sched: remove sysctl_sched_batch_wakeup_granularity
[linux-2.6/mini2440.git] / kernel / sched_fair.c
blobbedda18f37a5708b58f8eacc9d9d4043d9be889e
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
80 #ifdef CONFIG_FAIR_GROUP_SCHED
82 /* cpu runqueue to which this cfs_rq is attached */
83 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
85 return cfs_rq->rq;
88 /* An entity is a task if it doesn't "own" a runqueue */
89 #define entity_is_task(se) (!se->my_q)
91 #else /* CONFIG_FAIR_GROUP_SCHED */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95 return container_of(cfs_rq, struct rq, cfs);
98 #define entity_is_task(se) 1
100 #endif /* CONFIG_FAIR_GROUP_SCHED */
102 static inline struct task_struct *task_of(struct sched_entity *se)
104 return container_of(se, struct task_struct, se);
108 /**************************************************************
109 * Scheduling class tree data structure manipulation methods:
112 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
114 s64 delta = (s64)(vruntime - min_vruntime);
115 if (delta > 0)
116 min_vruntime = vruntime;
118 return min_vruntime;
121 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
123 s64 delta = (s64)(vruntime - min_vruntime);
124 if (delta < 0)
125 min_vruntime = vruntime;
127 return min_vruntime;
130 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
132 return se->vruntime - cfs_rq->min_vruntime;
136 * Enqueue an entity into the rb-tree:
138 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
140 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
141 struct rb_node *parent = NULL;
142 struct sched_entity *entry;
143 s64 key = entity_key(cfs_rq, se);
144 int leftmost = 1;
147 * Find the right place in the rbtree:
149 while (*link) {
150 parent = *link;
151 entry = rb_entry(parent, struct sched_entity, run_node);
153 * We dont care about collisions. Nodes with
154 * the same key stay together.
156 if (key < entity_key(cfs_rq, entry)) {
157 link = &parent->rb_left;
158 } else {
159 link = &parent->rb_right;
160 leftmost = 0;
165 * Maintain a cache of leftmost tree entries (it is frequently
166 * used):
168 if (leftmost) {
169 cfs_rq->rb_leftmost = &se->run_node;
171 * maintain cfs_rq->min_vruntime to be a monotonic increasing
172 * value tracking the leftmost vruntime in the tree.
174 cfs_rq->min_vruntime =
175 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
182 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 if (cfs_rq->rb_leftmost == &se->run_node) {
185 struct rb_node *next_node;
186 struct sched_entity *next;
188 next_node = rb_next(&se->run_node);
189 cfs_rq->rb_leftmost = next_node;
191 if (next_node) {
192 next = rb_entry(next_node,
193 struct sched_entity, run_node);
194 cfs_rq->min_vruntime =
195 max_vruntime(cfs_rq->min_vruntime,
196 next->vruntime);
200 if (cfs_rq->next == se)
201 cfs_rq->next = NULL;
203 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
206 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
208 return cfs_rq->rb_leftmost;
211 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
213 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
216 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
218 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
220 if (!last)
221 return NULL;
223 return rb_entry(last, struct sched_entity, run_node);
226 /**************************************************************
227 * Scheduling class statistics methods:
230 #ifdef CONFIG_SCHED_DEBUG
231 int sched_nr_latency_handler(struct ctl_table *table, int write,
232 struct file *filp, void __user *buffer, size_t *lenp,
233 loff_t *ppos)
235 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
237 if (ret || !write)
238 return ret;
240 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
241 sysctl_sched_min_granularity);
243 return 0;
245 #endif
248 * The idea is to set a period in which each task runs once.
250 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
251 * this period because otherwise the slices get too small.
253 * p = (nr <= nl) ? l : l*nr/nl
255 static u64 __sched_period(unsigned long nr_running)
257 u64 period = sysctl_sched_latency;
258 unsigned long nr_latency = sched_nr_latency;
260 if (unlikely(nr_running > nr_latency)) {
261 period = sysctl_sched_min_granularity;
262 period *= nr_running;
265 return period;
269 * We calculate the wall-time slice from the period by taking a part
270 * proportional to the weight.
272 * s = p*w/rw
274 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
276 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
277 se->load.weight, &cfs_rq->load);
281 * We calculate the vruntime slice.
283 * vs = s/w = p/rw
285 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
287 u64 vslice = __sched_period(nr_running);
289 vslice *= NICE_0_LOAD;
290 do_div(vslice, rq_weight);
292 return vslice;
295 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
297 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
298 cfs_rq->nr_running + 1);
302 * Update the current task's runtime statistics. Skip current tasks that
303 * are not in our scheduling class.
305 static inline void
306 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
307 unsigned long delta_exec)
309 unsigned long delta_exec_weighted;
311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
313 curr->sum_exec_runtime += delta_exec;
314 schedstat_add(cfs_rq, exec_clock, delta_exec);
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
320 curr->vruntime += delta_exec_weighted;
323 static void update_curr(struct cfs_rq *cfs_rq)
325 struct sched_entity *curr = cfs_rq->curr;
326 u64 now = rq_of(cfs_rq)->clock;
327 unsigned long delta_exec;
329 if (unlikely(!curr))
330 return;
333 * Get the amount of time the current task was running
334 * since the last time we changed load (this cannot
335 * overflow on 32 bits):
337 delta_exec = (unsigned long)(now - curr->exec_start);
339 __update_curr(cfs_rq, curr, delta_exec);
340 curr->exec_start = now;
342 if (entity_is_task(curr)) {
343 struct task_struct *curtask = task_of(curr);
345 cpuacct_charge(curtask, delta_exec);
349 static inline void
350 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
352 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
356 * Task is being enqueued - update stats:
358 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 * Are we enqueueing a waiting task? (for current tasks
362 * a dequeue/enqueue event is a NOP)
364 if (se != cfs_rq->curr)
365 update_stats_wait_start(cfs_rq, se);
368 static void
369 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
371 schedstat_set(se->wait_max, max(se->wait_max,
372 rq_of(cfs_rq)->clock - se->wait_start));
373 schedstat_set(se->wait_count, se->wait_count + 1);
374 schedstat_set(se->wait_sum, se->wait_sum +
375 rq_of(cfs_rq)->clock - se->wait_start);
376 schedstat_set(se->wait_start, 0);
379 static inline void
380 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
383 * Mark the end of the wait period if dequeueing a
384 * waiting task:
386 if (se != cfs_rq->curr)
387 update_stats_wait_end(cfs_rq, se);
391 * We are picking a new current task - update its stats:
393 static inline void
394 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
397 * We are starting a new run period:
399 se->exec_start = rq_of(cfs_rq)->clock;
402 /**************************************************
403 * Scheduling class queueing methods:
406 static void
407 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
409 update_load_add(&cfs_rq->load, se->load.weight);
410 cfs_rq->nr_running++;
411 se->on_rq = 1;
414 static void
415 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
417 update_load_sub(&cfs_rq->load, se->load.weight);
418 cfs_rq->nr_running--;
419 se->on_rq = 0;
422 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
424 #ifdef CONFIG_SCHEDSTATS
425 if (se->sleep_start) {
426 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
427 struct task_struct *tsk = task_of(se);
429 if ((s64)delta < 0)
430 delta = 0;
432 if (unlikely(delta > se->sleep_max))
433 se->sleep_max = delta;
435 se->sleep_start = 0;
436 se->sum_sleep_runtime += delta;
438 account_scheduler_latency(tsk, delta >> 10, 1);
440 if (se->block_start) {
441 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
442 struct task_struct *tsk = task_of(se);
444 if ((s64)delta < 0)
445 delta = 0;
447 if (unlikely(delta > se->block_max))
448 se->block_max = delta;
450 se->block_start = 0;
451 se->sum_sleep_runtime += delta;
454 * Blocking time is in units of nanosecs, so shift by 20 to
455 * get a milliseconds-range estimation of the amount of
456 * time that the task spent sleeping:
458 if (unlikely(prof_on == SLEEP_PROFILING)) {
460 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
461 delta >> 20);
463 account_scheduler_latency(tsk, delta >> 10, 0);
465 #endif
468 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
470 #ifdef CONFIG_SCHED_DEBUG
471 s64 d = se->vruntime - cfs_rq->min_vruntime;
473 if (d < 0)
474 d = -d;
476 if (d > 3*sysctl_sched_latency)
477 schedstat_inc(cfs_rq, nr_spread_over);
478 #endif
481 static void
482 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
484 u64 vruntime;
486 if (first_fair(cfs_rq)) {
487 vruntime = min_vruntime(cfs_rq->min_vruntime,
488 __pick_next_entity(cfs_rq)->vruntime);
489 } else
490 vruntime = cfs_rq->min_vruntime;
493 * The 'current' period is already promised to the current tasks,
494 * however the extra weight of the new task will slow them down a
495 * little, place the new task so that it fits in the slot that
496 * stays open at the end.
498 if (initial && sched_feat(START_DEBIT))
499 vruntime += sched_vslice_add(cfs_rq, se);
501 if (!initial) {
502 /* sleeps upto a single latency don't count. */
503 if (sched_feat(NEW_FAIR_SLEEPERS)) {
504 vruntime -= calc_delta_fair(sysctl_sched_latency,
505 &cfs_rq->load);
508 /* ensure we never gain time by being placed backwards. */
509 vruntime = max_vruntime(se->vruntime, vruntime);
512 se->vruntime = vruntime;
515 static void
516 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
519 * Update run-time statistics of the 'current'.
521 update_curr(cfs_rq);
523 if (wakeup) {
524 place_entity(cfs_rq, se, 0);
525 enqueue_sleeper(cfs_rq, se);
528 update_stats_enqueue(cfs_rq, se);
529 check_spread(cfs_rq, se);
530 if (se != cfs_rq->curr)
531 __enqueue_entity(cfs_rq, se);
532 account_entity_enqueue(cfs_rq, se);
535 static void update_avg(u64 *avg, u64 sample)
537 s64 diff = sample - *avg;
538 *avg += diff >> 3;
541 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 if (!se->last_wakeup)
544 return;
546 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
547 se->last_wakeup = 0;
550 static void
551 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
554 * Update run-time statistics of the 'current'.
556 update_curr(cfs_rq);
558 update_stats_dequeue(cfs_rq, se);
559 if (sleep) {
560 update_avg_stats(cfs_rq, se);
561 #ifdef CONFIG_SCHEDSTATS
562 if (entity_is_task(se)) {
563 struct task_struct *tsk = task_of(se);
565 if (tsk->state & TASK_INTERRUPTIBLE)
566 se->sleep_start = rq_of(cfs_rq)->clock;
567 if (tsk->state & TASK_UNINTERRUPTIBLE)
568 se->block_start = rq_of(cfs_rq)->clock;
570 #endif
573 if (se != cfs_rq->curr)
574 __dequeue_entity(cfs_rq, se);
575 account_entity_dequeue(cfs_rq, se);
579 * Preempt the current task with a newly woken task if needed:
581 static void
582 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
584 unsigned long ideal_runtime, delta_exec;
586 ideal_runtime = sched_slice(cfs_rq, curr);
587 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
588 if (delta_exec > ideal_runtime)
589 resched_task(rq_of(cfs_rq)->curr);
592 static void
593 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
595 /* 'current' is not kept within the tree. */
596 if (se->on_rq) {
598 * Any task has to be enqueued before it get to execute on
599 * a CPU. So account for the time it spent waiting on the
600 * runqueue.
602 update_stats_wait_end(cfs_rq, se);
603 __dequeue_entity(cfs_rq, se);
606 update_stats_curr_start(cfs_rq, se);
607 cfs_rq->curr = se;
608 #ifdef CONFIG_SCHEDSTATS
610 * Track our maximum slice length, if the CPU's load is at
611 * least twice that of our own weight (i.e. dont track it
612 * when there are only lesser-weight tasks around):
614 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
615 se->slice_max = max(se->slice_max,
616 se->sum_exec_runtime - se->prev_sum_exec_runtime);
618 #endif
619 se->prev_sum_exec_runtime = se->sum_exec_runtime;
622 static int
623 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
625 static struct sched_entity *
626 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 if (!cfs_rq->next)
629 return se;
631 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
632 return se;
634 return cfs_rq->next;
637 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
639 struct sched_entity *se = NULL;
641 if (first_fair(cfs_rq)) {
642 se = __pick_next_entity(cfs_rq);
643 se = pick_next(cfs_rq, se);
644 set_next_entity(cfs_rq, se);
647 return se;
650 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
653 * If still on the runqueue then deactivate_task()
654 * was not called and update_curr() has to be done:
656 if (prev->on_rq)
657 update_curr(cfs_rq);
659 check_spread(cfs_rq, prev);
660 if (prev->on_rq) {
661 update_stats_wait_start(cfs_rq, prev);
662 /* Put 'current' back into the tree. */
663 __enqueue_entity(cfs_rq, prev);
665 cfs_rq->curr = NULL;
668 static void
669 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
672 * Update run-time statistics of the 'current'.
674 update_curr(cfs_rq);
676 #ifdef CONFIG_SCHED_HRTICK
678 * queued ticks are scheduled to match the slice, so don't bother
679 * validating it and just reschedule.
681 if (queued)
682 return resched_task(rq_of(cfs_rq)->curr);
684 * don't let the period tick interfere with the hrtick preemption
686 if (!sched_feat(DOUBLE_TICK) &&
687 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
688 return;
689 #endif
691 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
692 check_preempt_tick(cfs_rq, curr);
695 /**************************************************
696 * CFS operations on tasks:
699 #ifdef CONFIG_FAIR_GROUP_SCHED
701 /* Walk up scheduling entities hierarchy */
702 #define for_each_sched_entity(se) \
703 for (; se; se = se->parent)
705 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
707 return p->se.cfs_rq;
710 /* runqueue on which this entity is (to be) queued */
711 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
713 return se->cfs_rq;
716 /* runqueue "owned" by this group */
717 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
719 return grp->my_q;
722 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
723 * another cpu ('this_cpu')
725 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
727 return cfs_rq->tg->cfs_rq[this_cpu];
730 /* Iterate thr' all leaf cfs_rq's on a runqueue */
731 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
732 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
734 /* Do the two (enqueued) entities belong to the same group ? */
735 static inline int
736 is_same_group(struct sched_entity *se, struct sched_entity *pse)
738 if (se->cfs_rq == pse->cfs_rq)
739 return 1;
741 return 0;
744 static inline struct sched_entity *parent_entity(struct sched_entity *se)
746 return se->parent;
749 #else /* CONFIG_FAIR_GROUP_SCHED */
751 #define for_each_sched_entity(se) \
752 for (; se; se = NULL)
754 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
756 return &task_rq(p)->cfs;
759 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
761 struct task_struct *p = task_of(se);
762 struct rq *rq = task_rq(p);
764 return &rq->cfs;
767 /* runqueue "owned" by this group */
768 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
770 return NULL;
773 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
775 return &cpu_rq(this_cpu)->cfs;
778 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
779 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
781 static inline int
782 is_same_group(struct sched_entity *se, struct sched_entity *pse)
784 return 1;
787 static inline struct sched_entity *parent_entity(struct sched_entity *se)
789 return NULL;
792 #endif /* CONFIG_FAIR_GROUP_SCHED */
794 #ifdef CONFIG_SCHED_HRTICK
795 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
797 int requeue = rq->curr == p;
798 struct sched_entity *se = &p->se;
799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
801 WARN_ON(task_rq(p) != rq);
803 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
804 u64 slice = sched_slice(cfs_rq, se);
805 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
806 s64 delta = slice - ran;
808 if (delta < 0) {
809 if (rq->curr == p)
810 resched_task(p);
811 return;
815 * Don't schedule slices shorter than 10000ns, that just
816 * doesn't make sense. Rely on vruntime for fairness.
818 if (!requeue)
819 delta = max(10000LL, delta);
821 hrtick_start(rq, delta, requeue);
824 #else
825 static inline void
826 hrtick_start_fair(struct rq *rq, struct task_struct *p)
829 #endif
832 * The enqueue_task method is called before nr_running is
833 * increased. Here we update the fair scheduling stats and
834 * then put the task into the rbtree:
836 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
838 struct cfs_rq *cfs_rq;
839 struct sched_entity *se = &p->se;
841 for_each_sched_entity(se) {
842 if (se->on_rq)
843 break;
844 cfs_rq = cfs_rq_of(se);
845 enqueue_entity(cfs_rq, se, wakeup);
846 wakeup = 1;
849 hrtick_start_fair(rq, rq->curr);
853 * The dequeue_task method is called before nr_running is
854 * decreased. We remove the task from the rbtree and
855 * update the fair scheduling stats:
857 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
859 struct cfs_rq *cfs_rq;
860 struct sched_entity *se = &p->se;
862 for_each_sched_entity(se) {
863 cfs_rq = cfs_rq_of(se);
864 dequeue_entity(cfs_rq, se, sleep);
865 /* Don't dequeue parent if it has other entities besides us */
866 if (cfs_rq->load.weight)
867 break;
868 sleep = 1;
871 hrtick_start_fair(rq, rq->curr);
875 * sched_yield() support is very simple - we dequeue and enqueue.
877 * If compat_yield is turned on then we requeue to the end of the tree.
879 static void yield_task_fair(struct rq *rq)
881 struct task_struct *curr = rq->curr;
882 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
883 struct sched_entity *rightmost, *se = &curr->se;
886 * Are we the only task in the tree?
888 if (unlikely(cfs_rq->nr_running == 1))
889 return;
891 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
892 __update_rq_clock(rq);
894 * Update run-time statistics of the 'current'.
896 update_curr(cfs_rq);
898 return;
901 * Find the rightmost entry in the rbtree:
903 rightmost = __pick_last_entity(cfs_rq);
905 * Already in the rightmost position?
907 if (unlikely(rightmost->vruntime < se->vruntime))
908 return;
911 * Minimally necessary key value to be last in the tree:
912 * Upon rescheduling, sched_class::put_prev_task() will place
913 * 'current' within the tree based on its new key value.
915 se->vruntime = rightmost->vruntime + 1;
919 * wake_idle() will wake a task on an idle cpu if task->cpu is
920 * not idle and an idle cpu is available. The span of cpus to
921 * search starts with cpus closest then further out as needed,
922 * so we always favor a closer, idle cpu.
924 * Returns the CPU we should wake onto.
926 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
927 static int wake_idle(int cpu, struct task_struct *p)
929 cpumask_t tmp;
930 struct sched_domain *sd;
931 int i;
934 * If it is idle, then it is the best cpu to run this task.
936 * This cpu is also the best, if it has more than one task already.
937 * Siblings must be also busy(in most cases) as they didn't already
938 * pickup the extra load from this cpu and hence we need not check
939 * sibling runqueue info. This will avoid the checks and cache miss
940 * penalities associated with that.
942 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
943 return cpu;
945 for_each_domain(cpu, sd) {
946 if (sd->flags & SD_WAKE_IDLE) {
947 cpus_and(tmp, sd->span, p->cpus_allowed);
948 for_each_cpu_mask(i, tmp) {
949 if (idle_cpu(i)) {
950 if (i != task_cpu(p)) {
951 schedstat_inc(p,
952 se.nr_wakeups_idle);
954 return i;
957 } else {
958 break;
961 return cpu;
963 #else
964 static inline int wake_idle(int cpu, struct task_struct *p)
966 return cpu;
968 #endif
970 #ifdef CONFIG_SMP
972 static const struct sched_class fair_sched_class;
974 static int
975 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
976 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
977 int idx, unsigned long load, unsigned long this_load,
978 unsigned int imbalance)
980 struct task_struct *curr = this_rq->curr;
981 unsigned long tl = this_load;
982 unsigned long tl_per_task;
984 if (!(this_sd->flags & SD_WAKE_AFFINE))
985 return 0;
988 * If the currently running task will sleep within
989 * a reasonable amount of time then attract this newly
990 * woken task:
992 if (sync && curr->sched_class == &fair_sched_class) {
993 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
994 p->se.avg_overlap < sysctl_sched_migration_cost)
995 return 1;
998 schedstat_inc(p, se.nr_wakeups_affine_attempts);
999 tl_per_task = cpu_avg_load_per_task(this_cpu);
1002 * If sync wakeup then subtract the (maximum possible)
1003 * effect of the currently running task from the load
1004 * of the current CPU:
1006 if (sync)
1007 tl -= current->se.load.weight;
1009 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1010 100*(tl + p->se.load.weight) <= imbalance*load) {
1012 * This domain has SD_WAKE_AFFINE and
1013 * p is cache cold in this domain, and
1014 * there is no bad imbalance.
1016 schedstat_inc(this_sd, ttwu_move_affine);
1017 schedstat_inc(p, se.nr_wakeups_affine);
1019 return 1;
1021 return 0;
1024 static int select_task_rq_fair(struct task_struct *p, int sync)
1026 struct sched_domain *sd, *this_sd = NULL;
1027 int prev_cpu, this_cpu, new_cpu;
1028 unsigned long load, this_load;
1029 struct rq *rq, *this_rq;
1030 unsigned int imbalance;
1031 int idx;
1033 prev_cpu = task_cpu(p);
1034 rq = task_rq(p);
1035 this_cpu = smp_processor_id();
1036 this_rq = cpu_rq(this_cpu);
1037 new_cpu = prev_cpu;
1040 * 'this_sd' is the first domain that both
1041 * this_cpu and prev_cpu are present in:
1043 for_each_domain(this_cpu, sd) {
1044 if (cpu_isset(prev_cpu, sd->span)) {
1045 this_sd = sd;
1046 break;
1050 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1051 goto out;
1054 * Check for affine wakeup and passive balancing possibilities.
1056 if (!this_sd)
1057 goto out;
1059 idx = this_sd->wake_idx;
1061 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1063 load = source_load(prev_cpu, idx);
1064 this_load = target_load(this_cpu, idx);
1066 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1067 load, this_load, imbalance))
1068 return this_cpu;
1070 if (prev_cpu == this_cpu)
1071 goto out;
1074 * Start passive balancing when half the imbalance_pct
1075 * limit is reached.
1077 if (this_sd->flags & SD_WAKE_BALANCE) {
1078 if (imbalance*this_load <= 100*load) {
1079 schedstat_inc(this_sd, ttwu_move_balance);
1080 schedstat_inc(p, se.nr_wakeups_passive);
1081 return this_cpu;
1085 out:
1086 return wake_idle(new_cpu, p);
1088 #endif /* CONFIG_SMP */
1090 static unsigned long wakeup_gran(struct sched_entity *se)
1092 unsigned long gran = sysctl_sched_wakeup_granularity;
1095 * More easily preempt - nice tasks, while not making
1096 * it harder for + nice tasks.
1098 if (unlikely(se->load.weight > NICE_0_LOAD))
1099 gran = calc_delta_fair(gran, &se->load);
1101 return gran;
1105 * Should 'se' preempt 'curr'.
1107 * |s1
1108 * |s2
1109 * |s3
1111 * |<--->|c
1113 * w(c, s1) = -1
1114 * w(c, s2) = 0
1115 * w(c, s3) = 1
1118 static int
1119 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1121 s64 gran, vdiff = curr->vruntime - se->vruntime;
1123 if (vdiff < 0)
1124 return -1;
1126 gran = wakeup_gran(curr);
1127 if (vdiff > gran)
1128 return 1;
1130 return 0;
1134 * Preempt the current task with a newly woken task if needed:
1136 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1138 struct task_struct *curr = rq->curr;
1139 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1140 struct sched_entity *se = &curr->se, *pse = &p->se;
1142 if (unlikely(rt_prio(p->prio))) {
1143 update_rq_clock(rq);
1144 update_curr(cfs_rq);
1145 resched_task(curr);
1146 return;
1149 se->last_wakeup = se->sum_exec_runtime;
1150 if (unlikely(se == pse))
1151 return;
1153 cfs_rq_of(pse)->next = pse;
1156 * Batch tasks do not preempt (their preemption is driven by
1157 * the tick):
1159 if (unlikely(p->policy == SCHED_BATCH))
1160 return;
1162 if (!sched_feat(WAKEUP_PREEMPT))
1163 return;
1165 while (!is_same_group(se, pse)) {
1166 se = parent_entity(se);
1167 pse = parent_entity(pse);
1170 if (wakeup_preempt_entity(se, pse) == 1)
1171 resched_task(curr);
1174 static struct task_struct *pick_next_task_fair(struct rq *rq)
1176 struct task_struct *p;
1177 struct cfs_rq *cfs_rq = &rq->cfs;
1178 struct sched_entity *se;
1180 if (unlikely(!cfs_rq->nr_running))
1181 return NULL;
1183 do {
1184 se = pick_next_entity(cfs_rq);
1185 cfs_rq = group_cfs_rq(se);
1186 } while (cfs_rq);
1188 p = task_of(se);
1189 hrtick_start_fair(rq, p);
1191 return p;
1195 * Account for a descheduled task:
1197 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1199 struct sched_entity *se = &prev->se;
1200 struct cfs_rq *cfs_rq;
1202 for_each_sched_entity(se) {
1203 cfs_rq = cfs_rq_of(se);
1204 put_prev_entity(cfs_rq, se);
1208 #ifdef CONFIG_SMP
1209 /**************************************************
1210 * Fair scheduling class load-balancing methods:
1214 * Load-balancing iterator. Note: while the runqueue stays locked
1215 * during the whole iteration, the current task might be
1216 * dequeued so the iterator has to be dequeue-safe. Here we
1217 * achieve that by always pre-iterating before returning
1218 * the current task:
1220 static struct task_struct *
1221 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1223 struct task_struct *p;
1225 if (!curr)
1226 return NULL;
1228 p = rb_entry(curr, struct task_struct, se.run_node);
1229 cfs_rq->rb_load_balance_curr = rb_next(curr);
1231 return p;
1234 static struct task_struct *load_balance_start_fair(void *arg)
1236 struct cfs_rq *cfs_rq = arg;
1238 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1241 static struct task_struct *load_balance_next_fair(void *arg)
1243 struct cfs_rq *cfs_rq = arg;
1245 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1248 #ifdef CONFIG_FAIR_GROUP_SCHED
1249 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1251 struct sched_entity *curr;
1252 struct task_struct *p;
1254 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1255 return MAX_PRIO;
1257 curr = cfs_rq->curr;
1258 if (!curr)
1259 curr = __pick_next_entity(cfs_rq);
1261 p = task_of(curr);
1263 return p->prio;
1265 #endif
1267 static unsigned long
1268 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1269 unsigned long max_load_move,
1270 struct sched_domain *sd, enum cpu_idle_type idle,
1271 int *all_pinned, int *this_best_prio)
1273 struct cfs_rq *busy_cfs_rq;
1274 long rem_load_move = max_load_move;
1275 struct rq_iterator cfs_rq_iterator;
1277 cfs_rq_iterator.start = load_balance_start_fair;
1278 cfs_rq_iterator.next = load_balance_next_fair;
1280 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1281 #ifdef CONFIG_FAIR_GROUP_SCHED
1282 struct cfs_rq *this_cfs_rq;
1283 long imbalance;
1284 unsigned long maxload;
1286 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1288 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1289 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1290 if (imbalance <= 0)
1291 continue;
1293 /* Don't pull more than imbalance/2 */
1294 imbalance /= 2;
1295 maxload = min(rem_load_move, imbalance);
1297 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1298 #else
1299 # define maxload rem_load_move
1300 #endif
1302 * pass busy_cfs_rq argument into
1303 * load_balance_[start|next]_fair iterators
1305 cfs_rq_iterator.arg = busy_cfs_rq;
1306 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1307 maxload, sd, idle, all_pinned,
1308 this_best_prio,
1309 &cfs_rq_iterator);
1311 if (rem_load_move <= 0)
1312 break;
1315 return max_load_move - rem_load_move;
1318 static int
1319 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1320 struct sched_domain *sd, enum cpu_idle_type idle)
1322 struct cfs_rq *busy_cfs_rq;
1323 struct rq_iterator cfs_rq_iterator;
1325 cfs_rq_iterator.start = load_balance_start_fair;
1326 cfs_rq_iterator.next = load_balance_next_fair;
1328 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1330 * pass busy_cfs_rq argument into
1331 * load_balance_[start|next]_fair iterators
1333 cfs_rq_iterator.arg = busy_cfs_rq;
1334 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1335 &cfs_rq_iterator))
1336 return 1;
1339 return 0;
1341 #endif
1344 * scheduler tick hitting a task of our scheduling class:
1346 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1348 struct cfs_rq *cfs_rq;
1349 struct sched_entity *se = &curr->se;
1351 for_each_sched_entity(se) {
1352 cfs_rq = cfs_rq_of(se);
1353 entity_tick(cfs_rq, se, queued);
1357 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1360 * Share the fairness runtime between parent and child, thus the
1361 * total amount of pressure for CPU stays equal - new tasks
1362 * get a chance to run but frequent forkers are not allowed to
1363 * monopolize the CPU. Note: the parent runqueue is locked,
1364 * the child is not running yet.
1366 static void task_new_fair(struct rq *rq, struct task_struct *p)
1368 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1369 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1370 int this_cpu = smp_processor_id();
1372 sched_info_queued(p);
1374 update_curr(cfs_rq);
1375 place_entity(cfs_rq, se, 1);
1377 /* 'curr' will be NULL if the child belongs to a different group */
1378 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1379 curr && curr->vruntime < se->vruntime) {
1381 * Upon rescheduling, sched_class::put_prev_task() will place
1382 * 'current' within the tree based on its new key value.
1384 swap(curr->vruntime, se->vruntime);
1387 enqueue_task_fair(rq, p, 0);
1388 resched_task(rq->curr);
1392 * Priority of the task has changed. Check to see if we preempt
1393 * the current task.
1395 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1396 int oldprio, int running)
1399 * Reschedule if we are currently running on this runqueue and
1400 * our priority decreased, or if we are not currently running on
1401 * this runqueue and our priority is higher than the current's
1403 if (running) {
1404 if (p->prio > oldprio)
1405 resched_task(rq->curr);
1406 } else
1407 check_preempt_curr(rq, p);
1411 * We switched to the sched_fair class.
1413 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1414 int running)
1417 * We were most likely switched from sched_rt, so
1418 * kick off the schedule if running, otherwise just see
1419 * if we can still preempt the current task.
1421 if (running)
1422 resched_task(rq->curr);
1423 else
1424 check_preempt_curr(rq, p);
1427 /* Account for a task changing its policy or group.
1429 * This routine is mostly called to set cfs_rq->curr field when a task
1430 * migrates between groups/classes.
1432 static void set_curr_task_fair(struct rq *rq)
1434 struct sched_entity *se = &rq->curr->se;
1436 for_each_sched_entity(se)
1437 set_next_entity(cfs_rq_of(se), se);
1440 #ifdef CONFIG_FAIR_GROUP_SCHED
1441 static void moved_group_fair(struct task_struct *p)
1443 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1445 update_curr(cfs_rq);
1446 place_entity(cfs_rq, &p->se, 1);
1448 #endif
1451 * All the scheduling class methods:
1453 static const struct sched_class fair_sched_class = {
1454 .next = &idle_sched_class,
1455 .enqueue_task = enqueue_task_fair,
1456 .dequeue_task = dequeue_task_fair,
1457 .yield_task = yield_task_fair,
1458 #ifdef CONFIG_SMP
1459 .select_task_rq = select_task_rq_fair,
1460 #endif /* CONFIG_SMP */
1462 .check_preempt_curr = check_preempt_wakeup,
1464 .pick_next_task = pick_next_task_fair,
1465 .put_prev_task = put_prev_task_fair,
1467 #ifdef CONFIG_SMP
1468 .load_balance = load_balance_fair,
1469 .move_one_task = move_one_task_fair,
1470 #endif
1472 .set_curr_task = set_curr_task_fair,
1473 .task_tick = task_tick_fair,
1474 .task_new = task_new_fair,
1476 .prio_changed = prio_changed_fair,
1477 .switched_to = switched_to_fair,
1479 #ifdef CONFIG_FAIR_GROUP_SCHED
1480 .moved_group = moved_group_fair,
1481 #endif
1484 #ifdef CONFIG_SCHED_DEBUG
1485 static void print_cfs_stats(struct seq_file *m, int cpu)
1487 struct cfs_rq *cfs_rq;
1489 #ifdef CONFIG_FAIR_GROUP_SCHED
1490 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1491 #endif
1492 rcu_read_lock();
1493 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1494 print_cfs_rq(m, cpu, cfs_rq);
1495 rcu_read_unlock();
1497 #endif