2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49 #include <linux/smp_lock.h>
51 #include <asm/atomic.h>
53 static DEFINE_MUTEX(cgroup_mutex
);
55 /* Generate an array of cgroup subsystem pointers */
56 #define SUBSYS(_x) &_x ## _subsys,
58 static struct cgroup_subsys
*subsys
[] = {
59 #include <linux/cgroup_subsys.h>
63 * A cgroupfs_root represents the root of a cgroup hierarchy,
64 * and may be associated with a superblock to form an active
67 struct cgroupfs_root
{
68 struct super_block
*sb
;
71 * The bitmask of subsystems intended to be attached to this
74 unsigned long subsys_bits
;
76 /* The bitmask of subsystems currently attached to this hierarchy */
77 unsigned long actual_subsys_bits
;
79 /* A list running through the attached subsystems */
80 struct list_head subsys_list
;
82 /* The root cgroup for this hierarchy */
83 struct cgroup top_cgroup
;
85 /* Tracks how many cgroups are currently defined in hierarchy.*/
86 int number_of_cgroups
;
88 /* A list running through the active hierarchies */
89 struct list_head root_list
;
91 /* Hierarchy-specific flags */
94 /* The path to use for release notifications. */
95 char release_agent_path
[PATH_MAX
];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode
;
106 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
107 * cgroup_subsys->use_id != 0.
109 #define CSS_ID_MAX (65535)
112 * The css to which this ID points. This pointer is set to valid value
113 * after cgroup is populated. If cgroup is removed, this will be NULL.
114 * This pointer is expected to be RCU-safe because destroy()
115 * is called after synchronize_rcu(). But for safe use, css_is_removed()
116 * css_tryget() should be used for avoiding race.
118 struct cgroup_subsys_state
*css
;
124 * Depth in hierarchy which this ID belongs to.
126 unsigned short depth
;
128 * ID is freed by RCU. (and lookup routine is RCU safe.)
130 struct rcu_head rcu_head
;
132 * Hierarchy of CSS ID belongs to.
134 unsigned short stack
[0]; /* Array of Length (depth+1) */
138 /* The list of hierarchy roots */
140 static LIST_HEAD(roots
);
141 static int root_count
;
143 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
144 #define dummytop (&rootnode.top_cgroup)
146 /* This flag indicates whether tasks in the fork and exit paths should
147 * check for fork/exit handlers to call. This avoids us having to do
148 * extra work in the fork/exit path if none of the subsystems need to
151 static int need_forkexit_callback __read_mostly
;
153 /* convenient tests for these bits */
154 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
156 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
159 /* bits in struct cgroupfs_root flags field */
161 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
164 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
167 (1 << CGRP_RELEASABLE
) |
168 (1 << CGRP_NOTIFY_ON_RELEASE
);
169 return (cgrp
->flags
& bits
) == bits
;
172 static int notify_on_release(const struct cgroup
*cgrp
)
174 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
178 * for_each_subsys() allows you to iterate on each subsystem attached to
179 * an active hierarchy
181 #define for_each_subsys(_root, _ss) \
182 list_for_each_entry(_ss, &_root->subsys_list, sibling)
184 /* for_each_active_root() allows you to iterate across the active hierarchies */
185 #define for_each_active_root(_root) \
186 list_for_each_entry(_root, &roots, root_list)
188 /* the list of cgroups eligible for automatic release. Protected by
189 * release_list_lock */
190 static LIST_HEAD(release_list
);
191 static DEFINE_SPINLOCK(release_list_lock
);
192 static void cgroup_release_agent(struct work_struct
*work
);
193 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
194 static void check_for_release(struct cgroup
*cgrp
);
196 /* Link structure for associating css_set objects with cgroups */
197 struct cg_cgroup_link
{
199 * List running through cg_cgroup_links associated with a
200 * cgroup, anchored on cgroup->css_sets
202 struct list_head cgrp_link_list
;
204 * List running through cg_cgroup_links pointing at a
205 * single css_set object, anchored on css_set->cg_links
207 struct list_head cg_link_list
;
211 /* The default css_set - used by init and its children prior to any
212 * hierarchies being mounted. It contains a pointer to the root state
213 * for each subsystem. Also used to anchor the list of css_sets. Not
214 * reference-counted, to improve performance when child cgroups
215 * haven't been created.
218 static struct css_set init_css_set
;
219 static struct cg_cgroup_link init_css_set_link
;
221 static int cgroup_subsys_init_idr(struct cgroup_subsys
*ss
);
223 /* css_set_lock protects the list of css_set objects, and the
224 * chain of tasks off each css_set. Nests outside task->alloc_lock
225 * due to cgroup_iter_start() */
226 static DEFINE_RWLOCK(css_set_lock
);
227 static int css_set_count
;
229 /* hash table for cgroup groups. This improves the performance to
230 * find an existing css_set */
231 #define CSS_SET_HASH_BITS 7
232 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
233 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
235 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
239 unsigned long tmp
= 0UL;
241 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
242 tmp
+= (unsigned long)css
[i
];
243 tmp
= (tmp
>> 16) ^ tmp
;
245 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
247 return &css_set_table
[index
];
250 /* We don't maintain the lists running through each css_set to its
251 * task until after the first call to cgroup_iter_start(). This
252 * reduces the fork()/exit() overhead for people who have cgroups
253 * compiled into their kernel but not actually in use */
254 static int use_task_css_set_links __read_mostly
;
256 /* When we create or destroy a css_set, the operation simply
257 * takes/releases a reference count on all the cgroups referenced
258 * by subsystems in this css_set. This can end up multiple-counting
259 * some cgroups, but that's OK - the ref-count is just a
260 * busy/not-busy indicator; ensuring that we only count each cgroup
261 * once would require taking a global lock to ensure that no
262 * subsystems moved between hierarchies while we were doing so.
264 * Possible TODO: decide at boot time based on the number of
265 * registered subsystems and the number of CPUs or NUMA nodes whether
266 * it's better for performance to ref-count every subsystem, or to
267 * take a global lock and only add one ref count to each hierarchy.
271 * unlink a css_set from the list and free it
273 static void unlink_css_set(struct css_set
*cg
)
275 struct cg_cgroup_link
*link
;
276 struct cg_cgroup_link
*saved_link
;
278 hlist_del(&cg
->hlist
);
281 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
283 list_del(&link
->cg_link_list
);
284 list_del(&link
->cgrp_link_list
);
289 static void __put_css_set(struct css_set
*cg
, int taskexit
)
293 * Ensure that the refcount doesn't hit zero while any readers
294 * can see it. Similar to atomic_dec_and_lock(), but for an
297 if (atomic_add_unless(&cg
->refcount
, -1, 1))
299 write_lock(&css_set_lock
);
300 if (!atomic_dec_and_test(&cg
->refcount
)) {
301 write_unlock(&css_set_lock
);
305 write_unlock(&css_set_lock
);
308 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
309 struct cgroup
*cgrp
= rcu_dereference(cg
->subsys
[i
]->cgroup
);
310 if (atomic_dec_and_test(&cgrp
->count
) &&
311 notify_on_release(cgrp
)) {
313 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
314 check_for_release(cgrp
);
322 * refcounted get/put for css_set objects
324 static inline void get_css_set(struct css_set
*cg
)
326 atomic_inc(&cg
->refcount
);
329 static inline void put_css_set(struct css_set
*cg
)
331 __put_css_set(cg
, 0);
334 static inline void put_css_set_taskexit(struct css_set
*cg
)
336 __put_css_set(cg
, 1);
340 * find_existing_css_set() is a helper for
341 * find_css_set(), and checks to see whether an existing
342 * css_set is suitable.
344 * oldcg: the cgroup group that we're using before the cgroup
347 * cgrp: the cgroup that we're moving into
349 * template: location in which to build the desired set of subsystem
350 * state objects for the new cgroup group
352 static struct css_set
*find_existing_css_set(
353 struct css_set
*oldcg
,
355 struct cgroup_subsys_state
*template[])
358 struct cgroupfs_root
*root
= cgrp
->root
;
359 struct hlist_head
*hhead
;
360 struct hlist_node
*node
;
363 /* Built the set of subsystem state objects that we want to
364 * see in the new css_set */
365 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
366 if (root
->subsys_bits
& (1UL << i
)) {
367 /* Subsystem is in this hierarchy. So we want
368 * the subsystem state from the new
370 template[i
] = cgrp
->subsys
[i
];
372 /* Subsystem is not in this hierarchy, so we
373 * don't want to change the subsystem state */
374 template[i
] = oldcg
->subsys
[i
];
378 hhead
= css_set_hash(template);
379 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
380 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
381 /* All subsystems matched */
386 /* No existing cgroup group matched */
390 static void free_cg_links(struct list_head
*tmp
)
392 struct cg_cgroup_link
*link
;
393 struct cg_cgroup_link
*saved_link
;
395 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
396 list_del(&link
->cgrp_link_list
);
402 * allocate_cg_links() allocates "count" cg_cgroup_link structures
403 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
404 * success or a negative error
406 static int allocate_cg_links(int count
, struct list_head
*tmp
)
408 struct cg_cgroup_link
*link
;
411 for (i
= 0; i
< count
; i
++) {
412 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
417 list_add(&link
->cgrp_link_list
, tmp
);
423 * link_css_set - a helper function to link a css_set to a cgroup
424 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
425 * @cg: the css_set to be linked
426 * @cgrp: the destination cgroup
428 static void link_css_set(struct list_head
*tmp_cg_links
,
429 struct css_set
*cg
, struct cgroup
*cgrp
)
431 struct cg_cgroup_link
*link
;
433 BUG_ON(list_empty(tmp_cg_links
));
434 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
437 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
438 list_add(&link
->cg_link_list
, &cg
->cg_links
);
442 * find_css_set() takes an existing cgroup group and a
443 * cgroup object, and returns a css_set object that's
444 * equivalent to the old group, but with the given cgroup
445 * substituted into the appropriate hierarchy. Must be called with
448 static struct css_set
*find_css_set(
449 struct css_set
*oldcg
, struct cgroup
*cgrp
)
452 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
455 struct list_head tmp_cg_links
;
457 struct hlist_head
*hhead
;
459 /* First see if we already have a cgroup group that matches
461 read_lock(&css_set_lock
);
462 res
= find_existing_css_set(oldcg
, cgrp
, template);
465 read_unlock(&css_set_lock
);
470 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
474 /* Allocate all the cg_cgroup_link objects that we'll need */
475 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
480 atomic_set(&res
->refcount
, 1);
481 INIT_LIST_HEAD(&res
->cg_links
);
482 INIT_LIST_HEAD(&res
->tasks
);
483 INIT_HLIST_NODE(&res
->hlist
);
485 /* Copy the set of subsystem state objects generated in
486 * find_existing_css_set() */
487 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
489 write_lock(&css_set_lock
);
490 /* Add reference counts and links from the new css_set. */
491 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
492 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
493 struct cgroup_subsys
*ss
= subsys
[i
];
494 atomic_inc(&cgrp
->count
);
496 * We want to add a link once per cgroup, so we
497 * only do it for the first subsystem in each
500 if (ss
->root
->subsys_list
.next
== &ss
->sibling
)
501 link_css_set(&tmp_cg_links
, res
, cgrp
);
503 if (list_empty(&rootnode
.subsys_list
))
504 link_css_set(&tmp_cg_links
, res
, dummytop
);
506 BUG_ON(!list_empty(&tmp_cg_links
));
510 /* Add this cgroup group to the hash table */
511 hhead
= css_set_hash(res
->subsys
);
512 hlist_add_head(&res
->hlist
, hhead
);
514 write_unlock(&css_set_lock
);
520 * There is one global cgroup mutex. We also require taking
521 * task_lock() when dereferencing a task's cgroup subsys pointers.
522 * See "The task_lock() exception", at the end of this comment.
524 * A task must hold cgroup_mutex to modify cgroups.
526 * Any task can increment and decrement the count field without lock.
527 * So in general, code holding cgroup_mutex can't rely on the count
528 * field not changing. However, if the count goes to zero, then only
529 * cgroup_attach_task() can increment it again. Because a count of zero
530 * means that no tasks are currently attached, therefore there is no
531 * way a task attached to that cgroup can fork (the other way to
532 * increment the count). So code holding cgroup_mutex can safely
533 * assume that if the count is zero, it will stay zero. Similarly, if
534 * a task holds cgroup_mutex on a cgroup with zero count, it
535 * knows that the cgroup won't be removed, as cgroup_rmdir()
538 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
539 * (usually) take cgroup_mutex. These are the two most performance
540 * critical pieces of code here. The exception occurs on cgroup_exit(),
541 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
542 * is taken, and if the cgroup count is zero, a usermode call made
543 * to the release agent with the name of the cgroup (path relative to
544 * the root of cgroup file system) as the argument.
546 * A cgroup can only be deleted if both its 'count' of using tasks
547 * is zero, and its list of 'children' cgroups is empty. Since all
548 * tasks in the system use _some_ cgroup, and since there is always at
549 * least one task in the system (init, pid == 1), therefore, top_cgroup
550 * always has either children cgroups and/or using tasks. So we don't
551 * need a special hack to ensure that top_cgroup cannot be deleted.
553 * The task_lock() exception
555 * The need for this exception arises from the action of
556 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
557 * another. It does so using cgroup_mutex, however there are
558 * several performance critical places that need to reference
559 * task->cgroup without the expense of grabbing a system global
560 * mutex. Therefore except as noted below, when dereferencing or, as
561 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
562 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
563 * the task_struct routinely used for such matters.
565 * P.S. One more locking exception. RCU is used to guard the
566 * update of a tasks cgroup pointer by cgroup_attach_task()
570 * cgroup_lock - lock out any changes to cgroup structures
573 void cgroup_lock(void)
575 mutex_lock(&cgroup_mutex
);
579 * cgroup_unlock - release lock on cgroup changes
581 * Undo the lock taken in a previous cgroup_lock() call.
583 void cgroup_unlock(void)
585 mutex_unlock(&cgroup_mutex
);
589 * A couple of forward declarations required, due to cyclic reference loop:
590 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
591 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
595 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
596 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
597 static int cgroup_populate_dir(struct cgroup
*cgrp
);
598 static struct inode_operations cgroup_dir_inode_operations
;
599 static struct file_operations proc_cgroupstats_operations
;
601 static struct backing_dev_info cgroup_backing_dev_info
= {
602 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
605 static int alloc_css_id(struct cgroup_subsys
*ss
,
606 struct cgroup
*parent
, struct cgroup
*child
);
608 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
610 struct inode
*inode
= new_inode(sb
);
613 inode
->i_mode
= mode
;
614 inode
->i_uid
= current_fsuid();
615 inode
->i_gid
= current_fsgid();
616 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
617 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
623 * Call subsys's pre_destroy handler.
624 * This is called before css refcnt check.
626 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
628 struct cgroup_subsys
*ss
;
631 for_each_subsys(cgrp
->root
, ss
)
632 if (ss
->pre_destroy
) {
633 ret
= ss
->pre_destroy(ss
, cgrp
);
640 static void free_cgroup_rcu(struct rcu_head
*obj
)
642 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
647 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
649 /* is dentry a directory ? if so, kfree() associated cgroup */
650 if (S_ISDIR(inode
->i_mode
)) {
651 struct cgroup
*cgrp
= dentry
->d_fsdata
;
652 struct cgroup_subsys
*ss
;
653 BUG_ON(!(cgroup_is_removed(cgrp
)));
654 /* It's possible for external users to be holding css
655 * reference counts on a cgroup; css_put() needs to
656 * be able to access the cgroup after decrementing
657 * the reference count in order to know if it needs to
658 * queue the cgroup to be handled by the release
662 mutex_lock(&cgroup_mutex
);
664 * Release the subsystem state objects.
666 for_each_subsys(cgrp
->root
, ss
)
667 ss
->destroy(ss
, cgrp
);
669 cgrp
->root
->number_of_cgroups
--;
670 mutex_unlock(&cgroup_mutex
);
673 * Drop the active superblock reference that we took when we
676 deactivate_super(cgrp
->root
->sb
);
678 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
683 static void remove_dir(struct dentry
*d
)
685 struct dentry
*parent
= dget(d
->d_parent
);
688 simple_rmdir(parent
->d_inode
, d
);
692 static void cgroup_clear_directory(struct dentry
*dentry
)
694 struct list_head
*node
;
696 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
697 spin_lock(&dcache_lock
);
698 node
= dentry
->d_subdirs
.next
;
699 while (node
!= &dentry
->d_subdirs
) {
700 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
703 /* This should never be called on a cgroup
704 * directory with child cgroups */
705 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
707 spin_unlock(&dcache_lock
);
709 simple_unlink(dentry
->d_inode
, d
);
711 spin_lock(&dcache_lock
);
713 node
= dentry
->d_subdirs
.next
;
715 spin_unlock(&dcache_lock
);
719 * NOTE : the dentry must have been dget()'ed
721 static void cgroup_d_remove_dir(struct dentry
*dentry
)
723 cgroup_clear_directory(dentry
);
725 spin_lock(&dcache_lock
);
726 list_del_init(&dentry
->d_u
.d_child
);
727 spin_unlock(&dcache_lock
);
732 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
733 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
734 * reference to css->refcnt. In general, this refcnt is expected to goes down
737 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
739 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
741 static void cgroup_wakeup_rmdir_waiters(const struct cgroup
*cgrp
)
743 if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
744 wake_up_all(&cgroup_rmdir_waitq
);
747 static int rebind_subsystems(struct cgroupfs_root
*root
,
748 unsigned long final_bits
)
750 unsigned long added_bits
, removed_bits
;
751 struct cgroup
*cgrp
= &root
->top_cgroup
;
754 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
755 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
756 /* Check that any added subsystems are currently free */
757 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
758 unsigned long bit
= 1UL << i
;
759 struct cgroup_subsys
*ss
= subsys
[i
];
760 if (!(bit
& added_bits
))
762 if (ss
->root
!= &rootnode
) {
763 /* Subsystem isn't free */
768 /* Currently we don't handle adding/removing subsystems when
769 * any child cgroups exist. This is theoretically supportable
770 * but involves complex error handling, so it's being left until
772 if (root
->number_of_cgroups
> 1)
775 /* Process each subsystem */
776 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
777 struct cgroup_subsys
*ss
= subsys
[i
];
778 unsigned long bit
= 1UL << i
;
779 if (bit
& added_bits
) {
780 /* We're binding this subsystem to this hierarchy */
781 BUG_ON(cgrp
->subsys
[i
]);
782 BUG_ON(!dummytop
->subsys
[i
]);
783 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
784 mutex_lock(&ss
->hierarchy_mutex
);
785 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
786 cgrp
->subsys
[i
]->cgroup
= cgrp
;
787 list_move(&ss
->sibling
, &root
->subsys_list
);
791 mutex_unlock(&ss
->hierarchy_mutex
);
792 } else if (bit
& removed_bits
) {
793 /* We're removing this subsystem */
794 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
795 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
796 mutex_lock(&ss
->hierarchy_mutex
);
798 ss
->bind(ss
, dummytop
);
799 dummytop
->subsys
[i
]->cgroup
= dummytop
;
800 cgrp
->subsys
[i
] = NULL
;
801 subsys
[i
]->root
= &rootnode
;
802 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
803 mutex_unlock(&ss
->hierarchy_mutex
);
804 } else if (bit
& final_bits
) {
805 /* Subsystem state should already exist */
806 BUG_ON(!cgrp
->subsys
[i
]);
808 /* Subsystem state shouldn't exist */
809 BUG_ON(cgrp
->subsys
[i
]);
812 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
818 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
820 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
821 struct cgroup_subsys
*ss
;
823 mutex_lock(&cgroup_mutex
);
824 for_each_subsys(root
, ss
)
825 seq_printf(seq
, ",%s", ss
->name
);
826 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
827 seq_puts(seq
, ",noprefix");
828 if (strlen(root
->release_agent_path
))
829 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
830 mutex_unlock(&cgroup_mutex
);
834 struct cgroup_sb_opts
{
835 unsigned long subsys_bits
;
840 /* Convert a hierarchy specifier into a bitmask of subsystems and
842 static int parse_cgroupfs_options(char *data
,
843 struct cgroup_sb_opts
*opts
)
845 char *token
, *o
= data
?: "all";
846 unsigned long mask
= (unsigned long)-1;
848 #ifdef CONFIG_CPUSETS
849 mask
= ~(1UL << cpuset_subsys_id
);
852 opts
->subsys_bits
= 0;
854 opts
->release_agent
= NULL
;
856 while ((token
= strsep(&o
, ",")) != NULL
) {
859 if (!strcmp(token
, "all")) {
860 /* Add all non-disabled subsystems */
862 opts
->subsys_bits
= 0;
863 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
864 struct cgroup_subsys
*ss
= subsys
[i
];
866 opts
->subsys_bits
|= 1ul << i
;
868 } else if (!strcmp(token
, "noprefix")) {
869 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
870 } else if (!strncmp(token
, "release_agent=", 14)) {
871 /* Specifying two release agents is forbidden */
872 if (opts
->release_agent
)
874 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
875 if (!opts
->release_agent
)
877 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
878 opts
->release_agent
[PATH_MAX
- 1] = 0;
880 struct cgroup_subsys
*ss
;
882 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
884 if (!strcmp(token
, ss
->name
)) {
886 set_bit(i
, &opts
->subsys_bits
);
890 if (i
== CGROUP_SUBSYS_COUNT
)
896 * Option noprefix was introduced just for backward compatibility
897 * with the old cpuset, so we allow noprefix only if mounting just
898 * the cpuset subsystem.
900 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
901 (opts
->subsys_bits
& mask
))
904 /* We can't have an empty hierarchy */
905 if (!opts
->subsys_bits
)
911 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
914 struct cgroupfs_root
*root
= sb
->s_fs_info
;
915 struct cgroup
*cgrp
= &root
->top_cgroup
;
916 struct cgroup_sb_opts opts
;
919 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
920 mutex_lock(&cgroup_mutex
);
922 /* See what subsystems are wanted */
923 ret
= parse_cgroupfs_options(data
, &opts
);
927 /* Don't allow flags to change at remount */
928 if (opts
.flags
!= root
->flags
) {
933 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
937 /* (re)populate subsystem files */
938 cgroup_populate_dir(cgrp
);
940 if (opts
.release_agent
)
941 strcpy(root
->release_agent_path
, opts
.release_agent
);
943 kfree(opts
.release_agent
);
944 mutex_unlock(&cgroup_mutex
);
945 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
950 static struct super_operations cgroup_ops
= {
951 .statfs
= simple_statfs
,
952 .drop_inode
= generic_delete_inode
,
953 .show_options
= cgroup_show_options
,
954 .remount_fs
= cgroup_remount
,
957 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
959 INIT_LIST_HEAD(&cgrp
->sibling
);
960 INIT_LIST_HEAD(&cgrp
->children
);
961 INIT_LIST_HEAD(&cgrp
->css_sets
);
962 INIT_LIST_HEAD(&cgrp
->release_list
);
963 init_rwsem(&cgrp
->pids_mutex
);
965 static void init_cgroup_root(struct cgroupfs_root
*root
)
967 struct cgroup
*cgrp
= &root
->top_cgroup
;
968 INIT_LIST_HEAD(&root
->subsys_list
);
969 INIT_LIST_HEAD(&root
->root_list
);
970 root
->number_of_cgroups
= 1;
972 cgrp
->top_cgroup
= cgrp
;
973 init_cgroup_housekeeping(cgrp
);
976 static int cgroup_test_super(struct super_block
*sb
, void *data
)
978 struct cgroupfs_root
*new = data
;
979 struct cgroupfs_root
*root
= sb
->s_fs_info
;
981 /* First check subsystems */
982 if (new->subsys_bits
!= root
->subsys_bits
)
985 /* Next check flags */
986 if (new->flags
!= root
->flags
)
992 static int cgroup_set_super(struct super_block
*sb
, void *data
)
995 struct cgroupfs_root
*root
= data
;
997 ret
= set_anon_super(sb
, NULL
);
1001 sb
->s_fs_info
= root
;
1004 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1005 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1006 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1007 sb
->s_op
= &cgroup_ops
;
1012 static int cgroup_get_rootdir(struct super_block
*sb
)
1014 struct inode
*inode
=
1015 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1016 struct dentry
*dentry
;
1021 inode
->i_fop
= &simple_dir_operations
;
1022 inode
->i_op
= &cgroup_dir_inode_operations
;
1023 /* directories start off with i_nlink == 2 (for "." entry) */
1025 dentry
= d_alloc_root(inode
);
1030 sb
->s_root
= dentry
;
1034 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1035 int flags
, const char *unused_dev_name
,
1036 void *data
, struct vfsmount
*mnt
)
1038 struct cgroup_sb_opts opts
;
1040 struct super_block
*sb
;
1041 struct cgroupfs_root
*root
;
1042 struct list_head tmp_cg_links
;
1044 /* First find the desired set of subsystems */
1045 ret
= parse_cgroupfs_options(data
, &opts
);
1047 kfree(opts
.release_agent
);
1051 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1053 kfree(opts
.release_agent
);
1057 init_cgroup_root(root
);
1058 root
->subsys_bits
= opts
.subsys_bits
;
1059 root
->flags
= opts
.flags
;
1060 if (opts
.release_agent
) {
1061 strcpy(root
->release_agent_path
, opts
.release_agent
);
1062 kfree(opts
.release_agent
);
1065 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
1072 if (sb
->s_fs_info
!= root
) {
1073 /* Reusing an existing superblock */
1074 BUG_ON(sb
->s_root
== NULL
);
1078 /* New superblock */
1079 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1080 struct inode
*inode
;
1083 BUG_ON(sb
->s_root
!= NULL
);
1085 ret
= cgroup_get_rootdir(sb
);
1087 goto drop_new_super
;
1088 inode
= sb
->s_root
->d_inode
;
1090 mutex_lock(&inode
->i_mutex
);
1091 mutex_lock(&cgroup_mutex
);
1094 * We're accessing css_set_count without locking
1095 * css_set_lock here, but that's OK - it can only be
1096 * increased by someone holding cgroup_lock, and
1097 * that's us. The worst that can happen is that we
1098 * have some link structures left over
1100 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1102 mutex_unlock(&cgroup_mutex
);
1103 mutex_unlock(&inode
->i_mutex
);
1104 goto drop_new_super
;
1107 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1108 if (ret
== -EBUSY
) {
1109 mutex_unlock(&cgroup_mutex
);
1110 mutex_unlock(&inode
->i_mutex
);
1114 /* EBUSY should be the only error here */
1117 list_add(&root
->root_list
, &roots
);
1120 sb
->s_root
->d_fsdata
= root_cgrp
;
1121 root
->top_cgroup
.dentry
= sb
->s_root
;
1123 /* Link the top cgroup in this hierarchy into all
1124 * the css_set objects */
1125 write_lock(&css_set_lock
);
1126 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1127 struct hlist_head
*hhead
= &css_set_table
[i
];
1128 struct hlist_node
*node
;
1131 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1132 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1134 write_unlock(&css_set_lock
);
1136 free_cg_links(&tmp_cg_links
);
1138 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1139 BUG_ON(!list_empty(&root_cgrp
->children
));
1140 BUG_ON(root
->number_of_cgroups
!= 1);
1142 cgroup_populate_dir(root_cgrp
);
1143 mutex_unlock(&inode
->i_mutex
);
1144 mutex_unlock(&cgroup_mutex
);
1147 simple_set_mnt(mnt
, sb
);
1151 free_cg_links(&tmp_cg_links
);
1153 deactivate_locked_super(sb
);
1157 static void cgroup_kill_sb(struct super_block
*sb
) {
1158 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1159 struct cgroup
*cgrp
= &root
->top_cgroup
;
1161 struct cg_cgroup_link
*link
;
1162 struct cg_cgroup_link
*saved_link
;
1166 BUG_ON(root
->number_of_cgroups
!= 1);
1167 BUG_ON(!list_empty(&cgrp
->children
));
1168 BUG_ON(!list_empty(&cgrp
->sibling
));
1170 mutex_lock(&cgroup_mutex
);
1172 /* Rebind all subsystems back to the default hierarchy */
1173 ret
= rebind_subsystems(root
, 0);
1174 /* Shouldn't be able to fail ... */
1178 * Release all the links from css_sets to this hierarchy's
1181 write_lock(&css_set_lock
);
1183 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1185 list_del(&link
->cg_link_list
);
1186 list_del(&link
->cgrp_link_list
);
1189 write_unlock(&css_set_lock
);
1191 if (!list_empty(&root
->root_list
)) {
1192 list_del(&root
->root_list
);
1196 mutex_unlock(&cgroup_mutex
);
1198 kill_litter_super(sb
);
1202 static struct file_system_type cgroup_fs_type
= {
1204 .get_sb
= cgroup_get_sb
,
1205 .kill_sb
= cgroup_kill_sb
,
1208 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1210 return dentry
->d_fsdata
;
1213 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1215 return dentry
->d_fsdata
;
1219 * cgroup_path - generate the path of a cgroup
1220 * @cgrp: the cgroup in question
1221 * @buf: the buffer to write the path into
1222 * @buflen: the length of the buffer
1224 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1225 * reference. Writes path of cgroup into buf. Returns 0 on success,
1228 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1231 struct dentry
*dentry
= rcu_dereference(cgrp
->dentry
);
1233 if (!dentry
|| cgrp
== dummytop
) {
1235 * Inactive subsystems have no dentry for their root
1242 start
= buf
+ buflen
;
1246 int len
= dentry
->d_name
.len
;
1247 if ((start
-= len
) < buf
)
1248 return -ENAMETOOLONG
;
1249 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1250 cgrp
= cgrp
->parent
;
1253 dentry
= rcu_dereference(cgrp
->dentry
);
1257 return -ENAMETOOLONG
;
1260 memmove(buf
, start
, buf
+ buflen
- start
);
1265 * Return the first subsystem attached to a cgroup's hierarchy, and
1269 static void get_first_subsys(const struct cgroup
*cgrp
,
1270 struct cgroup_subsys_state
**css
, int *subsys_id
)
1272 const struct cgroupfs_root
*root
= cgrp
->root
;
1273 const struct cgroup_subsys
*test_ss
;
1274 BUG_ON(list_empty(&root
->subsys_list
));
1275 test_ss
= list_entry(root
->subsys_list
.next
,
1276 struct cgroup_subsys
, sibling
);
1278 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1282 *subsys_id
= test_ss
->subsys_id
;
1286 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1287 * @cgrp: the cgroup the task is attaching to
1288 * @tsk: the task to be attached
1290 * Call holding cgroup_mutex. May take task_lock of
1291 * the task 'tsk' during call.
1293 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1296 struct cgroup_subsys
*ss
;
1297 struct cgroup
*oldcgrp
;
1299 struct css_set
*newcg
;
1300 struct cgroupfs_root
*root
= cgrp
->root
;
1303 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1305 /* Nothing to do if the task is already in that cgroup */
1306 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1307 if (cgrp
== oldcgrp
)
1310 for_each_subsys(root
, ss
) {
1311 if (ss
->can_attach
) {
1312 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1323 * Locate or allocate a new css_set for this task,
1324 * based on its final set of cgroups
1326 newcg
= find_css_set(cg
, cgrp
);
1332 if (tsk
->flags
& PF_EXITING
) {
1337 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1340 /* Update the css_set linked lists if we're using them */
1341 write_lock(&css_set_lock
);
1342 if (!list_empty(&tsk
->cg_list
)) {
1343 list_del(&tsk
->cg_list
);
1344 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1346 write_unlock(&css_set_lock
);
1348 for_each_subsys(root
, ss
) {
1350 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1352 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1357 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1358 * is no longer empty.
1360 cgroup_wakeup_rmdir_waiters(cgrp
);
1365 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1366 * held. May take task_lock of task
1368 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1370 struct task_struct
*tsk
;
1371 const struct cred
*cred
= current_cred(), *tcred
;
1376 tsk
= find_task_by_vpid(pid
);
1377 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1382 tcred
= __task_cred(tsk
);
1384 cred
->euid
!= tcred
->uid
&&
1385 cred
->euid
!= tcred
->suid
) {
1389 get_task_struct(tsk
);
1393 get_task_struct(tsk
);
1396 ret
= cgroup_attach_task(cgrp
, tsk
);
1397 put_task_struct(tsk
);
1401 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1404 if (!cgroup_lock_live_group(cgrp
))
1406 ret
= attach_task_by_pid(cgrp
, pid
);
1411 /* The various types of files and directories in a cgroup file system */
1412 enum cgroup_filetype
{
1416 FILE_NOTIFY_ON_RELEASE
,
1421 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1422 * @cgrp: the cgroup to be checked for liveness
1424 * On success, returns true; the lock should be later released with
1425 * cgroup_unlock(). On failure returns false with no lock held.
1427 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1429 mutex_lock(&cgroup_mutex
);
1430 if (cgroup_is_removed(cgrp
)) {
1431 mutex_unlock(&cgroup_mutex
);
1437 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1440 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1441 if (!cgroup_lock_live_group(cgrp
))
1443 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1448 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1449 struct seq_file
*seq
)
1451 if (!cgroup_lock_live_group(cgrp
))
1453 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1454 seq_putc(seq
, '\n');
1459 /* A buffer size big enough for numbers or short strings */
1460 #define CGROUP_LOCAL_BUFFER_SIZE 64
1462 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1464 const char __user
*userbuf
,
1465 size_t nbytes
, loff_t
*unused_ppos
)
1467 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1473 if (nbytes
>= sizeof(buffer
))
1475 if (copy_from_user(buffer
, userbuf
, nbytes
))
1478 buffer
[nbytes
] = 0; /* nul-terminate */
1480 if (cft
->write_u64
) {
1481 u64 val
= simple_strtoull(buffer
, &end
, 0);
1484 retval
= cft
->write_u64(cgrp
, cft
, val
);
1486 s64 val
= simple_strtoll(buffer
, &end
, 0);
1489 retval
= cft
->write_s64(cgrp
, cft
, val
);
1496 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1498 const char __user
*userbuf
,
1499 size_t nbytes
, loff_t
*unused_ppos
)
1501 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1503 size_t max_bytes
= cft
->max_write_len
;
1504 char *buffer
= local_buffer
;
1507 max_bytes
= sizeof(local_buffer
) - 1;
1508 if (nbytes
>= max_bytes
)
1510 /* Allocate a dynamic buffer if we need one */
1511 if (nbytes
>= sizeof(local_buffer
)) {
1512 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1516 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1521 buffer
[nbytes
] = 0; /* nul-terminate */
1523 retval
= cft
->write_string(cgrp
, cft
, buffer
);
1527 if (buffer
!= local_buffer
)
1532 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1533 size_t nbytes
, loff_t
*ppos
)
1535 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1536 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1538 if (cgroup_is_removed(cgrp
))
1541 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1542 if (cft
->write_u64
|| cft
->write_s64
)
1543 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1544 if (cft
->write_string
)
1545 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1547 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1548 return ret
? ret
: nbytes
;
1553 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1555 char __user
*buf
, size_t nbytes
,
1558 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1559 u64 val
= cft
->read_u64(cgrp
, cft
);
1560 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1562 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1565 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1567 char __user
*buf
, size_t nbytes
,
1570 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1571 s64 val
= cft
->read_s64(cgrp
, cft
);
1572 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1574 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1577 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1578 size_t nbytes
, loff_t
*ppos
)
1580 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1581 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1583 if (cgroup_is_removed(cgrp
))
1587 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1589 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1591 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1596 * seqfile ops/methods for returning structured data. Currently just
1597 * supports string->u64 maps, but can be extended in future.
1600 struct cgroup_seqfile_state
{
1602 struct cgroup
*cgroup
;
1605 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1607 struct seq_file
*sf
= cb
->state
;
1608 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1611 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1613 struct cgroup_seqfile_state
*state
= m
->private;
1614 struct cftype
*cft
= state
->cft
;
1615 if (cft
->read_map
) {
1616 struct cgroup_map_cb cb
= {
1617 .fill
= cgroup_map_add
,
1620 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1622 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1625 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1627 struct seq_file
*seq
= file
->private_data
;
1628 kfree(seq
->private);
1629 return single_release(inode
, file
);
1632 static struct file_operations cgroup_seqfile_operations
= {
1634 .write
= cgroup_file_write
,
1635 .llseek
= seq_lseek
,
1636 .release
= cgroup_seqfile_release
,
1639 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1644 err
= generic_file_open(inode
, file
);
1647 cft
= __d_cft(file
->f_dentry
);
1649 if (cft
->read_map
|| cft
->read_seq_string
) {
1650 struct cgroup_seqfile_state
*state
=
1651 kzalloc(sizeof(*state
), GFP_USER
);
1655 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1656 file
->f_op
= &cgroup_seqfile_operations
;
1657 err
= single_open(file
, cgroup_seqfile_show
, state
);
1660 } else if (cft
->open
)
1661 err
= cft
->open(inode
, file
);
1668 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1670 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1672 return cft
->release(inode
, file
);
1677 * cgroup_rename - Only allow simple rename of directories in place.
1679 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1680 struct inode
*new_dir
, struct dentry
*new_dentry
)
1682 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1684 if (new_dentry
->d_inode
)
1686 if (old_dir
!= new_dir
)
1688 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1691 static struct file_operations cgroup_file_operations
= {
1692 .read
= cgroup_file_read
,
1693 .write
= cgroup_file_write
,
1694 .llseek
= generic_file_llseek
,
1695 .open
= cgroup_file_open
,
1696 .release
= cgroup_file_release
,
1699 static struct inode_operations cgroup_dir_inode_operations
= {
1700 .lookup
= simple_lookup
,
1701 .mkdir
= cgroup_mkdir
,
1702 .rmdir
= cgroup_rmdir
,
1703 .rename
= cgroup_rename
,
1706 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
1707 struct super_block
*sb
)
1709 static const struct dentry_operations cgroup_dops
= {
1710 .d_iput
= cgroup_diput
,
1713 struct inode
*inode
;
1717 if (dentry
->d_inode
)
1720 inode
= cgroup_new_inode(mode
, sb
);
1724 if (S_ISDIR(mode
)) {
1725 inode
->i_op
= &cgroup_dir_inode_operations
;
1726 inode
->i_fop
= &simple_dir_operations
;
1728 /* start off with i_nlink == 2 (for "." entry) */
1731 /* start with the directory inode held, so that we can
1732 * populate it without racing with another mkdir */
1733 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1734 } else if (S_ISREG(mode
)) {
1736 inode
->i_fop
= &cgroup_file_operations
;
1738 dentry
->d_op
= &cgroup_dops
;
1739 d_instantiate(dentry
, inode
);
1740 dget(dentry
); /* Extra count - pin the dentry in core */
1745 * cgroup_create_dir - create a directory for an object.
1746 * @cgrp: the cgroup we create the directory for. It must have a valid
1747 * ->parent field. And we are going to fill its ->dentry field.
1748 * @dentry: dentry of the new cgroup
1749 * @mode: mode to set on new directory.
1751 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1754 struct dentry
*parent
;
1757 parent
= cgrp
->parent
->dentry
;
1758 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1760 dentry
->d_fsdata
= cgrp
;
1761 inc_nlink(parent
->d_inode
);
1762 rcu_assign_pointer(cgrp
->dentry
, dentry
);
1771 * cgroup_file_mode - deduce file mode of a control file
1772 * @cft: the control file in question
1774 * returns cft->mode if ->mode is not 0
1775 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1776 * returns S_IRUGO if it has only a read handler
1777 * returns S_IWUSR if it has only a write hander
1779 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
1786 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
1787 cft
->read_map
|| cft
->read_seq_string
)
1790 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
1791 cft
->write_string
|| cft
->trigger
)
1797 int cgroup_add_file(struct cgroup
*cgrp
,
1798 struct cgroup_subsys
*subsys
,
1799 const struct cftype
*cft
)
1801 struct dentry
*dir
= cgrp
->dentry
;
1802 struct dentry
*dentry
;
1806 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1807 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1808 strcpy(name
, subsys
->name
);
1811 strcat(name
, cft
->name
);
1812 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1813 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1814 if (!IS_ERR(dentry
)) {
1815 mode
= cgroup_file_mode(cft
);
1816 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
1819 dentry
->d_fsdata
= (void *)cft
;
1822 error
= PTR_ERR(dentry
);
1826 int cgroup_add_files(struct cgroup
*cgrp
,
1827 struct cgroup_subsys
*subsys
,
1828 const struct cftype cft
[],
1832 for (i
= 0; i
< count
; i
++) {
1833 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1841 * cgroup_task_count - count the number of tasks in a cgroup.
1842 * @cgrp: the cgroup in question
1844 * Return the number of tasks in the cgroup.
1846 int cgroup_task_count(const struct cgroup
*cgrp
)
1849 struct cg_cgroup_link
*link
;
1851 read_lock(&css_set_lock
);
1852 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
1853 count
+= atomic_read(&link
->cg
->refcount
);
1855 read_unlock(&css_set_lock
);
1860 * Advance a list_head iterator. The iterator should be positioned at
1861 * the start of a css_set
1863 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1864 struct cgroup_iter
*it
)
1866 struct list_head
*l
= it
->cg_link
;
1867 struct cg_cgroup_link
*link
;
1870 /* Advance to the next non-empty css_set */
1873 if (l
== &cgrp
->css_sets
) {
1877 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1879 } while (list_empty(&cg
->tasks
));
1881 it
->task
= cg
->tasks
.next
;
1885 * To reduce the fork() overhead for systems that are not actually
1886 * using their cgroups capability, we don't maintain the lists running
1887 * through each css_set to its tasks until we see the list actually
1888 * used - in other words after the first call to cgroup_iter_start().
1890 * The tasklist_lock is not held here, as do_each_thread() and
1891 * while_each_thread() are protected by RCU.
1893 static void cgroup_enable_task_cg_lists(void)
1895 struct task_struct
*p
, *g
;
1896 write_lock(&css_set_lock
);
1897 use_task_css_set_links
= 1;
1898 do_each_thread(g
, p
) {
1901 * We should check if the process is exiting, otherwise
1902 * it will race with cgroup_exit() in that the list
1903 * entry won't be deleted though the process has exited.
1905 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1906 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1908 } while_each_thread(g
, p
);
1909 write_unlock(&css_set_lock
);
1912 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1915 * The first time anyone tries to iterate across a cgroup,
1916 * we need to enable the list linking each css_set to its
1917 * tasks, and fix up all existing tasks.
1919 if (!use_task_css_set_links
)
1920 cgroup_enable_task_cg_lists();
1922 read_lock(&css_set_lock
);
1923 it
->cg_link
= &cgrp
->css_sets
;
1924 cgroup_advance_iter(cgrp
, it
);
1927 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1928 struct cgroup_iter
*it
)
1930 struct task_struct
*res
;
1931 struct list_head
*l
= it
->task
;
1932 struct cg_cgroup_link
*link
;
1934 /* If the iterator cg is NULL, we have no tasks */
1937 res
= list_entry(l
, struct task_struct
, cg_list
);
1938 /* Advance iterator to find next entry */
1940 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
1941 if (l
== &link
->cg
->tasks
) {
1942 /* We reached the end of this task list - move on to
1943 * the next cg_cgroup_link */
1944 cgroup_advance_iter(cgrp
, it
);
1951 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1953 read_unlock(&css_set_lock
);
1956 static inline int started_after_time(struct task_struct
*t1
,
1957 struct timespec
*time
,
1958 struct task_struct
*t2
)
1960 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1961 if (start_diff
> 0) {
1963 } else if (start_diff
< 0) {
1967 * Arbitrarily, if two processes started at the same
1968 * time, we'll say that the lower pointer value
1969 * started first. Note that t2 may have exited by now
1970 * so this may not be a valid pointer any longer, but
1971 * that's fine - it still serves to distinguish
1972 * between two tasks started (effectively) simultaneously.
1979 * This function is a callback from heap_insert() and is used to order
1981 * In this case we order the heap in descending task start time.
1983 static inline int started_after(void *p1
, void *p2
)
1985 struct task_struct
*t1
= p1
;
1986 struct task_struct
*t2
= p2
;
1987 return started_after_time(t1
, &t2
->start_time
, t2
);
1991 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1992 * @scan: struct cgroup_scanner containing arguments for the scan
1994 * Arguments include pointers to callback functions test_task() and
1996 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1997 * and if it returns true, call process_task() for it also.
1998 * The test_task pointer may be NULL, meaning always true (select all tasks).
1999 * Effectively duplicates cgroup_iter_{start,next,end}()
2000 * but does not lock css_set_lock for the call to process_task().
2001 * The struct cgroup_scanner may be embedded in any structure of the caller's
2003 * It is guaranteed that process_task() will act on every task that
2004 * is a member of the cgroup for the duration of this call. This
2005 * function may or may not call process_task() for tasks that exit
2006 * or move to a different cgroup during the call, or are forked or
2007 * move into the cgroup during the call.
2009 * Note that test_task() may be called with locks held, and may in some
2010 * situations be called multiple times for the same task, so it should
2012 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2013 * pre-allocated and will be used for heap operations (and its "gt" member will
2014 * be overwritten), else a temporary heap will be used (allocation of which
2015 * may cause this function to fail).
2017 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2020 struct cgroup_iter it
;
2021 struct task_struct
*p
, *dropped
;
2022 /* Never dereference latest_task, since it's not refcounted */
2023 struct task_struct
*latest_task
= NULL
;
2024 struct ptr_heap tmp_heap
;
2025 struct ptr_heap
*heap
;
2026 struct timespec latest_time
= { 0, 0 };
2029 /* The caller supplied our heap and pre-allocated its memory */
2031 heap
->gt
= &started_after
;
2033 /* We need to allocate our own heap memory */
2035 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2037 /* cannot allocate the heap */
2043 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2044 * to determine which are of interest, and using the scanner's
2045 * "process_task" callback to process any of them that need an update.
2046 * Since we don't want to hold any locks during the task updates,
2047 * gather tasks to be processed in a heap structure.
2048 * The heap is sorted by descending task start time.
2049 * If the statically-sized heap fills up, we overflow tasks that
2050 * started later, and in future iterations only consider tasks that
2051 * started after the latest task in the previous pass. This
2052 * guarantees forward progress and that we don't miss any tasks.
2055 cgroup_iter_start(scan
->cg
, &it
);
2056 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2058 * Only affect tasks that qualify per the caller's callback,
2059 * if he provided one
2061 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2064 * Only process tasks that started after the last task
2067 if (!started_after_time(p
, &latest_time
, latest_task
))
2069 dropped
= heap_insert(heap
, p
);
2070 if (dropped
== NULL
) {
2072 * The new task was inserted; the heap wasn't
2076 } else if (dropped
!= p
) {
2078 * The new task was inserted, and pushed out a
2082 put_task_struct(dropped
);
2085 * Else the new task was newer than anything already in
2086 * the heap and wasn't inserted
2089 cgroup_iter_end(scan
->cg
, &it
);
2092 for (i
= 0; i
< heap
->size
; i
++) {
2093 struct task_struct
*q
= heap
->ptrs
[i
];
2095 latest_time
= q
->start_time
;
2098 /* Process the task per the caller's callback */
2099 scan
->process_task(q
, scan
);
2103 * If we had to process any tasks at all, scan again
2104 * in case some of them were in the middle of forking
2105 * children that didn't get processed.
2106 * Not the most efficient way to do it, but it avoids
2107 * having to take callback_mutex in the fork path
2111 if (heap
== &tmp_heap
)
2112 heap_free(&tmp_heap
);
2117 * Stuff for reading the 'tasks' file.
2119 * Reading this file can return large amounts of data if a cgroup has
2120 * *lots* of attached tasks. So it may need several calls to read(),
2121 * but we cannot guarantee that the information we produce is correct
2122 * unless we produce it entirely atomically.
2127 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2128 * 'cgrp'. Return actual number of pids loaded. No need to
2129 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2130 * read section, so the css_set can't go away, and is
2131 * immutable after creation.
2133 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2136 struct cgroup_iter it
;
2137 struct task_struct
*tsk
;
2138 cgroup_iter_start(cgrp
, &it
);
2139 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2140 if (unlikely(n
== npids
))
2142 pid
= task_pid_vnr(tsk
);
2144 pidarray
[n
++] = pid
;
2146 cgroup_iter_end(cgrp
, &it
);
2151 * cgroupstats_build - build and fill cgroupstats
2152 * @stats: cgroupstats to fill information into
2153 * @dentry: A dentry entry belonging to the cgroup for which stats have
2156 * Build and fill cgroupstats so that taskstats can export it to user
2159 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2162 struct cgroup
*cgrp
;
2163 struct cgroup_iter it
;
2164 struct task_struct
*tsk
;
2167 * Validate dentry by checking the superblock operations,
2168 * and make sure it's a directory.
2170 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2171 !S_ISDIR(dentry
->d_inode
->i_mode
))
2175 cgrp
= dentry
->d_fsdata
;
2177 cgroup_iter_start(cgrp
, &it
);
2178 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2179 switch (tsk
->state
) {
2181 stats
->nr_running
++;
2183 case TASK_INTERRUPTIBLE
:
2184 stats
->nr_sleeping
++;
2186 case TASK_UNINTERRUPTIBLE
:
2187 stats
->nr_uninterruptible
++;
2190 stats
->nr_stopped
++;
2193 if (delayacct_is_task_waiting_on_io(tsk
))
2194 stats
->nr_io_wait
++;
2198 cgroup_iter_end(cgrp
, &it
);
2204 static int cmppid(const void *a
, const void *b
)
2206 return *(pid_t
*)a
- *(pid_t
*)b
;
2211 * seq_file methods for the "tasks" file. The seq_file position is the
2212 * next pid to display; the seq_file iterator is a pointer to the pid
2213 * in the cgroup->tasks_pids array.
2216 static void *cgroup_tasks_start(struct seq_file
*s
, loff_t
*pos
)
2219 * Initially we receive a position value that corresponds to
2220 * one more than the last pid shown (or 0 on the first call or
2221 * after a seek to the start). Use a binary-search to find the
2222 * next pid to display, if any
2224 struct cgroup
*cgrp
= s
->private;
2225 int index
= 0, pid
= *pos
;
2228 down_read(&cgrp
->pids_mutex
);
2230 int end
= cgrp
->pids_length
;
2232 while (index
< end
) {
2233 int mid
= (index
+ end
) / 2;
2234 if (cgrp
->tasks_pids
[mid
] == pid
) {
2237 } else if (cgrp
->tasks_pids
[mid
] <= pid
)
2243 /* If we're off the end of the array, we're done */
2244 if (index
>= cgrp
->pids_length
)
2246 /* Update the abstract position to be the actual pid that we found */
2247 iter
= cgrp
->tasks_pids
+ index
;
2252 static void cgroup_tasks_stop(struct seq_file
*s
, void *v
)
2254 struct cgroup
*cgrp
= s
->private;
2255 up_read(&cgrp
->pids_mutex
);
2258 static void *cgroup_tasks_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2260 struct cgroup
*cgrp
= s
->private;
2262 int *end
= cgrp
->tasks_pids
+ cgrp
->pids_length
;
2265 * Advance to the next pid in the array. If this goes off the
2277 static int cgroup_tasks_show(struct seq_file
*s
, void *v
)
2279 return seq_printf(s
, "%d\n", *(int *)v
);
2282 static struct seq_operations cgroup_tasks_seq_operations
= {
2283 .start
= cgroup_tasks_start
,
2284 .stop
= cgroup_tasks_stop
,
2285 .next
= cgroup_tasks_next
,
2286 .show
= cgroup_tasks_show
,
2289 static void release_cgroup_pid_array(struct cgroup
*cgrp
)
2291 down_write(&cgrp
->pids_mutex
);
2292 BUG_ON(!cgrp
->pids_use_count
);
2293 if (!--cgrp
->pids_use_count
) {
2294 kfree(cgrp
->tasks_pids
);
2295 cgrp
->tasks_pids
= NULL
;
2296 cgrp
->pids_length
= 0;
2298 up_write(&cgrp
->pids_mutex
);
2301 static int cgroup_tasks_release(struct inode
*inode
, struct file
*file
)
2303 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2305 if (!(file
->f_mode
& FMODE_READ
))
2308 release_cgroup_pid_array(cgrp
);
2309 return seq_release(inode
, file
);
2312 static struct file_operations cgroup_tasks_operations
= {
2314 .llseek
= seq_lseek
,
2315 .write
= cgroup_file_write
,
2316 .release
= cgroup_tasks_release
,
2320 * Handle an open on 'tasks' file. Prepare an array containing the
2321 * process id's of tasks currently attached to the cgroup being opened.
2324 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2326 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2331 /* Nothing to do for write-only files */
2332 if (!(file
->f_mode
& FMODE_READ
))
2336 * If cgroup gets more users after we read count, we won't have
2337 * enough space - tough. This race is indistinguishable to the
2338 * caller from the case that the additional cgroup users didn't
2339 * show up until sometime later on.
2341 npids
= cgroup_task_count(cgrp
);
2342 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2345 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2346 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2349 * Store the array in the cgroup, freeing the old
2350 * array if necessary
2352 down_write(&cgrp
->pids_mutex
);
2353 kfree(cgrp
->tasks_pids
);
2354 cgrp
->tasks_pids
= pidarray
;
2355 cgrp
->pids_length
= npids
;
2356 cgrp
->pids_use_count
++;
2357 up_write(&cgrp
->pids_mutex
);
2359 file
->f_op
= &cgroup_tasks_operations
;
2361 retval
= seq_open(file
, &cgroup_tasks_seq_operations
);
2363 release_cgroup_pid_array(cgrp
);
2366 ((struct seq_file
*)file
->private_data
)->private = cgrp
;
2370 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2373 return notify_on_release(cgrp
);
2376 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2380 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2382 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2384 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2389 * for the common functions, 'private' gives the type of file
2391 static struct cftype files
[] = {
2394 .open
= cgroup_tasks_open
,
2395 .write_u64
= cgroup_tasks_write
,
2396 .release
= cgroup_tasks_release
,
2397 .private = FILE_TASKLIST
,
2398 .mode
= S_IRUGO
| S_IWUSR
,
2402 .name
= "notify_on_release",
2403 .read_u64
= cgroup_read_notify_on_release
,
2404 .write_u64
= cgroup_write_notify_on_release
,
2405 .private = FILE_NOTIFY_ON_RELEASE
,
2409 static struct cftype cft_release_agent
= {
2410 .name
= "release_agent",
2411 .read_seq_string
= cgroup_release_agent_show
,
2412 .write_string
= cgroup_release_agent_write
,
2413 .max_write_len
= PATH_MAX
,
2414 .private = FILE_RELEASE_AGENT
,
2417 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2420 struct cgroup_subsys
*ss
;
2422 /* First clear out any existing files */
2423 cgroup_clear_directory(cgrp
->dentry
);
2425 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2429 if (cgrp
== cgrp
->top_cgroup
) {
2430 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2434 for_each_subsys(cgrp
->root
, ss
) {
2435 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2438 /* This cgroup is ready now */
2439 for_each_subsys(cgrp
->root
, ss
) {
2440 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2442 * Update id->css pointer and make this css visible from
2443 * CSS ID functions. This pointer will be dereferened
2444 * from RCU-read-side without locks.
2447 rcu_assign_pointer(css
->id
->css
, css
);
2453 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2454 struct cgroup_subsys
*ss
,
2455 struct cgroup
*cgrp
)
2458 atomic_set(&css
->refcnt
, 1);
2461 if (cgrp
== dummytop
)
2462 set_bit(CSS_ROOT
, &css
->flags
);
2463 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2464 cgrp
->subsys
[ss
->subsys_id
] = css
;
2467 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
2469 /* We need to take each hierarchy_mutex in a consistent order */
2472 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2473 struct cgroup_subsys
*ss
= subsys
[i
];
2474 if (ss
->root
== root
)
2475 mutex_lock(&ss
->hierarchy_mutex
);
2479 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
2483 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2484 struct cgroup_subsys
*ss
= subsys
[i
];
2485 if (ss
->root
== root
)
2486 mutex_unlock(&ss
->hierarchy_mutex
);
2491 * cgroup_create - create a cgroup
2492 * @parent: cgroup that will be parent of the new cgroup
2493 * @dentry: dentry of the new cgroup
2494 * @mode: mode to set on new inode
2496 * Must be called with the mutex on the parent inode held
2498 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2501 struct cgroup
*cgrp
;
2502 struct cgroupfs_root
*root
= parent
->root
;
2504 struct cgroup_subsys
*ss
;
2505 struct super_block
*sb
= root
->sb
;
2507 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2511 /* Grab a reference on the superblock so the hierarchy doesn't
2512 * get deleted on unmount if there are child cgroups. This
2513 * can be done outside cgroup_mutex, since the sb can't
2514 * disappear while someone has an open control file on the
2516 atomic_inc(&sb
->s_active
);
2518 mutex_lock(&cgroup_mutex
);
2520 init_cgroup_housekeeping(cgrp
);
2522 cgrp
->parent
= parent
;
2523 cgrp
->root
= parent
->root
;
2524 cgrp
->top_cgroup
= parent
->top_cgroup
;
2526 if (notify_on_release(parent
))
2527 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2529 for_each_subsys(root
, ss
) {
2530 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2535 init_cgroup_css(css
, ss
, cgrp
);
2537 if (alloc_css_id(ss
, parent
, cgrp
))
2539 /* At error, ->destroy() callback has to free assigned ID. */
2542 cgroup_lock_hierarchy(root
);
2543 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2544 cgroup_unlock_hierarchy(root
);
2545 root
->number_of_cgroups
++;
2547 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2551 /* The cgroup directory was pre-locked for us */
2552 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2554 err
= cgroup_populate_dir(cgrp
);
2555 /* If err < 0, we have a half-filled directory - oh well ;) */
2557 mutex_unlock(&cgroup_mutex
);
2558 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2564 cgroup_lock_hierarchy(root
);
2565 list_del(&cgrp
->sibling
);
2566 cgroup_unlock_hierarchy(root
);
2567 root
->number_of_cgroups
--;
2571 for_each_subsys(root
, ss
) {
2572 if (cgrp
->subsys
[ss
->subsys_id
])
2573 ss
->destroy(ss
, cgrp
);
2576 mutex_unlock(&cgroup_mutex
);
2578 /* Release the reference count that we took on the superblock */
2579 deactivate_super(sb
);
2585 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2587 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2589 /* the vfs holds inode->i_mutex already */
2590 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2593 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
2595 /* Check the reference count on each subsystem. Since we
2596 * already established that there are no tasks in the
2597 * cgroup, if the css refcount is also 1, then there should
2598 * be no outstanding references, so the subsystem is safe to
2599 * destroy. We scan across all subsystems rather than using
2600 * the per-hierarchy linked list of mounted subsystems since
2601 * we can be called via check_for_release() with no
2602 * synchronization other than RCU, and the subsystem linked
2603 * list isn't RCU-safe */
2605 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2606 struct cgroup_subsys
*ss
= subsys
[i
];
2607 struct cgroup_subsys_state
*css
;
2608 /* Skip subsystems not in this hierarchy */
2609 if (ss
->root
!= cgrp
->root
)
2611 css
= cgrp
->subsys
[ss
->subsys_id
];
2612 /* When called from check_for_release() it's possible
2613 * that by this point the cgroup has been removed
2614 * and the css deleted. But a false-positive doesn't
2615 * matter, since it can only happen if the cgroup
2616 * has been deleted and hence no longer needs the
2617 * release agent to be called anyway. */
2618 if (css
&& (atomic_read(&css
->refcnt
) > 1))
2625 * Atomically mark all (or else none) of the cgroup's CSS objects as
2626 * CSS_REMOVED. Return true on success, or false if the cgroup has
2627 * busy subsystems. Call with cgroup_mutex held
2630 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
2632 struct cgroup_subsys
*ss
;
2633 unsigned long flags
;
2634 bool failed
= false;
2635 local_irq_save(flags
);
2636 for_each_subsys(cgrp
->root
, ss
) {
2637 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2640 /* We can only remove a CSS with a refcnt==1 */
2641 refcnt
= atomic_read(&css
->refcnt
);
2648 * Drop the refcnt to 0 while we check other
2649 * subsystems. This will cause any racing
2650 * css_tryget() to spin until we set the
2651 * CSS_REMOVED bits or abort
2653 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
2659 for_each_subsys(cgrp
->root
, ss
) {
2660 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2663 * Restore old refcnt if we previously managed
2664 * to clear it from 1 to 0
2666 if (!atomic_read(&css
->refcnt
))
2667 atomic_set(&css
->refcnt
, 1);
2669 /* Commit the fact that the CSS is removed */
2670 set_bit(CSS_REMOVED
, &css
->flags
);
2673 local_irq_restore(flags
);
2677 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2679 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2681 struct cgroup
*parent
;
2685 /* the vfs holds both inode->i_mutex already */
2687 mutex_lock(&cgroup_mutex
);
2688 if (atomic_read(&cgrp
->count
) != 0) {
2689 mutex_unlock(&cgroup_mutex
);
2692 if (!list_empty(&cgrp
->children
)) {
2693 mutex_unlock(&cgroup_mutex
);
2696 mutex_unlock(&cgroup_mutex
);
2699 * Call pre_destroy handlers of subsys. Notify subsystems
2700 * that rmdir() request comes.
2702 ret
= cgroup_call_pre_destroy(cgrp
);
2706 mutex_lock(&cgroup_mutex
);
2707 parent
= cgrp
->parent
;
2708 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
2709 mutex_unlock(&cgroup_mutex
);
2713 * css_put/get is provided for subsys to grab refcnt to css. In typical
2714 * case, subsystem has no reference after pre_destroy(). But, under
2715 * hierarchy management, some *temporal* refcnt can be hold.
2716 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
2717 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
2718 * is called when css_put() is called and refcnt goes down to 0.
2720 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2721 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
2723 if (!cgroup_clear_css_refs(cgrp
)) {
2724 mutex_unlock(&cgroup_mutex
);
2726 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2727 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2728 if (signal_pending(current
))
2732 /* NO css_tryget() can success after here. */
2733 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2734 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2736 spin_lock(&release_list_lock
);
2737 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2738 if (!list_empty(&cgrp
->release_list
))
2739 list_del(&cgrp
->release_list
);
2740 spin_unlock(&release_list_lock
);
2742 cgroup_lock_hierarchy(cgrp
->root
);
2743 /* delete this cgroup from parent->children */
2744 list_del(&cgrp
->sibling
);
2745 cgroup_unlock_hierarchy(cgrp
->root
);
2747 spin_lock(&cgrp
->dentry
->d_lock
);
2748 d
= dget(cgrp
->dentry
);
2749 spin_unlock(&d
->d_lock
);
2751 cgroup_d_remove_dir(d
);
2754 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2755 check_for_release(parent
);
2757 mutex_unlock(&cgroup_mutex
);
2761 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2763 struct cgroup_subsys_state
*css
;
2765 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2767 /* Create the top cgroup state for this subsystem */
2768 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
2769 ss
->root
= &rootnode
;
2770 css
= ss
->create(ss
, dummytop
);
2771 /* We don't handle early failures gracefully */
2772 BUG_ON(IS_ERR(css
));
2773 init_cgroup_css(css
, ss
, dummytop
);
2775 /* Update the init_css_set to contain a subsys
2776 * pointer to this state - since the subsystem is
2777 * newly registered, all tasks and hence the
2778 * init_css_set is in the subsystem's top cgroup. */
2779 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2781 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2783 /* At system boot, before all subsystems have been
2784 * registered, no tasks have been forked, so we don't
2785 * need to invoke fork callbacks here. */
2786 BUG_ON(!list_empty(&init_task
.tasks
));
2788 mutex_init(&ss
->hierarchy_mutex
);
2789 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
2794 * cgroup_init_early - cgroup initialization at system boot
2796 * Initialize cgroups at system boot, and initialize any
2797 * subsystems that request early init.
2799 int __init
cgroup_init_early(void)
2802 atomic_set(&init_css_set
.refcount
, 1);
2803 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2804 INIT_LIST_HEAD(&init_css_set
.tasks
);
2805 INIT_HLIST_NODE(&init_css_set
.hlist
);
2807 init_cgroup_root(&rootnode
);
2809 init_task
.cgroups
= &init_css_set
;
2811 init_css_set_link
.cg
= &init_css_set
;
2812 list_add(&init_css_set_link
.cgrp_link_list
,
2813 &rootnode
.top_cgroup
.css_sets
);
2814 list_add(&init_css_set_link
.cg_link_list
,
2815 &init_css_set
.cg_links
);
2817 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2818 INIT_HLIST_HEAD(&css_set_table
[i
]);
2820 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2821 struct cgroup_subsys
*ss
= subsys
[i
];
2824 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2825 BUG_ON(!ss
->create
);
2826 BUG_ON(!ss
->destroy
);
2827 if (ss
->subsys_id
!= i
) {
2828 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2829 ss
->name
, ss
->subsys_id
);
2834 cgroup_init_subsys(ss
);
2840 * cgroup_init - cgroup initialization
2842 * Register cgroup filesystem and /proc file, and initialize
2843 * any subsystems that didn't request early init.
2845 int __init
cgroup_init(void)
2849 struct hlist_head
*hhead
;
2851 err
= bdi_init(&cgroup_backing_dev_info
);
2855 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2856 struct cgroup_subsys
*ss
= subsys
[i
];
2857 if (!ss
->early_init
)
2858 cgroup_init_subsys(ss
);
2860 cgroup_subsys_init_idr(ss
);
2863 /* Add init_css_set to the hash table */
2864 hhead
= css_set_hash(init_css_set
.subsys
);
2865 hlist_add_head(&init_css_set
.hlist
, hhead
);
2867 err
= register_filesystem(&cgroup_fs_type
);
2871 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2875 bdi_destroy(&cgroup_backing_dev_info
);
2881 * proc_cgroup_show()
2882 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2883 * - Used for /proc/<pid>/cgroup.
2884 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2885 * doesn't really matter if tsk->cgroup changes after we read it,
2886 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2887 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2888 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2889 * cgroup to top_cgroup.
2892 /* TODO: Use a proper seq_file iterator */
2893 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2896 struct task_struct
*tsk
;
2899 struct cgroupfs_root
*root
;
2902 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2908 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2914 mutex_lock(&cgroup_mutex
);
2916 for_each_active_root(root
) {
2917 struct cgroup_subsys
*ss
;
2918 struct cgroup
*cgrp
;
2922 seq_printf(m
, "%lu:", root
->subsys_bits
);
2923 for_each_subsys(root
, ss
)
2924 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2926 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2927 cgrp
= task_cgroup(tsk
, subsys_id
);
2928 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
2936 mutex_unlock(&cgroup_mutex
);
2937 put_task_struct(tsk
);
2944 static int cgroup_open(struct inode
*inode
, struct file
*file
)
2946 struct pid
*pid
= PROC_I(inode
)->pid
;
2947 return single_open(file
, proc_cgroup_show
, pid
);
2950 struct file_operations proc_cgroup_operations
= {
2951 .open
= cgroup_open
,
2953 .llseek
= seq_lseek
,
2954 .release
= single_release
,
2957 /* Display information about each subsystem and each hierarchy */
2958 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
2962 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2963 mutex_lock(&cgroup_mutex
);
2964 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2965 struct cgroup_subsys
*ss
= subsys
[i
];
2966 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
2967 ss
->name
, ss
->root
->subsys_bits
,
2968 ss
->root
->number_of_cgroups
, !ss
->disabled
);
2970 mutex_unlock(&cgroup_mutex
);
2974 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
2976 return single_open(file
, proc_cgroupstats_show
, NULL
);
2979 static struct file_operations proc_cgroupstats_operations
= {
2980 .open
= cgroupstats_open
,
2982 .llseek
= seq_lseek
,
2983 .release
= single_release
,
2987 * cgroup_fork - attach newly forked task to its parents cgroup.
2988 * @child: pointer to task_struct of forking parent process.
2990 * Description: A task inherits its parent's cgroup at fork().
2992 * A pointer to the shared css_set was automatically copied in
2993 * fork.c by dup_task_struct(). However, we ignore that copy, since
2994 * it was not made under the protection of RCU or cgroup_mutex, so
2995 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2996 * have already changed current->cgroups, allowing the previously
2997 * referenced cgroup group to be removed and freed.
2999 * At the point that cgroup_fork() is called, 'current' is the parent
3000 * task, and the passed argument 'child' points to the child task.
3002 void cgroup_fork(struct task_struct
*child
)
3005 child
->cgroups
= current
->cgroups
;
3006 get_css_set(child
->cgroups
);
3007 task_unlock(current
);
3008 INIT_LIST_HEAD(&child
->cg_list
);
3012 * cgroup_fork_callbacks - run fork callbacks
3013 * @child: the new task
3015 * Called on a new task very soon before adding it to the
3016 * tasklist. No need to take any locks since no-one can
3017 * be operating on this task.
3019 void cgroup_fork_callbacks(struct task_struct
*child
)
3021 if (need_forkexit_callback
) {
3023 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3024 struct cgroup_subsys
*ss
= subsys
[i
];
3026 ss
->fork(ss
, child
);
3032 * cgroup_post_fork - called on a new task after adding it to the task list
3033 * @child: the task in question
3035 * Adds the task to the list running through its css_set if necessary.
3036 * Has to be after the task is visible on the task list in case we race
3037 * with the first call to cgroup_iter_start() - to guarantee that the
3038 * new task ends up on its list.
3040 void cgroup_post_fork(struct task_struct
*child
)
3042 if (use_task_css_set_links
) {
3043 write_lock(&css_set_lock
);
3045 if (list_empty(&child
->cg_list
))
3046 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
3048 write_unlock(&css_set_lock
);
3052 * cgroup_exit - detach cgroup from exiting task
3053 * @tsk: pointer to task_struct of exiting process
3054 * @run_callback: run exit callbacks?
3056 * Description: Detach cgroup from @tsk and release it.
3058 * Note that cgroups marked notify_on_release force every task in
3059 * them to take the global cgroup_mutex mutex when exiting.
3060 * This could impact scaling on very large systems. Be reluctant to
3061 * use notify_on_release cgroups where very high task exit scaling
3062 * is required on large systems.
3064 * the_top_cgroup_hack:
3066 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3068 * We call cgroup_exit() while the task is still competent to
3069 * handle notify_on_release(), then leave the task attached to the
3070 * root cgroup in each hierarchy for the remainder of its exit.
3072 * To do this properly, we would increment the reference count on
3073 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3074 * code we would add a second cgroup function call, to drop that
3075 * reference. This would just create an unnecessary hot spot on
3076 * the top_cgroup reference count, to no avail.
3078 * Normally, holding a reference to a cgroup without bumping its
3079 * count is unsafe. The cgroup could go away, or someone could
3080 * attach us to a different cgroup, decrementing the count on
3081 * the first cgroup that we never incremented. But in this case,
3082 * top_cgroup isn't going away, and either task has PF_EXITING set,
3083 * which wards off any cgroup_attach_task() attempts, or task is a failed
3084 * fork, never visible to cgroup_attach_task.
3086 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
3091 if (run_callbacks
&& need_forkexit_callback
) {
3092 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3093 struct cgroup_subsys
*ss
= subsys
[i
];
3100 * Unlink from the css_set task list if necessary.
3101 * Optimistically check cg_list before taking
3104 if (!list_empty(&tsk
->cg_list
)) {
3105 write_lock(&css_set_lock
);
3106 if (!list_empty(&tsk
->cg_list
))
3107 list_del(&tsk
->cg_list
);
3108 write_unlock(&css_set_lock
);
3111 /* Reassign the task to the init_css_set. */
3114 tsk
->cgroups
= &init_css_set
;
3117 put_css_set_taskexit(cg
);
3121 * cgroup_clone - clone the cgroup the given subsystem is attached to
3122 * @tsk: the task to be moved
3123 * @subsys: the given subsystem
3124 * @nodename: the name for the new cgroup
3126 * Duplicate the current cgroup in the hierarchy that the given
3127 * subsystem is attached to, and move this task into the new
3130 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
3133 struct dentry
*dentry
;
3135 struct cgroup
*parent
, *child
;
3136 struct inode
*inode
;
3138 struct cgroupfs_root
*root
;
3139 struct cgroup_subsys
*ss
;
3141 /* We shouldn't be called by an unregistered subsystem */
3142 BUG_ON(!subsys
->active
);
3144 /* First figure out what hierarchy and cgroup we're dealing
3145 * with, and pin them so we can drop cgroup_mutex */
3146 mutex_lock(&cgroup_mutex
);
3148 root
= subsys
->root
;
3149 if (root
== &rootnode
) {
3150 mutex_unlock(&cgroup_mutex
);
3154 /* Pin the hierarchy */
3155 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
3156 /* We race with the final deactivate_super() */
3157 mutex_unlock(&cgroup_mutex
);
3161 /* Keep the cgroup alive */
3163 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
3168 mutex_unlock(&cgroup_mutex
);
3170 /* Now do the VFS work to create a cgroup */
3171 inode
= parent
->dentry
->d_inode
;
3173 /* Hold the parent directory mutex across this operation to
3174 * stop anyone else deleting the new cgroup */
3175 mutex_lock(&inode
->i_mutex
);
3176 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
3177 if (IS_ERR(dentry
)) {
3179 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
3181 ret
= PTR_ERR(dentry
);
3185 /* Create the cgroup directory, which also creates the cgroup */
3186 ret
= vfs_mkdir(inode
, dentry
, 0755);
3187 child
= __d_cgrp(dentry
);
3191 "Failed to create cgroup %s: %d\n", nodename
,
3196 /* The cgroup now exists. Retake cgroup_mutex and check
3197 * that we're still in the same state that we thought we
3199 mutex_lock(&cgroup_mutex
);
3200 if ((root
!= subsys
->root
) ||
3201 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
3202 /* Aargh, we raced ... */
3203 mutex_unlock(&inode
->i_mutex
);
3206 deactivate_super(root
->sb
);
3207 /* The cgroup is still accessible in the VFS, but
3208 * we're not going to try to rmdir() it at this
3211 "Race in cgroup_clone() - leaking cgroup %s\n",
3216 /* do any required auto-setup */
3217 for_each_subsys(root
, ss
) {
3219 ss
->post_clone(ss
, child
);
3222 /* All seems fine. Finish by moving the task into the new cgroup */
3223 ret
= cgroup_attach_task(child
, tsk
);
3224 mutex_unlock(&cgroup_mutex
);
3227 mutex_unlock(&inode
->i_mutex
);
3229 mutex_lock(&cgroup_mutex
);
3231 mutex_unlock(&cgroup_mutex
);
3232 deactivate_super(root
->sb
);
3237 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3238 * @cgrp: the cgroup in question
3239 * @task: the task in question
3241 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3244 * If we are sending in dummytop, then presumably we are creating
3245 * the top cgroup in the subsystem.
3247 * Called only by the ns (nsproxy) cgroup.
3249 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
3252 struct cgroup
*target
;
3255 if (cgrp
== dummytop
)
3258 get_first_subsys(cgrp
, NULL
, &subsys_id
);
3259 target
= task_cgroup(task
, subsys_id
);
3260 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
3261 cgrp
= cgrp
->parent
;
3262 ret
= (cgrp
== target
);
3266 static void check_for_release(struct cgroup
*cgrp
)
3268 /* All of these checks rely on RCU to keep the cgroup
3269 * structure alive */
3270 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3271 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3272 /* Control Group is currently removeable. If it's not
3273 * already queued for a userspace notification, queue
3275 int need_schedule_work
= 0;
3276 spin_lock(&release_list_lock
);
3277 if (!cgroup_is_removed(cgrp
) &&
3278 list_empty(&cgrp
->release_list
)) {
3279 list_add(&cgrp
->release_list
, &release_list
);
3280 need_schedule_work
= 1;
3282 spin_unlock(&release_list_lock
);
3283 if (need_schedule_work
)
3284 schedule_work(&release_agent_work
);
3288 void __css_put(struct cgroup_subsys_state
*css
)
3290 struct cgroup
*cgrp
= css
->cgroup
;
3292 if (atomic_dec_return(&css
->refcnt
) == 1) {
3293 if (notify_on_release(cgrp
)) {
3294 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3295 check_for_release(cgrp
);
3297 cgroup_wakeup_rmdir_waiters(cgrp
);
3303 * Notify userspace when a cgroup is released, by running the
3304 * configured release agent with the name of the cgroup (path
3305 * relative to the root of cgroup file system) as the argument.
3307 * Most likely, this user command will try to rmdir this cgroup.
3309 * This races with the possibility that some other task will be
3310 * attached to this cgroup before it is removed, or that some other
3311 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3312 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3313 * unused, and this cgroup will be reprieved from its death sentence,
3314 * to continue to serve a useful existence. Next time it's released,
3315 * we will get notified again, if it still has 'notify_on_release' set.
3317 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3318 * means only wait until the task is successfully execve()'d. The
3319 * separate release agent task is forked by call_usermodehelper(),
3320 * then control in this thread returns here, without waiting for the
3321 * release agent task. We don't bother to wait because the caller of
3322 * this routine has no use for the exit status of the release agent
3323 * task, so no sense holding our caller up for that.
3325 static void cgroup_release_agent(struct work_struct
*work
)
3327 BUG_ON(work
!= &release_agent_work
);
3328 mutex_lock(&cgroup_mutex
);
3329 spin_lock(&release_list_lock
);
3330 while (!list_empty(&release_list
)) {
3331 char *argv
[3], *envp
[3];
3333 char *pathbuf
= NULL
, *agentbuf
= NULL
;
3334 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3337 list_del_init(&cgrp
->release_list
);
3338 spin_unlock(&release_list_lock
);
3339 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3342 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
3344 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
3349 argv
[i
++] = agentbuf
;
3350 argv
[i
++] = pathbuf
;
3354 /* minimal command environment */
3355 envp
[i
++] = "HOME=/";
3356 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3359 /* Drop the lock while we invoke the usermode helper,
3360 * since the exec could involve hitting disk and hence
3361 * be a slow process */
3362 mutex_unlock(&cgroup_mutex
);
3363 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3364 mutex_lock(&cgroup_mutex
);
3368 spin_lock(&release_list_lock
);
3370 spin_unlock(&release_list_lock
);
3371 mutex_unlock(&cgroup_mutex
);
3374 static int __init
cgroup_disable(char *str
)
3379 while ((token
= strsep(&str
, ",")) != NULL
) {
3383 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3384 struct cgroup_subsys
*ss
= subsys
[i
];
3386 if (!strcmp(token
, ss
->name
)) {
3388 printk(KERN_INFO
"Disabling %s control group"
3389 " subsystem\n", ss
->name
);
3396 __setup("cgroup_disable=", cgroup_disable
);
3399 * Functons for CSS ID.
3403 *To get ID other than 0, this should be called when !cgroup_is_removed().
3405 unsigned short css_id(struct cgroup_subsys_state
*css
)
3407 struct css_id
*cssid
= rcu_dereference(css
->id
);
3414 unsigned short css_depth(struct cgroup_subsys_state
*css
)
3416 struct css_id
*cssid
= rcu_dereference(css
->id
);
3419 return cssid
->depth
;
3423 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
3424 const struct cgroup_subsys_state
*root
)
3426 struct css_id
*child_id
= rcu_dereference(child
->id
);
3427 struct css_id
*root_id
= rcu_dereference(root
->id
);
3429 if (!child_id
|| !root_id
|| (child_id
->depth
< root_id
->depth
))
3431 return child_id
->stack
[root_id
->depth
] == root_id
->id
;
3434 static void __free_css_id_cb(struct rcu_head
*head
)
3438 id
= container_of(head
, struct css_id
, rcu_head
);
3442 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
3444 struct css_id
*id
= css
->id
;
3445 /* When this is called before css_id initialization, id can be NULL */
3449 BUG_ON(!ss
->use_id
);
3451 rcu_assign_pointer(id
->css
, NULL
);
3452 rcu_assign_pointer(css
->id
, NULL
);
3453 spin_lock(&ss
->id_lock
);
3454 idr_remove(&ss
->idr
, id
->id
);
3455 spin_unlock(&ss
->id_lock
);
3456 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
3460 * This is called by init or create(). Then, calls to this function are
3461 * always serialized (By cgroup_mutex() at create()).
3464 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
3466 struct css_id
*newid
;
3467 int myid
, error
, size
;
3469 BUG_ON(!ss
->use_id
);
3471 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
3472 newid
= kzalloc(size
, GFP_KERNEL
);
3474 return ERR_PTR(-ENOMEM
);
3476 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
3480 spin_lock(&ss
->id_lock
);
3481 /* Don't use 0. allocates an ID of 1-65535 */
3482 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
3483 spin_unlock(&ss
->id_lock
);
3485 /* Returns error when there are no free spaces for new ID.*/
3490 if (myid
> CSS_ID_MAX
)
3494 newid
->depth
= depth
;
3498 spin_lock(&ss
->id_lock
);
3499 idr_remove(&ss
->idr
, myid
);
3500 spin_unlock(&ss
->id_lock
);
3503 return ERR_PTR(error
);
3507 static int __init
cgroup_subsys_init_idr(struct cgroup_subsys
*ss
)
3509 struct css_id
*newid
;
3510 struct cgroup_subsys_state
*rootcss
;
3512 spin_lock_init(&ss
->id_lock
);
3515 rootcss
= init_css_set
.subsys
[ss
->subsys_id
];
3516 newid
= get_new_cssid(ss
, 0);
3518 return PTR_ERR(newid
);
3520 newid
->stack
[0] = newid
->id
;
3521 newid
->css
= rootcss
;
3522 rootcss
->id
= newid
;
3526 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
3527 struct cgroup
*child
)
3529 int subsys_id
, i
, depth
= 0;
3530 struct cgroup_subsys_state
*parent_css
, *child_css
;
3531 struct css_id
*child_id
, *parent_id
= NULL
;
3533 subsys_id
= ss
->subsys_id
;
3534 parent_css
= parent
->subsys
[subsys_id
];
3535 child_css
= child
->subsys
[subsys_id
];
3536 depth
= css_depth(parent_css
) + 1;
3537 parent_id
= parent_css
->id
;
3539 child_id
= get_new_cssid(ss
, depth
);
3540 if (IS_ERR(child_id
))
3541 return PTR_ERR(child_id
);
3543 for (i
= 0; i
< depth
; i
++)
3544 child_id
->stack
[i
] = parent_id
->stack
[i
];
3545 child_id
->stack
[depth
] = child_id
->id
;
3547 * child_id->css pointer will be set after this cgroup is available
3548 * see cgroup_populate_dir()
3550 rcu_assign_pointer(child_css
->id
, child_id
);
3556 * css_lookup - lookup css by id
3557 * @ss: cgroup subsys to be looked into.
3560 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3561 * NULL if not. Should be called under rcu_read_lock()
3563 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
3565 struct css_id
*cssid
= NULL
;
3567 BUG_ON(!ss
->use_id
);
3568 cssid
= idr_find(&ss
->idr
, id
);
3570 if (unlikely(!cssid
))
3573 return rcu_dereference(cssid
->css
);
3577 * css_get_next - lookup next cgroup under specified hierarchy.
3578 * @ss: pointer to subsystem
3579 * @id: current position of iteration.
3580 * @root: pointer to css. search tree under this.
3581 * @foundid: position of found object.
3583 * Search next css under the specified hierarchy of rootid. Calling under
3584 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3586 struct cgroup_subsys_state
*
3587 css_get_next(struct cgroup_subsys
*ss
, int id
,
3588 struct cgroup_subsys_state
*root
, int *foundid
)
3590 struct cgroup_subsys_state
*ret
= NULL
;
3593 int rootid
= css_id(root
);
3594 int depth
= css_depth(root
);
3599 BUG_ON(!ss
->use_id
);
3600 /* fill start point for scan */
3604 * scan next entry from bitmap(tree), tmpid is updated after
3607 spin_lock(&ss
->id_lock
);
3608 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
3609 spin_unlock(&ss
->id_lock
);
3613 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
3614 ret
= rcu_dereference(tmp
->css
);
3620 /* continue to scan from next id */