1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
54 struct ocfs2_extent_block
*eb
);
57 * Structures which describe a path through a btree, and functions to
60 * The idea here is to be as generic as possible with the tree
63 struct ocfs2_path_item
{
64 struct buffer_head
*bh
;
65 struct ocfs2_extent_list
*el
;
68 #define OCFS2_MAX_PATH_DEPTH 5
72 struct ocfs2_path_item p_node
[OCFS2_MAX_PATH_DEPTH
];
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
82 * Reset the actual path elements so that we can re-use the structure
83 * to build another path. Generally, this involves freeing the buffer
86 static void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
88 int i
, start
= 0, depth
= 0;
89 struct ocfs2_path_item
*node
;
94 for(i
= start
; i
< path_num_items(path
); i
++) {
95 node
= &path
->p_node
[i
];
103 * Tree depth may change during truncate, or insert. If we're
104 * keeping the root extent list, then make sure that our path
105 * structure reflects the proper depth.
108 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
110 path
->p_tree_depth
= depth
;
113 static void ocfs2_free_path(struct ocfs2_path
*path
)
116 ocfs2_reinit_path(path
, 0);
122 * All the elements of src into dest. After this call, src could be freed
123 * without affecting dest.
125 * Both paths should have the same root. Any non-root elements of dest
128 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
132 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
133 BUG_ON(path_root_el(dest
) != path_root_el(src
));
135 ocfs2_reinit_path(dest
, 1);
137 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
138 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
139 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
141 if (dest
->p_node
[i
].bh
)
142 get_bh(dest
->p_node
[i
].bh
);
147 * Make the *dest path the same as src and re-initialize src path to
150 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
154 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
156 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
157 brelse(dest
->p_node
[i
].bh
);
159 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
160 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
162 src
->p_node
[i
].bh
= NULL
;
163 src
->p_node
[i
].el
= NULL
;
168 * Insert an extent block at given index.
170 * This will not take an additional reference on eb_bh.
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
173 struct buffer_head
*eb_bh
)
175 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
178 * Right now, no root bh is an extent block, so this helps
179 * catch code errors with dinode trees. The assertion can be
180 * safely removed if we ever need to insert extent block
181 * structures at the root.
185 path
->p_node
[index
].bh
= eb_bh
;
186 path
->p_node
[index
].el
= &eb
->h_list
;
189 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
190 struct ocfs2_extent_list
*root_el
)
192 struct ocfs2_path
*path
;
194 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
196 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
198 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
200 path_root_bh(path
) = root_bh
;
201 path_root_el(path
) = root_el
;
208 * Allocate and initialize a new path based on a disk inode tree.
210 static struct ocfs2_path
*ocfs2_new_inode_path(struct buffer_head
*di_bh
)
212 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
213 struct ocfs2_extent_list
*el
= &di
->id2
.i_list
;
215 return ocfs2_new_path(di_bh
, el
);
219 * Convenience function to journal all components in a path.
221 static int ocfs2_journal_access_path(struct inode
*inode
, handle_t
*handle
,
222 struct ocfs2_path
*path
)
229 for(i
= 0; i
< path_num_items(path
); i
++) {
230 ret
= ocfs2_journal_access(handle
, inode
, path
->p_node
[i
].bh
,
231 OCFS2_JOURNAL_ACCESS_WRITE
);
243 * Return the index of the extent record which contains cluster #v_cluster.
244 * -1 is returned if it was not found.
246 * Should work fine on interior and exterior nodes.
248 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
252 struct ocfs2_extent_rec
*rec
;
253 u32 rec_end
, rec_start
, clusters
;
255 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
256 rec
= &el
->l_recs
[i
];
258 rec_start
= le32_to_cpu(rec
->e_cpos
);
259 clusters
= ocfs2_rec_clusters(el
, rec
);
261 rec_end
= rec_start
+ clusters
;
263 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
272 enum ocfs2_contig_type
{
281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282 * ocfs2_extent_contig only work properly against leaf nodes!
284 static int ocfs2_block_extent_contig(struct super_block
*sb
,
285 struct ocfs2_extent_rec
*ext
,
288 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
290 blk_end
+= ocfs2_clusters_to_blocks(sb
,
291 le16_to_cpu(ext
->e_leaf_clusters
));
293 return blkno
== blk_end
;
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
297 struct ocfs2_extent_rec
*right
)
301 left_range
= le32_to_cpu(left
->e_cpos
) +
302 le16_to_cpu(left
->e_leaf_clusters
);
304 return (left_range
== le32_to_cpu(right
->e_cpos
));
307 static enum ocfs2_contig_type
308 ocfs2_extent_contig(struct inode
*inode
,
309 struct ocfs2_extent_rec
*ext
,
310 struct ocfs2_extent_rec
*insert_rec
)
312 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
315 * Refuse to coalesce extent records with different flag
316 * fields - we don't want to mix unwritten extents with user
319 if (ext
->e_flags
!= insert_rec
->e_flags
)
322 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
323 ocfs2_block_extent_contig(inode
->i_sb
, ext
, blkno
))
326 blkno
= le64_to_cpu(ext
->e_blkno
);
327 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
328 ocfs2_block_extent_contig(inode
->i_sb
, insert_rec
, blkno
))
335 * NOTE: We can have pretty much any combination of contiguousness and
338 * The usefulness of APPEND_TAIL is more in that it lets us know that
339 * we'll have to update the path to that leaf.
341 enum ocfs2_append_type
{
346 enum ocfs2_split_type
{
352 struct ocfs2_insert_type
{
353 enum ocfs2_split_type ins_split
;
354 enum ocfs2_append_type ins_appending
;
355 enum ocfs2_contig_type ins_contig
;
356 int ins_contig_index
;
360 struct ocfs2_merge_ctxt
{
361 enum ocfs2_contig_type c_contig_type
;
362 int c_has_empty_extent
;
363 int c_split_covers_rec
;
367 * How many free extents have we got before we need more meta data?
369 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
371 struct ocfs2_dinode
*fe
)
374 struct ocfs2_extent_list
*el
;
375 struct ocfs2_extent_block
*eb
;
376 struct buffer_head
*eb_bh
= NULL
;
380 if (!OCFS2_IS_VALID_DINODE(fe
)) {
381 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
386 if (fe
->i_last_eb_blk
) {
387 retval
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
388 &eb_bh
, OCFS2_BH_CACHED
, inode
);
393 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
396 el
= &fe
->id2
.i_list
;
398 BUG_ON(el
->l_tree_depth
!= 0);
400 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
409 /* expects array to already be allocated
411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super
*osb
,
418 struct ocfs2_alloc_context
*meta_ac
,
419 struct buffer_head
*bhs
[])
421 int count
, status
, i
;
422 u16 suballoc_bit_start
;
425 struct ocfs2_extent_block
*eb
;
430 while (count
< wanted
) {
431 status
= ocfs2_claim_metadata(osb
,
443 for(i
= count
; i
< (num_got
+ count
); i
++) {
444 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
445 if (bhs
[i
] == NULL
) {
450 ocfs2_set_new_buffer_uptodate(inode
, bhs
[i
]);
452 status
= ocfs2_journal_access(handle
, inode
, bhs
[i
],
453 OCFS2_JOURNAL_ACCESS_CREATE
);
459 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
460 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
461 /* Ok, setup the minimal stuff here. */
462 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
463 eb
->h_blkno
= cpu_to_le64(first_blkno
);
464 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
465 eb
->h_suballoc_slot
= cpu_to_le16(osb
->slot_num
);
466 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
470 suballoc_bit_start
++;
473 /* We'll also be dirtied by the caller, so
474 * this isn't absolutely necessary. */
475 status
= ocfs2_journal_dirty(handle
, bhs
[i
]);
488 for(i
= 0; i
< wanted
; i
++) {
499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
501 * Returns the sum of the rightmost extent rec logical offset and
504 * ocfs2_add_branch() uses this to determine what logical cluster
505 * value should be populated into the leftmost new branch records.
507 * ocfs2_shift_tree_depth() uses this to determine the # clusters
508 * value for the new topmost tree record.
510 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
514 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
516 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
517 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
521 * Add an entire tree branch to our inode. eb_bh is the extent block
522 * to start at, if we don't want to start the branch at the dinode
525 * last_eb_bh is required as we have to update it's next_leaf pointer
526 * for the new last extent block.
528 * the new branch will be 'empty' in the sense that every block will
529 * contain a single record with cluster count == 0.
531 static int ocfs2_add_branch(struct ocfs2_super
*osb
,
534 struct buffer_head
*fe_bh
,
535 struct buffer_head
*eb_bh
,
536 struct buffer_head
**last_eb_bh
,
537 struct ocfs2_alloc_context
*meta_ac
)
539 int status
, new_blocks
, i
;
540 u64 next_blkno
, new_last_eb_blk
;
541 struct buffer_head
*bh
;
542 struct buffer_head
**new_eb_bhs
= NULL
;
543 struct ocfs2_dinode
*fe
;
544 struct ocfs2_extent_block
*eb
;
545 struct ocfs2_extent_list
*eb_el
;
546 struct ocfs2_extent_list
*el
;
551 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
553 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
556 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
559 el
= &fe
->id2
.i_list
;
561 /* we never add a branch to a leaf. */
562 BUG_ON(!el
->l_tree_depth
);
564 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
566 /* allocate the number of new eb blocks we need */
567 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
575 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, new_blocks
,
576 meta_ac
, new_eb_bhs
);
582 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
583 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 * linked with the rest of the tree.
587 * conversly, new_eb_bhs[0] is the new bottommost leaf.
589 * when we leave the loop, new_last_eb_blk will point to the
590 * newest leaf, and next_blkno will point to the topmost extent
592 next_blkno
= new_last_eb_blk
= 0;
593 for(i
= 0; i
< new_blocks
; i
++) {
595 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
603 status
= ocfs2_journal_access(handle
, inode
, bh
,
604 OCFS2_JOURNAL_ACCESS_CREATE
);
610 eb
->h_next_leaf_blk
= 0;
611 eb_el
->l_tree_depth
= cpu_to_le16(i
);
612 eb_el
->l_next_free_rec
= cpu_to_le16(1);
614 * This actually counts as an empty extent as
617 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
618 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
620 * eb_el isn't always an interior node, but even leaf
621 * nodes want a zero'd flags and reserved field so
622 * this gets the whole 32 bits regardless of use.
624 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
625 if (!eb_el
->l_tree_depth
)
626 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
628 status
= ocfs2_journal_dirty(handle
, bh
);
634 next_blkno
= le64_to_cpu(eb
->h_blkno
);
637 /* This is a bit hairy. We want to update up to three blocks
638 * here without leaving any of them in an inconsistent state
639 * in case of error. We don't have to worry about
640 * journal_dirty erroring as it won't unless we've aborted the
641 * handle (in which case we would never be here) so reserving
642 * the write with journal_access is all we need to do. */
643 status
= ocfs2_journal_access(handle
, inode
, *last_eb_bh
,
644 OCFS2_JOURNAL_ACCESS_WRITE
);
649 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
650 OCFS2_JOURNAL_ACCESS_WRITE
);
656 status
= ocfs2_journal_access(handle
, inode
, eb_bh
,
657 OCFS2_JOURNAL_ACCESS_WRITE
);
664 /* Link the new branch into the rest of the tree (el will
665 * either be on the fe, or the extent block passed in. */
666 i
= le16_to_cpu(el
->l_next_free_rec
);
667 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
668 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
669 el
->l_recs
[i
].e_int_clusters
= 0;
670 le16_add_cpu(&el
->l_next_free_rec
, 1);
672 /* fe needs a new last extent block pointer, as does the
673 * next_leaf on the previously last-extent-block. */
674 fe
->i_last_eb_blk
= cpu_to_le64(new_last_eb_blk
);
676 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
677 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
679 status
= ocfs2_journal_dirty(handle
, *last_eb_bh
);
682 status
= ocfs2_journal_dirty(handle
, fe_bh
);
686 status
= ocfs2_journal_dirty(handle
, eb_bh
);
692 * Some callers want to track the rightmost leaf so pass it
696 get_bh(new_eb_bhs
[0]);
697 *last_eb_bh
= new_eb_bhs
[0];
702 for (i
= 0; i
< new_blocks
; i
++)
704 brelse(new_eb_bhs
[i
]);
713 * adds another level to the allocation tree.
714 * returns back the new extent block so you can add a branch to it
717 static int ocfs2_shift_tree_depth(struct ocfs2_super
*osb
,
720 struct buffer_head
*fe_bh
,
721 struct ocfs2_alloc_context
*meta_ac
,
722 struct buffer_head
**ret_new_eb_bh
)
726 struct buffer_head
*new_eb_bh
= NULL
;
727 struct ocfs2_dinode
*fe
;
728 struct ocfs2_extent_block
*eb
;
729 struct ocfs2_extent_list
*fe_el
;
730 struct ocfs2_extent_list
*eb_el
;
734 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, 1, meta_ac
,
741 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
749 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
750 fe_el
= &fe
->id2
.i_list
;
752 status
= ocfs2_journal_access(handle
, inode
, new_eb_bh
,
753 OCFS2_JOURNAL_ACCESS_CREATE
);
759 /* copy the fe data into the new extent block */
760 eb_el
->l_tree_depth
= fe_el
->l_tree_depth
;
761 eb_el
->l_next_free_rec
= fe_el
->l_next_free_rec
;
762 for(i
= 0; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
763 eb_el
->l_recs
[i
] = fe_el
->l_recs
[i
];
765 status
= ocfs2_journal_dirty(handle
, new_eb_bh
);
771 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
772 OCFS2_JOURNAL_ACCESS_WRITE
);
778 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
781 le16_add_cpu(&fe_el
->l_tree_depth
, 1);
782 fe_el
->l_recs
[0].e_cpos
= 0;
783 fe_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
784 fe_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
785 for(i
= 1; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
786 memset(&fe_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
787 fe_el
->l_next_free_rec
= cpu_to_le16(1);
789 /* If this is our 1st tree depth shift, then last_eb_blk
790 * becomes the allocated extent block */
791 if (fe_el
->l_tree_depth
== cpu_to_le16(1))
792 fe
->i_last_eb_blk
= eb
->h_blkno
;
794 status
= ocfs2_journal_dirty(handle
, fe_bh
);
800 *ret_new_eb_bh
= new_eb_bh
;
812 * Should only be called when there is no space left in any of the
813 * leaf nodes. What we want to do is find the lowest tree depth
814 * non-leaf extent block with room for new records. There are three
815 * valid results of this search:
817 * 1) a lowest extent block is found, then we pass it back in
818 * *lowest_eb_bh and return '0'
820 * 2) the search fails to find anything, but the dinode has room. We
821 * pass NULL back in *lowest_eb_bh, but still return '0'
823 * 3) the search fails to find anything AND the dinode is full, in
824 * which case we return > 0
826 * return status < 0 indicates an error.
828 static int ocfs2_find_branch_target(struct ocfs2_super
*osb
,
830 struct buffer_head
*fe_bh
,
831 struct buffer_head
**target_bh
)
835 struct ocfs2_dinode
*fe
;
836 struct ocfs2_extent_block
*eb
;
837 struct ocfs2_extent_list
*el
;
838 struct buffer_head
*bh
= NULL
;
839 struct buffer_head
*lowest_bh
= NULL
;
845 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
846 el
= &fe
->id2
.i_list
;
848 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
849 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
850 ocfs2_error(inode
->i_sb
, "Dinode %llu has empty "
851 "extent list (next_free_rec == 0)",
852 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
856 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
857 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
859 ocfs2_error(inode
->i_sb
, "Dinode %llu has extent "
860 "list where extent # %d has no physical "
862 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i
);
872 status
= ocfs2_read_block(osb
, blkno
, &bh
, OCFS2_BH_CACHED
,
879 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
887 if (le16_to_cpu(el
->l_next_free_rec
) <
888 le16_to_cpu(el
->l_count
)) {
896 /* If we didn't find one and the fe doesn't have any room,
899 && (fe
->id2
.i_list
.l_next_free_rec
== fe
->id2
.i_list
.l_count
))
902 *target_bh
= lowest_bh
;
912 * Grow a b-tree so that it has more records.
914 * We might shift the tree depth in which case existing paths should
915 * be considered invalid.
917 * Tree depth after the grow is returned via *final_depth.
919 * *last_eb_bh will be updated by ocfs2_add_branch().
921 static int ocfs2_grow_tree(struct inode
*inode
, handle_t
*handle
,
922 struct buffer_head
*di_bh
, int *final_depth
,
923 struct buffer_head
**last_eb_bh
,
924 struct ocfs2_alloc_context
*meta_ac
)
927 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
928 int depth
= le16_to_cpu(di
->id2
.i_list
.l_tree_depth
);
929 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
930 struct buffer_head
*bh
= NULL
;
932 BUG_ON(meta_ac
== NULL
);
934 shift
= ocfs2_find_branch_target(osb
, inode
, di_bh
, &bh
);
941 /* We traveled all the way to the bottom of the allocation tree
942 * and didn't find room for any more extents - we need to add
943 * another tree level */
946 mlog(0, "need to shift tree depth (current = %d)\n", depth
);
948 /* ocfs2_shift_tree_depth will return us a buffer with
949 * the new extent block (so we can pass that to
950 * ocfs2_add_branch). */
951 ret
= ocfs2_shift_tree_depth(osb
, handle
, inode
, di_bh
,
960 * Special case: we have room now if we shifted from
961 * tree_depth 0, so no more work needs to be done.
963 * We won't be calling add_branch, so pass
964 * back *last_eb_bh as the new leaf. At depth
965 * zero, it should always be null so there's
966 * no reason to brelse.
975 /* call ocfs2_add_branch to add the final part of the tree with
977 mlog(0, "add branch. bh = %p\n", bh
);
978 ret
= ocfs2_add_branch(osb
, handle
, inode
, di_bh
, bh
, last_eb_bh
,
987 *final_depth
= depth
;
993 * This is only valid for leaf nodes, which are the only ones that can
994 * have empty extents anyway.
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec
*rec
)
998 return !rec
->e_leaf_clusters
;
1002 * This function will discard the rightmost extent record.
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1006 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1007 int count
= le16_to_cpu(el
->l_count
);
1008 unsigned int num_bytes
;
1011 /* This will cause us to go off the end of our extent list. */
1012 BUG_ON(next_free
>= count
);
1014 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1016 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1020 struct ocfs2_extent_rec
*insert_rec
)
1022 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1023 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1024 struct ocfs2_extent_rec
*rec
;
1026 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1027 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1031 /* The tree code before us didn't allow enough room in the leaf. */
1032 if (el
->l_next_free_rec
== el
->l_count
&& !has_empty
)
1036 * The easiest way to approach this is to just remove the
1037 * empty extent and temporarily decrement next_free.
1041 * If next_free was 1 (only an empty extent), this
1042 * loop won't execute, which is fine. We still want
1043 * the decrement above to happen.
1045 for(i
= 0; i
< (next_free
- 1); i
++)
1046 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1052 * Figure out what the new record index should be.
1054 for(i
= 0; i
< next_free
; i
++) {
1055 rec
= &el
->l_recs
[i
];
1057 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1062 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1063 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
1065 BUG_ON(insert_index
< 0);
1066 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1067 BUG_ON(insert_index
> next_free
);
1070 * No need to memmove if we're just adding to the tail.
1072 if (insert_index
!= next_free
) {
1073 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1075 num_bytes
= next_free
- insert_index
;
1076 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1077 memmove(&el
->l_recs
[insert_index
+ 1],
1078 &el
->l_recs
[insert_index
],
1083 * Either we had an empty extent, and need to re-increment or
1084 * there was no empty extent on a non full rightmost leaf node,
1085 * in which case we still need to increment.
1088 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1090 * Make sure none of the math above just messed up our tree.
1092 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1094 el
->l_recs
[insert_index
] = *insert_rec
;
1098 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1100 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1102 BUG_ON(num_recs
== 0);
1104 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1106 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1107 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1108 memset(&el
->l_recs
[num_recs
], 0,
1109 sizeof(struct ocfs2_extent_rec
));
1110 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1115 * Create an empty extent record .
1117 * l_next_free_rec may be updated.
1119 * If an empty extent already exists do nothing.
1121 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1123 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1125 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1130 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1133 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1134 "Asked to create an empty extent in a full list:\n"
1135 "count = %u, tree depth = %u",
1136 le16_to_cpu(el
->l_count
),
1137 le16_to_cpu(el
->l_tree_depth
));
1139 ocfs2_shift_records_right(el
);
1142 le16_add_cpu(&el
->l_next_free_rec
, 1);
1143 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1147 * For a rotation which involves two leaf nodes, the "root node" is
1148 * the lowest level tree node which contains a path to both leafs. This
1149 * resulting set of information can be used to form a complete "subtree"
1151 * This function is passed two full paths from the dinode down to a
1152 * pair of adjacent leaves. It's task is to figure out which path
1153 * index contains the subtree root - this can be the root index itself
1154 * in a worst-case rotation.
1156 * The array index of the subtree root is passed back.
1158 static int ocfs2_find_subtree_root(struct inode
*inode
,
1159 struct ocfs2_path
*left
,
1160 struct ocfs2_path
*right
)
1165 * Check that the caller passed in two paths from the same tree.
1167 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1173 * The caller didn't pass two adjacent paths.
1175 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1176 "Inode %lu, left depth %u, right depth %u\n"
1177 "left leaf blk %llu, right leaf blk %llu\n",
1178 inode
->i_ino
, left
->p_tree_depth
,
1179 right
->p_tree_depth
,
1180 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1181 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1182 } while (left
->p_node
[i
].bh
->b_blocknr
==
1183 right
->p_node
[i
].bh
->b_blocknr
);
1188 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1191 * Traverse a btree path in search of cpos, starting at root_el.
1193 * This code can be called with a cpos larger than the tree, in which
1194 * case it will return the rightmost path.
1196 static int __ocfs2_find_path(struct inode
*inode
,
1197 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1198 path_insert_t
*func
, void *data
)
1203 struct buffer_head
*bh
= NULL
;
1204 struct ocfs2_extent_block
*eb
;
1205 struct ocfs2_extent_list
*el
;
1206 struct ocfs2_extent_rec
*rec
;
1207 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1210 while (el
->l_tree_depth
) {
1211 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1212 ocfs2_error(inode
->i_sb
,
1213 "Inode %llu has empty extent list at "
1215 (unsigned long long)oi
->ip_blkno
,
1216 le16_to_cpu(el
->l_tree_depth
));
1222 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1223 rec
= &el
->l_recs
[i
];
1226 * In the case that cpos is off the allocation
1227 * tree, this should just wind up returning the
1230 range
= le32_to_cpu(rec
->e_cpos
) +
1231 ocfs2_rec_clusters(el
, rec
);
1232 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1236 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1238 ocfs2_error(inode
->i_sb
,
1239 "Inode %llu has bad blkno in extent list "
1240 "at depth %u (index %d)\n",
1241 (unsigned long long)oi
->ip_blkno
,
1242 le16_to_cpu(el
->l_tree_depth
), i
);
1249 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
), blkno
,
1250 &bh
, OCFS2_BH_CACHED
, inode
);
1256 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1258 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
1259 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
1264 if (le16_to_cpu(el
->l_next_free_rec
) >
1265 le16_to_cpu(el
->l_count
)) {
1266 ocfs2_error(inode
->i_sb
,
1267 "Inode %llu has bad count in extent list "
1268 "at block %llu (next free=%u, count=%u)\n",
1269 (unsigned long long)oi
->ip_blkno
,
1270 (unsigned long long)bh
->b_blocknr
,
1271 le16_to_cpu(el
->l_next_free_rec
),
1272 le16_to_cpu(el
->l_count
));
1283 * Catch any trailing bh that the loop didn't handle.
1291 * Given an initialized path (that is, it has a valid root extent
1292 * list), this function will traverse the btree in search of the path
1293 * which would contain cpos.
1295 * The path traveled is recorded in the path structure.
1297 * Note that this will not do any comparisons on leaf node extent
1298 * records, so it will work fine in the case that we just added a tree
1301 struct find_path_data
{
1303 struct ocfs2_path
*path
;
1305 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1307 struct find_path_data
*fp
= data
;
1310 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1313 static int ocfs2_find_path(struct inode
*inode
, struct ocfs2_path
*path
,
1316 struct find_path_data data
;
1320 return __ocfs2_find_path(inode
, path_root_el(path
), cpos
,
1321 find_path_ins
, &data
);
1324 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1326 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1327 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1328 struct buffer_head
**ret
= data
;
1330 /* We want to retain only the leaf block. */
1331 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1337 * Find the leaf block in the tree which would contain cpos. No
1338 * checking of the actual leaf is done.
1340 * Some paths want to call this instead of allocating a path structure
1341 * and calling ocfs2_find_path().
1343 * This function doesn't handle non btree extent lists.
1345 int ocfs2_find_leaf(struct inode
*inode
, struct ocfs2_extent_list
*root_el
,
1346 u32 cpos
, struct buffer_head
**leaf_bh
)
1349 struct buffer_head
*bh
= NULL
;
1351 ret
= __ocfs2_find_path(inode
, root_el
, cpos
, find_leaf_ins
, &bh
);
1363 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1365 * Basically, we've moved stuff around at the bottom of the tree and
1366 * we need to fix up the extent records above the changes to reflect
1369 * left_rec: the record on the left.
1370 * left_child_el: is the child list pointed to by left_rec
1371 * right_rec: the record to the right of left_rec
1372 * right_child_el: is the child list pointed to by right_rec
1374 * By definition, this only works on interior nodes.
1376 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1377 struct ocfs2_extent_list
*left_child_el
,
1378 struct ocfs2_extent_rec
*right_rec
,
1379 struct ocfs2_extent_list
*right_child_el
)
1381 u32 left_clusters
, right_end
;
1384 * Interior nodes never have holes. Their cpos is the cpos of
1385 * the leftmost record in their child list. Their cluster
1386 * count covers the full theoretical range of their child list
1387 * - the range between their cpos and the cpos of the record
1388 * immediately to their right.
1390 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1391 if (ocfs2_is_empty_extent(&right_child_el
->l_recs
[0])) {
1392 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1393 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1395 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1396 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1399 * Calculate the rightmost cluster count boundary before
1400 * moving cpos - we will need to adjust clusters after
1401 * updating e_cpos to keep the same highest cluster count.
1403 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1404 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1406 right_rec
->e_cpos
= left_rec
->e_cpos
;
1407 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1409 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1410 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1414 * Adjust the adjacent root node records involved in a
1415 * rotation. left_el_blkno is passed in as a key so that we can easily
1416 * find it's index in the root list.
1418 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1419 struct ocfs2_extent_list
*left_el
,
1420 struct ocfs2_extent_list
*right_el
,
1425 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1426 le16_to_cpu(left_el
->l_tree_depth
));
1428 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1429 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
1434 * The path walking code should have never returned a root and
1435 * two paths which are not adjacent.
1437 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
1439 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
1440 &root_el
->l_recs
[i
+ 1], right_el
);
1444 * We've changed a leaf block (in right_path) and need to reflect that
1445 * change back up the subtree.
1447 * This happens in multiple places:
1448 * - When we've moved an extent record from the left path leaf to the right
1449 * path leaf to make room for an empty extent in the left path leaf.
1450 * - When our insert into the right path leaf is at the leftmost edge
1451 * and requires an update of the path immediately to it's left. This
1452 * can occur at the end of some types of rotation and appending inserts.
1454 static void ocfs2_complete_edge_insert(struct inode
*inode
, handle_t
*handle
,
1455 struct ocfs2_path
*left_path
,
1456 struct ocfs2_path
*right_path
,
1460 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
1461 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
1462 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
1465 * Update the counts and position values within all the
1466 * interior nodes to reflect the leaf rotation we just did.
1468 * The root node is handled below the loop.
1470 * We begin the loop with right_el and left_el pointing to the
1471 * leaf lists and work our way up.
1473 * NOTE: within this loop, left_el and right_el always refer
1474 * to the *child* lists.
1476 left_el
= path_leaf_el(left_path
);
1477 right_el
= path_leaf_el(right_path
);
1478 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
1479 mlog(0, "Adjust records at index %u\n", i
);
1482 * One nice property of knowing that all of these
1483 * nodes are below the root is that we only deal with
1484 * the leftmost right node record and the rightmost
1487 el
= left_path
->p_node
[i
].el
;
1488 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1489 left_rec
= &el
->l_recs
[idx
];
1491 el
= right_path
->p_node
[i
].el
;
1492 right_rec
= &el
->l_recs
[0];
1494 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
1497 ret
= ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
1501 ret
= ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
1506 * Setup our list pointers now so that the current
1507 * parents become children in the next iteration.
1509 left_el
= left_path
->p_node
[i
].el
;
1510 right_el
= right_path
->p_node
[i
].el
;
1514 * At the root node, adjust the two adjacent records which
1515 * begin our path to the leaves.
1518 el
= left_path
->p_node
[subtree_index
].el
;
1519 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
1520 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
1522 ocfs2_adjust_root_records(el
, left_el
, right_el
,
1523 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
1525 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1527 ret
= ocfs2_journal_dirty(handle
, root_bh
);
1532 static int ocfs2_rotate_subtree_right(struct inode
*inode
,
1534 struct ocfs2_path
*left_path
,
1535 struct ocfs2_path
*right_path
,
1539 struct buffer_head
*right_leaf_bh
;
1540 struct buffer_head
*left_leaf_bh
= NULL
;
1541 struct buffer_head
*root_bh
;
1542 struct ocfs2_extent_list
*right_el
, *left_el
;
1543 struct ocfs2_extent_rec move_rec
;
1545 left_leaf_bh
= path_leaf_bh(left_path
);
1546 left_el
= path_leaf_el(left_path
);
1548 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
1549 ocfs2_error(inode
->i_sb
,
1550 "Inode %llu has non-full interior leaf node %llu"
1552 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1553 (unsigned long long)left_leaf_bh
->b_blocknr
,
1554 le16_to_cpu(left_el
->l_next_free_rec
));
1559 * This extent block may already have an empty record, so we
1560 * return early if so.
1562 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
1565 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1566 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
1568 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
1569 OCFS2_JOURNAL_ACCESS_WRITE
);
1575 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
1576 ret
= ocfs2_journal_access(handle
, inode
,
1577 right_path
->p_node
[i
].bh
,
1578 OCFS2_JOURNAL_ACCESS_WRITE
);
1584 ret
= ocfs2_journal_access(handle
, inode
,
1585 left_path
->p_node
[i
].bh
,
1586 OCFS2_JOURNAL_ACCESS_WRITE
);
1593 right_leaf_bh
= path_leaf_bh(right_path
);
1594 right_el
= path_leaf_el(right_path
);
1596 /* This is a code error, not a disk corruption. */
1597 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
1598 "because rightmost leaf block %llu is empty\n",
1599 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1600 (unsigned long long)right_leaf_bh
->b_blocknr
);
1602 ocfs2_create_empty_extent(right_el
);
1604 ret
= ocfs2_journal_dirty(handle
, right_leaf_bh
);
1610 /* Do the copy now. */
1611 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1612 move_rec
= left_el
->l_recs
[i
];
1613 right_el
->l_recs
[0] = move_rec
;
1616 * Clear out the record we just copied and shift everything
1617 * over, leaving an empty extent in the left leaf.
1619 * We temporarily subtract from next_free_rec so that the
1620 * shift will lose the tail record (which is now defunct).
1622 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
1623 ocfs2_shift_records_right(left_el
);
1624 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1625 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
1627 ret
= ocfs2_journal_dirty(handle
, left_leaf_bh
);
1633 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
1641 * Given a full path, determine what cpos value would return us a path
1642 * containing the leaf immediately to the left of the current one.
1644 * Will return zero if the path passed in is already the leftmost path.
1646 static int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
1647 struct ocfs2_path
*path
, u32
*cpos
)
1651 struct ocfs2_extent_list
*el
;
1653 BUG_ON(path
->p_tree_depth
== 0);
1657 blkno
= path_leaf_bh(path
)->b_blocknr
;
1659 /* Start at the tree node just above the leaf and work our way up. */
1660 i
= path
->p_tree_depth
- 1;
1662 el
= path
->p_node
[i
].el
;
1665 * Find the extent record just before the one in our
1668 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
1669 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
1673 * We've determined that the
1674 * path specified is already
1675 * the leftmost one - return a
1681 * The leftmost record points to our
1682 * leaf - we need to travel up the
1688 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
1689 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
1690 &el
->l_recs
[j
- 1]);
1697 * If we got here, we never found a valid node where
1698 * the tree indicated one should be.
1701 "Invalid extent tree at extent block %llu\n",
1702 (unsigned long long)blkno
);
1707 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
1716 * Extend the transaction by enough credits to complete the rotation,
1717 * and still leave at least the original number of credits allocated
1718 * to this transaction.
1720 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
1722 struct ocfs2_path
*path
)
1724 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
1726 if (handle
->h_buffer_credits
< credits
)
1727 return ocfs2_extend_trans(handle
, credits
);
1733 * Trap the case where we're inserting into the theoretical range past
1734 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1735 * whose cpos is less than ours into the right leaf.
1737 * It's only necessary to look at the rightmost record of the left
1738 * leaf because the logic that calls us should ensure that the
1739 * theoretical ranges in the path components above the leaves are
1742 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
1745 struct ocfs2_extent_list
*left_el
;
1746 struct ocfs2_extent_rec
*rec
;
1749 left_el
= path_leaf_el(left_path
);
1750 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
1751 rec
= &left_el
->l_recs
[next_free
- 1];
1753 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
1758 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
1760 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1762 struct ocfs2_extent_rec
*rec
;
1767 rec
= &el
->l_recs
[0];
1768 if (ocfs2_is_empty_extent(rec
)) {
1772 rec
= &el
->l_recs
[1];
1775 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1776 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1782 * Rotate all the records in a btree right one record, starting at insert_cpos.
1784 * The path to the rightmost leaf should be passed in.
1786 * The array is assumed to be large enough to hold an entire path (tree depth).
1788 * Upon succesful return from this function:
1790 * - The 'right_path' array will contain a path to the leaf block
1791 * whose range contains e_cpos.
1792 * - That leaf block will have a single empty extent in list index 0.
1793 * - In the case that the rotation requires a post-insert update,
1794 * *ret_left_path will contain a valid path which can be passed to
1795 * ocfs2_insert_path().
1797 static int ocfs2_rotate_tree_right(struct inode
*inode
,
1799 enum ocfs2_split_type split
,
1801 struct ocfs2_path
*right_path
,
1802 struct ocfs2_path
**ret_left_path
)
1804 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
1806 struct ocfs2_path
*left_path
= NULL
;
1808 *ret_left_path
= NULL
;
1810 left_path
= ocfs2_new_path(path_root_bh(right_path
),
1811 path_root_el(right_path
));
1818 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
, &cpos
);
1824 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
1827 * What we want to do here is:
1829 * 1) Start with the rightmost path.
1831 * 2) Determine a path to the leaf block directly to the left
1834 * 3) Determine the 'subtree root' - the lowest level tree node
1835 * which contains a path to both leaves.
1837 * 4) Rotate the subtree.
1839 * 5) Find the next subtree by considering the left path to be
1840 * the new right path.
1842 * The check at the top of this while loop also accepts
1843 * insert_cpos == cpos because cpos is only a _theoretical_
1844 * value to get us the left path - insert_cpos might very well
1845 * be filling that hole.
1847 * Stop at a cpos of '0' because we either started at the
1848 * leftmost branch (i.e., a tree with one branch and a
1849 * rotation inside of it), or we've gone as far as we can in
1850 * rotating subtrees.
1852 while (cpos
&& insert_cpos
<= cpos
) {
1853 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1856 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
1862 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
1863 path_leaf_bh(right_path
),
1864 "Inode %lu: error during insert of %u "
1865 "(left path cpos %u) results in two identical "
1866 "paths ending at %llu\n",
1867 inode
->i_ino
, insert_cpos
, cpos
,
1868 (unsigned long long)
1869 path_leaf_bh(left_path
)->b_blocknr
);
1871 if (split
== SPLIT_NONE
&&
1872 ocfs2_rotate_requires_path_adjustment(left_path
,
1876 * We've rotated the tree as much as we
1877 * should. The rest is up to
1878 * ocfs2_insert_path() to complete, after the
1879 * record insertion. We indicate this
1880 * situation by returning the left path.
1882 * The reason we don't adjust the records here
1883 * before the record insert is that an error
1884 * later might break the rule where a parent
1885 * record e_cpos will reflect the actual
1886 * e_cpos of the 1st nonempty record of the
1889 *ret_left_path
= left_path
;
1893 start
= ocfs2_find_subtree_root(inode
, left_path
, right_path
);
1895 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1897 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
1898 right_path
->p_tree_depth
);
1900 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
1901 orig_credits
, right_path
);
1907 ret
= ocfs2_rotate_subtree_right(inode
, handle
, left_path
,
1914 if (split
!= SPLIT_NONE
&&
1915 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
1918 * A rotate moves the rightmost left leaf
1919 * record over to the leftmost right leaf
1920 * slot. If we're doing an extent split
1921 * instead of a real insert, then we have to
1922 * check that the extent to be split wasn't
1923 * just moved over. If it was, then we can
1924 * exit here, passing left_path back -
1925 * ocfs2_split_extent() is smart enough to
1926 * search both leaves.
1928 *ret_left_path
= left_path
;
1933 * There is no need to re-read the next right path
1934 * as we know that it'll be our current left
1935 * path. Optimize by copying values instead.
1937 ocfs2_mv_path(right_path
, left_path
);
1939 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
1948 ocfs2_free_path(left_path
);
1954 static void ocfs2_update_edge_lengths(struct inode
*inode
, handle_t
*handle
,
1955 struct ocfs2_path
*path
)
1958 struct ocfs2_extent_rec
*rec
;
1959 struct ocfs2_extent_list
*el
;
1960 struct ocfs2_extent_block
*eb
;
1963 /* Path should always be rightmost. */
1964 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
1965 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
1968 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
1969 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1970 rec
= &el
->l_recs
[idx
];
1971 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
1973 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
1974 el
= path
->p_node
[i
].el
;
1975 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1976 rec
= &el
->l_recs
[idx
];
1978 rec
->e_int_clusters
= cpu_to_le32(range
);
1979 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
1981 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
1985 static void ocfs2_unlink_path(struct inode
*inode
, handle_t
*handle
,
1986 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
1987 struct ocfs2_path
*path
, int unlink_start
)
1990 struct ocfs2_extent_block
*eb
;
1991 struct ocfs2_extent_list
*el
;
1992 struct buffer_head
*bh
;
1994 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
1995 bh
= path
->p_node
[i
].bh
;
1997 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
1999 * Not all nodes might have had their final count
2000 * decremented by the caller - handle this here.
2003 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2005 "Inode %llu, attempted to remove extent block "
2006 "%llu with %u records\n",
2007 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2008 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2009 le16_to_cpu(el
->l_next_free_rec
));
2011 ocfs2_journal_dirty(handle
, bh
);
2012 ocfs2_remove_from_cache(inode
, bh
);
2016 el
->l_next_free_rec
= 0;
2017 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2019 ocfs2_journal_dirty(handle
, bh
);
2021 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2025 ocfs2_remove_from_cache(inode
, bh
);
2029 static void ocfs2_unlink_subtree(struct inode
*inode
, handle_t
*handle
,
2030 struct ocfs2_path
*left_path
,
2031 struct ocfs2_path
*right_path
,
2033 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2036 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2037 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2038 struct ocfs2_extent_list
*el
;
2039 struct ocfs2_extent_block
*eb
;
2041 el
= path_leaf_el(left_path
);
2043 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2045 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2046 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2049 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2051 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2052 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2054 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2055 eb
->h_next_leaf_blk
= 0;
2057 ocfs2_journal_dirty(handle
, root_bh
);
2058 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2060 ocfs2_unlink_path(inode
, handle
, dealloc
, right_path
,
2064 static int ocfs2_rotate_subtree_left(struct inode
*inode
, handle_t
*handle
,
2065 struct ocfs2_path
*left_path
,
2066 struct ocfs2_path
*right_path
,
2068 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2071 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2072 struct buffer_head
*root_bh
, *di_bh
= path_root_bh(right_path
);
2073 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2074 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2075 struct ocfs2_extent_block
*eb
;
2079 right_leaf_el
= path_leaf_el(right_path
);
2080 left_leaf_el
= path_leaf_el(left_path
);
2081 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2082 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2084 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2087 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2088 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2090 * It's legal for us to proceed if the right leaf is
2091 * the rightmost one and it has an empty extent. There
2092 * are two cases to handle - whether the leaf will be
2093 * empty after removal or not. If the leaf isn't empty
2094 * then just remove the empty extent up front. The
2095 * next block will handle empty leaves by flagging
2098 * Non rightmost leaves will throw -EAGAIN and the
2099 * caller can manually move the subtree and retry.
2102 if (eb
->h_next_leaf_blk
!= 0ULL)
2105 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2106 ret
= ocfs2_journal_access(handle
, inode
,
2107 path_leaf_bh(right_path
),
2108 OCFS2_JOURNAL_ACCESS_WRITE
);
2114 ocfs2_remove_empty_extent(right_leaf_el
);
2116 right_has_empty
= 1;
2119 if (eb
->h_next_leaf_blk
== 0ULL &&
2120 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2122 * We have to update i_last_eb_blk during the meta
2125 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
2126 OCFS2_JOURNAL_ACCESS_WRITE
);
2132 del_right_subtree
= 1;
2136 * Getting here with an empty extent in the right path implies
2137 * that it's the rightmost path and will be deleted.
2139 BUG_ON(right_has_empty
&& !del_right_subtree
);
2141 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
2142 OCFS2_JOURNAL_ACCESS_WRITE
);
2148 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2149 ret
= ocfs2_journal_access(handle
, inode
,
2150 right_path
->p_node
[i
].bh
,
2151 OCFS2_JOURNAL_ACCESS_WRITE
);
2157 ret
= ocfs2_journal_access(handle
, inode
,
2158 left_path
->p_node
[i
].bh
,
2159 OCFS2_JOURNAL_ACCESS_WRITE
);
2166 if (!right_has_empty
) {
2168 * Only do this if we're moving a real
2169 * record. Otherwise, the action is delayed until
2170 * after removal of the right path in which case we
2171 * can do a simple shift to remove the empty extent.
2173 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2174 memset(&right_leaf_el
->l_recs
[0], 0,
2175 sizeof(struct ocfs2_extent_rec
));
2177 if (eb
->h_next_leaf_blk
== 0ULL) {
2179 * Move recs over to get rid of empty extent, decrease
2180 * next_free. This is allowed to remove the last
2181 * extent in our leaf (setting l_next_free_rec to
2182 * zero) - the delete code below won't care.
2184 ocfs2_remove_empty_extent(right_leaf_el
);
2187 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2190 ret
= ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2194 if (del_right_subtree
) {
2195 ocfs2_unlink_subtree(inode
, handle
, left_path
, right_path
,
2196 subtree_index
, dealloc
);
2197 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2199 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2200 di
->i_last_eb_blk
= eb
->h_blkno
;
2203 * Removal of the extent in the left leaf was skipped
2204 * above so we could delete the right path
2207 if (right_has_empty
)
2208 ocfs2_remove_empty_extent(left_leaf_el
);
2210 ret
= ocfs2_journal_dirty(handle
, di_bh
);
2216 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
2224 * Given a full path, determine what cpos value would return us a path
2225 * containing the leaf immediately to the right of the current one.
2227 * Will return zero if the path passed in is already the rightmost path.
2229 * This looks similar, but is subtly different to
2230 * ocfs2_find_cpos_for_left_leaf().
2232 static int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2233 struct ocfs2_path
*path
, u32
*cpos
)
2237 struct ocfs2_extent_list
*el
;
2241 if (path
->p_tree_depth
== 0)
2244 blkno
= path_leaf_bh(path
)->b_blocknr
;
2246 /* Start at the tree node just above the leaf and work our way up. */
2247 i
= path
->p_tree_depth
- 1;
2251 el
= path
->p_node
[i
].el
;
2254 * Find the extent record just after the one in our
2257 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2258 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2259 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2260 if (j
== (next_free
- 1)) {
2263 * We've determined that the
2264 * path specified is already
2265 * the rightmost one - return a
2271 * The rightmost record points to our
2272 * leaf - we need to travel up the
2278 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2284 * If we got here, we never found a valid node where
2285 * the tree indicated one should be.
2288 "Invalid extent tree at extent block %llu\n",
2289 (unsigned long long)blkno
);
2294 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2302 static int ocfs2_rotate_rightmost_leaf_left(struct inode
*inode
,
2304 struct buffer_head
*bh
,
2305 struct ocfs2_extent_list
*el
)
2309 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2312 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2313 OCFS2_JOURNAL_ACCESS_WRITE
);
2319 ocfs2_remove_empty_extent(el
);
2321 ret
= ocfs2_journal_dirty(handle
, bh
);
2329 static int __ocfs2_rotate_tree_left(struct inode
*inode
,
2330 handle_t
*handle
, int orig_credits
,
2331 struct ocfs2_path
*path
,
2332 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2333 struct ocfs2_path
**empty_extent_path
)
2335 int ret
, subtree_root
, deleted
;
2337 struct ocfs2_path
*left_path
= NULL
;
2338 struct ocfs2_path
*right_path
= NULL
;
2340 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2342 *empty_extent_path
= NULL
;
2344 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, path
,
2351 left_path
= ocfs2_new_path(path_root_bh(path
),
2352 path_root_el(path
));
2359 ocfs2_cp_path(left_path
, path
);
2361 right_path
= ocfs2_new_path(path_root_bh(path
),
2362 path_root_el(path
));
2369 while (right_cpos
) {
2370 ret
= ocfs2_find_path(inode
, right_path
, right_cpos
);
2376 subtree_root
= ocfs2_find_subtree_root(inode
, left_path
,
2379 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2381 (unsigned long long)
2382 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2383 right_path
->p_tree_depth
);
2385 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2386 orig_credits
, left_path
);
2392 ret
= ocfs2_rotate_subtree_left(inode
, handle
, left_path
,
2393 right_path
, subtree_root
,
2395 if (ret
== -EAGAIN
) {
2397 * The rotation has to temporarily stop due to
2398 * the right subtree having an empty
2399 * extent. Pass it back to the caller for a
2402 *empty_extent_path
= right_path
;
2412 * The subtree rotate might have removed records on
2413 * the rightmost edge. If so, then rotation is
2419 ocfs2_mv_path(left_path
, right_path
);
2421 ret
= ocfs2_find_cpos_for_right_leaf(inode
->i_sb
, left_path
,
2430 ocfs2_free_path(right_path
);
2431 ocfs2_free_path(left_path
);
2436 static int ocfs2_remove_rightmost_path(struct inode
*inode
, handle_t
*handle
,
2437 struct ocfs2_path
*path
,
2438 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2440 int ret
, subtree_index
;
2442 struct ocfs2_path
*left_path
= NULL
;
2443 struct ocfs2_dinode
*di
;
2444 struct ocfs2_extent_block
*eb
;
2445 struct ocfs2_extent_list
*el
;
2448 * XXX: This code assumes that the root is an inode, which is
2449 * true for now but may change as tree code gets generic.
2451 di
= (struct ocfs2_dinode
*)path_root_bh(path
)->b_data
;
2452 if (!OCFS2_IS_VALID_DINODE(di
)) {
2454 ocfs2_error(inode
->i_sb
,
2455 "Inode %llu has invalid path root",
2456 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
2461 * There's two ways we handle this depending on
2462 * whether path is the only existing one.
2464 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2465 handle
->h_buffer_credits
,
2472 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
2478 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
2486 * We have a path to the left of this one - it needs
2489 left_path
= ocfs2_new_path(path_root_bh(path
),
2490 path_root_el(path
));
2497 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
2503 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
2509 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
2511 ocfs2_unlink_subtree(inode
, handle
, left_path
, path
,
2512 subtree_index
, dealloc
);
2513 ocfs2_update_edge_lengths(inode
, handle
, left_path
);
2515 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2516 di
->i_last_eb_blk
= eb
->h_blkno
;
2519 * 'path' is also the leftmost path which
2520 * means it must be the only one. This gets
2521 * handled differently because we want to
2522 * revert the inode back to having extents
2525 ocfs2_unlink_path(inode
, handle
, dealloc
, path
, 1);
2527 el
= &di
->id2
.i_list
;
2528 el
->l_tree_depth
= 0;
2529 el
->l_next_free_rec
= 0;
2530 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2532 di
->i_last_eb_blk
= 0;
2535 ocfs2_journal_dirty(handle
, path_root_bh(path
));
2538 ocfs2_free_path(left_path
);
2543 * Left rotation of btree records.
2545 * In many ways, this is (unsurprisingly) the opposite of right
2546 * rotation. We start at some non-rightmost path containing an empty
2547 * extent in the leaf block. The code works its way to the rightmost
2548 * path by rotating records to the left in every subtree.
2550 * This is used by any code which reduces the number of extent records
2551 * in a leaf. After removal, an empty record should be placed in the
2552 * leftmost list position.
2554 * This won't handle a length update of the rightmost path records if
2555 * the rightmost tree leaf record is removed so the caller is
2556 * responsible for detecting and correcting that.
2558 static int ocfs2_rotate_tree_left(struct inode
*inode
, handle_t
*handle
,
2559 struct ocfs2_path
*path
,
2560 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2562 int ret
, orig_credits
= handle
->h_buffer_credits
;
2563 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
2564 struct ocfs2_extent_block
*eb
;
2565 struct ocfs2_extent_list
*el
;
2567 el
= path_leaf_el(path
);
2568 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2571 if (path
->p_tree_depth
== 0) {
2572 rightmost_no_delete
:
2574 * In-inode extents. This is trivially handled, so do
2577 ret
= ocfs2_rotate_rightmost_leaf_left(inode
, handle
,
2579 path_leaf_el(path
));
2586 * Handle rightmost branch now. There's several cases:
2587 * 1) simple rotation leaving records in there. That's trivial.
2588 * 2) rotation requiring a branch delete - there's no more
2589 * records left. Two cases of this:
2590 * a) There are branches to the left.
2591 * b) This is also the leftmost (the only) branch.
2593 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2594 * 2a) we need the left branch so that we can update it with the unlink
2595 * 2b) we need to bring the inode back to inline extents.
2598 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2600 if (eb
->h_next_leaf_blk
== 0) {
2602 * This gets a bit tricky if we're going to delete the
2603 * rightmost path. Get the other cases out of the way
2606 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
2607 goto rightmost_no_delete
;
2609 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
2611 ocfs2_error(inode
->i_sb
,
2612 "Inode %llu has empty extent block at %llu",
2613 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
2614 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
2619 * XXX: The caller can not trust "path" any more after
2620 * this as it will have been deleted. What do we do?
2622 * In theory the rotate-for-merge code will never get
2623 * here because it'll always ask for a rotate in a
2627 ret
= ocfs2_remove_rightmost_path(inode
, handle
, path
,
2635 * Now we can loop, remembering the path we get from -EAGAIN
2636 * and restarting from there.
2639 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
, path
,
2640 dealloc
, &restart_path
);
2641 if (ret
&& ret
!= -EAGAIN
) {
2646 while (ret
== -EAGAIN
) {
2647 tmp_path
= restart_path
;
2648 restart_path
= NULL
;
2650 ret
= __ocfs2_rotate_tree_left(inode
, handle
, orig_credits
,
2653 if (ret
&& ret
!= -EAGAIN
) {
2658 ocfs2_free_path(tmp_path
);
2666 ocfs2_free_path(tmp_path
);
2667 ocfs2_free_path(restart_path
);
2671 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
2674 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
2677 if (rec
->e_leaf_clusters
== 0) {
2679 * We consumed all of the merged-from record. An empty
2680 * extent cannot exist anywhere but the 1st array
2681 * position, so move things over if the merged-from
2682 * record doesn't occupy that position.
2684 * This creates a new empty extent so the caller
2685 * should be smart enough to have removed any existing
2689 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
2690 size
= index
* sizeof(struct ocfs2_extent_rec
);
2691 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
2695 * Always memset - the caller doesn't check whether it
2696 * created an empty extent, so there could be junk in
2699 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2704 * Remove split_rec clusters from the record at index and merge them
2705 * onto the beginning of the record at index + 1.
2707 static int ocfs2_merge_rec_right(struct inode
*inode
, struct buffer_head
*bh
,
2709 struct ocfs2_extent_rec
*split_rec
,
2710 struct ocfs2_extent_list
*el
, int index
)
2713 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
2714 struct ocfs2_extent_rec
*left_rec
;
2715 struct ocfs2_extent_rec
*right_rec
;
2717 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
2719 left_rec
= &el
->l_recs
[index
];
2720 right_rec
= &el
->l_recs
[index
+ 1];
2722 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2723 OCFS2_JOURNAL_ACCESS_WRITE
);
2729 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
2731 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
2732 le64_add_cpu(&right_rec
->e_blkno
,
2733 -ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
2734 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
2736 ocfs2_cleanup_merge(el
, index
);
2738 ret
= ocfs2_journal_dirty(handle
, bh
);
2747 * Remove split_rec clusters from the record at index and merge them
2748 * onto the tail of the record at index - 1.
2750 static int ocfs2_merge_rec_left(struct inode
*inode
, struct buffer_head
*bh
,
2752 struct ocfs2_extent_rec
*split_rec
,
2753 struct ocfs2_extent_list
*el
, int index
)
2755 int ret
, has_empty_extent
= 0;
2756 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
2757 struct ocfs2_extent_rec
*left_rec
;
2758 struct ocfs2_extent_rec
*right_rec
;
2762 left_rec
= &el
->l_recs
[index
- 1];
2763 right_rec
= &el
->l_recs
[index
];
2764 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
2765 has_empty_extent
= 1;
2767 ret
= ocfs2_journal_access(handle
, inode
, bh
,
2768 OCFS2_JOURNAL_ACCESS_WRITE
);
2774 if (has_empty_extent
&& index
== 1) {
2776 * The easy case - we can just plop the record right in.
2778 *left_rec
= *split_rec
;
2780 has_empty_extent
= 0;
2782 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
2785 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
2786 le64_add_cpu(&right_rec
->e_blkno
,
2787 ocfs2_clusters_to_blocks(inode
->i_sb
, split_clusters
));
2788 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
2790 ocfs2_cleanup_merge(el
, index
);
2792 ret
= ocfs2_journal_dirty(handle
, bh
);
2800 static int ocfs2_try_to_merge_extent(struct inode
*inode
,
2802 struct ocfs2_path
*left_path
,
2804 struct ocfs2_extent_rec
*split_rec
,
2805 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2806 struct ocfs2_merge_ctxt
*ctxt
)
2810 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
2811 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
2813 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
2815 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
2817 * The merge code will need to create an empty
2818 * extent to take the place of the newly
2819 * emptied slot. Remove any pre-existing empty
2820 * extents - having more than one in a leaf is
2823 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
,
2830 rec
= &el
->l_recs
[split_index
];
2833 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
2835 * Left-right contig implies this.
2837 BUG_ON(!ctxt
->c_split_covers_rec
);
2838 BUG_ON(split_index
== 0);
2841 * Since the leftright insert always covers the entire
2842 * extent, this call will delete the insert record
2843 * entirely, resulting in an empty extent record added to
2846 * Since the adding of an empty extent shifts
2847 * everything back to the right, there's no need to
2848 * update split_index here.
2850 ret
= ocfs2_merge_rec_left(inode
, path_leaf_bh(left_path
),
2851 handle
, split_rec
, el
, split_index
);
2858 * We can only get this from logic error above.
2860 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
2863 * The left merge left us with an empty extent, remove
2866 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
, dealloc
);
2872 rec
= &el
->l_recs
[split_index
];
2875 * Note that we don't pass split_rec here on purpose -
2876 * we've merged it into the left side.
2878 ret
= ocfs2_merge_rec_right(inode
, path_leaf_bh(left_path
),
2879 handle
, rec
, el
, split_index
);
2885 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
2887 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
,
2890 * Error from this last rotate is not critical, so
2891 * print but don't bubble it up.
2898 * Merge a record to the left or right.
2900 * 'contig_type' is relative to the existing record,
2901 * so for example, if we're "right contig", it's to
2902 * the record on the left (hence the left merge).
2904 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
2905 ret
= ocfs2_merge_rec_left(inode
,
2906 path_leaf_bh(left_path
),
2907 handle
, split_rec
, el
,
2914 ret
= ocfs2_merge_rec_right(inode
,
2915 path_leaf_bh(left_path
),
2916 handle
, split_rec
, el
,
2924 if (ctxt
->c_split_covers_rec
) {
2926 * The merge may have left an empty extent in
2927 * our leaf. Try to rotate it away.
2929 ret
= ocfs2_rotate_tree_left(inode
, handle
, left_path
,
2941 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
2942 enum ocfs2_split_type split
,
2943 struct ocfs2_extent_rec
*rec
,
2944 struct ocfs2_extent_rec
*split_rec
)
2948 len_blocks
= ocfs2_clusters_to_blocks(sb
,
2949 le16_to_cpu(split_rec
->e_leaf_clusters
));
2951 if (split
== SPLIT_LEFT
) {
2953 * Region is on the left edge of the existing
2956 le32_add_cpu(&rec
->e_cpos
,
2957 le16_to_cpu(split_rec
->e_leaf_clusters
));
2958 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
2959 le16_add_cpu(&rec
->e_leaf_clusters
,
2960 -le16_to_cpu(split_rec
->e_leaf_clusters
));
2963 * Region is on the right edge of the existing
2966 le16_add_cpu(&rec
->e_leaf_clusters
,
2967 -le16_to_cpu(split_rec
->e_leaf_clusters
));
2972 * Do the final bits of extent record insertion at the target leaf
2973 * list. If this leaf is part of an allocation tree, it is assumed
2974 * that the tree above has been prepared.
2976 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec
*insert_rec
,
2977 struct ocfs2_extent_list
*el
,
2978 struct ocfs2_insert_type
*insert
,
2979 struct inode
*inode
)
2981 int i
= insert
->ins_contig_index
;
2983 struct ocfs2_extent_rec
*rec
;
2985 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
2987 if (insert
->ins_split
!= SPLIT_NONE
) {
2988 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
2990 rec
= &el
->l_recs
[i
];
2991 ocfs2_subtract_from_rec(inode
->i_sb
, insert
->ins_split
, rec
,
2997 * Contiguous insert - either left or right.
2999 if (insert
->ins_contig
!= CONTIG_NONE
) {
3000 rec
= &el
->l_recs
[i
];
3001 if (insert
->ins_contig
== CONTIG_LEFT
) {
3002 rec
->e_blkno
= insert_rec
->e_blkno
;
3003 rec
->e_cpos
= insert_rec
->e_cpos
;
3005 le16_add_cpu(&rec
->e_leaf_clusters
,
3006 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3011 * Handle insert into an empty leaf.
3013 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3014 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3015 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3016 el
->l_recs
[0] = *insert_rec
;
3017 el
->l_next_free_rec
= cpu_to_le16(1);
3024 if (insert
->ins_appending
== APPEND_TAIL
) {
3025 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3026 rec
= &el
->l_recs
[i
];
3027 range
= le32_to_cpu(rec
->e_cpos
)
3028 + le16_to_cpu(rec
->e_leaf_clusters
);
3029 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3031 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3032 le16_to_cpu(el
->l_count
),
3033 "inode %lu, depth %u, count %u, next free %u, "
3034 "rec.cpos %u, rec.clusters %u, "
3035 "insert.cpos %u, insert.clusters %u\n",
3037 le16_to_cpu(el
->l_tree_depth
),
3038 le16_to_cpu(el
->l_count
),
3039 le16_to_cpu(el
->l_next_free_rec
),
3040 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3041 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3042 le32_to_cpu(insert_rec
->e_cpos
),
3043 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3045 el
->l_recs
[i
] = *insert_rec
;
3046 le16_add_cpu(&el
->l_next_free_rec
, 1);
3052 * Ok, we have to rotate.
3054 * At this point, it is safe to assume that inserting into an
3055 * empty leaf and appending to a leaf have both been handled
3058 * This leaf needs to have space, either by the empty 1st
3059 * extent record, or by virtue of an l_next_rec < l_count.
3061 ocfs2_rotate_leaf(el
, insert_rec
);
3064 static inline void ocfs2_update_dinode_clusters(struct inode
*inode
,
3065 struct ocfs2_dinode
*di
,
3068 le32_add_cpu(&di
->i_clusters
, clusters
);
3069 spin_lock(&OCFS2_I(inode
)->ip_lock
);
3070 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(di
->i_clusters
);
3071 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
3074 static void ocfs2_adjust_rightmost_records(struct inode
*inode
,
3076 struct ocfs2_path
*path
,
3077 struct ocfs2_extent_rec
*insert_rec
)
3079 int ret
, i
, next_free
;
3080 struct buffer_head
*bh
;
3081 struct ocfs2_extent_list
*el
;
3082 struct ocfs2_extent_rec
*rec
;
3085 * Update everything except the leaf block.
3087 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3088 bh
= path
->p_node
[i
].bh
;
3089 el
= path
->p_node
[i
].el
;
3091 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3092 if (next_free
== 0) {
3093 ocfs2_error(inode
->i_sb
,
3094 "Dinode %llu has a bad extent list",
3095 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
3100 rec
= &el
->l_recs
[next_free
- 1];
3102 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3103 le32_add_cpu(&rec
->e_int_clusters
,
3104 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3105 le32_add_cpu(&rec
->e_int_clusters
,
3106 -le32_to_cpu(rec
->e_cpos
));
3108 ret
= ocfs2_journal_dirty(handle
, bh
);
3115 static int ocfs2_append_rec_to_path(struct inode
*inode
, handle_t
*handle
,
3116 struct ocfs2_extent_rec
*insert_rec
,
3117 struct ocfs2_path
*right_path
,
3118 struct ocfs2_path
**ret_left_path
)
3121 struct ocfs2_extent_list
*el
;
3122 struct ocfs2_path
*left_path
= NULL
;
3124 *ret_left_path
= NULL
;
3127 * This shouldn't happen for non-trees. The extent rec cluster
3128 * count manipulation below only works for interior nodes.
3130 BUG_ON(right_path
->p_tree_depth
== 0);
3133 * If our appending insert is at the leftmost edge of a leaf,
3134 * then we might need to update the rightmost records of the
3137 el
= path_leaf_el(right_path
);
3138 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3139 if (next_free
== 0 ||
3140 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3143 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
3150 mlog(0, "Append may need a left path update. cpos: %u, "
3151 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
3155 * No need to worry if the append is already in the
3159 left_path
= ocfs2_new_path(path_root_bh(right_path
),
3160 path_root_el(right_path
));
3167 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
3174 * ocfs2_insert_path() will pass the left_path to the
3180 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3186 ocfs2_adjust_rightmost_records(inode
, handle
, right_path
, insert_rec
);
3188 *ret_left_path
= left_path
;
3192 ocfs2_free_path(left_path
);
3197 static void ocfs2_split_record(struct inode
*inode
,
3198 struct ocfs2_path
*left_path
,
3199 struct ocfs2_path
*right_path
,
3200 struct ocfs2_extent_rec
*split_rec
,
3201 enum ocfs2_split_type split
)
3204 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
3205 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
3206 struct ocfs2_extent_rec
*rec
, *tmprec
;
3208 right_el
= path_leaf_el(right_path
);;
3210 left_el
= path_leaf_el(left_path
);
3213 insert_el
= right_el
;
3214 index
= ocfs2_search_extent_list(el
, cpos
);
3216 if (index
== 0 && left_path
) {
3217 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3220 * This typically means that the record
3221 * started in the left path but moved to the
3222 * right as a result of rotation. We either
3223 * move the existing record to the left, or we
3224 * do the later insert there.
3226 * In this case, the left path should always
3227 * exist as the rotate code will have passed
3228 * it back for a post-insert update.
3231 if (split
== SPLIT_LEFT
) {
3233 * It's a left split. Since we know
3234 * that the rotate code gave us an
3235 * empty extent in the left path, we
3236 * can just do the insert there.
3238 insert_el
= left_el
;
3241 * Right split - we have to move the
3242 * existing record over to the left
3243 * leaf. The insert will be into the
3244 * newly created empty extent in the
3247 tmprec
= &right_el
->l_recs
[index
];
3248 ocfs2_rotate_leaf(left_el
, tmprec
);
3251 memset(tmprec
, 0, sizeof(*tmprec
));
3252 index
= ocfs2_search_extent_list(left_el
, cpos
);
3253 BUG_ON(index
== -1);
3258 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
3260 * Left path is easy - we can just allow the insert to
3264 insert_el
= left_el
;
3265 index
= ocfs2_search_extent_list(el
, cpos
);
3266 BUG_ON(index
== -1);
3269 rec
= &el
->l_recs
[index
];
3270 ocfs2_subtract_from_rec(inode
->i_sb
, split
, rec
, split_rec
);
3271 ocfs2_rotate_leaf(insert_el
, split_rec
);
3275 * This function only does inserts on an allocation b-tree. For dinode
3276 * lists, ocfs2_insert_at_leaf() is called directly.
3278 * right_path is the path we want to do the actual insert
3279 * in. left_path should only be passed in if we need to update that
3280 * portion of the tree after an edge insert.
3282 static int ocfs2_insert_path(struct inode
*inode
,
3284 struct ocfs2_path
*left_path
,
3285 struct ocfs2_path
*right_path
,
3286 struct ocfs2_extent_rec
*insert_rec
,
3287 struct ocfs2_insert_type
*insert
)
3289 int ret
, subtree_index
;
3290 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
3293 * Pass both paths to the journal. The majority of inserts
3294 * will be touching all components anyway.
3296 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
3303 int credits
= handle
->h_buffer_credits
;
3306 * There's a chance that left_path got passed back to
3307 * us without being accounted for in the
3308 * journal. Extend our transaction here to be sure we
3309 * can change those blocks.
3311 credits
+= left_path
->p_tree_depth
;
3313 ret
= ocfs2_extend_trans(handle
, credits
);
3319 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
3326 if (insert
->ins_split
!= SPLIT_NONE
) {
3328 * We could call ocfs2_insert_at_leaf() for some types
3329 * of splits, but it's easier to just let one seperate
3330 * function sort it all out.
3332 ocfs2_split_record(inode
, left_path
, right_path
,
3333 insert_rec
, insert
->ins_split
);
3335 ocfs2_insert_at_leaf(insert_rec
, path_leaf_el(right_path
),
3338 ret
= ocfs2_journal_dirty(handle
, leaf_bh
);
3344 * The rotate code has indicated that we need to fix
3345 * up portions of the tree after the insert.
3347 * XXX: Should we extend the transaction here?
3349 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
,
3351 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
3352 right_path
, subtree_index
);
3360 static int ocfs2_do_insert_extent(struct inode
*inode
,
3362 struct buffer_head
*di_bh
,
3363 struct ocfs2_extent_rec
*insert_rec
,
3364 struct ocfs2_insert_type
*type
)
3366 int ret
, rotate
= 0;
3368 struct ocfs2_path
*right_path
= NULL
;
3369 struct ocfs2_path
*left_path
= NULL
;
3370 struct ocfs2_dinode
*di
;
3371 struct ocfs2_extent_list
*el
;
3373 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
3374 el
= &di
->id2
.i_list
;
3376 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
3377 OCFS2_JOURNAL_ACCESS_WRITE
);
3383 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
3384 ocfs2_insert_at_leaf(insert_rec
, el
, type
, inode
);
3385 goto out_update_clusters
;
3388 right_path
= ocfs2_new_inode_path(di_bh
);
3396 * Determine the path to start with. Rotations need the
3397 * rightmost path, everything else can go directly to the
3400 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
3401 if (type
->ins_appending
== APPEND_NONE
&&
3402 type
->ins_contig
== CONTIG_NONE
) {
3407 ret
= ocfs2_find_path(inode
, right_path
, cpos
);
3414 * Rotations and appends need special treatment - they modify
3415 * parts of the tree's above them.
3417 * Both might pass back a path immediate to the left of the
3418 * one being inserted to. This will be cause
3419 * ocfs2_insert_path() to modify the rightmost records of
3420 * left_path to account for an edge insert.
3422 * XXX: When modifying this code, keep in mind that an insert
3423 * can wind up skipping both of these two special cases...
3426 ret
= ocfs2_rotate_tree_right(inode
, handle
, type
->ins_split
,
3427 le32_to_cpu(insert_rec
->e_cpos
),
3428 right_path
, &left_path
);
3433 } else if (type
->ins_appending
== APPEND_TAIL
3434 && type
->ins_contig
!= CONTIG_LEFT
) {
3435 ret
= ocfs2_append_rec_to_path(inode
, handle
, insert_rec
,
3436 right_path
, &left_path
);
3443 ret
= ocfs2_insert_path(inode
, handle
, left_path
, right_path
,
3450 out_update_clusters
:
3451 if (type
->ins_split
== SPLIT_NONE
)
3452 ocfs2_update_dinode_clusters(inode
, di
,
3453 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3455 ret
= ocfs2_journal_dirty(handle
, di_bh
);
3460 ocfs2_free_path(left_path
);
3461 ocfs2_free_path(right_path
);
3466 static enum ocfs2_contig_type
3467 ocfs2_figure_merge_contig_type(struct inode
*inode
,
3468 struct ocfs2_extent_list
*el
, int index
,
3469 struct ocfs2_extent_rec
*split_rec
)
3471 struct ocfs2_extent_rec
*rec
;
3472 enum ocfs2_contig_type ret
= CONTIG_NONE
;
3475 * We're careful to check for an empty extent record here -
3476 * the merge code will know what to do if it sees one.
3480 rec
= &el
->l_recs
[index
- 1];
3481 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
3482 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
3485 ret
= ocfs2_extent_contig(inode
, rec
, split_rec
);
3489 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1)) {
3490 enum ocfs2_contig_type contig_type
;
3492 rec
= &el
->l_recs
[index
+ 1];
3493 contig_type
= ocfs2_extent_contig(inode
, rec
, split_rec
);
3495 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
3496 ret
= CONTIG_LEFTRIGHT
;
3497 else if (ret
== CONTIG_NONE
)
3504 static void ocfs2_figure_contig_type(struct inode
*inode
,
3505 struct ocfs2_insert_type
*insert
,
3506 struct ocfs2_extent_list
*el
,
3507 struct ocfs2_extent_rec
*insert_rec
)
3510 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
3512 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3514 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
3515 contig_type
= ocfs2_extent_contig(inode
, &el
->l_recs
[i
],
3517 if (contig_type
!= CONTIG_NONE
) {
3518 insert
->ins_contig_index
= i
;
3522 insert
->ins_contig
= contig_type
;
3526 * This should only be called against the righmost leaf extent list.
3528 * ocfs2_figure_appending_type() will figure out whether we'll have to
3529 * insert at the tail of the rightmost leaf.
3531 * This should also work against the dinode list for tree's with 0
3532 * depth. If we consider the dinode list to be the rightmost leaf node
3533 * then the logic here makes sense.
3535 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
3536 struct ocfs2_extent_list
*el
,
3537 struct ocfs2_extent_rec
*insert_rec
)
3540 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
3541 struct ocfs2_extent_rec
*rec
;
3543 insert
->ins_appending
= APPEND_NONE
;
3545 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3547 if (!el
->l_next_free_rec
)
3548 goto set_tail_append
;
3550 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
3551 /* Were all records empty? */
3552 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
3553 goto set_tail_append
;
3556 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3557 rec
= &el
->l_recs
[i
];
3560 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
3561 goto set_tail_append
;
3566 insert
->ins_appending
= APPEND_TAIL
;
3570 * Helper function called at the begining of an insert.
3572 * This computes a few things that are commonly used in the process of
3573 * inserting into the btree:
3574 * - Whether the new extent is contiguous with an existing one.
3575 * - The current tree depth.
3576 * - Whether the insert is an appending one.
3577 * - The total # of free records in the tree.
3579 * All of the information is stored on the ocfs2_insert_type
3582 static int ocfs2_figure_insert_type(struct inode
*inode
,
3583 struct buffer_head
*di_bh
,
3584 struct buffer_head
**last_eb_bh
,
3585 struct ocfs2_extent_rec
*insert_rec
,
3587 struct ocfs2_insert_type
*insert
)
3590 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
3591 struct ocfs2_extent_block
*eb
;
3592 struct ocfs2_extent_list
*el
;
3593 struct ocfs2_path
*path
= NULL
;
3594 struct buffer_head
*bh
= NULL
;
3596 insert
->ins_split
= SPLIT_NONE
;
3598 el
= &di
->id2
.i_list
;
3599 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
3601 if (el
->l_tree_depth
) {
3603 * If we have tree depth, we read in the
3604 * rightmost extent block ahead of time as
3605 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3606 * may want it later.
3608 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
3609 le64_to_cpu(di
->i_last_eb_blk
), &bh
,
3610 OCFS2_BH_CACHED
, inode
);
3615 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
3620 * Unless we have a contiguous insert, we'll need to know if
3621 * there is room left in our allocation tree for another
3624 * XXX: This test is simplistic, we can search for empty
3625 * extent records too.
3627 *free_records
= le16_to_cpu(el
->l_count
) -
3628 le16_to_cpu(el
->l_next_free_rec
);
3630 if (!insert
->ins_tree_depth
) {
3631 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
3632 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
3636 path
= ocfs2_new_inode_path(di_bh
);
3644 * In the case that we're inserting past what the tree
3645 * currently accounts for, ocfs2_find_path() will return for
3646 * us the rightmost tree path. This is accounted for below in
3647 * the appending code.
3649 ret
= ocfs2_find_path(inode
, path
, le32_to_cpu(insert_rec
->e_cpos
));
3655 el
= path_leaf_el(path
);
3658 * Now that we have the path, there's two things we want to determine:
3659 * 1) Contiguousness (also set contig_index if this is so)
3661 * 2) Are we doing an append? We can trivially break this up
3662 * into two types of appends: simple record append, or a
3663 * rotate inside the tail leaf.
3665 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
3668 * The insert code isn't quite ready to deal with all cases of
3669 * left contiguousness. Specifically, if it's an insert into
3670 * the 1st record in a leaf, it will require the adjustment of
3671 * cluster count on the last record of the path directly to it's
3672 * left. For now, just catch that case and fool the layers
3673 * above us. This works just fine for tree_depth == 0, which
3674 * is why we allow that above.
3676 if (insert
->ins_contig
== CONTIG_LEFT
&&
3677 insert
->ins_contig_index
== 0)
3678 insert
->ins_contig
= CONTIG_NONE
;
3681 * Ok, so we can simply compare against last_eb to figure out
3682 * whether the path doesn't exist. This will only happen in
3683 * the case that we're doing a tail append, so maybe we can
3684 * take advantage of that information somehow.
3686 if (le64_to_cpu(di
->i_last_eb_blk
) == path_leaf_bh(path
)->b_blocknr
) {
3688 * Ok, ocfs2_find_path() returned us the rightmost
3689 * tree path. This might be an appending insert. There are
3691 * 1) We're doing a true append at the tail:
3692 * -This might even be off the end of the leaf
3693 * 2) We're "appending" by rotating in the tail
3695 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
3699 ocfs2_free_path(path
);
3709 * Insert an extent into an inode btree.
3711 * The caller needs to update fe->i_clusters
3713 int ocfs2_insert_extent(struct ocfs2_super
*osb
,
3715 struct inode
*inode
,
3716 struct buffer_head
*fe_bh
,
3721 struct ocfs2_alloc_context
*meta_ac
)
3724 int uninitialized_var(free_records
);
3725 struct buffer_head
*last_eb_bh
= NULL
;
3726 struct ocfs2_insert_type insert
= {0, };
3727 struct ocfs2_extent_rec rec
;
3729 BUG_ON(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
3731 mlog(0, "add %u clusters at position %u to inode %llu\n",
3732 new_clusters
, cpos
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
3734 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
3735 (OCFS2_I(inode
)->ip_clusters
!= cpos
),
3736 "Device %s, asking for sparse allocation: inode %llu, "
3737 "cpos %u, clusters %u\n",
3739 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
,
3740 OCFS2_I(inode
)->ip_clusters
);
3742 memset(&rec
, 0, sizeof(rec
));
3743 rec
.e_cpos
= cpu_to_le32(cpos
);
3744 rec
.e_blkno
= cpu_to_le64(start_blk
);
3745 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
3746 rec
.e_flags
= flags
;
3748 status
= ocfs2_figure_insert_type(inode
, fe_bh
, &last_eb_bh
, &rec
,
3749 &free_records
, &insert
);
3755 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3756 "Insert.contig_index: %d, Insert.free_records: %d, "
3757 "Insert.tree_depth: %d\n",
3758 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
3759 free_records
, insert
.ins_tree_depth
);
3761 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
3762 status
= ocfs2_grow_tree(inode
, handle
, fe_bh
,
3763 &insert
.ins_tree_depth
, &last_eb_bh
,
3771 /* Finally, we can add clusters. This might rotate the tree for us. */
3772 status
= ocfs2_do_insert_extent(inode
, handle
, fe_bh
, &rec
, &insert
);
3776 ocfs2_extent_map_insert_rec(inode
, &rec
);
3786 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
3787 struct ocfs2_extent_rec
*split_rec
,
3789 struct ocfs2_extent_rec
*rec
)
3791 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
3792 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
3794 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
3796 split_rec
->e_cpos
= cpu_to_le32(cpos
);
3797 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
3799 split_rec
->e_blkno
= rec
->e_blkno
;
3800 le64_add_cpu(&split_rec
->e_blkno
,
3801 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
3803 split_rec
->e_flags
= rec
->e_flags
;
3806 static int ocfs2_split_and_insert(struct inode
*inode
,
3808 struct ocfs2_path
*path
,
3809 struct buffer_head
*di_bh
,
3810 struct buffer_head
**last_eb_bh
,
3812 struct ocfs2_extent_rec
*orig_split_rec
,
3813 struct ocfs2_alloc_context
*meta_ac
)
3816 unsigned int insert_range
, rec_range
, do_leftright
= 0;
3817 struct ocfs2_extent_rec tmprec
;
3818 struct ocfs2_extent_list
*rightmost_el
;
3819 struct ocfs2_extent_rec rec
;
3820 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
3821 struct ocfs2_insert_type insert
;
3822 struct ocfs2_extent_block
*eb
;
3823 struct ocfs2_dinode
*di
;
3827 * Store a copy of the record on the stack - it might move
3828 * around as the tree is manipulated below.
3830 rec
= path_leaf_el(path
)->l_recs
[split_index
];
3832 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
3833 rightmost_el
= &di
->id2
.i_list
;
3835 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
3837 BUG_ON(!(*last_eb_bh
));
3838 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
3839 rightmost_el
= &eb
->h_list
;
3842 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
3843 le16_to_cpu(rightmost_el
->l_count
)) {
3844 ret
= ocfs2_grow_tree(inode
, handle
, di_bh
, &depth
, last_eb_bh
,
3852 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
3853 insert
.ins_appending
= APPEND_NONE
;
3854 insert
.ins_contig
= CONTIG_NONE
;
3855 insert
.ins_tree_depth
= depth
;
3857 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
3858 le16_to_cpu(split_rec
.e_leaf_clusters
);
3859 rec_range
= le32_to_cpu(rec
.e_cpos
) +
3860 le16_to_cpu(rec
.e_leaf_clusters
);
3862 if (split_rec
.e_cpos
== rec
.e_cpos
) {
3863 insert
.ins_split
= SPLIT_LEFT
;
3864 } else if (insert_range
== rec_range
) {
3865 insert
.ins_split
= SPLIT_RIGHT
;
3868 * Left/right split. We fake this as a right split
3869 * first and then make a second pass as a left split.
3871 insert
.ins_split
= SPLIT_RIGHT
;
3873 ocfs2_make_right_split_rec(inode
->i_sb
, &tmprec
, insert_range
,
3878 BUG_ON(do_leftright
);
3882 ret
= ocfs2_do_insert_extent(inode
, handle
, di_bh
, &split_rec
,
3889 if (do_leftright
== 1) {
3891 struct ocfs2_extent_list
*el
;
3894 split_rec
= *orig_split_rec
;
3896 ocfs2_reinit_path(path
, 1);
3898 cpos
= le32_to_cpu(split_rec
.e_cpos
);
3899 ret
= ocfs2_find_path(inode
, path
, cpos
);
3905 el
= path_leaf_el(path
);
3906 split_index
= ocfs2_search_extent_list(el
, cpos
);
3915 * Mark part or all of the extent record at split_index in the leaf
3916 * pointed to by path as written. This removes the unwritten
3919 * Care is taken to handle contiguousness so as to not grow the tree.
3921 * meta_ac is not strictly necessary - we only truly need it if growth
3922 * of the tree is required. All other cases will degrade into a less
3923 * optimal tree layout.
3925 * last_eb_bh should be the rightmost leaf block for any inode with a
3926 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3928 * This code is optimized for readability - several passes might be
3929 * made over certain portions of the tree. All of those blocks will
3930 * have been brought into cache (and pinned via the journal), so the
3931 * extra overhead is not expressed in terms of disk reads.
3933 static int __ocfs2_mark_extent_written(struct inode
*inode
,
3934 struct buffer_head
*di_bh
,
3936 struct ocfs2_path
*path
,
3938 struct ocfs2_extent_rec
*split_rec
,
3939 struct ocfs2_alloc_context
*meta_ac
,
3940 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3943 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3944 struct buffer_head
*eb_bh
, *last_eb_bh
= NULL
;
3945 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3946 struct ocfs2_merge_ctxt ctxt
;
3947 struct ocfs2_extent_list
*rightmost_el
;
3949 if (!rec
->e_flags
& OCFS2_EXT_UNWRITTEN
) {
3955 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
3956 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
3957 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
3963 eb_bh
= path_leaf_bh(path
);
3964 ret
= ocfs2_journal_access(handle
, inode
, eb_bh
,
3965 OCFS2_JOURNAL_ACCESS_WRITE
);
3971 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(inode
, el
,
3976 * The core merge / split code wants to know how much room is
3977 * left in this inodes allocation tree, so we pass the
3978 * rightmost extent list.
3980 if (path
->p_tree_depth
) {
3981 struct ocfs2_extent_block
*eb
;
3982 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
3984 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
3985 le64_to_cpu(di
->i_last_eb_blk
),
3986 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
3992 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
3993 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
3994 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
3999 rightmost_el
= &eb
->h_list
;
4001 rightmost_el
= path_root_el(path
);
4003 if (rec
->e_cpos
== split_rec
->e_cpos
&&
4004 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
4005 ctxt
.c_split_covers_rec
= 1;
4007 ctxt
.c_split_covers_rec
= 0;
4009 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
4011 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4012 split_index
, ctxt
.c_contig_type
, ctxt
.c_has_empty_extent
,
4013 ctxt
.c_split_covers_rec
);
4015 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
4016 if (ctxt
.c_split_covers_rec
)
4017 el
->l_recs
[split_index
] = *split_rec
;
4019 ret
= ocfs2_split_and_insert(inode
, handle
, path
, di_bh
,
4020 &last_eb_bh
, split_index
,
4021 split_rec
, meta_ac
);
4025 ret
= ocfs2_try_to_merge_extent(inode
, handle
, path
,
4026 split_index
, split_rec
,
4032 ocfs2_journal_dirty(handle
, eb_bh
);
4040 * Mark the already-existing extent at cpos as written for len clusters.
4042 * If the existing extent is larger than the request, initiate a
4043 * split. An attempt will be made at merging with adjacent extents.
4045 * The caller is responsible for passing down meta_ac if we'll need it.
4047 int ocfs2_mark_extent_written(struct inode
*inode
, struct buffer_head
*di_bh
,
4048 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
4049 struct ocfs2_alloc_context
*meta_ac
,
4050 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4053 u64 start_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys
);
4054 struct ocfs2_extent_rec split_rec
;
4055 struct ocfs2_path
*left_path
= NULL
;
4056 struct ocfs2_extent_list
*el
;
4058 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4059 inode
->i_ino
, cpos
, len
, phys
, (unsigned long long)start_blkno
);
4061 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
4062 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
4063 "that are being written to, but the feature bit "
4064 "is not set in the super block.",
4065 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
4071 * XXX: This should be fixed up so that we just re-insert the
4072 * next extent records.
4074 ocfs2_extent_map_trunc(inode
, 0);
4076 left_path
= ocfs2_new_inode_path(di_bh
);
4083 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
4088 el
= path_leaf_el(left_path
);
4090 index
= ocfs2_search_extent_list(el
, cpos
);
4091 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4092 ocfs2_error(inode
->i_sb
,
4093 "Inode %llu has an extent at cpos %u which can no "
4094 "longer be found.\n",
4095 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
4100 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4101 split_rec
.e_cpos
= cpu_to_le32(cpos
);
4102 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
4103 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
4104 split_rec
.e_flags
= path_leaf_el(left_path
)->l_recs
[index
].e_flags
;
4105 split_rec
.e_flags
&= ~OCFS2_EXT_UNWRITTEN
;
4107 ret
= __ocfs2_mark_extent_written(inode
, di_bh
, handle
, left_path
,
4108 index
, &split_rec
, meta_ac
, dealloc
);
4113 ocfs2_free_path(left_path
);
4117 static int ocfs2_split_tree(struct inode
*inode
, struct buffer_head
*di_bh
,
4118 handle_t
*handle
, struct ocfs2_path
*path
,
4119 int index
, u32 new_range
,
4120 struct ocfs2_alloc_context
*meta_ac
)
4122 int ret
, depth
, credits
= handle
->h_buffer_credits
;
4123 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
4124 struct buffer_head
*last_eb_bh
= NULL
;
4125 struct ocfs2_extent_block
*eb
;
4126 struct ocfs2_extent_list
*rightmost_el
, *el
;
4127 struct ocfs2_extent_rec split_rec
;
4128 struct ocfs2_extent_rec
*rec
;
4129 struct ocfs2_insert_type insert
;
4132 * Setup the record to split before we grow the tree.
4134 el
= path_leaf_el(path
);
4135 rec
= &el
->l_recs
[index
];
4136 ocfs2_make_right_split_rec(inode
->i_sb
, &split_rec
, new_range
, rec
);
4138 depth
= path
->p_tree_depth
;
4140 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
4141 le64_to_cpu(di
->i_last_eb_blk
),
4142 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
4148 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
4149 rightmost_el
= &eb
->h_list
;
4151 rightmost_el
= path_leaf_el(path
);
4153 credits
+= path
->p_tree_depth
+ ocfs2_extend_meta_needed(di
);
4154 ret
= ocfs2_extend_trans(handle
, credits
);
4160 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4161 le16_to_cpu(rightmost_el
->l_count
)) {
4162 ret
= ocfs2_grow_tree(inode
, handle
, di_bh
, &depth
, &last_eb_bh
,
4170 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4171 insert
.ins_appending
= APPEND_NONE
;
4172 insert
.ins_contig
= CONTIG_NONE
;
4173 insert
.ins_split
= SPLIT_RIGHT
;
4174 insert
.ins_tree_depth
= depth
;
4176 ret
= ocfs2_do_insert_extent(inode
, handle
, di_bh
, &split_rec
, &insert
);
4185 static int ocfs2_truncate_rec(struct inode
*inode
, handle_t
*handle
,
4186 struct ocfs2_path
*path
, int index
,
4187 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
4191 u32 left_cpos
, rec_range
, trunc_range
;
4192 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
4193 struct super_block
*sb
= inode
->i_sb
;
4194 struct ocfs2_path
*left_path
= NULL
;
4195 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
4196 struct ocfs2_extent_rec
*rec
;
4197 struct ocfs2_extent_block
*eb
;
4199 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
4200 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
);
4209 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
4210 path
->p_tree_depth
) {
4212 * Check whether this is the rightmost tree record. If
4213 * we remove all of this record or part of its right
4214 * edge then an update of the record lengths above it
4217 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
4218 if (eb
->h_next_leaf_blk
== 0)
4219 is_rightmost_tree_rec
= 1;
4222 rec
= &el
->l_recs
[index
];
4223 if (index
== 0 && path
->p_tree_depth
&&
4224 le32_to_cpu(rec
->e_cpos
) == cpos
) {
4226 * Changing the leftmost offset (via partial or whole
4227 * record truncate) of an interior (or rightmost) path
4228 * means we have to update the subtree that is formed
4229 * by this leaf and the one to it's left.
4231 * There are two cases we can skip:
4232 * 1) Path is the leftmost one in our inode tree.
4233 * 2) The leaf is rightmost and will be empty after
4234 * we remove the extent record - the rotate code
4235 * knows how to update the newly formed edge.
4238 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
,
4245 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
4246 left_path
= ocfs2_new_path(path_root_bh(path
),
4247 path_root_el(path
));
4254 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
4262 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
4263 handle
->h_buffer_credits
,
4270 ret
= ocfs2_journal_access_path(inode
, handle
, path
);
4276 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
4282 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
4283 trunc_range
= cpos
+ len
;
4285 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
4288 memset(rec
, 0, sizeof(*rec
));
4289 ocfs2_cleanup_merge(el
, index
);
4292 next_free
= le16_to_cpu(el
->l_next_free_rec
);
4293 if (is_rightmost_tree_rec
&& next_free
> 1) {
4295 * We skip the edge update if this path will
4296 * be deleted by the rotate code.
4298 rec
= &el
->l_recs
[next_free
- 1];
4299 ocfs2_adjust_rightmost_records(inode
, handle
, path
,
4302 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
4303 /* Remove leftmost portion of the record. */
4304 le32_add_cpu(&rec
->e_cpos
, len
);
4305 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
4306 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
4307 } else if (rec_range
== trunc_range
) {
4308 /* Remove rightmost portion of the record */
4309 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
4310 if (is_rightmost_tree_rec
)
4311 ocfs2_adjust_rightmost_records(inode
, handle
, path
, rec
);
4313 /* Caller should have trapped this. */
4314 mlog(ML_ERROR
, "Inode %llu: Invalid record truncate: (%u, %u) "
4315 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4316 le32_to_cpu(rec
->e_cpos
),
4317 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
4324 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
, path
);
4325 ocfs2_complete_edge_insert(inode
, handle
, left_path
, path
,
4329 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
4331 ret
= ocfs2_rotate_tree_left(inode
, handle
, path
, dealloc
);
4338 ocfs2_free_path(left_path
);
4342 int ocfs2_remove_extent(struct inode
*inode
, struct buffer_head
*di_bh
,
4343 u32 cpos
, u32 len
, handle_t
*handle
,
4344 struct ocfs2_alloc_context
*meta_ac
,
4345 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
4348 u32 rec_range
, trunc_range
;
4349 struct ocfs2_extent_rec
*rec
;
4350 struct ocfs2_extent_list
*el
;
4351 struct ocfs2_path
*path
;
4353 ocfs2_extent_map_trunc(inode
, 0);
4355 path
= ocfs2_new_inode_path(di_bh
);
4362 ret
= ocfs2_find_path(inode
, path
, cpos
);
4368 el
= path_leaf_el(path
);
4369 index
= ocfs2_search_extent_list(el
, cpos
);
4370 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4371 ocfs2_error(inode
->i_sb
,
4372 "Inode %llu has an extent at cpos %u which can no "
4373 "longer be found.\n",
4374 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
4380 * We have 3 cases of extent removal:
4381 * 1) Range covers the entire extent rec
4382 * 2) Range begins or ends on one edge of the extent rec
4383 * 3) Range is in the middle of the extent rec (no shared edges)
4385 * For case 1 we remove the extent rec and left rotate to
4388 * For case 2 we just shrink the existing extent rec, with a
4389 * tree update if the shrinking edge is also the edge of an
4392 * For case 3 we do a right split to turn the extent rec into
4393 * something case 2 can handle.
4395 rec
= &el
->l_recs
[index
];
4396 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
4397 trunc_range
= cpos
+ len
;
4399 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
4401 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4402 "(cpos %u, len %u)\n",
4403 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
, len
, index
,
4404 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
));
4406 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
4407 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
4414 ret
= ocfs2_split_tree(inode
, di_bh
, handle
, path
, index
,
4415 trunc_range
, meta_ac
);
4422 * The split could have manipulated the tree enough to
4423 * move the record location, so we have to look for it again.
4425 ocfs2_reinit_path(path
, 1);
4427 ret
= ocfs2_find_path(inode
, path
, cpos
);
4433 el
= path_leaf_el(path
);
4434 index
= ocfs2_search_extent_list(el
, cpos
);
4435 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
4436 ocfs2_error(inode
->i_sb
,
4437 "Inode %llu: split at cpos %u lost record.",
4438 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4445 * Double check our values here. If anything is fishy,
4446 * it's easier to catch it at the top level.
4448 rec
= &el
->l_recs
[index
];
4449 rec_range
= le32_to_cpu(rec
->e_cpos
) +
4450 ocfs2_rec_clusters(el
, rec
);
4451 if (rec_range
!= trunc_range
) {
4452 ocfs2_error(inode
->i_sb
,
4453 "Inode %llu: error after split at cpos %u"
4454 "trunc len %u, existing record is (%u,%u)",
4455 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
4456 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
4457 ocfs2_rec_clusters(el
, rec
));
4462 ret
= ocfs2_truncate_rec(inode
, handle
, path
, index
, dealloc
,
4471 ocfs2_free_path(path
);
4475 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
4477 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4478 struct ocfs2_dinode
*di
;
4479 struct ocfs2_truncate_log
*tl
;
4481 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4482 tl
= &di
->id2
.i_dealloc
;
4484 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
4485 "slot %d, invalid truncate log parameters: used = "
4486 "%u, count = %u\n", osb
->slot_num
,
4487 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
4488 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
4491 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
4492 unsigned int new_start
)
4494 unsigned int tail_index
;
4495 unsigned int current_tail
;
4497 /* No records, nothing to coalesce */
4498 if (!le16_to_cpu(tl
->tl_used
))
4501 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
4502 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
4503 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
4505 return current_tail
== new_start
;
4508 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
4511 unsigned int num_clusters
)
4514 unsigned int start_cluster
, tl_count
;
4515 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4516 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4517 struct ocfs2_dinode
*di
;
4518 struct ocfs2_truncate_log
*tl
;
4520 mlog_entry("start_blk = %llu, num_clusters = %u\n",
4521 (unsigned long long)start_blk
, num_clusters
);
4523 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
4525 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
4527 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4528 tl
= &di
->id2
.i_dealloc
;
4529 if (!OCFS2_IS_VALID_DINODE(di
)) {
4530 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
4535 tl_count
= le16_to_cpu(tl
->tl_count
);
4536 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
4538 "Truncate record count on #%llu invalid "
4539 "wanted %u, actual %u\n",
4540 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
4541 ocfs2_truncate_recs_per_inode(osb
->sb
),
4542 le16_to_cpu(tl
->tl_count
));
4544 /* Caller should have known to flush before calling us. */
4545 index
= le16_to_cpu(tl
->tl_used
);
4546 if (index
>= tl_count
) {
4552 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
4553 OCFS2_JOURNAL_ACCESS_WRITE
);
4559 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4560 "%llu (index = %d)\n", num_clusters
, start_cluster
,
4561 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
4563 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
4565 * Move index back to the record we are coalescing with.
4566 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4570 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
4571 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4572 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
4575 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
4576 tl
->tl_used
= cpu_to_le16(index
+ 1);
4578 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
4580 status
= ocfs2_journal_dirty(handle
, tl_bh
);
4591 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
4593 struct inode
*data_alloc_inode
,
4594 struct buffer_head
*data_alloc_bh
)
4598 unsigned int num_clusters
;
4600 struct ocfs2_truncate_rec rec
;
4601 struct ocfs2_dinode
*di
;
4602 struct ocfs2_truncate_log
*tl
;
4603 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4604 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4608 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4609 tl
= &di
->id2
.i_dealloc
;
4610 i
= le16_to_cpu(tl
->tl_used
) - 1;
4612 /* Caller has given us at least enough credits to
4613 * update the truncate log dinode */
4614 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
4615 OCFS2_JOURNAL_ACCESS_WRITE
);
4621 tl
->tl_used
= cpu_to_le16(i
);
4623 status
= ocfs2_journal_dirty(handle
, tl_bh
);
4629 /* TODO: Perhaps we can calculate the bulk of the
4630 * credits up front rather than extending like
4632 status
= ocfs2_extend_trans(handle
,
4633 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
4639 rec
= tl
->tl_recs
[i
];
4640 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
4641 le32_to_cpu(rec
.t_start
));
4642 num_clusters
= le32_to_cpu(rec
.t_clusters
);
4644 /* if start_blk is not set, we ignore the record as
4647 mlog(0, "free record %d, start = %u, clusters = %u\n",
4648 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
4650 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
4651 data_alloc_bh
, start_blk
,
4666 /* Expects you to already be holding tl_inode->i_mutex */
4667 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
4670 unsigned int num_to_flush
;
4672 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4673 struct inode
*data_alloc_inode
= NULL
;
4674 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
4675 struct buffer_head
*data_alloc_bh
= NULL
;
4676 struct ocfs2_dinode
*di
;
4677 struct ocfs2_truncate_log
*tl
;
4681 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
4683 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4684 tl
= &di
->id2
.i_dealloc
;
4685 if (!OCFS2_IS_VALID_DINODE(di
)) {
4686 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
4691 num_to_flush
= le16_to_cpu(tl
->tl_used
);
4692 mlog(0, "Flush %u records from truncate log #%llu\n",
4693 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
4694 if (!num_to_flush
) {
4699 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
4700 GLOBAL_BITMAP_SYSTEM_INODE
,
4701 OCFS2_INVALID_SLOT
);
4702 if (!data_alloc_inode
) {
4704 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
4708 mutex_lock(&data_alloc_inode
->i_mutex
);
4710 status
= ocfs2_meta_lock(data_alloc_inode
, &data_alloc_bh
, 1);
4716 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
4717 if (IS_ERR(handle
)) {
4718 status
= PTR_ERR(handle
);
4723 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
4728 ocfs2_commit_trans(osb
, handle
);
4731 brelse(data_alloc_bh
);
4732 ocfs2_meta_unlock(data_alloc_inode
, 1);
4735 mutex_unlock(&data_alloc_inode
->i_mutex
);
4736 iput(data_alloc_inode
);
4743 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
4746 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4748 mutex_lock(&tl_inode
->i_mutex
);
4749 status
= __ocfs2_flush_truncate_log(osb
);
4750 mutex_unlock(&tl_inode
->i_mutex
);
4755 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
4758 struct ocfs2_super
*osb
=
4759 container_of(work
, struct ocfs2_super
,
4760 osb_truncate_log_wq
.work
);
4764 status
= ocfs2_flush_truncate_log(osb
);
4771 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4772 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
4775 if (osb
->osb_tl_inode
) {
4776 /* We want to push off log flushes while truncates are
4779 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
4781 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
4782 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
4786 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
4788 struct inode
**tl_inode
,
4789 struct buffer_head
**tl_bh
)
4792 struct inode
*inode
= NULL
;
4793 struct buffer_head
*bh
= NULL
;
4795 inode
= ocfs2_get_system_file_inode(osb
,
4796 TRUNCATE_LOG_SYSTEM_INODE
,
4800 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
4804 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
4805 OCFS2_BH_CACHED
, inode
);
4819 /* called during the 1st stage of node recovery. we stamp a clean
4820 * truncate log and pass back a copy for processing later. if the
4821 * truncate log does not require processing, a *tl_copy is set to
4823 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
4825 struct ocfs2_dinode
**tl_copy
)
4828 struct inode
*tl_inode
= NULL
;
4829 struct buffer_head
*tl_bh
= NULL
;
4830 struct ocfs2_dinode
*di
;
4831 struct ocfs2_truncate_log
*tl
;
4835 mlog(0, "recover truncate log from slot %d\n", slot_num
);
4837 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
4843 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
4844 tl
= &di
->id2
.i_dealloc
;
4845 if (!OCFS2_IS_VALID_DINODE(di
)) {
4846 OCFS2_RO_ON_INVALID_DINODE(tl_inode
->i_sb
, di
);
4851 if (le16_to_cpu(tl
->tl_used
)) {
4852 mlog(0, "We'll have %u logs to recover\n",
4853 le16_to_cpu(tl
->tl_used
));
4855 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
4862 /* Assuming the write-out below goes well, this copy
4863 * will be passed back to recovery for processing. */
4864 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
4866 /* All we need to do to clear the truncate log is set
4870 status
= ocfs2_write_block(osb
, tl_bh
, tl_inode
);
4883 if (status
< 0 && (*tl_copy
)) {
4892 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
4893 struct ocfs2_dinode
*tl_copy
)
4897 unsigned int clusters
, num_recs
, start_cluster
;
4900 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4901 struct ocfs2_truncate_log
*tl
;
4905 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
4906 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
4910 tl
= &tl_copy
->id2
.i_dealloc
;
4911 num_recs
= le16_to_cpu(tl
->tl_used
);
4912 mlog(0, "cleanup %u records from %llu\n", num_recs
,
4913 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
4915 mutex_lock(&tl_inode
->i_mutex
);
4916 for(i
= 0; i
< num_recs
; i
++) {
4917 if (ocfs2_truncate_log_needs_flush(osb
)) {
4918 status
= __ocfs2_flush_truncate_log(osb
);
4925 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
4926 if (IS_ERR(handle
)) {
4927 status
= PTR_ERR(handle
);
4932 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
4933 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
4934 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
4936 status
= ocfs2_truncate_log_append(osb
, handle
,
4937 start_blk
, clusters
);
4938 ocfs2_commit_trans(osb
, handle
);
4946 mutex_unlock(&tl_inode
->i_mutex
);
4952 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
4955 struct inode
*tl_inode
= osb
->osb_tl_inode
;
4960 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
4961 flush_workqueue(ocfs2_wq
);
4963 status
= ocfs2_flush_truncate_log(osb
);
4967 brelse(osb
->osb_tl_bh
);
4968 iput(osb
->osb_tl_inode
);
4974 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
4977 struct inode
*tl_inode
= NULL
;
4978 struct buffer_head
*tl_bh
= NULL
;
4982 status
= ocfs2_get_truncate_log_info(osb
,
4989 /* ocfs2_truncate_log_shutdown keys on the existence of
4990 * osb->osb_tl_inode so we don't set any of the osb variables
4991 * until we're sure all is well. */
4992 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
4993 ocfs2_truncate_log_worker
);
4994 osb
->osb_tl_bh
= tl_bh
;
4995 osb
->osb_tl_inode
= tl_inode
;
5002 * Delayed de-allocation of suballocator blocks.
5004 * Some sets of block de-allocations might involve multiple suballocator inodes.
5006 * The locking for this can get extremely complicated, especially when
5007 * the suballocator inodes to delete from aren't known until deep
5008 * within an unrelated codepath.
5010 * ocfs2_extent_block structures are a good example of this - an inode
5011 * btree could have been grown by any number of nodes each allocating
5012 * out of their own suballoc inode.
5014 * These structures allow the delay of block de-allocation until a
5015 * later time, when locking of multiple cluster inodes won't cause
5020 * Describes a single block free from a suballocator
5022 struct ocfs2_cached_block_free
{
5023 struct ocfs2_cached_block_free
*free_next
;
5025 unsigned int free_bit
;
5028 struct ocfs2_per_slot_free_list
{
5029 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
5032 struct ocfs2_cached_block_free
*f_first
;
5035 static int ocfs2_free_cached_items(struct ocfs2_super
*osb
,
5038 struct ocfs2_cached_block_free
*head
)
5043 struct inode
*inode
;
5044 struct buffer_head
*di_bh
= NULL
;
5045 struct ocfs2_cached_block_free
*tmp
;
5047 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
5054 mutex_lock(&inode
->i_mutex
);
5056 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
5062 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
5063 if (IS_ERR(handle
)) {
5064 ret
= PTR_ERR(handle
);
5070 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
5072 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5073 head
->free_bit
, (unsigned long long)head
->free_blk
);
5075 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
5076 head
->free_bit
, bg_blkno
, 1);
5082 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
5089 head
= head
->free_next
;
5094 ocfs2_commit_trans(osb
, handle
);
5097 ocfs2_meta_unlock(inode
, 1);
5100 mutex_unlock(&inode
->i_mutex
);
5104 /* Premature exit may have left some dangling items. */
5106 head
= head
->free_next
;
5113 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
5114 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5117 struct ocfs2_per_slot_free_list
*fl
;
5122 while (ctxt
->c_first_suballocator
) {
5123 fl
= ctxt
->c_first_suballocator
;
5126 mlog(0, "Free items: (type %u, slot %d)\n",
5127 fl
->f_inode_type
, fl
->f_slot
);
5128 ret2
= ocfs2_free_cached_items(osb
, fl
->f_inode_type
,
5129 fl
->f_slot
, fl
->f_first
);
5136 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
5143 static struct ocfs2_per_slot_free_list
*
5144 ocfs2_find_per_slot_free_list(int type
,
5146 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
5148 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
5151 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
5154 fl
= fl
->f_next_suballocator
;
5157 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
5159 fl
->f_inode_type
= type
;
5162 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
5164 ctxt
->c_first_suballocator
= fl
;
5169 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5170 int type
, int slot
, u64 blkno
,
5174 struct ocfs2_per_slot_free_list
*fl
;
5175 struct ocfs2_cached_block_free
*item
;
5177 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
5184 item
= kmalloc(sizeof(*item
), GFP_NOFS
);
5191 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5192 type
, slot
, bit
, (unsigned long long)blkno
);
5194 item
->free_blk
= blkno
;
5195 item
->free_bit
= bit
;
5196 item
->free_next
= fl
->f_first
;
5205 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
5206 struct ocfs2_extent_block
*eb
)
5208 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
5209 le16_to_cpu(eb
->h_suballoc_slot
),
5210 le64_to_cpu(eb
->h_blkno
),
5211 le16_to_cpu(eb
->h_suballoc_bit
));
5214 /* This function will figure out whether the currently last extent
5215 * block will be deleted, and if it will, what the new last extent
5216 * block will be so we can update his h_next_leaf_blk field, as well
5217 * as the dinodes i_last_eb_blk */
5218 static int ocfs2_find_new_last_ext_blk(struct inode
*inode
,
5219 unsigned int clusters_to_del
,
5220 struct ocfs2_path
*path
,
5221 struct buffer_head
**new_last_eb
)
5223 int next_free
, ret
= 0;
5225 struct ocfs2_extent_rec
*rec
;
5226 struct ocfs2_extent_block
*eb
;
5227 struct ocfs2_extent_list
*el
;
5228 struct buffer_head
*bh
= NULL
;
5230 *new_last_eb
= NULL
;
5232 /* we have no tree, so of course, no last_eb. */
5233 if (!path
->p_tree_depth
)
5236 /* trunc to zero special case - this makes tree_depth = 0
5237 * regardless of what it is. */
5238 if (OCFS2_I(inode
)->ip_clusters
== clusters_to_del
)
5241 el
= path_leaf_el(path
);
5242 BUG_ON(!el
->l_next_free_rec
);
5245 * Make sure that this extent list will actually be empty
5246 * after we clear away the data. We can shortcut out if
5247 * there's more than one non-empty extent in the
5248 * list. Otherwise, a check of the remaining extent is
5251 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5253 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
5257 /* We may have a valid extent in index 1, check it. */
5259 rec
= &el
->l_recs
[1];
5262 * Fall through - no more nonempty extents, so we want
5263 * to delete this leaf.
5269 rec
= &el
->l_recs
[0];
5274 * Check it we'll only be trimming off the end of this
5277 if (le16_to_cpu(rec
->e_leaf_clusters
) > clusters_to_del
)
5281 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
5287 ret
= ocfs2_find_leaf(inode
, path_root_el(path
), cpos
, &bh
);
5293 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
5295 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
5296 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
5302 get_bh(*new_last_eb
);
5303 mlog(0, "returning block %llu, (cpos: %u)\n",
5304 (unsigned long long)le64_to_cpu(eb
->h_blkno
), cpos
);
5312 * Trim some clusters off the rightmost edge of a tree. Only called
5315 * The caller needs to:
5316 * - start journaling of each path component.
5317 * - compute and fully set up any new last ext block
5319 static int ocfs2_trim_tree(struct inode
*inode
, struct ocfs2_path
*path
,
5320 handle_t
*handle
, struct ocfs2_truncate_context
*tc
,
5321 u32 clusters_to_del
, u64
*delete_start
)
5323 int ret
, i
, index
= path
->p_tree_depth
;
5326 struct buffer_head
*bh
;
5327 struct ocfs2_extent_list
*el
;
5328 struct ocfs2_extent_rec
*rec
;
5332 while (index
>= 0) {
5333 bh
= path
->p_node
[index
].bh
;
5334 el
= path
->p_node
[index
].el
;
5336 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5337 index
, (unsigned long long)bh
->b_blocknr
);
5339 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
5342 (path
->p_tree_depth
- le16_to_cpu(el
->l_tree_depth
))) {
5343 ocfs2_error(inode
->i_sb
,
5344 "Inode %lu has invalid ext. block %llu",
5346 (unsigned long long)bh
->b_blocknr
);
5352 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
5353 rec
= &el
->l_recs
[i
];
5355 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5356 "next = %u\n", i
, le32_to_cpu(rec
->e_cpos
),
5357 ocfs2_rec_clusters(el
, rec
),
5358 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
5359 le16_to_cpu(el
->l_next_free_rec
));
5361 BUG_ON(ocfs2_rec_clusters(el
, rec
) < clusters_to_del
);
5363 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
5365 * If the leaf block contains a single empty
5366 * extent and no records, we can just remove
5369 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
5371 sizeof(struct ocfs2_extent_rec
));
5372 el
->l_next_free_rec
= cpu_to_le16(0);
5378 * Remove any empty extents by shifting things
5379 * left. That should make life much easier on
5380 * the code below. This condition is rare
5381 * enough that we shouldn't see a performance
5384 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
5385 le16_add_cpu(&el
->l_next_free_rec
, -1);
5388 i
< le16_to_cpu(el
->l_next_free_rec
); i
++)
5389 el
->l_recs
[i
] = el
->l_recs
[i
+ 1];
5391 memset(&el
->l_recs
[i
], 0,
5392 sizeof(struct ocfs2_extent_rec
));
5395 * We've modified our extent list. The
5396 * simplest way to handle this change
5397 * is to being the search from the
5400 goto find_tail_record
;
5403 le16_add_cpu(&rec
->e_leaf_clusters
, -clusters_to_del
);
5406 * We'll use "new_edge" on our way back up the
5407 * tree to know what our rightmost cpos is.
5409 new_edge
= le16_to_cpu(rec
->e_leaf_clusters
);
5410 new_edge
+= le32_to_cpu(rec
->e_cpos
);
5413 * The caller will use this to delete data blocks.
5415 *delete_start
= le64_to_cpu(rec
->e_blkno
)
5416 + ocfs2_clusters_to_blocks(inode
->i_sb
,
5417 le16_to_cpu(rec
->e_leaf_clusters
));
5420 * If it's now empty, remove this record.
5422 if (le16_to_cpu(rec
->e_leaf_clusters
) == 0) {
5424 sizeof(struct ocfs2_extent_rec
));
5425 le16_add_cpu(&el
->l_next_free_rec
, -1);
5428 if (le64_to_cpu(rec
->e_blkno
) == deleted_eb
) {
5430 sizeof(struct ocfs2_extent_rec
));
5431 le16_add_cpu(&el
->l_next_free_rec
, -1);
5436 /* Can this actually happen? */
5437 if (le16_to_cpu(el
->l_next_free_rec
) == 0)
5441 * We never actually deleted any clusters
5442 * because our leaf was empty. There's no
5443 * reason to adjust the rightmost edge then.
5448 rec
->e_int_clusters
= cpu_to_le32(new_edge
);
5449 le32_add_cpu(&rec
->e_int_clusters
,
5450 -le32_to_cpu(rec
->e_cpos
));
5453 * A deleted child record should have been
5456 BUG_ON(le32_to_cpu(rec
->e_int_clusters
) == 0);
5460 ret
= ocfs2_journal_dirty(handle
, bh
);
5466 mlog(0, "extent list container %llu, after: record %d: "
5467 "(%u, %u, %llu), next = %u.\n",
5468 (unsigned long long)bh
->b_blocknr
, i
,
5469 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
),
5470 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
5471 le16_to_cpu(el
->l_next_free_rec
));
5474 * We must be careful to only attempt delete of an
5475 * extent block (and not the root inode block).
5477 if (index
> 0 && le16_to_cpu(el
->l_next_free_rec
) == 0) {
5478 struct ocfs2_extent_block
*eb
=
5479 (struct ocfs2_extent_block
*)bh
->b_data
;
5482 * Save this for use when processing the
5485 deleted_eb
= le64_to_cpu(eb
->h_blkno
);
5487 mlog(0, "deleting this extent block.\n");
5489 ocfs2_remove_from_cache(inode
, bh
);
5491 BUG_ON(ocfs2_rec_clusters(el
, &el
->l_recs
[0]));
5492 BUG_ON(le32_to_cpu(el
->l_recs
[0].e_cpos
));
5493 BUG_ON(le64_to_cpu(el
->l_recs
[0].e_blkno
));
5495 ret
= ocfs2_cache_extent_block_free(&tc
->tc_dealloc
, eb
);
5496 /* An error here is not fatal. */
5511 static int ocfs2_do_truncate(struct ocfs2_super
*osb
,
5512 unsigned int clusters_to_del
,
5513 struct inode
*inode
,
5514 struct buffer_head
*fe_bh
,
5516 struct ocfs2_truncate_context
*tc
,
5517 struct ocfs2_path
*path
)
5520 struct ocfs2_dinode
*fe
;
5521 struct ocfs2_extent_block
*last_eb
= NULL
;
5522 struct ocfs2_extent_list
*el
;
5523 struct buffer_head
*last_eb_bh
= NULL
;
5526 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
5528 status
= ocfs2_find_new_last_ext_blk(inode
, clusters_to_del
,
5536 * Each component will be touched, so we might as well journal
5537 * here to avoid having to handle errors later.
5539 status
= ocfs2_journal_access_path(inode
, handle
, path
);
5546 status
= ocfs2_journal_access(handle
, inode
, last_eb_bh
,
5547 OCFS2_JOURNAL_ACCESS_WRITE
);
5553 last_eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5556 el
= &(fe
->id2
.i_list
);
5559 * Lower levels depend on this never happening, but it's best
5560 * to check it up here before changing the tree.
5562 if (el
->l_tree_depth
&& el
->l_recs
[0].e_int_clusters
== 0) {
5563 ocfs2_error(inode
->i_sb
,
5564 "Inode %lu has an empty extent record, depth %u\n",
5565 inode
->i_ino
, le16_to_cpu(el
->l_tree_depth
));
5570 spin_lock(&OCFS2_I(inode
)->ip_lock
);
5571 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
) -
5573 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
5574 le32_add_cpu(&fe
->i_clusters
, -clusters_to_del
);
5575 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
5577 status
= ocfs2_trim_tree(inode
, path
, handle
, tc
,
5578 clusters_to_del
, &delete_blk
);
5584 if (le32_to_cpu(fe
->i_clusters
) == 0) {
5585 /* trunc to zero is a special case. */
5586 el
->l_tree_depth
= 0;
5587 fe
->i_last_eb_blk
= 0;
5589 fe
->i_last_eb_blk
= last_eb
->h_blkno
;
5591 status
= ocfs2_journal_dirty(handle
, fe_bh
);
5598 /* If there will be a new last extent block, then by
5599 * definition, there cannot be any leaves to the right of
5601 last_eb
->h_next_leaf_blk
= 0;
5602 status
= ocfs2_journal_dirty(handle
, last_eb_bh
);
5610 status
= ocfs2_truncate_log_append(osb
, handle
, delete_blk
,
5624 static int ocfs2_writeback_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
5626 set_buffer_uptodate(bh
);
5627 mark_buffer_dirty(bh
);
5631 static int ocfs2_ordered_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
5633 set_buffer_uptodate(bh
);
5634 mark_buffer_dirty(bh
);
5635 return ocfs2_journal_dirty_data(handle
, bh
);
5638 static void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
5639 unsigned int from
, unsigned int to
,
5640 struct page
*page
, int zero
, u64
*phys
)
5642 int ret
, partial
= 0;
5644 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
5649 zero_user_page(page
, from
, to
- from
, KM_USER0
);
5652 * Need to set the buffers we zero'd into uptodate
5653 * here if they aren't - ocfs2_map_page_blocks()
5654 * might've skipped some
5656 if (ocfs2_should_order_data(inode
)) {
5657 ret
= walk_page_buffers(handle
,
5660 ocfs2_ordered_zero_func
);
5664 ret
= walk_page_buffers(handle
, page_buffers(page
),
5666 ocfs2_writeback_zero_func
);
5672 SetPageUptodate(page
);
5674 flush_dcache_page(page
);
5677 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
5678 loff_t end
, struct page
**pages
,
5679 int numpages
, u64 phys
, handle_t
*handle
)
5683 unsigned int from
, to
= PAGE_CACHE_SIZE
;
5684 struct super_block
*sb
= inode
->i_sb
;
5686 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
5691 to
= PAGE_CACHE_SIZE
;
5692 for(i
= 0; i
< numpages
; i
++) {
5695 from
= start
& (PAGE_CACHE_SIZE
- 1);
5696 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
5697 to
= end
& (PAGE_CACHE_SIZE
- 1);
5699 BUG_ON(from
> PAGE_CACHE_SIZE
);
5700 BUG_ON(to
> PAGE_CACHE_SIZE
);
5702 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
5705 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
5709 ocfs2_unlock_and_free_pages(pages
, numpages
);
5712 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
5713 struct page
**pages
, int *num
)
5715 int numpages
, ret
= 0;
5716 struct super_block
*sb
= inode
->i_sb
;
5717 struct address_space
*mapping
= inode
->i_mapping
;
5718 unsigned long index
;
5719 loff_t last_page_bytes
;
5721 BUG_ON(start
> end
);
5723 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
5724 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
5727 last_page_bytes
= PAGE_ALIGN(end
);
5728 index
= start
>> PAGE_CACHE_SHIFT
;
5730 pages
[numpages
] = grab_cache_page(mapping
, index
);
5731 if (!pages
[numpages
]) {
5739 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
5744 ocfs2_unlock_and_free_pages(pages
, numpages
);
5754 * Zero the area past i_size but still within an allocated
5755 * cluster. This avoids exposing nonzero data on subsequent file
5758 * We need to call this before i_size is updated on the inode because
5759 * otherwise block_write_full_page() will skip writeout of pages past
5760 * i_size. The new_i_size parameter is passed for this reason.
5762 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
5763 u64 range_start
, u64 range_end
)
5765 int ret
= 0, numpages
;
5766 struct page
**pages
= NULL
;
5768 unsigned int ext_flags
;
5769 struct super_block
*sb
= inode
->i_sb
;
5772 * File systems which don't support sparse files zero on every
5775 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
5778 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
5779 sizeof(struct page
*), GFP_NOFS
);
5780 if (pages
== NULL
) {
5786 if (range_start
== range_end
)
5789 ret
= ocfs2_extent_map_get_blocks(inode
,
5790 range_start
>> sb
->s_blocksize_bits
,
5791 &phys
, NULL
, &ext_flags
);
5798 * Tail is a hole, or is marked unwritten. In either case, we
5799 * can count on read and write to return/push zero's.
5801 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
5804 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
5811 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
5812 numpages
, phys
, handle
);
5815 * Initiate writeout of the pages we zero'd here. We don't
5816 * wait on them - the truncate_inode_pages() call later will
5819 ret
= do_sync_mapping_range(inode
->i_mapping
, range_start
,
5820 range_end
- 1, SYNC_FILE_RANGE_WRITE
);
5831 static void ocfs2_zero_dinode_id2(struct inode
*inode
, struct ocfs2_dinode
*di
)
5833 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
5835 memset(&di
->id2
, 0, blocksize
- offsetof(struct ocfs2_dinode
, id2
));
5838 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
5839 struct ocfs2_dinode
*di
)
5841 ocfs2_zero_dinode_id2(inode
, di
);
5842 di
->id2
.i_list
.l_tree_depth
= 0;
5843 di
->id2
.i_list
.l_next_free_rec
= 0;
5844 di
->id2
.i_list
.l_count
= cpu_to_le16(ocfs2_extent_recs_per_inode(inode
->i_sb
));
5847 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
5849 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
5850 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
5852 spin_lock(&oi
->ip_lock
);
5853 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
5854 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
5855 spin_unlock(&oi
->ip_lock
);
5858 * We clear the entire i_data structure here so that all
5859 * fields can be properly initialized.
5861 ocfs2_zero_dinode_id2(inode
, di
);
5863 idata
->id_count
= cpu_to_le16(ocfs2_max_inline_data(inode
->i_sb
));
5866 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
5867 struct buffer_head
*di_bh
)
5869 int ret
, i
, has_data
, num_pages
= 0;
5871 u64
uninitialized_var(block
);
5872 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
5873 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5874 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
5875 struct ocfs2_alloc_context
*data_ac
= NULL
;
5876 struct page
**pages
= NULL
;
5877 loff_t end
= osb
->s_clustersize
;
5879 has_data
= i_size_read(inode
) ? 1 : 0;
5882 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
5883 sizeof(struct page
*), GFP_NOFS
);
5884 if (pages
== NULL
) {
5890 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
5897 handle
= ocfs2_start_trans(osb
, OCFS2_INLINE_TO_EXTENTS_CREDITS
);
5898 if (IS_ERR(handle
)) {
5899 ret
= PTR_ERR(handle
);
5904 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
5905 OCFS2_JOURNAL_ACCESS_WRITE
);
5913 unsigned int page_end
;
5916 ret
= ocfs2_claim_clusters(osb
, handle
, data_ac
, 1, &bit_off
,
5924 * Save two copies, one for insert, and one that can
5925 * be changed by ocfs2_map_and_dirty_page() below.
5927 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
5930 * Non sparse file systems zero on extend, so no need
5933 if (!ocfs2_sparse_alloc(osb
) &&
5934 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
5935 end
= PAGE_CACHE_SIZE
;
5937 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
5944 * This should populate the 1st page for us and mark
5947 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
5953 page_end
= PAGE_CACHE_SIZE
;
5954 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
5955 page_end
= osb
->s_clustersize
;
5957 for (i
= 0; i
< num_pages
; i
++)
5958 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
5959 pages
[i
], i
> 0, &phys
);
5962 spin_lock(&oi
->ip_lock
);
5963 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
5964 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
5965 spin_unlock(&oi
->ip_lock
);
5967 ocfs2_dinode_new_extent_list(inode
, di
);
5969 ocfs2_journal_dirty(handle
, di_bh
);
5973 * An error at this point should be extremely rare. If
5974 * this proves to be false, we could always re-build
5975 * the in-inode data from our pages.
5977 ret
= ocfs2_insert_extent(osb
, handle
, inode
, di_bh
,
5978 0, block
, 1, 0, NULL
);
5984 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
5988 ocfs2_commit_trans(osb
, handle
);
5992 ocfs2_free_alloc_context(data_ac
);
5996 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6004 * It is expected, that by the time you call this function,
6005 * inode->i_size and fe->i_size have been adjusted.
6007 * WARNING: This will kfree the truncate context
6009 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
6010 struct inode
*inode
,
6011 struct buffer_head
*fe_bh
,
6012 struct ocfs2_truncate_context
*tc
)
6014 int status
, i
, credits
, tl_sem
= 0;
6015 u32 clusters_to_del
, new_highest_cpos
, range
;
6016 struct ocfs2_extent_list
*el
;
6017 handle_t
*handle
= NULL
;
6018 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6019 struct ocfs2_path
*path
= NULL
;
6023 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
6024 i_size_read(inode
));
6026 path
= ocfs2_new_inode_path(fe_bh
);
6033 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
6037 * Check that we still have allocation to delete.
6039 if (OCFS2_I(inode
)->ip_clusters
== 0) {
6045 * Truncate always works against the rightmost tree branch.
6047 status
= ocfs2_find_path(inode
, path
, UINT_MAX
);
6053 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6054 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
6057 * By now, el will point to the extent list on the bottom most
6058 * portion of this tree. Only the tail record is considered in
6061 * We handle the following cases, in order:
6062 * - empty extent: delete the remaining branch
6063 * - remove the entire record
6064 * - remove a partial record
6065 * - no record needs to be removed (truncate has completed)
6067 el
= path_leaf_el(path
);
6068 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
6069 ocfs2_error(inode
->i_sb
,
6070 "Inode %llu has empty extent block at %llu\n",
6071 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
6072 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6077 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
6078 range
= le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
6079 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6080 if (i
== 0 && ocfs2_is_empty_extent(&el
->l_recs
[i
])) {
6081 clusters_to_del
= 0;
6082 } else if (le32_to_cpu(el
->l_recs
[i
].e_cpos
) >= new_highest_cpos
) {
6083 clusters_to_del
= ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
6084 } else if (range
> new_highest_cpos
) {
6085 clusters_to_del
= (ocfs2_rec_clusters(el
, &el
->l_recs
[i
]) +
6086 le32_to_cpu(el
->l_recs
[i
].e_cpos
)) -
6093 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6094 clusters_to_del
, (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
6096 BUG_ON(clusters_to_del
== 0);
6098 mutex_lock(&tl_inode
->i_mutex
);
6100 /* ocfs2_truncate_log_needs_flush guarantees us at least one
6101 * record is free for use. If there isn't any, we flush to get
6102 * an empty truncate log. */
6103 if (ocfs2_truncate_log_needs_flush(osb
)) {
6104 status
= __ocfs2_flush_truncate_log(osb
);
6111 credits
= ocfs2_calc_tree_trunc_credits(osb
->sb
, clusters_to_del
,
6112 (struct ocfs2_dinode
*)fe_bh
->b_data
,
6114 handle
= ocfs2_start_trans(osb
, credits
);
6115 if (IS_ERR(handle
)) {
6116 status
= PTR_ERR(handle
);
6122 status
= ocfs2_do_truncate(osb
, clusters_to_del
, inode
, fe_bh
, handle
,
6129 mutex_unlock(&tl_inode
->i_mutex
);
6132 ocfs2_commit_trans(osb
, handle
);
6135 ocfs2_reinit_path(path
, 1);
6138 * The check above will catch the case where we've truncated
6139 * away all allocation.
6145 ocfs2_schedule_truncate_log_flush(osb
, 1);
6148 mutex_unlock(&tl_inode
->i_mutex
);
6151 ocfs2_commit_trans(osb
, handle
);
6153 ocfs2_run_deallocs(osb
, &tc
->tc_dealloc
);
6155 ocfs2_free_path(path
);
6157 /* This will drop the ext_alloc cluster lock for us */
6158 ocfs2_free_truncate_context(tc
);
6165 * Expects the inode to already be locked.
6167 int ocfs2_prepare_truncate(struct ocfs2_super
*osb
,
6168 struct inode
*inode
,
6169 struct buffer_head
*fe_bh
,
6170 struct ocfs2_truncate_context
**tc
)
6173 unsigned int new_i_clusters
;
6174 struct ocfs2_dinode
*fe
;
6175 struct ocfs2_extent_block
*eb
;
6176 struct buffer_head
*last_eb_bh
= NULL
;
6182 new_i_clusters
= ocfs2_clusters_for_bytes(osb
->sb
,
6183 i_size_read(inode
));
6184 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
6186 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6187 "%llu\n", le32_to_cpu(fe
->i_clusters
), new_i_clusters
,
6188 (unsigned long long)le64_to_cpu(fe
->i_size
));
6190 *tc
= kzalloc(sizeof(struct ocfs2_truncate_context
), GFP_KERNEL
);
6196 ocfs2_init_dealloc_ctxt(&(*tc
)->tc_dealloc
);
6198 if (fe
->id2
.i_list
.l_tree_depth
) {
6199 status
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
6200 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
6205 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
6206 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
6207 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
6215 (*tc
)->tc_last_eb_bh
= last_eb_bh
;
6221 ocfs2_free_truncate_context(*tc
);
6229 * 'start' is inclusive, 'end' is not.
6231 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
6232 unsigned int start
, unsigned int end
, int trunc
)
6235 unsigned int numbytes
;
6237 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6238 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6239 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6241 if (end
> i_size_read(inode
))
6242 end
= i_size_read(inode
);
6244 BUG_ON(start
>= end
);
6246 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
6247 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
6248 !ocfs2_supports_inline_data(osb
)) {
6249 ocfs2_error(inode
->i_sb
,
6250 "Inline data flags for inode %llu don't agree! "
6251 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6252 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
6253 le16_to_cpu(di
->i_dyn_features
),
6254 OCFS2_I(inode
)->ip_dyn_features
,
6255 osb
->s_feature_incompat
);
6260 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
6261 if (IS_ERR(handle
)) {
6262 ret
= PTR_ERR(handle
);
6267 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
6268 OCFS2_JOURNAL_ACCESS_WRITE
);
6274 numbytes
= end
- start
;
6275 memset(idata
->id_data
+ start
, 0, numbytes
);
6278 * No need to worry about the data page here - it's been
6279 * truncated already and inline data doesn't need it for
6280 * pushing zero's to disk, so we'll let readpage pick it up
6284 i_size_write(inode
, start
);
6285 di
->i_size
= cpu_to_le64(start
);
6288 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6289 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
6291 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
6292 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
6294 ocfs2_journal_dirty(handle
, di_bh
);
6297 ocfs2_commit_trans(osb
, handle
);
6303 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
)
6306 * The caller is responsible for completing deallocation
6307 * before freeing the context.
6309 if (tc
->tc_dealloc
.c_first_suballocator
!= NULL
)
6311 "Truncate completion has non-empty dealloc context\n");
6313 if (tc
->tc_last_eb_bh
)
6314 brelse(tc
->tc_last_eb_bh
);