfn
;
3219 /* Find all holes for the zone within the node */
3220 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3222 /* No need to continue if prev_end_pfn is outside the zone */
3223 if (prev_end_pfn
>= range_end_pfn
)
3226 /* Make sure the end of the zone is not within the hole */
3227 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3228 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3230 /* Update the hole size cound and move on */
3231 if (start_pfn
> range_start_pfn
) {
3232 BUG_ON(prev_end_pfn
> start_pfn
);
3233 hole_pages
+= start_pfn
- prev_end_pfn
;
3235 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3238 /* Account for ranges past physical memory on this node */
3239 if (range_end_pfn
> prev_end_pfn
)
3240 hole_pages
+= range_end_pfn
-
3241 max(range_start_pfn
, prev_end_pfn
);
3247 * absent_pages_in_range - Return number of page frames in holes within a range
3248 * @start_pfn: The start PFN to start searching for holes
3249 * @end_pfn: The end PFN to stop searching for holes
3251 * It returns the number of pages frames in memory holes within a range.
3253 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3254 unsigned long end_pfn
)
3256 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3259 /* Return the number of page frames in holes in a zone on a node */
3260 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3261 unsigned long zone_type
,
3262 unsigned long *ignored
)
3264 unsigned long node_start_pfn
, node_end_pfn
;
3265 unsigned long zone_start_pfn
, zone_end_pfn
;
3267 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3268 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3270 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3273 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3274 node_start_pfn
, node_end_pfn
,
3275 &zone_start_pfn
, &zone_end_pfn
);
3276 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3280 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3281 unsigned long zone_type
,
3282 unsigned long *zones_size
)
3284 return zones_size
[zone_type
];
3287 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3288 unsigned long zone_type
,
3289 unsigned long *zholes_size
)
3294 return zholes_size
[zone_type
];
3299 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3300 unsigned long *zones_size
, unsigned long *zholes_size
)
3302 unsigned long realtotalpages
, totalpages
= 0;
3305 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3306 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3308 pgdat
->node_spanned_pages
= totalpages
;
3310 realtotalpages
= totalpages
;
3311 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3313 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3315 pgdat
->node_present_pages
= realtotalpages
;
3316 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3320 #ifndef CONFIG_SPARSEMEM
3322 * Calculate the size of the zone->blockflags rounded to an unsigned long
3323 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3324 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3325 * round what is now in bits to nearest long in bits, then return it in
3328 static unsigned long __init
usemap_size(unsigned long zonesize
)
3330 unsigned long usemapsize
;
3332 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3333 usemapsize
= usemapsize
>> pageblock_order
;
3334 usemapsize
*= NR_PAGEBLOCK_BITS
;
3335 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3337 return usemapsize
/ 8;
3340 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3341 struct zone
*zone
, unsigned long zonesize
)
3343 unsigned long usemapsize
= usemap_size(zonesize
);
3344 zone
->pageblock_flags
= NULL
;
3346 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3347 memset(zone
->pageblock_flags
, 0, usemapsize
);
3351 static void inline setup_usemap(struct pglist_data
*pgdat
,
3352 struct zone
*zone
, unsigned long zonesize
) {}
3353 #endif /* CONFIG_SPARSEMEM */
3355 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3357 /* Return a sensible default order for the pageblock size. */
3358 static inline int pageblock_default_order(void)
3360 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3361 return HUGETLB_PAGE_ORDER
;
3366 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3367 static inline void __init
set_pageblock_order(unsigned int order
)
3369 /* Check that pageblock_nr_pages has not already been setup */
3370 if (pageblock_order
)
3374 * Assume the largest contiguous order of interest is a huge page.
3375 * This value may be variable depending on boot parameters on IA64
3377 pageblock_order
= order
;
3379 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3382 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3383 * and pageblock_default_order() are unused as pageblock_order is set
3384 * at compile-time. See include/linux/pageblock-flags.h for the values of
3385 * pageblock_order based on the kernel config
3387 static inline int pageblock_default_order(unsigned int order
)
3391 #define set_pageblock_order(x) do {} while (0)
3393 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3396 * Set up the zone data structures:
3397 * - mark all pages reserved
3398 * - mark all memory queues empty
3399 * - clear the memory bitmaps
3401 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3402 unsigned long *zones_size
, unsigned long *zholes_size
)
3405 int nid
= pgdat
->node_id
;
3406 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3409 pgdat_resize_init(pgdat
);
3410 pgdat
->nr_zones
= 0;
3411 init_waitqueue_head(&pgdat
->kswapd_wait
);
3412 pgdat
->kswapd_max_order
= 0;
3414 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3415 struct zone
*zone
= pgdat
->node_zones
+ j
;
3416 unsigned long size
, realsize
, memmap_pages
;
3418 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3419 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3423 * Adjust realsize so that it accounts for how much memory
3424 * is used by this zone for memmap. This affects the watermark
3425 * and per-cpu initialisations
3428 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3429 if (realsize
>= memmap_pages
) {
3430 realsize
-= memmap_pages
;
3431 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3432 "%s zone: %lu pages used for memmap\n",
3433 zone_names
[j
], memmap_pages
);
3436 " %s zone: %lu pages exceeds realsize %lu\n",
3437 zone_names
[j
], memmap_pages
, realsize
);
3439 /* Account for reserved pages */
3440 if (j
== 0 && realsize
> dma_reserve
) {
3441 realsize
-= dma_reserve
;
3442 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3443 "%s zone: %lu pages reserved\n",
3444 zone_names
[0], dma_reserve
);
3447 if (!is_highmem_idx(j
))
3448 nr_kernel_pages
+= realsize
;
3449 nr_all_pages
+= realsize
;
3451 zone
->spanned_pages
= size
;
3452 zone
->present_pages
= realsize
;
3455 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3457 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3459 zone
->name
= zone_names
[j
];
3460 spin_lock_init(&zone
->lock
);
3461 spin_lock_init(&zone
->lru_lock
);
3462 zone_seqlock_init(zone
);
3463 zone
->zone_pgdat
= pgdat
;
3465 zone
->prev_priority
= DEF_PRIORITY
;
3467 zone_pcp_init(zone
);
3468 INIT_LIST_HEAD(&zone
->active_list
);
3469 INIT_LIST_HEAD(&zone
->inactive_list
);
3470 zone
->nr_scan_active
= 0;
3471 zone
->nr_scan_inactive
= 0;
3472 zap_zone_vm_stats(zone
);
3477 set_pageblock_order(pageblock_default_order());
3478 setup_usemap(pgdat
, zone
, size
);
3479 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3480 size
, MEMMAP_EARLY
);
3482 memmap_init(size
, nid
, j
, zone_start_pfn
);
3483 zone_start_pfn
+= size
;
3487 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3489 /* Skip empty nodes */
3490 if (!pgdat
->node_spanned_pages
)
3493 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3494 /* ia64 gets its own node_mem_map, before this, without bootmem */
3495 if (!pgdat
->node_mem_map
) {
3496 unsigned long size
, start
, end
;
3500 * The zone's endpoints aren't required to be MAX_ORDER
3501 * aligned but the node_mem_map endpoints must be in order
3502 * for the buddy allocator to function correctly.
3504 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3505 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3506 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3507 size
= (end
- start
) * sizeof(struct page
);
3508 map
= alloc_remap(pgdat
->node_id
, size
);
3510 map
= alloc_bootmem_node(pgdat
, size
);
3511 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3513 #ifndef CONFIG_NEED_MULTIPLE_NODES
3515 * With no DISCONTIG, the global mem_map is just set as node 0's
3517 if (pgdat
== NODE_DATA(0)) {
3518 mem_map
= NODE_DATA(0)->node_mem_map
;
3519 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3520 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3521 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3522 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3525 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3528 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3529 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3531 pg_data_t
*pgdat
= NODE_DATA(nid
);
3533 pgdat
->node_id
= nid
;
3534 pgdat
->node_start_pfn
= node_start_pfn
;
3535 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3537 alloc_node_mem_map(pgdat
);
3538 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3539 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3540 nid
, (unsigned long)pgdat
,
3541 (unsigned long)pgdat
->node_mem_map
);
3544 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3547 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3549 #if MAX_NUMNODES > 1
3551 * Figure out the number of possible node ids.
3553 static void __init
setup_nr_node_ids(void)
3556 unsigned int highest
= 0;
3558 for_each_node_mask(node
, node_possible_map
)
3560 nr_node_ids
= highest
+ 1;
3563 static inline void setup_nr_node_ids(void)
3569 * add_active_range - Register a range of PFNs backed by physical memory
3570 * @nid: The node ID the range resides on
3571 * @start_pfn: The start PFN of the available physical memory
3572 * @end_pfn: The end PFN of the available physical memory
3574 * These ranges are stored in an early_node_map[] and later used by
3575 * free_area_init_nodes() to calculate zone sizes and holes. If the
3576 * range spans a memory hole, it is up to the architecture to ensure
3577 * the memory is not freed by the bootmem allocator. If possible
3578 * the range being registered will be merged with existing ranges.
3580 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3581 unsigned long end_pfn
)
3585 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3586 "Entering add_active_range(%d, %#lx, %#lx) "
3587 "%d entries of %d used\n",
3588 nid
, start_pfn
, end_pfn
,
3589 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3591 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3593 /* Merge with existing active regions if possible */
3594 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3595 if (early_node_map
[i
].nid
!= nid
)
3598 /* Skip if an existing region covers this new one */
3599 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3600 end_pfn
<= early_node_map
[i
].end_pfn
)
3603 /* Merge forward if suitable */
3604 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3605 end_pfn
> early_node_map
[i
].end_pfn
) {
3606 early_node_map
[i
].end_pfn
= end_pfn
;
3610 /* Merge backward if suitable */
3611 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3612 end_pfn
>= early_node_map
[i
].start_pfn
) {
3613 early_node_map
[i
].start_pfn
= start_pfn
;
3618 /* Check that early_node_map is large enough */
3619 if (i
>= MAX_ACTIVE_REGIONS
) {
3620 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3621 MAX_ACTIVE_REGIONS
);
3625 early_node_map
[i
].nid
= nid
;
3626 early_node_map
[i
].start_pfn
= start_pfn
;
3627 early_node_map
[i
].end_pfn
= end_pfn
;
3628 nr_nodemap_entries
= i
+ 1;
3632 * remove_active_range - Shrink an existing registered range of PFNs
3633 * @nid: The node id the range is on that should be shrunk
3634 * @start_pfn: The new PFN of the range
3635 * @end_pfn: The new PFN of the range
3637 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3638 * The map is kept near the end physical page range that has already been
3639 * registered. This function allows an arch to shrink an existing registered
3642 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
3643 unsigned long end_pfn
)
3648 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
3649 nid
, start_pfn
, end_pfn
);
3651 /* Find the old active region end and shrink */
3652 for_each_active_range_index_in_nid(i
, nid
) {
3653 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3654 early_node_map
[i
].end_pfn
<= end_pfn
) {
3656 early_node_map
[i
].start_pfn
= 0;
3657 early_node_map
[i
].end_pfn
= 0;
3661 if (early_node_map
[i
].start_pfn
< start_pfn
&&
3662 early_node_map
[i
].end_pfn
> start_pfn
) {
3663 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
3664 early_node_map
[i
].end_pfn
= start_pfn
;
3665 if (temp_end_pfn
> end_pfn
)
3666 add_active_range(nid
, end_pfn
, temp_end_pfn
);
3669 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3670 early_node_map
[i
].end_pfn
> end_pfn
&&
3671 early_node_map
[i
].start_pfn
< end_pfn
) {
3672 early_node_map
[i
].start_pfn
= end_pfn
;
3680 /* remove the blank ones */
3681 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
3682 if (early_node_map
[i
].nid
!= nid
)
3684 if (early_node_map
[i
].end_pfn
)
3686 /* we found it, get rid of it */
3687 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
3688 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
3689 sizeof(early_node_map
[j
]));
3690 j
= nr_nodemap_entries
- 1;
3691 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
3692 nr_nodemap_entries
--;
3697 * remove_all_active_ranges - Remove all currently registered regions
3699 * During discovery, it may be found that a table like SRAT is invalid
3700 * and an alternative discovery method must be used. This function removes
3701 * all currently registered regions.
3703 void __init
remove_all_active_ranges(void)
3705 memset(early_node_map
, 0, sizeof(early_node_map
));
3706 nr_nodemap_entries
= 0;
3707 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3708 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3709 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3710 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3713 /* Compare two active node_active_regions */
3714 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3716 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3717 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3719 /* Done this way to avoid overflows */
3720 if (arange
->start_pfn
> brange
->start_pfn
)
3722 if (arange
->start_pfn
< brange
->start_pfn
)
3728 /* sort the node_map by start_pfn */
3729 static void __init
sort_node_map(void)
3731 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3732 sizeof(struct node_active_region
),
3733 cmp_node_active_region
, NULL
);
3736 /* Find the lowest pfn for a node */
3737 static unsigned long __init
find_min_pfn_for_node(int nid
)
3740 unsigned long min_pfn
= ULONG_MAX
;
3742 /* Assuming a sorted map, the first range found has the starting pfn */
3743 for_each_active_range_index_in_nid(i
, nid
)
3744 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3746 if (min_pfn
== ULONG_MAX
) {
3748 "Could not find start_pfn for node %d\n", nid
);
3756 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3758 * It returns the minimum PFN based on information provided via
3759 * add_active_range().
3761 unsigned long __init
find_min_pfn_with_active_regions(void)
3763 return find_min_pfn_for_node(MAX_NUMNODES
);
3767 * early_calculate_totalpages()
3768 * Sum pages in active regions for movable zone.
3769 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3771 static unsigned long __init
early_calculate_totalpages(void)
3774 unsigned long totalpages
= 0;
3776 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3777 unsigned long pages
= early_node_map
[i
].end_pfn
-
3778 early_node_map
[i
].start_pfn
;
3779 totalpages
+= pages
;
3781 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3787 * Find the PFN the Movable zone begins in each node. Kernel memory
3788 * is spread evenly between nodes as long as the nodes have enough
3789 * memory. When they don't, some nodes will have more kernelcore than
3792 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3795 unsigned long usable_startpfn
;
3796 unsigned long kernelcore_node
, kernelcore_remaining
;
3797 unsigned long totalpages
= early_calculate_totalpages();
3798 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3801 * If movablecore was specified, calculate what size of
3802 * kernelcore that corresponds so that memory usable for
3803 * any allocation type is evenly spread. If both kernelcore
3804 * and movablecore are specified, then the value of kernelcore
3805 * will be used for required_kernelcore if it's greater than
3806 * what movablecore would have allowed.
3808 if (required_movablecore
) {
3809 unsigned long corepages
;
3812 * Round-up so that ZONE_MOVABLE is at least as large as what
3813 * was requested by the user
3815 required_movablecore
=
3816 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3817 corepages
= totalpages
- required_movablecore
;
3819 required_kernelcore
= max(required_kernelcore
, corepages
);
3822 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3823 if (!required_kernelcore
)
3826 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3827 find_usable_zone_for_movable();
3828 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3831 /* Spread kernelcore memory as evenly as possible throughout nodes */
3832 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3833 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3835 * Recalculate kernelcore_node if the division per node
3836 * now exceeds what is necessary to satisfy the requested
3837 * amount of memory for the kernel
3839 if (required_kernelcore
< kernelcore_node
)
3840 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3843 * As the map is walked, we track how much memory is usable
3844 * by the kernel using kernelcore_remaining. When it is
3845 * 0, the rest of the node is usable by ZONE_MOVABLE
3847 kernelcore_remaining
= kernelcore_node
;
3849 /* Go through each range of PFNs within this node */
3850 for_each_active_range_index_in_nid(i
, nid
) {
3851 unsigned long start_pfn
, end_pfn
;
3852 unsigned long size_pages
;
3854 start_pfn
= max(early_node_map
[i
].start_pfn
,
3855 zone_movable_pfn
[nid
]);
3856 end_pfn
= early_node_map
[i
].end_pfn
;
3857 if (start_pfn
>= end_pfn
)
3860 /* Account for what is only usable for kernelcore */
3861 if (start_pfn
< usable_startpfn
) {
3862 unsigned long kernel_pages
;
3863 kernel_pages
= min(end_pfn
, usable_startpfn
)
3866 kernelcore_remaining
-= min(kernel_pages
,
3867 kernelcore_remaining
);
3868 required_kernelcore
-= min(kernel_pages
,
3869 required_kernelcore
);
3871 /* Continue if range is now fully accounted */
3872 if (end_pfn
<= usable_startpfn
) {
3875 * Push zone_movable_pfn to the end so
3876 * that if we have to rebalance
3877 * kernelcore across nodes, we will
3878 * not double account here
3880 zone_movable_pfn
[nid
] = end_pfn
;
3883 start_pfn
= usable_startpfn
;
3887 * The usable PFN range for ZONE_MOVABLE is from
3888 * start_pfn->end_pfn. Calculate size_pages as the
3889 * number of pages used as kernelcore
3891 size_pages
= end_pfn
- start_pfn
;
3892 if (size_pages
> kernelcore_remaining
)
3893 size_pages
= kernelcore_remaining
;
3894 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3897 * Some kernelcore has been met, update counts and
3898 * break if the kernelcore for this node has been
3901 required_kernelcore
-= min(required_kernelcore
,
3903 kernelcore_remaining
-= size_pages
;
3904 if (!kernelcore_remaining
)
3910 * If there is still required_kernelcore, we do another pass with one
3911 * less node in the count. This will push zone_movable_pfn[nid] further
3912 * along on the nodes that still have memory until kernelcore is
3916 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3919 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3920 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3921 zone_movable_pfn
[nid
] =
3922 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3925 /* Any regular memory on that node ? */
3926 static void check_for_regular_memory(pg_data_t
*pgdat
)
3928 #ifdef CONFIG_HIGHMEM
3929 enum zone_type zone_type
;
3931 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3932 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3933 if (zone
->present_pages
)
3934 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3940 * free_area_init_nodes - Initialise all pg_data_t and zone data
3941 * @max_zone_pfn: an array of max PFNs for each zone
3943 * This will call free_area_init_node() for each active node in the system.
3944 * Using the page ranges provided by add_active_range(), the size of each
3945 * zone in each node and their holes is calculated. If the maximum PFN
3946 * between two adjacent zones match, it is assumed that the zone is empty.
3947 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3948 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3949 * starts where the previous one ended. For example, ZONE_DMA32 starts
3950 * at arch_max_dma_pfn.
3952 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3957 /* Sort early_node_map as initialisation assumes it is sorted */
3960 /* Record where the zone boundaries are */
3961 memset(arch_zone_lowest_possible_pfn
, 0,
3962 sizeof(arch_zone_lowest_possible_pfn
));
3963 memset(arch_zone_highest_possible_pfn
, 0,
3964 sizeof(arch_zone_highest_possible_pfn
));
3965 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3966 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3967 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3968 if (i
== ZONE_MOVABLE
)
3970 arch_zone_lowest_possible_pfn
[i
] =
3971 arch_zone_highest_possible_pfn
[i
-1];
3972 arch_zone_highest_possible_pfn
[i
] =
3973 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3975 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3976 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3978 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3979 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3980 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3982 /* Print out the zone ranges */
3983 printk("Zone PFN ranges:\n");
3984 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3985 if (i
== ZONE_MOVABLE
)
3987 printk(" %-8s %0#10lx -> %0#10lx\n",
3989 arch_zone_lowest_possible_pfn
[i
],
3990 arch_zone_highest_possible_pfn
[i
]);
3993 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3994 printk("Movable zone start PFN for each node\n");
3995 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3996 if (zone_movable_pfn
[i
])
3997 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4000 /* Print out the early_node_map[] */
4001 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4002 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4003 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4004 early_node_map
[i
].start_pfn
,
4005 early_node_map
[i
].end_pfn
);
4007 /* Initialise every node */
4008 mminit_verify_pageflags_layout();
4009 setup_nr_node_ids();
4010 for_each_online_node(nid
) {
4011 pg_data_t
*pgdat
= NODE_DATA(nid
);
4012 free_area_init_node(nid
, NULL
,
4013 find_min_pfn_for_node(nid
), NULL
);
4015 /* Any memory on that node */
4016 if (pgdat
->node_present_pages
)
4017 node_set_state(nid
, N_HIGH_MEMORY
);
4018 check_for_regular_memory(pgdat
);
4022 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4024 unsigned long long coremem
;
4028 coremem
= memparse(p
, &p
);
4029 *core
= coremem
>> PAGE_SHIFT
;
4031 /* Paranoid check that UL is enough for the coremem value */
4032 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4038 * kernelcore=size sets the amount of memory for use for allocations that
4039 * cannot be reclaimed or migrated.
4041 static int __init
cmdline_parse_kernelcore(char *p
)
4043 return cmdline_parse_core(p
, &required_kernelcore
);
4047 * movablecore=size sets the amount of memory for use for allocations that
4048 * can be reclaimed or migrated.
4050 static int __init
cmdline_parse_movablecore(char *p
)
4052 return cmdline_parse_core(p
, &required_movablecore
);
4055 early_param("kernelcore", cmdline_parse_kernelcore
);
4056 early_param("movablecore", cmdline_parse_movablecore
);
4058 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4061 * set_dma_reserve - set the specified number of pages reserved in the first zone
4062 * @new_dma_reserve: The number of pages to mark reserved
4064 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4065 * In the DMA zone, a significant percentage may be consumed by kernel image
4066 * and other unfreeable allocations which can skew the watermarks badly. This
4067 * function may optionally be used to account for unfreeable pages in the
4068 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4069 * smaller per-cpu batchsize.
4071 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4073 dma_reserve
= new_dma_reserve
;
4076 #ifndef CONFIG_NEED_MULTIPLE_NODES
4077 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4078 EXPORT_SYMBOL(contig_page_data
);
4081 void __init
free_area_init(unsigned long *zones_size
)
4083 free_area_init_node(0, zones_size
,
4084 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4087 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4088 unsigned long action
, void *hcpu
)
4090 int cpu
= (unsigned long)hcpu
;
4092 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4096 * Spill the event counters of the dead processor
4097 * into the current processors event counters.
4098 * This artificially elevates the count of the current
4101 vm_events_fold_cpu(cpu
);
4104 * Zero the differential counters of the dead processor
4105 * so that the vm statistics are consistent.
4107 * This is only okay since the processor is dead and cannot
4108 * race with what we are doing.
4110 refresh_cpu_vm_stats(cpu
);
4115 void __init
page_alloc_init(void)
4117 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4121 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4122 * or min_free_kbytes changes.
4124 static void calculate_totalreserve_pages(void)
4126 struct pglist_data
*pgdat
;
4127 unsigned long reserve_pages
= 0;
4128 enum zone_type i
, j
;
4130 for_each_online_pgdat(pgdat
) {
4131 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4132 struct zone
*zone
= pgdat
->node_zones
+ i
;
4133 unsigned long max
= 0;
4135 /* Find valid and maximum lowmem_reserve in the zone */
4136 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4137 if (zone
->lowmem_reserve
[j
] > max
)
4138 max
= zone
->lowmem_reserve
[j
];
4141 /* we treat pages_high as reserved pages. */
4142 max
+= zone
->pages_high
;
4144 if (max
> zone
->present_pages
)
4145 max
= zone
->present_pages
;
4146 reserve_pages
+= max
;
4149 totalreserve_pages
= reserve_pages
;
4153 * setup_per_zone_lowmem_reserve - called whenever
4154 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4155 * has a correct pages reserved value, so an adequate number of
4156 * pages are left in the zone after a successful __alloc_pages().
4158 static void setup_per_zone_lowmem_reserve(void)
4160 struct pglist_data
*pgdat
;
4161 enum zone_type j
, idx
;
4163 for_each_online_pgdat(pgdat
) {
4164 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4165 struct zone
*zone
= pgdat
->node_zones
+ j
;
4166 unsigned long present_pages
= zone
->present_pages
;
4168 zone
->lowmem_reserve
[j
] = 0;
4172 struct zone
*lower_zone
;
4176 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4177 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4179 lower_zone
= pgdat
->node_zones
+ idx
;
4180 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4181 sysctl_lowmem_reserve_ratio
[idx
];
4182 present_pages
+= lower_zone
->present_pages
;
4187 /* update totalreserve_pages */
4188 calculate_totalreserve_pages();
4192 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4194 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4195 * with respect to min_free_kbytes.
4197 void setup_per_zone_pages_min(void)
4199 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4200 unsigned long lowmem_pages
= 0;
4202 unsigned long flags
;
4204 /* Calculate total number of !ZONE_HIGHMEM pages */
4205 for_each_zone(zone
) {
4206 if (!is_highmem(zone
))
4207 lowmem_pages
+= zone
->present_pages
;
4210 for_each_zone(zone
) {
4213 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4214 tmp
= (u64
)pages_min
* zone
->present_pages
;
4215 do_div(tmp
, lowmem_pages
);
4216 if (is_highmem(zone
)) {
4218 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4219 * need highmem pages, so cap pages_min to a small
4222 * The (pages_high-pages_low) and (pages_low-pages_min)
4223 * deltas controls asynch page reclaim, and so should
4224 * not be capped for highmem.
4228 min_pages
= zone
->present_pages
/ 1024;
4229 if (min_pages
< SWAP_CLUSTER_MAX
)
4230 min_pages
= SWAP_CLUSTER_MAX
;
4231 if (min_pages
> 128)
4233 zone
->pages_min
= min_pages
;
4236 * If it's a lowmem zone, reserve a number of pages
4237 * proportionate to the zone's size.
4239 zone
->pages_min
= tmp
;
4242 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4243 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4244 setup_zone_migrate_reserve(zone
);
4245 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4248 /* update totalreserve_pages */
4249 calculate_totalreserve_pages();
4253 * Initialise min_free_kbytes.
4255 * For small machines we want it small (128k min). For large machines
4256 * we want it large (64MB max). But it is not linear, because network
4257 * bandwidth does not increase linearly with machine size. We use
4259 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4260 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4276 static int __init
init_per_zone_pages_min(void)
4278 unsigned long lowmem_kbytes
;
4280 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4282 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4283 if (min_free_kbytes
< 128)
4284 min_free_kbytes
= 128;
4285 if (min_free_kbytes
> 65536)
4286 min_free_kbytes
= 65536;
4287 setup_per_zone_pages_min();
4288 setup_per_zone_lowmem_reserve();
4291 module_init(init_per_zone_pages_min
)
4294 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4295 * that we can call two helper functions whenever min_free_kbytes
4298 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4299 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4301 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4303 setup_per_zone_pages_min();
4308 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4309 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4314 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4319 zone
->min_unmapped_pages
= (zone
->present_pages
*
4320 sysctl_min_unmapped_ratio
) / 100;
4324 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4325 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4330 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4335 zone
->min_slab_pages
= (zone
->present_pages
*
4336 sysctl_min_slab_ratio
) / 100;
4342 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4343 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4344 * whenever sysctl_lowmem_reserve_ratio changes.
4346 * The reserve ratio obviously has absolutely no relation with the
4347 * pages_min watermarks. The lowmem reserve ratio can only make sense
4348 * if in function of the boot time zone sizes.
4350 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4351 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4353 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4354 setup_per_zone_lowmem_reserve();
4359 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4360 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4361 * can have before it gets flushed back to buddy allocator.
4364 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4365 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4371 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4372 if (!write
|| (ret
== -EINVAL
))
4374 for_each_zone(zone
) {
4375 for_each_online_cpu(cpu
) {
4377 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4378 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4384 int hashdist
= HASHDIST_DEFAULT
;
4387 static int __init
set_hashdist(char *str
)
4391 hashdist
= simple_strtoul(str
, &str
, 0);
4394 __setup("hashdist=", set_hashdist
);
4398 * allocate a large system hash table from bootmem
4399 * - it is assumed that the hash table must contain an exact power-of-2
4400 * quantity of entries
4401 * - limit is the number of hash buckets, not the total allocation size
4403 void *__init
alloc_large_system_hash(const char *tablename
,
4404 unsigned long bucketsize
,
4405 unsigned long numentries
,
4408 unsigned int *_hash_shift
,
4409 unsigned int *_hash_mask
,
4410 unsigned long limit
)
4412 unsigned long long max
= limit
;
4413 unsigned long log2qty
, size
;
4416 /* allow the kernel cmdline to have a say */
4418 /* round applicable memory size up to nearest megabyte */
4419 numentries
= nr_kernel_pages
;
4420 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4421 numentries
>>= 20 - PAGE_SHIFT
;
4422 numentries
<<= 20 - PAGE_SHIFT
;
4424 /* limit to 1 bucket per 2^scale bytes of low memory */
4425 if (scale
> PAGE_SHIFT
)
4426 numentries
>>= (scale
- PAGE_SHIFT
);
4428 numentries
<<= (PAGE_SHIFT
- scale
);
4430 /* Make sure we've got at least a 0-order allocation.. */
4431 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4432 numentries
= PAGE_SIZE
/ bucketsize
;
4434 numentries
= roundup_pow_of_two(numentries
);
4436 /* limit allocation size to 1/16 total memory by default */
4438 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4439 do_div(max
, bucketsize
);
4442 if (numentries
> max
)
4445 log2qty
= ilog2(numentries
);
4448 size
= bucketsize
<< log2qty
;
4449 if (flags
& HASH_EARLY
)
4450 table
= alloc_bootmem_nopanic(size
);
4452 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4454 unsigned long order
= get_order(size
);
4455 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4457 * If bucketsize is not a power-of-two, we may free
4458 * some pages at the end of hash table.
4461 unsigned long alloc_end
= (unsigned long)table
+
4462 (PAGE_SIZE
<< order
);
4463 unsigned long used
= (unsigned long)table
+
4465 split_page(virt_to_page(table
), order
);
4466 while (used
< alloc_end
) {
4472 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4475 panic("Failed to allocate %s hash table\n", tablename
);
4477 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4480 ilog2(size
) - PAGE_SHIFT
,
4484 *_hash_shift
= log2qty
;
4486 *_hash_mask
= (1 << log2qty
) - 1;
4491 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4492 struct page
*pfn_to_page(unsigned long pfn
)
4494 return __pfn_to_page(pfn
);
4496 unsigned long page_to_pfn(struct page
*page
)
4498 return __page_to_pfn(page
);
4500 EXPORT_SYMBOL(pfn_to_page
);
4501 EXPORT_SYMBOL(page_to_pfn
);
4502 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4504 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4505 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4508 #ifdef CONFIG_SPARSEMEM
4509 return __pfn_to_section(pfn
)->pageblock_flags
;
4511 return zone
->pageblock_flags
;
4512 #endif /* CONFIG_SPARSEMEM */
4515 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4517 #ifdef CONFIG_SPARSEMEM
4518 pfn
&= (PAGES_PER_SECTION
-1);
4519 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4521 pfn
= pfn
- zone
->zone_start_pfn
;
4522 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4523 #endif /* CONFIG_SPARSEMEM */
4527 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4528 * @page: The page within the block of interest
4529 * @start_bitidx: The first bit of interest to retrieve
4530 * @end_bitidx: The last bit of interest
4531 * returns pageblock_bits flags
4533 unsigned long get_pageblock_flags_group(struct page
*page
,
4534 int start_bitidx
, int end_bitidx
)
4537 unsigned long *bitmap
;
4538 unsigned long pfn
, bitidx
;
4539 unsigned long flags
= 0;
4540 unsigned long value
= 1;
4542 zone
= page_zone(page
);
4543 pfn
= page_to_pfn(page
);
4544 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4545 bitidx
= pfn_to_bitidx(zone
, pfn
);
4547 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4548 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4555 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4556 * @page: The page within the block of interest
4557 * @start_bitidx: The first bit of interest
4558 * @end_bitidx: The last bit of interest
4559 * @flags: The flags to set
4561 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4562 int start_bitidx
, int end_bitidx
)
4565 unsigned long *bitmap
;
4566 unsigned long pfn
, bitidx
;
4567 unsigned long value
= 1;
4569 zone
= page_zone(page
);
4570 pfn
= page_to_pfn(page
);
4571 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4572 bitidx
= pfn_to_bitidx(zone
, pfn
);
4573 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4574 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4576 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4578 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4580 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4584 * This is designed as sub function...plz see page_isolation.c also.
4585 * set/clear page block's type to be ISOLATE.
4586 * page allocater never alloc memory from ISOLATE block.
4589 int set_migratetype_isolate(struct page
*page
)
4592 unsigned long flags
;
4595 zone
= page_zone(page
);
4596 spin_lock_irqsave(&zone
->lock
, flags
);
4598 * In future, more migrate types will be able to be isolation target.
4600 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4602 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4603 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4606 spin_unlock_irqrestore(&zone
->lock
, flags
);
4612 void unset_migratetype_isolate(struct page
*page
)
4615 unsigned long flags
;
4616 zone
= page_zone(page
);
4617 spin_lock_irqsave(&zone
->lock
, flags
);
4618 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4620 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4621 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4623 spin_unlock_irqrestore(&zone
->lock
, flags
);
4626 #ifdef CONFIG_MEMORY_HOTREMOVE
4628 * All pages in the range must be isolated before calling this.
4631 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4637 unsigned long flags
;
4638 /* find the first valid pfn */
4639 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4644 zone
= page_zone(pfn_to_page(pfn
));
4645 spin_lock_irqsave(&zone
->lock
, flags
);
4647 while (pfn
< end_pfn
) {
4648 if (!pfn_valid(pfn
)) {
4652 page
= pfn_to_page(pfn
);
4653 BUG_ON(page_count(page
));
4654 BUG_ON(!PageBuddy(page
));
4655 order
= page_order(page
);
4656 #ifdef CONFIG_DEBUG_VM
4657 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4658 pfn
, 1 << order
, end_pfn
);
4660 list_del(&page
->lru
);
4661 rmv_page_order(page
);
4662 zone
->free_area
[order
].nr_free
--;
4663 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4665 for (i
= 0; i
< (1 << order
); i
++)
4666 SetPageReserved((page
+i
));
4667 pfn
+= (1 << order
);
4669 spin_unlock_irqrestore(&zone
->lock
, flags
);