eCryptfs: Filename Encryption: Encoding and encryption functions
[linux-2.6/mini2440.git] / fs / ecryptfs / crypto.c
blob18c78abba683b6b5d8e21bc299d9c1405bf17f6f
1 /**
2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 struct page *dst_page, int dst_offset,
42 struct page *src_page, int src_offset, int size,
43 unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 struct page *dst_page, int dst_offset,
47 struct page *src_page, int src_offset, int size,
48 unsigned char *iv);
50 /**
51 * ecryptfs_to_hex
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 int x;
61 for (x = 0; x < src_size; x++)
62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
65 /**
66 * ecryptfs_from_hex
67 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * size (src_size / 2)
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 int x;
75 char tmp[3] = { 0, };
77 for (x = 0; x < dst_size; x++) {
78 tmp[0] = src[x * 2];
79 tmp[1] = src[x * 2 + 1];
80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
84 /**
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
94 static int ecryptfs_calculate_md5(char *dst,
95 struct ecryptfs_crypt_stat *crypt_stat,
96 char *src, int len)
98 struct scatterlist sg;
99 struct hash_desc desc = {
100 .tfm = crypt_stat->hash_tfm,
101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 int rc = 0;
105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 sg_init_one(&sg, (u8 *)src, len);
107 if (!desc.tfm) {
108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 CRYPTO_ALG_ASYNC);
110 if (IS_ERR(desc.tfm)) {
111 rc = PTR_ERR(desc.tfm);
112 ecryptfs_printk(KERN_ERR, "Error attempting to "
113 "allocate crypto context; rc = [%d]\n",
114 rc);
115 goto out;
117 crypt_stat->hash_tfm = desc.tfm;
119 rc = crypto_hash_init(&desc);
120 if (rc) {
121 printk(KERN_ERR
122 "%s: Error initializing crypto hash; rc = [%d]\n",
123 __func__, rc);
124 goto out;
126 rc = crypto_hash_update(&desc, &sg, len);
127 if (rc) {
128 printk(KERN_ERR
129 "%s: Error updating crypto hash; rc = [%d]\n",
130 __func__, rc);
131 goto out;
133 rc = crypto_hash_final(&desc, dst);
134 if (rc) {
135 printk(KERN_ERR
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
137 __func__, rc);
138 goto out;
140 out:
141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 return rc;
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 char *cipher_name,
147 char *chaining_modifier)
149 int cipher_name_len = strlen(cipher_name);
150 int chaining_modifier_len = strlen(chaining_modifier);
151 int algified_name_len;
152 int rc;
154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 if (!(*algified_name)) {
157 rc = -ENOMEM;
158 goto out;
160 snprintf((*algified_name), algified_name_len, "%s(%s)",
161 chaining_modifier, cipher_name);
162 rc = 0;
163 out:
164 return rc;
168 * ecryptfs_derive_iv
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
171 * @offset: Offset of the extent whose IV we are to derive
173 * Generate the initialization vector from the given root IV and page
174 * offset.
176 * Returns zero on success; non-zero on error.
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 loff_t offset)
181 int rc = 0;
182 char dst[MD5_DIGEST_SIZE];
183 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 if (unlikely(ecryptfs_verbosity > 0)) {
186 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 memset((src + crypt_stat->iv_bytes), 0, 16);
195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 if (unlikely(ecryptfs_verbosity > 0)) {
197 ecryptfs_printk(KERN_DEBUG, "source:\n");
198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 (crypt_stat->iv_bytes + 16));
202 if (rc) {
203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
205 goto out;
207 memcpy(iv, dst, crypt_stat->iv_bytes);
208 if (unlikely(ecryptfs_verbosity > 0)) {
209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 out:
213 return rc;
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 * Initialize the crypt_stat structure.
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 mutex_init(&crypt_stat->keysig_list_mutex);
228 mutex_init(&crypt_stat->cs_mutex);
229 mutex_init(&crypt_stat->cs_tfm_mutex);
230 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
235 * ecryptfs_destroy_crypt_stat
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 * Releases all memory associated with a crypt_stat struct.
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 if (crypt_stat->tfm)
245 crypto_free_blkcipher(crypt_stat->tfm);
246 if (crypt_stat->hash_tfm)
247 crypto_free_hash(crypt_stat->hash_tfm);
248 mutex_lock(&crypt_stat->keysig_list_mutex);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
254 mutex_unlock(&crypt_stat->keysig_list_mutex);
255 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
258 void ecryptfs_destroy_mount_crypt_stat(
259 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
261 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
263 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 return;
265 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267 &mount_crypt_stat->global_auth_tok_list,
268 mount_crypt_stat_list) {
269 list_del(&auth_tok->mount_crypt_stat_list);
270 mount_crypt_stat->num_global_auth_toks--;
271 if (auth_tok->global_auth_tok_key
272 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273 key_put(auth_tok->global_auth_tok_key);
274 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
276 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
281 * virt_to_scatterlist
282 * @addr: Virtual address
283 * @size: Size of data; should be an even multiple of the block size
284 * @sg: Pointer to scatterlist array; set to NULL to obtain only
285 * the number of scatterlist structs required in array
286 * @sg_size: Max array size
288 * Fills in a scatterlist array with page references for a passed
289 * virtual address.
291 * Returns the number of scatterlist structs in array used
293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294 int sg_size)
296 int i = 0;
297 struct page *pg;
298 int offset;
299 int remainder_of_page;
301 sg_init_table(sg, sg_size);
303 while (size > 0 && i < sg_size) {
304 pg = virt_to_page(addr);
305 offset = offset_in_page(addr);
306 if (sg)
307 sg_set_page(&sg[i], pg, 0, offset);
308 remainder_of_page = PAGE_CACHE_SIZE - offset;
309 if (size >= remainder_of_page) {
310 if (sg)
311 sg[i].length = remainder_of_page;
312 addr += remainder_of_page;
313 size -= remainder_of_page;
314 } else {
315 if (sg)
316 sg[i].length = size;
317 addr += size;
318 size = 0;
320 i++;
322 if (size > 0)
323 return -ENOMEM;
324 return i;
328 * encrypt_scatterlist
329 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330 * @dest_sg: Destination of encrypted data
331 * @src_sg: Data to be encrypted
332 * @size: Length of data to be encrypted
333 * @iv: iv to use during encryption
335 * Returns the number of bytes encrypted; negative value on error
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338 struct scatterlist *dest_sg,
339 struct scatterlist *src_sg, int size,
340 unsigned char *iv)
342 struct blkcipher_desc desc = {
343 .tfm = crypt_stat->tfm,
344 .info = iv,
345 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
347 int rc = 0;
349 BUG_ON(!crypt_stat || !crypt_stat->tfm
350 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 if (unlikely(ecryptfs_verbosity > 0)) {
352 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353 crypt_stat->key_size);
354 ecryptfs_dump_hex(crypt_stat->key,
355 crypt_stat->key_size);
357 /* Consider doing this once, when the file is opened */
358 mutex_lock(&crypt_stat->cs_tfm_mutex);
359 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361 crypt_stat->key_size);
362 crypt_stat->flags |= ECRYPTFS_KEY_SET;
364 if (rc) {
365 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366 rc);
367 mutex_unlock(&crypt_stat->cs_tfm_mutex);
368 rc = -EINVAL;
369 goto out;
371 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375 return rc;
379 * ecryptfs_lower_offset_for_extent
381 * Convert an eCryptfs page index into a lower byte offset
383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384 struct ecryptfs_crypt_stat *crypt_stat)
386 (*offset) = (crypt_stat->num_header_bytes_at_front
387 + (crypt_stat->extent_size * extent_num));
391 * ecryptfs_encrypt_extent
392 * @enc_extent_page: Allocated page into which to encrypt the data in
393 * @page
394 * @crypt_stat: crypt_stat containing cryptographic context for the
395 * encryption operation
396 * @page: Page containing plaintext data extent to encrypt
397 * @extent_offset: Page extent offset for use in generating IV
399 * Encrypts one extent of data.
401 * Return zero on success; non-zero otherwise
403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404 struct ecryptfs_crypt_stat *crypt_stat,
405 struct page *page,
406 unsigned long extent_offset)
408 loff_t extent_base;
409 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 int rc;
412 extent_base = (((loff_t)page->index)
413 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415 (extent_base + extent_offset));
416 if (rc) {
417 ecryptfs_printk(KERN_ERR, "Error attempting to "
418 "derive IV for extent [0x%.16x]; "
419 "rc = [%d]\n", (extent_base + extent_offset),
420 rc);
421 goto out;
423 if (unlikely(ecryptfs_verbosity > 0)) {
424 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425 "with iv:\n");
426 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428 "encryption:\n");
429 ecryptfs_dump_hex((char *)
430 (page_address(page)
431 + (extent_offset * crypt_stat->extent_size)),
434 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435 page, (extent_offset
436 * crypt_stat->extent_size),
437 crypt_stat->extent_size, extent_iv);
438 if (rc < 0) {
439 printk(KERN_ERR "%s: Error attempting to encrypt page with "
440 "page->index = [%ld], extent_offset = [%ld]; "
441 "rc = [%d]\n", __func__, page->index, extent_offset,
442 rc);
443 goto out;
445 rc = 0;
446 if (unlikely(ecryptfs_verbosity > 0)) {
447 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448 "rc = [%d]\n", (extent_base + extent_offset),
449 rc);
450 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451 "encryption:\n");
452 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
454 out:
455 return rc;
459 * ecryptfs_encrypt_page
460 * @page: Page mapped from the eCryptfs inode for the file; contains
461 * decrypted content that needs to be encrypted (to a temporary
462 * page; not in place) and written out to the lower file
464 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465 * that eCryptfs pages may straddle the lower pages -- for instance,
466 * if the file was created on a machine with an 8K page size
467 * (resulting in an 8K header), and then the file is copied onto a
468 * host with a 32K page size, then when reading page 0 of the eCryptfs
469 * file, 24K of page 0 of the lower file will be read and decrypted,
470 * and then 8K of page 1 of the lower file will be read and decrypted.
472 * Returns zero on success; negative on error
474 int ecryptfs_encrypt_page(struct page *page)
476 struct inode *ecryptfs_inode;
477 struct ecryptfs_crypt_stat *crypt_stat;
478 char *enc_extent_virt;
479 struct page *enc_extent_page = NULL;
480 loff_t extent_offset;
481 int rc = 0;
483 ecryptfs_inode = page->mapping->host;
484 crypt_stat =
485 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
487 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
488 0, PAGE_CACHE_SIZE);
489 if (rc)
490 printk(KERN_ERR "%s: Error attempting to copy "
491 "page at index [%ld]\n", __func__,
492 page->index);
493 goto out;
495 enc_extent_page = alloc_page(GFP_USER);
496 if (!enc_extent_page) {
497 rc = -ENOMEM;
498 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
499 "encrypted extent\n");
500 goto out;
502 enc_extent_virt = kmap(enc_extent_page);
503 for (extent_offset = 0;
504 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
505 extent_offset++) {
506 loff_t offset;
508 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
509 extent_offset);
510 if (rc) {
511 printk(KERN_ERR "%s: Error encrypting extent; "
512 "rc = [%d]\n", __func__, rc);
513 goto out;
515 ecryptfs_lower_offset_for_extent(
516 &offset, ((((loff_t)page->index)
517 * (PAGE_CACHE_SIZE
518 / crypt_stat->extent_size))
519 + extent_offset), crypt_stat);
520 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
521 offset, crypt_stat->extent_size);
522 if (rc) {
523 ecryptfs_printk(KERN_ERR, "Error attempting "
524 "to write lower page; rc = [%d]"
525 "\n", rc);
526 goto out;
529 out:
530 if (enc_extent_page) {
531 kunmap(enc_extent_page);
532 __free_page(enc_extent_page);
534 return rc;
537 static int ecryptfs_decrypt_extent(struct page *page,
538 struct ecryptfs_crypt_stat *crypt_stat,
539 struct page *enc_extent_page,
540 unsigned long extent_offset)
542 loff_t extent_base;
543 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
544 int rc;
546 extent_base = (((loff_t)page->index)
547 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
548 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
549 (extent_base + extent_offset));
550 if (rc) {
551 ecryptfs_printk(KERN_ERR, "Error attempting to "
552 "derive IV for extent [0x%.16x]; "
553 "rc = [%d]\n", (extent_base + extent_offset),
554 rc);
555 goto out;
557 if (unlikely(ecryptfs_verbosity > 0)) {
558 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
559 "with iv:\n");
560 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
561 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
562 "decryption:\n");
563 ecryptfs_dump_hex((char *)
564 (page_address(enc_extent_page)
565 + (extent_offset * crypt_stat->extent_size)),
568 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
569 (extent_offset
570 * crypt_stat->extent_size),
571 enc_extent_page, 0,
572 crypt_stat->extent_size, extent_iv);
573 if (rc < 0) {
574 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
575 "page->index = [%ld], extent_offset = [%ld]; "
576 "rc = [%d]\n", __func__, page->index, extent_offset,
577 rc);
578 goto out;
580 rc = 0;
581 if (unlikely(ecryptfs_verbosity > 0)) {
582 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
583 "rc = [%d]\n", (extent_base + extent_offset),
584 rc);
585 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
586 "decryption:\n");
587 ecryptfs_dump_hex((char *)(page_address(page)
588 + (extent_offset
589 * crypt_stat->extent_size)), 8);
591 out:
592 return rc;
596 * ecryptfs_decrypt_page
597 * @page: Page mapped from the eCryptfs inode for the file; data read
598 * and decrypted from the lower file will be written into this
599 * page
601 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
602 * that eCryptfs pages may straddle the lower pages -- for instance,
603 * if the file was created on a machine with an 8K page size
604 * (resulting in an 8K header), and then the file is copied onto a
605 * host with a 32K page size, then when reading page 0 of the eCryptfs
606 * file, 24K of page 0 of the lower file will be read and decrypted,
607 * and then 8K of page 1 of the lower file will be read and decrypted.
609 * Returns zero on success; negative on error
611 int ecryptfs_decrypt_page(struct page *page)
613 struct inode *ecryptfs_inode;
614 struct ecryptfs_crypt_stat *crypt_stat;
615 char *enc_extent_virt;
616 struct page *enc_extent_page = NULL;
617 unsigned long extent_offset;
618 int rc = 0;
620 ecryptfs_inode = page->mapping->host;
621 crypt_stat =
622 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
623 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
624 rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
625 PAGE_CACHE_SIZE,
626 ecryptfs_inode);
627 if (rc)
628 printk(KERN_ERR "%s: Error attempting to copy "
629 "page at index [%ld]\n", __func__,
630 page->index);
631 goto out;
633 enc_extent_page = alloc_page(GFP_USER);
634 if (!enc_extent_page) {
635 rc = -ENOMEM;
636 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
637 "encrypted extent\n");
638 goto out;
640 enc_extent_virt = kmap(enc_extent_page);
641 for (extent_offset = 0;
642 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
643 extent_offset++) {
644 loff_t offset;
646 ecryptfs_lower_offset_for_extent(
647 &offset, ((page->index * (PAGE_CACHE_SIZE
648 / crypt_stat->extent_size))
649 + extent_offset), crypt_stat);
650 rc = ecryptfs_read_lower(enc_extent_virt, offset,
651 crypt_stat->extent_size,
652 ecryptfs_inode);
653 if (rc) {
654 ecryptfs_printk(KERN_ERR, "Error attempting "
655 "to read lower page; rc = [%d]"
656 "\n", rc);
657 goto out;
659 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
660 extent_offset);
661 if (rc) {
662 printk(KERN_ERR "%s: Error encrypting extent; "
663 "rc = [%d]\n", __func__, rc);
664 goto out;
667 out:
668 if (enc_extent_page) {
669 kunmap(enc_extent_page);
670 __free_page(enc_extent_page);
672 return rc;
676 * decrypt_scatterlist
677 * @crypt_stat: Cryptographic context
678 * @dest_sg: The destination scatterlist to decrypt into
679 * @src_sg: The source scatterlist to decrypt from
680 * @size: The number of bytes to decrypt
681 * @iv: The initialization vector to use for the decryption
683 * Returns the number of bytes decrypted; negative value on error
685 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
686 struct scatterlist *dest_sg,
687 struct scatterlist *src_sg, int size,
688 unsigned char *iv)
690 struct blkcipher_desc desc = {
691 .tfm = crypt_stat->tfm,
692 .info = iv,
693 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
695 int rc = 0;
697 /* Consider doing this once, when the file is opened */
698 mutex_lock(&crypt_stat->cs_tfm_mutex);
699 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
700 crypt_stat->key_size);
701 if (rc) {
702 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
703 rc);
704 mutex_unlock(&crypt_stat->cs_tfm_mutex);
705 rc = -EINVAL;
706 goto out;
708 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
709 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
710 mutex_unlock(&crypt_stat->cs_tfm_mutex);
711 if (rc) {
712 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
713 rc);
714 goto out;
716 rc = size;
717 out:
718 return rc;
722 * ecryptfs_encrypt_page_offset
723 * @crypt_stat: The cryptographic context
724 * @dst_page: The page to encrypt into
725 * @dst_offset: The offset in the page to encrypt into
726 * @src_page: The page to encrypt from
727 * @src_offset: The offset in the page to encrypt from
728 * @size: The number of bytes to encrypt
729 * @iv: The initialization vector to use for the encryption
731 * Returns the number of bytes encrypted
733 static int
734 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
735 struct page *dst_page, int dst_offset,
736 struct page *src_page, int src_offset, int size,
737 unsigned char *iv)
739 struct scatterlist src_sg, dst_sg;
741 sg_init_table(&src_sg, 1);
742 sg_init_table(&dst_sg, 1);
744 sg_set_page(&src_sg, src_page, size, src_offset);
745 sg_set_page(&dst_sg, dst_page, size, dst_offset);
746 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
750 * ecryptfs_decrypt_page_offset
751 * @crypt_stat: The cryptographic context
752 * @dst_page: The page to decrypt into
753 * @dst_offset: The offset in the page to decrypt into
754 * @src_page: The page to decrypt from
755 * @src_offset: The offset in the page to decrypt from
756 * @size: The number of bytes to decrypt
757 * @iv: The initialization vector to use for the decryption
759 * Returns the number of bytes decrypted
761 static int
762 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
763 struct page *dst_page, int dst_offset,
764 struct page *src_page, int src_offset, int size,
765 unsigned char *iv)
767 struct scatterlist src_sg, dst_sg;
769 sg_init_table(&src_sg, 1);
770 sg_set_page(&src_sg, src_page, size, src_offset);
772 sg_init_table(&dst_sg, 1);
773 sg_set_page(&dst_sg, dst_page, size, dst_offset);
775 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
778 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
781 * ecryptfs_init_crypt_ctx
782 * @crypt_stat: Uninitilized crypt stats structure
784 * Initialize the crypto context.
786 * TODO: Performance: Keep a cache of initialized cipher contexts;
787 * only init if needed
789 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
791 char *full_alg_name;
792 int rc = -EINVAL;
794 if (!crypt_stat->cipher) {
795 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
796 goto out;
798 ecryptfs_printk(KERN_DEBUG,
799 "Initializing cipher [%s]; strlen = [%d]; "
800 "key_size_bits = [%d]\n",
801 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
802 crypt_stat->key_size << 3);
803 if (crypt_stat->tfm) {
804 rc = 0;
805 goto out;
807 mutex_lock(&crypt_stat->cs_tfm_mutex);
808 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
809 crypt_stat->cipher, "cbc");
810 if (rc)
811 goto out_unlock;
812 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
813 CRYPTO_ALG_ASYNC);
814 kfree(full_alg_name);
815 if (IS_ERR(crypt_stat->tfm)) {
816 rc = PTR_ERR(crypt_stat->tfm);
817 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
818 "Error initializing cipher [%s]\n",
819 crypt_stat->cipher);
820 goto out_unlock;
822 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
823 rc = 0;
824 out_unlock:
825 mutex_unlock(&crypt_stat->cs_tfm_mutex);
826 out:
827 return rc;
830 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
832 int extent_size_tmp;
834 crypt_stat->extent_mask = 0xFFFFFFFF;
835 crypt_stat->extent_shift = 0;
836 if (crypt_stat->extent_size == 0)
837 return;
838 extent_size_tmp = crypt_stat->extent_size;
839 while ((extent_size_tmp & 0x01) == 0) {
840 extent_size_tmp >>= 1;
841 crypt_stat->extent_mask <<= 1;
842 crypt_stat->extent_shift++;
846 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
848 /* Default values; may be overwritten as we are parsing the
849 * packets. */
850 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
851 set_extent_mask_and_shift(crypt_stat);
852 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
853 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
854 crypt_stat->num_header_bytes_at_front = 0;
855 else {
856 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
857 crypt_stat->num_header_bytes_at_front =
858 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
859 else
860 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
865 * ecryptfs_compute_root_iv
866 * @crypt_stats
868 * On error, sets the root IV to all 0's.
870 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
872 int rc = 0;
873 char dst[MD5_DIGEST_SIZE];
875 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
876 BUG_ON(crypt_stat->iv_bytes <= 0);
877 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
878 rc = -EINVAL;
879 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
880 "cannot generate root IV\n");
881 goto out;
883 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
884 crypt_stat->key_size);
885 if (rc) {
886 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
887 "MD5 while generating root IV\n");
888 goto out;
890 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
891 out:
892 if (rc) {
893 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
894 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
896 return rc;
899 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
901 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
902 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
903 ecryptfs_compute_root_iv(crypt_stat);
904 if (unlikely(ecryptfs_verbosity > 0)) {
905 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
906 ecryptfs_dump_hex(crypt_stat->key,
907 crypt_stat->key_size);
912 * ecryptfs_copy_mount_wide_flags_to_inode_flags
913 * @crypt_stat: The inode's cryptographic context
914 * @mount_crypt_stat: The mount point's cryptographic context
916 * This function propagates the mount-wide flags to individual inode
917 * flags.
919 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
920 struct ecryptfs_crypt_stat *crypt_stat,
921 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
923 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
924 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
925 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
926 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
929 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
930 struct ecryptfs_crypt_stat *crypt_stat,
931 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
933 struct ecryptfs_global_auth_tok *global_auth_tok;
934 int rc = 0;
936 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
937 list_for_each_entry(global_auth_tok,
938 &mount_crypt_stat->global_auth_tok_list,
939 mount_crypt_stat_list) {
940 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
941 if (rc) {
942 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
943 mutex_unlock(
944 &mount_crypt_stat->global_auth_tok_list_mutex);
945 goto out;
948 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
949 out:
950 return rc;
954 * ecryptfs_set_default_crypt_stat_vals
955 * @crypt_stat: The inode's cryptographic context
956 * @mount_crypt_stat: The mount point's cryptographic context
958 * Default values in the event that policy does not override them.
960 static void ecryptfs_set_default_crypt_stat_vals(
961 struct ecryptfs_crypt_stat *crypt_stat,
962 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
964 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
965 mount_crypt_stat);
966 ecryptfs_set_default_sizes(crypt_stat);
967 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
968 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
969 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
970 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
971 crypt_stat->mount_crypt_stat = mount_crypt_stat;
975 * ecryptfs_new_file_context
976 * @ecryptfs_dentry: The eCryptfs dentry
978 * If the crypto context for the file has not yet been established,
979 * this is where we do that. Establishing a new crypto context
980 * involves the following decisions:
981 * - What cipher to use?
982 * - What set of authentication tokens to use?
983 * Here we just worry about getting enough information into the
984 * authentication tokens so that we know that they are available.
985 * We associate the available authentication tokens with the new file
986 * via the set of signatures in the crypt_stat struct. Later, when
987 * the headers are actually written out, we may again defer to
988 * userspace to perform the encryption of the session key; for the
989 * foreseeable future, this will be the case with public key packets.
991 * Returns zero on success; non-zero otherwise
993 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
995 struct ecryptfs_crypt_stat *crypt_stat =
996 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
997 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
998 &ecryptfs_superblock_to_private(
999 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1000 int cipher_name_len;
1001 int rc = 0;
1003 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1004 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1005 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1006 mount_crypt_stat);
1007 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1008 mount_crypt_stat);
1009 if (rc) {
1010 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1011 "to the inode key sigs; rc = [%d]\n", rc);
1012 goto out;
1014 cipher_name_len =
1015 strlen(mount_crypt_stat->global_default_cipher_name);
1016 memcpy(crypt_stat->cipher,
1017 mount_crypt_stat->global_default_cipher_name,
1018 cipher_name_len);
1019 crypt_stat->cipher[cipher_name_len] = '\0';
1020 crypt_stat->key_size =
1021 mount_crypt_stat->global_default_cipher_key_size;
1022 ecryptfs_generate_new_key(crypt_stat);
1023 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1024 if (rc)
1025 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1026 "context for cipher [%s]: rc = [%d]\n",
1027 crypt_stat->cipher, rc);
1028 out:
1029 return rc;
1033 * contains_ecryptfs_marker - check for the ecryptfs marker
1034 * @data: The data block in which to check
1036 * Returns one if marker found; zero if not found
1038 static int contains_ecryptfs_marker(char *data)
1040 u32 m_1, m_2;
1042 m_1 = get_unaligned_be32(data);
1043 m_2 = get_unaligned_be32(data + 4);
1044 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1045 return 1;
1046 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1047 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1048 MAGIC_ECRYPTFS_MARKER);
1049 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1050 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1051 return 0;
1054 struct ecryptfs_flag_map_elem {
1055 u32 file_flag;
1056 u32 local_flag;
1059 /* Add support for additional flags by adding elements here. */
1060 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1061 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1062 {0x00000002, ECRYPTFS_ENCRYPTED},
1063 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1067 * ecryptfs_process_flags
1068 * @crypt_stat: The cryptographic context
1069 * @page_virt: Source data to be parsed
1070 * @bytes_read: Updated with the number of bytes read
1072 * Returns zero on success; non-zero if the flag set is invalid
1074 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1075 char *page_virt, int *bytes_read)
1077 int rc = 0;
1078 int i;
1079 u32 flags;
1081 flags = get_unaligned_be32(page_virt);
1082 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1083 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1084 if (flags & ecryptfs_flag_map[i].file_flag) {
1085 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1086 } else
1087 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1088 /* Version is in top 8 bits of the 32-bit flag vector */
1089 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1090 (*bytes_read) = 4;
1091 return rc;
1095 * write_ecryptfs_marker
1096 * @page_virt: The pointer to in a page to begin writing the marker
1097 * @written: Number of bytes written
1099 * Marker = 0x3c81b7f5
1101 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1103 u32 m_1, m_2;
1105 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1106 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1107 put_unaligned_be32(m_1, page_virt);
1108 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1109 put_unaligned_be32(m_2, page_virt);
1110 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1113 static void
1114 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1115 size_t *written)
1117 u32 flags = 0;
1118 int i;
1120 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1121 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1122 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1123 flags |= ecryptfs_flag_map[i].file_flag;
1124 /* Version is in top 8 bits of the 32-bit flag vector */
1125 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1126 put_unaligned_be32(flags, page_virt);
1127 (*written) = 4;
1130 struct ecryptfs_cipher_code_str_map_elem {
1131 char cipher_str[16];
1132 u8 cipher_code;
1135 /* Add support for additional ciphers by adding elements here. The
1136 * cipher_code is whatever OpenPGP applicatoins use to identify the
1137 * ciphers. List in order of probability. */
1138 static struct ecryptfs_cipher_code_str_map_elem
1139 ecryptfs_cipher_code_str_map[] = {
1140 {"aes",RFC2440_CIPHER_AES_128 },
1141 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1142 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1143 {"cast5", RFC2440_CIPHER_CAST_5},
1144 {"twofish", RFC2440_CIPHER_TWOFISH},
1145 {"cast6", RFC2440_CIPHER_CAST_6},
1146 {"aes", RFC2440_CIPHER_AES_192},
1147 {"aes", RFC2440_CIPHER_AES_256}
1151 * ecryptfs_code_for_cipher_string
1152 * @cipher_name: The string alias for the cipher
1153 * @key_bytes: Length of key in bytes; used for AES code selection
1155 * Returns zero on no match, or the cipher code on match
1157 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1159 int i;
1160 u8 code = 0;
1161 struct ecryptfs_cipher_code_str_map_elem *map =
1162 ecryptfs_cipher_code_str_map;
1164 if (strcmp(cipher_name, "aes") == 0) {
1165 switch (key_bytes) {
1166 case 16:
1167 code = RFC2440_CIPHER_AES_128;
1168 break;
1169 case 24:
1170 code = RFC2440_CIPHER_AES_192;
1171 break;
1172 case 32:
1173 code = RFC2440_CIPHER_AES_256;
1175 } else {
1176 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1177 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1178 code = map[i].cipher_code;
1179 break;
1182 return code;
1186 * ecryptfs_cipher_code_to_string
1187 * @str: Destination to write out the cipher name
1188 * @cipher_code: The code to convert to cipher name string
1190 * Returns zero on success
1192 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1194 int rc = 0;
1195 int i;
1197 str[0] = '\0';
1198 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1199 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1200 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1201 if (str[0] == '\0') {
1202 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1203 "[%d]\n", cipher_code);
1204 rc = -EINVAL;
1206 return rc;
1209 int ecryptfs_read_and_validate_header_region(char *data,
1210 struct inode *ecryptfs_inode)
1212 struct ecryptfs_crypt_stat *crypt_stat =
1213 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1214 int rc;
1216 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1217 ecryptfs_inode);
1218 if (rc) {
1219 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1220 __func__, rc);
1221 goto out;
1223 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1224 rc = -EINVAL;
1225 ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1227 out:
1228 return rc;
1231 void
1232 ecryptfs_write_header_metadata(char *virt,
1233 struct ecryptfs_crypt_stat *crypt_stat,
1234 size_t *written)
1236 u32 header_extent_size;
1237 u16 num_header_extents_at_front;
1239 header_extent_size = (u32)crypt_stat->extent_size;
1240 num_header_extents_at_front =
1241 (u16)(crypt_stat->num_header_bytes_at_front
1242 / crypt_stat->extent_size);
1243 put_unaligned_be32(header_extent_size, virt);
1244 virt += 4;
1245 put_unaligned_be16(num_header_extents_at_front, virt);
1246 (*written) = 6;
1249 struct kmem_cache *ecryptfs_header_cache_1;
1250 struct kmem_cache *ecryptfs_header_cache_2;
1253 * ecryptfs_write_headers_virt
1254 * @page_virt: The virtual address to write the headers to
1255 * @max: The size of memory allocated at page_virt
1256 * @size: Set to the number of bytes written by this function
1257 * @crypt_stat: The cryptographic context
1258 * @ecryptfs_dentry: The eCryptfs dentry
1260 * Format version: 1
1262 * Header Extent:
1263 * Octets 0-7: Unencrypted file size (big-endian)
1264 * Octets 8-15: eCryptfs special marker
1265 * Octets 16-19: Flags
1266 * Octet 16: File format version number (between 0 and 255)
1267 * Octets 17-18: Reserved
1268 * Octet 19: Bit 1 (lsb): Reserved
1269 * Bit 2: Encrypted?
1270 * Bits 3-8: Reserved
1271 * Octets 20-23: Header extent size (big-endian)
1272 * Octets 24-25: Number of header extents at front of file
1273 * (big-endian)
1274 * Octet 26: Begin RFC 2440 authentication token packet set
1275 * Data Extent 0:
1276 * Lower data (CBC encrypted)
1277 * Data Extent 1:
1278 * Lower data (CBC encrypted)
1279 * ...
1281 * Returns zero on success
1283 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1284 size_t *size,
1285 struct ecryptfs_crypt_stat *crypt_stat,
1286 struct dentry *ecryptfs_dentry)
1288 int rc;
1289 size_t written;
1290 size_t offset;
1292 offset = ECRYPTFS_FILE_SIZE_BYTES;
1293 write_ecryptfs_marker((page_virt + offset), &written);
1294 offset += written;
1295 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1296 offset += written;
1297 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1298 &written);
1299 offset += written;
1300 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1301 ecryptfs_dentry, &written,
1302 max - offset);
1303 if (rc)
1304 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1305 "set; rc = [%d]\n", rc);
1306 if (size) {
1307 offset += written;
1308 *size = offset;
1310 return rc;
1313 static int
1314 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1315 struct dentry *ecryptfs_dentry,
1316 char *virt)
1318 int rc;
1320 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1321 0, crypt_stat->num_header_bytes_at_front);
1322 if (rc)
1323 printk(KERN_ERR "%s: Error attempting to write header "
1324 "information to lower file; rc = [%d]\n", __func__,
1325 rc);
1326 return rc;
1329 static int
1330 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1331 struct ecryptfs_crypt_stat *crypt_stat,
1332 char *page_virt, size_t size)
1334 int rc;
1336 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1337 size, 0);
1338 return rc;
1342 * ecryptfs_write_metadata
1343 * @ecryptfs_dentry: The eCryptfs dentry
1345 * Write the file headers out. This will likely involve a userspace
1346 * callout, in which the session key is encrypted with one or more
1347 * public keys and/or the passphrase necessary to do the encryption is
1348 * retrieved via a prompt. Exactly what happens at this point should
1349 * be policy-dependent.
1351 * Returns zero on success; non-zero on error
1353 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1355 struct ecryptfs_crypt_stat *crypt_stat =
1356 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1357 char *virt;
1358 size_t size = 0;
1359 int rc = 0;
1361 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1362 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1363 printk(KERN_ERR "Key is invalid; bailing out\n");
1364 rc = -EINVAL;
1365 goto out;
1367 } else {
1368 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1369 __func__);
1370 rc = -EINVAL;
1371 goto out;
1373 /* Released in this function */
1374 virt = (char *)get_zeroed_page(GFP_KERNEL);
1375 if (!virt) {
1376 printk(KERN_ERR "%s: Out of memory\n", __func__);
1377 rc = -ENOMEM;
1378 goto out;
1380 rc = ecryptfs_write_headers_virt(virt, PAGE_CACHE_SIZE, &size,
1381 crypt_stat, ecryptfs_dentry);
1382 if (unlikely(rc)) {
1383 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1384 __func__, rc);
1385 goto out_free;
1387 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1388 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1389 crypt_stat, virt, size);
1390 else
1391 rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1392 ecryptfs_dentry, virt);
1393 if (rc) {
1394 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1395 "rc = [%d]\n", __func__, rc);
1396 goto out_free;
1398 out_free:
1399 free_page((unsigned long)virt);
1400 out:
1401 return rc;
1404 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1405 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1406 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1407 char *virt, int *bytes_read,
1408 int validate_header_size)
1410 int rc = 0;
1411 u32 header_extent_size;
1412 u16 num_header_extents_at_front;
1414 header_extent_size = get_unaligned_be32(virt);
1415 virt += sizeof(__be32);
1416 num_header_extents_at_front = get_unaligned_be16(virt);
1417 crypt_stat->num_header_bytes_at_front =
1418 (((size_t)num_header_extents_at_front
1419 * (size_t)header_extent_size));
1420 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1421 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1422 && (crypt_stat->num_header_bytes_at_front
1423 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1424 rc = -EINVAL;
1425 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1426 crypt_stat->num_header_bytes_at_front);
1428 return rc;
1432 * set_default_header_data
1433 * @crypt_stat: The cryptographic context
1435 * For version 0 file format; this function is only for backwards
1436 * compatibility for files created with the prior versions of
1437 * eCryptfs.
1439 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1441 crypt_stat->num_header_bytes_at_front =
1442 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1446 * ecryptfs_read_headers_virt
1447 * @page_virt: The virtual address into which to read the headers
1448 * @crypt_stat: The cryptographic context
1449 * @ecryptfs_dentry: The eCryptfs dentry
1450 * @validate_header_size: Whether to validate the header size while reading
1452 * Read/parse the header data. The header format is detailed in the
1453 * comment block for the ecryptfs_write_headers_virt() function.
1455 * Returns zero on success
1457 static int ecryptfs_read_headers_virt(char *page_virt,
1458 struct ecryptfs_crypt_stat *crypt_stat,
1459 struct dentry *ecryptfs_dentry,
1460 int validate_header_size)
1462 int rc = 0;
1463 int offset;
1464 int bytes_read;
1466 ecryptfs_set_default_sizes(crypt_stat);
1467 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1468 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1469 offset = ECRYPTFS_FILE_SIZE_BYTES;
1470 rc = contains_ecryptfs_marker(page_virt + offset);
1471 if (rc == 0) {
1472 rc = -EINVAL;
1473 goto out;
1475 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1476 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1477 &bytes_read);
1478 if (rc) {
1479 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1480 goto out;
1482 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1483 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1484 "file version [%d] is supported by this "
1485 "version of eCryptfs\n",
1486 crypt_stat->file_version,
1487 ECRYPTFS_SUPPORTED_FILE_VERSION);
1488 rc = -EINVAL;
1489 goto out;
1491 offset += bytes_read;
1492 if (crypt_stat->file_version >= 1) {
1493 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1494 &bytes_read, validate_header_size);
1495 if (rc) {
1496 ecryptfs_printk(KERN_WARNING, "Error reading header "
1497 "metadata; rc = [%d]\n", rc);
1499 offset += bytes_read;
1500 } else
1501 set_default_header_data(crypt_stat);
1502 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1503 ecryptfs_dentry);
1504 out:
1505 return rc;
1509 * ecryptfs_read_xattr_region
1510 * @page_virt: The vitual address into which to read the xattr data
1511 * @ecryptfs_inode: The eCryptfs inode
1513 * Attempts to read the crypto metadata from the extended attribute
1514 * region of the lower file.
1516 * Returns zero on success; non-zero on error
1518 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1520 struct dentry *lower_dentry =
1521 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1522 ssize_t size;
1523 int rc = 0;
1525 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1526 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1527 if (size < 0) {
1528 if (unlikely(ecryptfs_verbosity > 0))
1529 printk(KERN_INFO "Error attempting to read the [%s] "
1530 "xattr from the lower file; return value = "
1531 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1532 rc = -EINVAL;
1533 goto out;
1535 out:
1536 return rc;
1539 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1540 struct dentry *ecryptfs_dentry)
1542 int rc;
1544 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1545 if (rc)
1546 goto out;
1547 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1548 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1549 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1550 rc = -EINVAL;
1552 out:
1553 return rc;
1557 * ecryptfs_read_metadata
1559 * Common entry point for reading file metadata. From here, we could
1560 * retrieve the header information from the header region of the file,
1561 * the xattr region of the file, or some other repostory that is
1562 * stored separately from the file itself. The current implementation
1563 * supports retrieving the metadata information from the file contents
1564 * and from the xattr region.
1566 * Returns zero if valid headers found and parsed; non-zero otherwise
1568 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1570 int rc = 0;
1571 char *page_virt = NULL;
1572 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1573 struct ecryptfs_crypt_stat *crypt_stat =
1574 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1575 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1576 &ecryptfs_superblock_to_private(
1577 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1579 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1580 mount_crypt_stat);
1581 /* Read the first page from the underlying file */
1582 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1583 if (!page_virt) {
1584 rc = -ENOMEM;
1585 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1586 __func__);
1587 goto out;
1589 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1590 ecryptfs_inode);
1591 if (!rc)
1592 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1593 ecryptfs_dentry,
1594 ECRYPTFS_VALIDATE_HEADER_SIZE);
1595 if (rc) {
1596 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1597 if (rc) {
1598 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1599 "file header region or xattr region\n");
1600 rc = -EINVAL;
1601 goto out;
1603 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1604 ecryptfs_dentry,
1605 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1606 if (rc) {
1607 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1608 "file xattr region either\n");
1609 rc = -EINVAL;
1611 if (crypt_stat->mount_crypt_stat->flags
1612 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1613 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1614 } else {
1615 printk(KERN_WARNING "Attempt to access file with "
1616 "crypto metadata only in the extended attribute "
1617 "region, but eCryptfs was mounted without "
1618 "xattr support enabled. eCryptfs will not treat "
1619 "this like an encrypted file.\n");
1620 rc = -EINVAL;
1623 out:
1624 if (page_virt) {
1625 memset(page_virt, 0, PAGE_CACHE_SIZE);
1626 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1628 return rc;
1632 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1633 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1634 * @name: The plaintext name
1635 * @length: The length of the plaintext
1636 * @encoded_name: The encypted name
1638 * Encrypts and encodes a filename into something that constitutes a
1639 * valid filename for a filesystem, with printable characters.
1641 * We assume that we have a properly initialized crypto context,
1642 * pointed to by crypt_stat->tfm.
1644 * TODO: Implement filename decoding and decryption here, in place of
1645 * memcpy. We are keeping the framework around for now to (1)
1646 * facilitate testing of the components needed to implement filename
1647 * encryption and (2) to provide a code base from which other
1648 * developers in the community can easily implement this feature.
1650 * Returns the length of encoded filename; negative if error
1653 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1654 const char *name, int length, char **encoded_name)
1656 int error = 0;
1658 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1659 if (!(*encoded_name)) {
1660 error = -ENOMEM;
1661 goto out;
1663 /* TODO: Filename encryption is a scheduled feature for a
1664 * future version of eCryptfs. This function is here only for
1665 * the purpose of providing a framework for other developers
1666 * to easily implement filename encryption. Hint: Replace this
1667 * memcpy() with a call to encrypt and encode the
1668 * filename, the set the length accordingly. */
1669 memcpy((void *)(*encoded_name), (void *)name, length);
1670 (*encoded_name)[length] = '\0';
1671 error = length + 1;
1672 out:
1673 return error;
1677 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1678 * @crypt_stat: The crypt_stat struct associated with the file
1679 * @name: The filename in cipher text
1680 * @length: The length of the cipher text name
1681 * @decrypted_name: The plaintext name
1683 * Decodes and decrypts the filename.
1685 * We assume that we have a properly initialized crypto context,
1686 * pointed to by crypt_stat->tfm.
1688 * TODO: Implement filename decoding and decryption here, in place of
1689 * memcpy. We are keeping the framework around for now to (1)
1690 * facilitate testing of the components needed to implement filename
1691 * encryption and (2) to provide a code base from which other
1692 * developers in the community can easily implement this feature.
1694 * Returns the length of decoded filename; negative if error
1697 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1698 const char *name, int length, char **decrypted_name)
1700 int error = 0;
1702 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1703 if (!(*decrypted_name)) {
1704 error = -ENOMEM;
1705 goto out;
1707 /* TODO: Filename encryption is a scheduled feature for a
1708 * future version of eCryptfs. This function is here only for
1709 * the purpose of providing a framework for other developers
1710 * to easily implement filename encryption. Hint: Replace this
1711 * memcpy() with a call to decode and decrypt the
1712 * filename, the set the length accordingly. */
1713 memcpy((void *)(*decrypted_name), (void *)name, length);
1714 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1715 * in printing out the
1716 * string in debug
1717 * messages */
1718 error = length;
1719 out:
1720 return error;
1724 * ecryptfs_encrypt_filename - encrypt filename
1726 * CBC-encrypts the filename. We do not want to encrypt the same
1727 * filename with the same key and IV, which may happen with hard
1728 * links, so we prepend random bits to each filename.
1730 * Returns zero on success; non-zero otherwise
1732 static int
1733 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1734 struct ecryptfs_crypt_stat *crypt_stat,
1735 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1737 int rc = 0;
1739 filename->encrypted_filename = NULL;
1740 filename->encrypted_filename_size = 0;
1741 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1742 || (mount_crypt_stat && (mount_crypt_stat->flags
1743 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1744 size_t packet_size;
1745 size_t remaining_bytes;
1747 rc = ecryptfs_write_tag_70_packet(
1748 NULL, NULL,
1749 &filename->encrypted_filename_size,
1750 mount_crypt_stat, NULL,
1751 filename->filename_size);
1752 if (rc) {
1753 printk(KERN_ERR "%s: Error attempting to get packet "
1754 "size for tag 72; rc = [%d]\n", __func__,
1755 rc);
1756 filename->encrypted_filename_size = 0;
1757 goto out;
1759 filename->encrypted_filename =
1760 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1761 if (!filename->encrypted_filename) {
1762 printk(KERN_ERR "%s: Out of memory whilst attempting "
1763 "to kmalloc [%Zd] bytes\n", __func__,
1764 filename->encrypted_filename_size);
1765 rc = -ENOMEM;
1766 goto out;
1768 remaining_bytes = filename->encrypted_filename_size;
1769 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1770 &remaining_bytes,
1771 &packet_size,
1772 mount_crypt_stat,
1773 filename->filename,
1774 filename->filename_size);
1775 if (rc) {
1776 printk(KERN_ERR "%s: Error attempting to generate "
1777 "tag 70 packet; rc = [%d]\n", __func__,
1778 rc);
1779 kfree(filename->encrypted_filename);
1780 filename->encrypted_filename = NULL;
1781 filename->encrypted_filename_size = 0;
1782 goto out;
1784 filename->encrypted_filename_size = packet_size;
1785 } else {
1786 printk(KERN_ERR "%s: No support for requested filename "
1787 "encryption method in this release\n", __func__);
1788 rc = -ENOTSUPP;
1789 goto out;
1791 out:
1792 return rc;
1795 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1796 const char *name, size_t name_size)
1798 int rc = 0;
1800 (*copied_name) = kmalloc((name_size + 2), GFP_KERNEL);
1801 if (!(*copied_name)) {
1802 rc = -ENOMEM;
1803 goto out;
1805 memcpy((void *)(*copied_name), (void *)name, name_size);
1806 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1807 * in printing out the
1808 * string in debug
1809 * messages */
1810 (*copied_name_size) = (name_size + 1);
1811 out:
1812 return rc;
1816 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1817 * @key_tfm: Crypto context for key material, set by this function
1818 * @cipher_name: Name of the cipher
1819 * @key_size: Size of the key in bytes
1821 * Returns zero on success. Any crypto_tfm structs allocated here
1822 * should be released by other functions, such as on a superblock put
1823 * event, regardless of whether this function succeeds for fails.
1825 static int
1826 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1827 char *cipher_name, size_t *key_size)
1829 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1830 char *full_alg_name;
1831 int rc;
1833 *key_tfm = NULL;
1834 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1835 rc = -EINVAL;
1836 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1837 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1838 goto out;
1840 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1841 "ecb");
1842 if (rc)
1843 goto out;
1844 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1845 kfree(full_alg_name);
1846 if (IS_ERR(*key_tfm)) {
1847 rc = PTR_ERR(*key_tfm);
1848 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1849 "[%s]; rc = [%d]\n", cipher_name, rc);
1850 goto out;
1852 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1853 if (*key_size == 0) {
1854 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1856 *key_size = alg->max_keysize;
1858 get_random_bytes(dummy_key, *key_size);
1859 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1860 if (rc) {
1861 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1862 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1863 rc = -EINVAL;
1864 goto out;
1866 out:
1867 return rc;
1870 struct kmem_cache *ecryptfs_key_tfm_cache;
1871 static struct list_head key_tfm_list;
1872 struct mutex key_tfm_list_mutex;
1874 int ecryptfs_init_crypto(void)
1876 mutex_init(&key_tfm_list_mutex);
1877 INIT_LIST_HEAD(&key_tfm_list);
1878 return 0;
1882 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1884 * Called only at module unload time
1886 int ecryptfs_destroy_crypto(void)
1888 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1890 mutex_lock(&key_tfm_list_mutex);
1891 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1892 key_tfm_list) {
1893 list_del(&key_tfm->key_tfm_list);
1894 if (key_tfm->key_tfm)
1895 crypto_free_blkcipher(key_tfm->key_tfm);
1896 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1898 mutex_unlock(&key_tfm_list_mutex);
1899 return 0;
1903 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1904 size_t key_size)
1906 struct ecryptfs_key_tfm *tmp_tfm;
1907 int rc = 0;
1909 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1911 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1912 if (key_tfm != NULL)
1913 (*key_tfm) = tmp_tfm;
1914 if (!tmp_tfm) {
1915 rc = -ENOMEM;
1916 printk(KERN_ERR "Error attempting to allocate from "
1917 "ecryptfs_key_tfm_cache\n");
1918 goto out;
1920 mutex_init(&tmp_tfm->key_tfm_mutex);
1921 strncpy(tmp_tfm->cipher_name, cipher_name,
1922 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1923 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1924 tmp_tfm->key_size = key_size;
1925 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1926 tmp_tfm->cipher_name,
1927 &tmp_tfm->key_size);
1928 if (rc) {
1929 printk(KERN_ERR "Error attempting to initialize key TFM "
1930 "cipher with name = [%s]; rc = [%d]\n",
1931 tmp_tfm->cipher_name, rc);
1932 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1933 if (key_tfm != NULL)
1934 (*key_tfm) = NULL;
1935 goto out;
1937 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1938 out:
1939 return rc;
1943 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1944 * @cipher_name: the name of the cipher to search for
1945 * @key_tfm: set to corresponding tfm if found
1947 * Searches for cached key_tfm matching @cipher_name
1948 * Must be called with &key_tfm_list_mutex held
1949 * Returns 1 if found, with @key_tfm set
1950 * Returns 0 if not found, with @key_tfm set to NULL
1952 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1954 struct ecryptfs_key_tfm *tmp_key_tfm;
1956 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1958 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1959 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1960 if (key_tfm)
1961 (*key_tfm) = tmp_key_tfm;
1962 return 1;
1965 if (key_tfm)
1966 (*key_tfm) = NULL;
1967 return 0;
1971 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1973 * @tfm: set to cached tfm found, or new tfm created
1974 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1975 * @cipher_name: the name of the cipher to search for and/or add
1977 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1978 * Searches for cached item first, and creates new if not found.
1979 * Returns 0 on success, non-zero if adding new cipher failed
1981 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1982 struct mutex **tfm_mutex,
1983 char *cipher_name)
1985 struct ecryptfs_key_tfm *key_tfm;
1986 int rc = 0;
1988 (*tfm) = NULL;
1989 (*tfm_mutex) = NULL;
1991 mutex_lock(&key_tfm_list_mutex);
1992 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1993 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1994 if (rc) {
1995 printk(KERN_ERR "Error adding new key_tfm to list; "
1996 "rc = [%d]\n", rc);
1997 goto out;
2000 (*tfm) = key_tfm->key_tfm;
2001 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
2002 out:
2003 mutex_unlock(&key_tfm_list_mutex);
2004 return rc;
2007 /* 64 characters forming a 6-bit target field */
2008 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
2009 "EFGHIJKLMNOPQRST"
2010 "UVWXYZabcdefghij"
2011 "klmnopqrstuvwxyz");
2013 /* We could either offset on every reverse map or just pad some 0x00's
2014 * at the front here */
2015 static unsigned char filename_rev_map[] = {
2016 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
2017 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
2018 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
2019 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
2020 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
2021 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
2022 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
2023 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
2024 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
2025 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
2026 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
2027 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
2028 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
2029 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
2030 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
2031 0x3D, 0x3E, 0x3F
2035 * ecryptfs_encode_for_filename
2036 * @dst: Destination location for encoded filename
2037 * @dst_size: Size of the encoded filename in bytes
2038 * @src: Source location for the filename to encode
2039 * @src_size: Size of the source in bytes
2041 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
2042 unsigned char *src, size_t src_size)
2044 size_t num_blocks;
2045 size_t block_num = 0;
2046 size_t dst_offset = 0;
2047 unsigned char last_block[3];
2049 if (src_size == 0) {
2050 (*dst_size) = 0;
2051 goto out;
2053 num_blocks = (src_size / 3);
2054 if ((src_size % 3) == 0) {
2055 memcpy(last_block, (&src[src_size - 3]), 3);
2056 } else {
2057 num_blocks++;
2058 last_block[2] = 0x00;
2059 switch (src_size % 3) {
2060 case 1:
2061 last_block[0] = src[src_size - 1];
2062 last_block[1] = 0x00;
2063 break;
2064 case 2:
2065 last_block[0] = src[src_size - 2];
2066 last_block[1] = src[src_size - 1];
2069 (*dst_size) = (num_blocks * 4);
2070 if (!dst)
2071 goto out;
2072 while (block_num < num_blocks) {
2073 unsigned char *src_block;
2074 unsigned char dst_block[4];
2076 if (block_num == (num_blocks - 1))
2077 src_block = last_block;
2078 else
2079 src_block = &src[block_num * 3];
2080 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2081 dst_block[1] = (((src_block[0] << 4) & 0x30)
2082 | ((src_block[1] >> 4) & 0x0F));
2083 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2084 | ((src_block[2] >> 6) & 0x03));
2085 dst_block[3] = (src_block[2] & 0x3F);
2086 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2087 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2088 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2089 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2090 block_num++;
2092 out:
2093 return;
2096 int ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2097 const unsigned char *src, size_t src_size)
2099 u8 current_bit_offset = 0;
2100 size_t src_byte_offset = 0;
2101 size_t dst_byte_offset = 0;
2102 int rc = 0;
2104 if (dst == NULL) {
2105 /* Not exact; conservatively long */
2106 (*dst_size) = (((src_size + 1) * 3) / 4);
2107 goto out;
2109 while (src_byte_offset < src_size) {
2110 unsigned char src_byte =
2111 filename_rev_map[(int)src[src_byte_offset]];
2113 switch (current_bit_offset) {
2114 case 0:
2115 dst[dst_byte_offset] = (src_byte << 2);
2116 current_bit_offset = 6;
2117 break;
2118 case 6:
2119 dst[dst_byte_offset++] |= (src_byte >> 4);
2120 dst[dst_byte_offset] = ((src_byte & 0xF)
2121 << 4);
2122 current_bit_offset = 4;
2123 break;
2124 case 4:
2125 dst[dst_byte_offset++] |= (src_byte >> 2);
2126 dst[dst_byte_offset] = (src_byte << 6);
2127 current_bit_offset = 2;
2128 break;
2129 case 2:
2130 dst[dst_byte_offset++] |= (src_byte);
2131 dst[dst_byte_offset] = 0;
2132 current_bit_offset = 0;
2133 break;
2135 src_byte_offset++;
2137 (*dst_size) = dst_byte_offset;
2138 out:
2139 return rc;
2143 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2144 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2145 * @name: The plaintext name
2146 * @length: The length of the plaintext
2147 * @encoded_name: The encypted name
2149 * Encrypts and encodes a filename into something that constitutes a
2150 * valid filename for a filesystem, with printable characters.
2152 * We assume that we have a properly initialized crypto context,
2153 * pointed to by crypt_stat->tfm.
2155 * Returns zero on success; non-zero on otherwise
2157 int ecryptfs_encrypt_and_encode_filename(
2158 char **encoded_name,
2159 size_t *encoded_name_size,
2160 struct ecryptfs_crypt_stat *crypt_stat,
2161 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2162 const char *name, size_t name_size)
2164 size_t encoded_name_no_prefix_size;
2165 int rc = 0;
2167 (*encoded_name) = NULL;
2168 (*encoded_name_size) = 0;
2169 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2170 || (mount_crypt_stat && (mount_crypt_stat->flags
2171 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2172 struct ecryptfs_filename *filename;
2174 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2175 if (!filename) {
2176 printk(KERN_ERR "%s: Out of memory whilst attempting "
2177 "to kzalloc [%d] bytes\n", __func__,
2178 sizeof(*filename));
2179 rc = -ENOMEM;
2180 goto out;
2182 filename->filename = (char *)name;
2183 filename->filename_size = name_size;
2184 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2185 mount_crypt_stat);
2186 if (rc) {
2187 printk(KERN_ERR "%s: Error attempting to encrypt "
2188 "filename; rc = [%d]\n", __func__, rc);
2189 kfree(filename);
2190 goto out;
2192 ecryptfs_encode_for_filename(
2193 NULL, &encoded_name_no_prefix_size,
2194 filename->encrypted_filename,
2195 filename->encrypted_filename_size);
2196 if ((crypt_stat && (crypt_stat->flags
2197 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2198 || (mount_crypt_stat
2199 && (mount_crypt_stat->flags
2200 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2201 (*encoded_name_size) =
2202 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2203 + encoded_name_no_prefix_size);
2204 else
2205 (*encoded_name_size) =
2206 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2207 + encoded_name_no_prefix_size);
2208 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2209 if (!(*encoded_name)) {
2210 printk(KERN_ERR "%s: Out of memory whilst attempting "
2211 "to kzalloc [%d] bytes\n", __func__,
2212 (*encoded_name_size));
2213 rc = -ENOMEM;
2214 kfree(filename->encrypted_filename);
2215 kfree(filename);
2216 goto out;
2218 if ((crypt_stat && (crypt_stat->flags
2219 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2220 || (mount_crypt_stat
2221 && (mount_crypt_stat->flags
2222 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2223 memcpy((*encoded_name),
2224 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2225 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2226 ecryptfs_encode_for_filename(
2227 ((*encoded_name)
2228 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2229 &encoded_name_no_prefix_size,
2230 filename->encrypted_filename,
2231 filename->encrypted_filename_size);
2232 (*encoded_name_size) =
2233 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2234 + encoded_name_no_prefix_size);
2235 (*encoded_name)[(*encoded_name_size)] = '\0';
2236 (*encoded_name_size)++;
2237 } else {
2238 rc = -ENOTSUPP;
2240 if (rc) {
2241 printk(KERN_ERR "%s: Error attempting to encode "
2242 "encrypted filename; rc = [%d]\n", __func__,
2243 rc);
2244 kfree((*encoded_name));
2245 (*encoded_name) = NULL;
2246 (*encoded_name_size) = 0;
2248 kfree(filename->encrypted_filename);
2249 kfree(filename);
2250 } else {
2251 rc = ecryptfs_copy_filename(encoded_name,
2252 encoded_name_size,
2253 name, name_size);
2255 out:
2256 return rc;
2260 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2261 * @plaintext_name: The plaintext name
2262 * @plaintext_name_size: The plaintext name size
2263 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2264 * @name: The filename in cipher text
2265 * @name_size: The cipher text name size
2267 * Decrypts and decodes the filename.
2269 * Returns zero on error; non-zero otherwise
2271 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2272 size_t *plaintext_name_size,
2273 struct dentry *ecryptfs_dir_dentry,
2274 const char *name, size_t name_size)
2276 char *decoded_name;
2277 size_t decoded_name_size;
2278 size_t packet_size;
2279 int rc = 0;
2281 if ((name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2282 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2283 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2284 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2285 &ecryptfs_superblock_to_private(
2286 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2287 const char *orig_name = name;
2288 size_t orig_name_size = name_size;
2290 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2291 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2292 rc = ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2293 name, name_size);
2294 if (rc) {
2295 printk(KERN_ERR "%s: Error attempting to decode "
2296 "filename; rc = [%d]\n", __func__, rc);
2297 rc = ecryptfs_copy_filename(plaintext_name,
2298 plaintext_name_size,
2299 orig_name, orig_name_size);
2300 goto out;
2302 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2303 if (!decoded_name) {
2304 printk(KERN_ERR "%s: Out of memory whilst attempting "
2305 "to kmalloc [%Zd] bytes\n", __func__,
2306 decoded_name_size);
2307 rc = -ENOMEM;
2308 goto out;
2310 rc = ecryptfs_decode_from_filename(decoded_name,
2311 &decoded_name_size,
2312 name, name_size);
2313 if (rc) {
2314 printk(KERN_ERR "%s: Error attempting to decode "
2315 "filename; rc = [%d]\n", __func__, rc);
2316 rc = ecryptfs_copy_filename(plaintext_name,
2317 plaintext_name_size,
2318 orig_name, orig_name_size);
2319 goto out_free;
2321 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2322 plaintext_name_size,
2323 &packet_size,
2324 mount_crypt_stat,
2325 decoded_name,
2326 decoded_name_size);
2327 if (rc) {
2328 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2329 "from filename; copying through filename "
2330 "as-is\n", __func__);
2331 rc = ecryptfs_copy_filename(plaintext_name,
2332 plaintext_name_size,
2333 orig_name, orig_name_size);
2334 goto out_free;
2336 } else {
2337 rc = ecryptfs_copy_filename(plaintext_name,
2338 plaintext_name_size,
2339 name, name_size);
2340 goto out;
2342 out_free:
2343 kfree(decoded_name);
2344 out:
2345 return rc;