sh: sh7366 clock framework rewrite
[linux-2.6/mini2440.git] / drivers / net / korina.c
blob38d6649a29c42a491139b2cb882d3a68421c0fc3
1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Writing to a DMA status register:
30 * When writing to the status register, you should mask the bit you have
31 * been testing the status register with. Both Tx and Rx DMA registers
32 * should stick to this procedure.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/segment.h>
62 #include <asm/io.h>
63 #include <asm/dma.h>
65 #include <asm/mach-rc32434/rb.h>
66 #include <asm/mach-rc32434/rc32434.h>
67 #include <asm/mach-rc32434/eth.h>
68 #include <asm/mach-rc32434/dma_v.h>
70 #define DRV_NAME "korina"
71 #define DRV_VERSION "0.10"
72 #define DRV_RELDATE "04Mar2008"
74 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
75 ((dev)->dev_addr[1]))
76 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
77 ((dev)->dev_addr[3] << 16) | \
78 ((dev)->dev_addr[4] << 8) | \
79 ((dev)->dev_addr[5]))
81 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
83 /* the following must be powers of two */
84 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
85 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
87 /* KORINA_RBSIZE is the hardware's default maximum receive
88 * frame size in bytes. Having this hardcoded means that there
89 * is no support for MTU sizes greater than 1500. */
90 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
91 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
92 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
93 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
94 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
96 #define TX_TIMEOUT (6000 * HZ / 1000)
98 enum chain_status { desc_filled, desc_empty };
99 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
100 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
101 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
103 /* Information that need to be kept for each board. */
104 struct korina_private {
105 struct eth_regs *eth_regs;
106 struct dma_reg *rx_dma_regs;
107 struct dma_reg *tx_dma_regs;
108 struct dma_desc *td_ring; /* transmit descriptor ring */
109 struct dma_desc *rd_ring; /* receive descriptor ring */
111 struct sk_buff *tx_skb[KORINA_NUM_TDS];
112 struct sk_buff *rx_skb[KORINA_NUM_RDS];
114 int rx_next_done;
115 int rx_chain_head;
116 int rx_chain_tail;
117 enum chain_status rx_chain_status;
119 int tx_next_done;
120 int tx_chain_head;
121 int tx_chain_tail;
122 enum chain_status tx_chain_status;
123 int tx_count;
124 int tx_full;
126 int rx_irq;
127 int tx_irq;
128 int ovr_irq;
129 int und_irq;
131 spinlock_t lock; /* NIC xmit lock */
133 int dma_halt_cnt;
134 int dma_run_cnt;
135 struct napi_struct napi;
136 struct mii_if_info mii_if;
137 struct net_device *dev;
138 int phy_addr;
141 extern unsigned int idt_cpu_freq;
143 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
145 writel(0, &ch->dmandptr);
146 writel(dma_addr, &ch->dmadptr);
149 static inline void korina_abort_dma(struct net_device *dev,
150 struct dma_reg *ch)
152 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
153 writel(0x10, &ch->dmac);
155 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
156 dev->trans_start = jiffies;
158 writel(0, &ch->dmas);
161 writel(0, &ch->dmadptr);
162 writel(0, &ch->dmandptr);
165 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
167 writel(dma_addr, &ch->dmandptr);
170 static void korina_abort_tx(struct net_device *dev)
172 struct korina_private *lp = netdev_priv(dev);
174 korina_abort_dma(dev, lp->tx_dma_regs);
177 static void korina_abort_rx(struct net_device *dev)
179 struct korina_private *lp = netdev_priv(dev);
181 korina_abort_dma(dev, lp->rx_dma_regs);
184 static void korina_start_rx(struct korina_private *lp,
185 struct dma_desc *rd)
187 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
190 static void korina_chain_rx(struct korina_private *lp,
191 struct dma_desc *rd)
193 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
196 /* transmit packet */
197 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
199 struct korina_private *lp = netdev_priv(dev);
200 unsigned long flags;
201 u32 length;
202 u32 chain_prev, chain_next;
203 struct dma_desc *td;
205 spin_lock_irqsave(&lp->lock, flags);
207 td = &lp->td_ring[lp->tx_chain_tail];
209 /* stop queue when full, drop pkts if queue already full */
210 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
211 lp->tx_full = 1;
213 if (lp->tx_count == (KORINA_NUM_TDS - 2))
214 netif_stop_queue(dev);
215 else {
216 dev->stats.tx_dropped++;
217 dev_kfree_skb_any(skb);
218 spin_unlock_irqrestore(&lp->lock, flags);
220 return NETDEV_TX_BUSY;
224 lp->tx_count++;
226 lp->tx_skb[lp->tx_chain_tail] = skb;
228 length = skb->len;
229 dma_cache_wback((u32)skb->data, skb->len);
231 /* Setup the transmit descriptor. */
232 dma_cache_inv((u32) td, sizeof(*td));
233 td->ca = CPHYSADDR(skb->data);
234 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
235 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
237 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
238 if (lp->tx_chain_status == desc_empty) {
239 /* Update tail */
240 td->control = DMA_COUNT(length) |
241 DMA_DESC_COF | DMA_DESC_IOF;
242 /* Move tail */
243 lp->tx_chain_tail = chain_next;
244 /* Write to NDPTR */
245 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
246 &lp->tx_dma_regs->dmandptr);
247 /* Move head to tail */
248 lp->tx_chain_head = lp->tx_chain_tail;
249 } else {
250 /* Update tail */
251 td->control = DMA_COUNT(length) |
252 DMA_DESC_COF | DMA_DESC_IOF;
253 /* Link to prev */
254 lp->td_ring[chain_prev].control &=
255 ~DMA_DESC_COF;
256 /* Link to prev */
257 lp->td_ring[chain_prev].link = CPHYSADDR(td);
258 /* Move tail */
259 lp->tx_chain_tail = chain_next;
260 /* Write to NDPTR */
261 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
262 &(lp->tx_dma_regs->dmandptr));
263 /* Move head to tail */
264 lp->tx_chain_head = lp->tx_chain_tail;
265 lp->tx_chain_status = desc_empty;
267 } else {
268 if (lp->tx_chain_status == desc_empty) {
269 /* Update tail */
270 td->control = DMA_COUNT(length) |
271 DMA_DESC_COF | DMA_DESC_IOF;
272 /* Move tail */
273 lp->tx_chain_tail = chain_next;
274 lp->tx_chain_status = desc_filled;
275 } else {
276 /* Update tail */
277 td->control = DMA_COUNT(length) |
278 DMA_DESC_COF | DMA_DESC_IOF;
279 lp->td_ring[chain_prev].control &=
280 ~DMA_DESC_COF;
281 lp->td_ring[chain_prev].link = CPHYSADDR(td);
282 lp->tx_chain_tail = chain_next;
285 dma_cache_wback((u32) td, sizeof(*td));
287 dev->trans_start = jiffies;
288 spin_unlock_irqrestore(&lp->lock, flags);
290 return NETDEV_TX_OK;
293 static int mdio_read(struct net_device *dev, int mii_id, int reg)
295 struct korina_private *lp = netdev_priv(dev);
296 int ret;
298 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
300 writel(0, &lp->eth_regs->miimcfg);
301 writel(0, &lp->eth_regs->miimcmd);
302 writel(mii_id | reg, &lp->eth_regs->miimaddr);
303 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
305 ret = (int)(readl(&lp->eth_regs->miimrdd));
306 return ret;
309 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
311 struct korina_private *lp = netdev_priv(dev);
313 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
315 writel(0, &lp->eth_regs->miimcfg);
316 writel(1, &lp->eth_regs->miimcmd);
317 writel(mii_id | reg, &lp->eth_regs->miimaddr);
318 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
319 writel(val, &lp->eth_regs->miimwtd);
322 /* Ethernet Rx DMA interrupt */
323 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
325 struct net_device *dev = dev_id;
326 struct korina_private *lp = netdev_priv(dev);
327 u32 dmas, dmasm;
328 irqreturn_t retval;
330 dmas = readl(&lp->rx_dma_regs->dmas);
331 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
332 dmasm = readl(&lp->rx_dma_regs->dmasm);
333 writel(dmasm | (DMA_STAT_DONE |
334 DMA_STAT_HALT | DMA_STAT_ERR),
335 &lp->rx_dma_regs->dmasm);
337 napi_schedule(&lp->napi);
339 if (dmas & DMA_STAT_ERR)
340 printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
342 retval = IRQ_HANDLED;
343 } else
344 retval = IRQ_NONE;
346 return retval;
349 static int korina_rx(struct net_device *dev, int limit)
351 struct korina_private *lp = netdev_priv(dev);
352 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
353 struct sk_buff *skb, *skb_new;
354 u8 *pkt_buf;
355 u32 devcs, pkt_len, dmas;
356 int count;
358 dma_cache_inv((u32)rd, sizeof(*rd));
360 for (count = 0; count < limit; count++) {
361 skb = lp->rx_skb[lp->rx_next_done];
362 skb_new = NULL;
364 devcs = rd->devcs;
366 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
367 break;
369 /* Update statistics counters */
370 if (devcs & ETH_RX_CRC)
371 dev->stats.rx_crc_errors++;
372 if (devcs & ETH_RX_LOR)
373 dev->stats.rx_length_errors++;
374 if (devcs & ETH_RX_LE)
375 dev->stats.rx_length_errors++;
376 if (devcs & ETH_RX_OVR)
377 dev->stats.rx_over_errors++;
378 if (devcs & ETH_RX_CV)
379 dev->stats.rx_frame_errors++;
380 if (devcs & ETH_RX_CES)
381 dev->stats.rx_length_errors++;
382 if (devcs & ETH_RX_MP)
383 dev->stats.multicast++;
385 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
386 /* check that this is a whole packet
387 * WARNING: DMA_FD bit incorrectly set
388 * in Rc32434 (errata ref #077) */
389 dev->stats.rx_errors++;
390 dev->stats.rx_dropped++;
391 } else if ((devcs & ETH_RX_ROK)) {
392 pkt_len = RCVPKT_LENGTH(devcs);
394 /* must be the (first and) last
395 * descriptor then */
396 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
398 /* invalidate the cache */
399 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
401 /* Malloc up new buffer. */
402 skb_new = netdev_alloc_skb(dev, KORINA_RBSIZE + 2);
404 if (!skb_new)
405 break;
406 /* Do not count the CRC */
407 skb_put(skb, pkt_len - 4);
408 skb->protocol = eth_type_trans(skb, dev);
410 /* Pass the packet to upper layers */
411 netif_receive_skb(skb);
412 dev->stats.rx_packets++;
413 dev->stats.rx_bytes += pkt_len;
415 /* Update the mcast stats */
416 if (devcs & ETH_RX_MP)
417 dev->stats.multicast++;
419 /* 16 bit align */
420 skb_reserve(skb_new, 2);
422 lp->rx_skb[lp->rx_next_done] = skb_new;
425 rd->devcs = 0;
427 /* Restore descriptor's curr_addr */
428 if (skb_new)
429 rd->ca = CPHYSADDR(skb_new->data);
430 else
431 rd->ca = CPHYSADDR(skb->data);
433 rd->control = DMA_COUNT(KORINA_RBSIZE) |
434 DMA_DESC_COD | DMA_DESC_IOD;
435 lp->rd_ring[(lp->rx_next_done - 1) &
436 KORINA_RDS_MASK].control &=
437 ~DMA_DESC_COD;
439 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
440 dma_cache_wback((u32)rd, sizeof(*rd));
441 rd = &lp->rd_ring[lp->rx_next_done];
442 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
445 dmas = readl(&lp->rx_dma_regs->dmas);
447 if (dmas & DMA_STAT_HALT) {
448 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
449 &lp->rx_dma_regs->dmas);
451 lp->dma_halt_cnt++;
452 rd->devcs = 0;
453 skb = lp->rx_skb[lp->rx_next_done];
454 rd->ca = CPHYSADDR(skb->data);
455 dma_cache_wback((u32)rd, sizeof(*rd));
456 korina_chain_rx(lp, rd);
459 return count;
462 static int korina_poll(struct napi_struct *napi, int budget)
464 struct korina_private *lp =
465 container_of(napi, struct korina_private, napi);
466 struct net_device *dev = lp->dev;
467 int work_done;
469 work_done = korina_rx(dev, budget);
470 if (work_done < budget) {
471 napi_complete(napi);
473 writel(readl(&lp->rx_dma_regs->dmasm) &
474 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
475 &lp->rx_dma_regs->dmasm);
477 return work_done;
481 * Set or clear the multicast filter for this adaptor.
483 static void korina_multicast_list(struct net_device *dev)
485 struct korina_private *lp = netdev_priv(dev);
486 unsigned long flags;
487 struct dev_mc_list *dmi = dev->mc_list;
488 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
489 int i;
491 /* Set promiscuous mode */
492 if (dev->flags & IFF_PROMISC)
493 recognise |= ETH_ARC_PRO;
495 else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
496 /* All multicast and broadcast */
497 recognise |= ETH_ARC_AM;
499 /* Build the hash table */
500 if (dev->mc_count > 4) {
501 u16 hash_table[4];
502 u32 crc;
504 for (i = 0; i < 4; i++)
505 hash_table[i] = 0;
507 for (i = 0; i < dev->mc_count; i++) {
508 char *addrs = dmi->dmi_addr;
510 dmi = dmi->next;
512 if (!(*addrs & 1))
513 continue;
515 crc = ether_crc_le(6, addrs);
516 crc >>= 26;
517 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
519 /* Accept filtered multicast */
520 recognise |= ETH_ARC_AFM;
522 /* Fill the MAC hash tables with their values */
523 writel((u32)(hash_table[1] << 16 | hash_table[0]),
524 &lp->eth_regs->ethhash0);
525 writel((u32)(hash_table[3] << 16 | hash_table[2]),
526 &lp->eth_regs->ethhash1);
529 spin_lock_irqsave(&lp->lock, flags);
530 writel(recognise, &lp->eth_regs->etharc);
531 spin_unlock_irqrestore(&lp->lock, flags);
534 static void korina_tx(struct net_device *dev)
536 struct korina_private *lp = netdev_priv(dev);
537 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
538 u32 devcs;
539 u32 dmas;
541 spin_lock(&lp->lock);
543 /* Process all desc that are done */
544 while (IS_DMA_FINISHED(td->control)) {
545 if (lp->tx_full == 1) {
546 netif_wake_queue(dev);
547 lp->tx_full = 0;
550 devcs = lp->td_ring[lp->tx_next_done].devcs;
551 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
552 (ETH_TX_FD | ETH_TX_LD)) {
553 dev->stats.tx_errors++;
554 dev->stats.tx_dropped++;
556 /* Should never happen */
557 printk(KERN_ERR DRV_NAME "%s: split tx ignored\n",
558 dev->name);
559 } else if (devcs & ETH_TX_TOK) {
560 dev->stats.tx_packets++;
561 dev->stats.tx_bytes +=
562 lp->tx_skb[lp->tx_next_done]->len;
563 } else {
564 dev->stats.tx_errors++;
565 dev->stats.tx_dropped++;
567 /* Underflow */
568 if (devcs & ETH_TX_UND)
569 dev->stats.tx_fifo_errors++;
571 /* Oversized frame */
572 if (devcs & ETH_TX_OF)
573 dev->stats.tx_aborted_errors++;
575 /* Excessive deferrals */
576 if (devcs & ETH_TX_ED)
577 dev->stats.tx_carrier_errors++;
579 /* Collisions: medium busy */
580 if (devcs & ETH_TX_EC)
581 dev->stats.collisions++;
583 /* Late collision */
584 if (devcs & ETH_TX_LC)
585 dev->stats.tx_window_errors++;
588 /* We must always free the original skb */
589 if (lp->tx_skb[lp->tx_next_done]) {
590 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
591 lp->tx_skb[lp->tx_next_done] = NULL;
594 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
595 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
596 lp->td_ring[lp->tx_next_done].link = 0;
597 lp->td_ring[lp->tx_next_done].ca = 0;
598 lp->tx_count--;
600 /* Go on to next transmission */
601 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
602 td = &lp->td_ring[lp->tx_next_done];
606 /* Clear the DMA status register */
607 dmas = readl(&lp->tx_dma_regs->dmas);
608 writel(~dmas, &lp->tx_dma_regs->dmas);
610 writel(readl(&lp->tx_dma_regs->dmasm) &
611 ~(DMA_STAT_FINI | DMA_STAT_ERR),
612 &lp->tx_dma_regs->dmasm);
614 spin_unlock(&lp->lock);
617 static irqreturn_t
618 korina_tx_dma_interrupt(int irq, void *dev_id)
620 struct net_device *dev = dev_id;
621 struct korina_private *lp = netdev_priv(dev);
622 u32 dmas, dmasm;
623 irqreturn_t retval;
625 dmas = readl(&lp->tx_dma_regs->dmas);
627 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
628 dmasm = readl(&lp->tx_dma_regs->dmasm);
629 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
630 &lp->tx_dma_regs->dmasm);
632 korina_tx(dev);
634 if (lp->tx_chain_status == desc_filled &&
635 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
636 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
637 &(lp->tx_dma_regs->dmandptr));
638 lp->tx_chain_status = desc_empty;
639 lp->tx_chain_head = lp->tx_chain_tail;
640 dev->trans_start = jiffies;
642 if (dmas & DMA_STAT_ERR)
643 printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
645 retval = IRQ_HANDLED;
646 } else
647 retval = IRQ_NONE;
649 return retval;
653 static void korina_check_media(struct net_device *dev, unsigned int init_media)
655 struct korina_private *lp = netdev_priv(dev);
657 mii_check_media(&lp->mii_if, 0, init_media);
659 if (lp->mii_if.full_duplex)
660 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
661 &lp->eth_regs->ethmac2);
662 else
663 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
664 &lp->eth_regs->ethmac2);
667 static void korina_set_carrier(struct mii_if_info *mii)
669 if (mii->force_media) {
670 /* autoneg is off: Link is always assumed to be up */
671 if (!netif_carrier_ok(mii->dev))
672 netif_carrier_on(mii->dev);
673 } else /* Let MMI library update carrier status */
674 korina_check_media(mii->dev, 0);
677 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
679 struct korina_private *lp = netdev_priv(dev);
680 struct mii_ioctl_data *data = if_mii(rq);
681 int rc;
683 if (!netif_running(dev))
684 return -EINVAL;
685 spin_lock_irq(&lp->lock);
686 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
687 spin_unlock_irq(&lp->lock);
688 korina_set_carrier(&lp->mii_if);
690 return rc;
693 /* ethtool helpers */
694 static void netdev_get_drvinfo(struct net_device *dev,
695 struct ethtool_drvinfo *info)
697 struct korina_private *lp = netdev_priv(dev);
699 strcpy(info->driver, DRV_NAME);
700 strcpy(info->version, DRV_VERSION);
701 strcpy(info->bus_info, lp->dev->name);
704 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
706 struct korina_private *lp = netdev_priv(dev);
707 int rc;
709 spin_lock_irq(&lp->lock);
710 rc = mii_ethtool_gset(&lp->mii_if, cmd);
711 spin_unlock_irq(&lp->lock);
713 return rc;
716 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
718 struct korina_private *lp = netdev_priv(dev);
719 int rc;
721 spin_lock_irq(&lp->lock);
722 rc = mii_ethtool_sset(&lp->mii_if, cmd);
723 spin_unlock_irq(&lp->lock);
724 korina_set_carrier(&lp->mii_if);
726 return rc;
729 static u32 netdev_get_link(struct net_device *dev)
731 struct korina_private *lp = netdev_priv(dev);
733 return mii_link_ok(&lp->mii_if);
736 static struct ethtool_ops netdev_ethtool_ops = {
737 .get_drvinfo = netdev_get_drvinfo,
738 .get_settings = netdev_get_settings,
739 .set_settings = netdev_set_settings,
740 .get_link = netdev_get_link,
743 static void korina_alloc_ring(struct net_device *dev)
745 struct korina_private *lp = netdev_priv(dev);
746 struct sk_buff *skb;
747 int i;
749 /* Initialize the transmit descriptors */
750 for (i = 0; i < KORINA_NUM_TDS; i++) {
751 lp->td_ring[i].control = DMA_DESC_IOF;
752 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
753 lp->td_ring[i].ca = 0;
754 lp->td_ring[i].link = 0;
756 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
757 lp->tx_full = lp->tx_count = 0;
758 lp->tx_chain_status = desc_empty;
760 /* Initialize the receive descriptors */
761 for (i = 0; i < KORINA_NUM_RDS; i++) {
762 skb = dev_alloc_skb(KORINA_RBSIZE + 2);
763 if (!skb)
764 break;
765 skb_reserve(skb, 2);
766 lp->rx_skb[i] = skb;
767 lp->rd_ring[i].control = DMA_DESC_IOD |
768 DMA_COUNT(KORINA_RBSIZE);
769 lp->rd_ring[i].devcs = 0;
770 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
771 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
774 /* loop back receive descriptors, so the last
775 * descriptor points to the first one */
776 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
777 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
779 lp->rx_next_done = 0;
780 lp->rx_chain_head = 0;
781 lp->rx_chain_tail = 0;
782 lp->rx_chain_status = desc_empty;
785 static void korina_free_ring(struct net_device *dev)
787 struct korina_private *lp = netdev_priv(dev);
788 int i;
790 for (i = 0; i < KORINA_NUM_RDS; i++) {
791 lp->rd_ring[i].control = 0;
792 if (lp->rx_skb[i])
793 dev_kfree_skb_any(lp->rx_skb[i]);
794 lp->rx_skb[i] = NULL;
797 for (i = 0; i < KORINA_NUM_TDS; i++) {
798 lp->td_ring[i].control = 0;
799 if (lp->tx_skb[i])
800 dev_kfree_skb_any(lp->tx_skb[i]);
801 lp->tx_skb[i] = NULL;
806 * Initialize the RC32434 ethernet controller.
808 static int korina_init(struct net_device *dev)
810 struct korina_private *lp = netdev_priv(dev);
812 /* Disable DMA */
813 korina_abort_tx(dev);
814 korina_abort_rx(dev);
816 /* reset ethernet logic */
817 writel(0, &lp->eth_regs->ethintfc);
818 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
819 dev->trans_start = jiffies;
821 /* Enable Ethernet Interface */
822 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
824 /* Allocate rings */
825 korina_alloc_ring(dev);
827 writel(0, &lp->rx_dma_regs->dmas);
828 /* Start Rx DMA */
829 korina_start_rx(lp, &lp->rd_ring[0]);
831 writel(readl(&lp->tx_dma_regs->dmasm) &
832 ~(DMA_STAT_FINI | DMA_STAT_ERR),
833 &lp->tx_dma_regs->dmasm);
834 writel(readl(&lp->rx_dma_regs->dmasm) &
835 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
836 &lp->rx_dma_regs->dmasm);
838 /* Accept only packets destined for this Ethernet device address */
839 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
841 /* Set all Ether station address registers to their initial values */
842 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
843 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
845 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
846 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
848 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
849 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
851 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
852 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
855 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
856 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
857 &lp->eth_regs->ethmac2);
859 /* Back to back inter-packet-gap */
860 writel(0x15, &lp->eth_regs->ethipgt);
861 /* Non - Back to back inter-packet-gap */
862 writel(0x12, &lp->eth_regs->ethipgr);
864 /* Management Clock Prescaler Divisor
865 * Clock independent setting */
866 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
867 &lp->eth_regs->ethmcp);
869 /* don't transmit until fifo contains 48b */
870 writel(48, &lp->eth_regs->ethfifott);
872 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
874 napi_enable(&lp->napi);
875 netif_start_queue(dev);
877 return 0;
881 * Restart the RC32434 ethernet controller.
882 * FIXME: check the return status where we call it
884 static int korina_restart(struct net_device *dev)
886 struct korina_private *lp = netdev_priv(dev);
887 int ret;
890 * Disable interrupts
892 disable_irq(lp->rx_irq);
893 disable_irq(lp->tx_irq);
894 disable_irq(lp->ovr_irq);
895 disable_irq(lp->und_irq);
897 writel(readl(&lp->tx_dma_regs->dmasm) |
898 DMA_STAT_FINI | DMA_STAT_ERR,
899 &lp->tx_dma_regs->dmasm);
900 writel(readl(&lp->rx_dma_regs->dmasm) |
901 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
902 &lp->rx_dma_regs->dmasm);
904 korina_free_ring(dev);
906 napi_disable(&lp->napi);
908 ret = korina_init(dev);
909 if (ret < 0) {
910 printk(KERN_ERR DRV_NAME "%s: cannot restart device\n",
911 dev->name);
912 return ret;
914 korina_multicast_list(dev);
916 enable_irq(lp->und_irq);
917 enable_irq(lp->ovr_irq);
918 enable_irq(lp->tx_irq);
919 enable_irq(lp->rx_irq);
921 return ret;
924 static void korina_clear_and_restart(struct net_device *dev, u32 value)
926 struct korina_private *lp = netdev_priv(dev);
928 netif_stop_queue(dev);
929 writel(value, &lp->eth_regs->ethintfc);
930 korina_restart(dev);
933 /* Ethernet Tx Underflow interrupt */
934 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
936 struct net_device *dev = dev_id;
937 struct korina_private *lp = netdev_priv(dev);
938 unsigned int und;
940 spin_lock(&lp->lock);
942 und = readl(&lp->eth_regs->ethintfc);
944 if (und & ETH_INT_FC_UND)
945 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
947 spin_unlock(&lp->lock);
949 return IRQ_HANDLED;
952 static void korina_tx_timeout(struct net_device *dev)
954 struct korina_private *lp = netdev_priv(dev);
955 unsigned long flags;
957 spin_lock_irqsave(&lp->lock, flags);
958 korina_restart(dev);
959 spin_unlock_irqrestore(&lp->lock, flags);
962 /* Ethernet Rx Overflow interrupt */
963 static irqreturn_t
964 korina_ovr_interrupt(int irq, void *dev_id)
966 struct net_device *dev = dev_id;
967 struct korina_private *lp = netdev_priv(dev);
968 unsigned int ovr;
970 spin_lock(&lp->lock);
971 ovr = readl(&lp->eth_regs->ethintfc);
973 if (ovr & ETH_INT_FC_OVR)
974 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
976 spin_unlock(&lp->lock);
978 return IRQ_HANDLED;
981 #ifdef CONFIG_NET_POLL_CONTROLLER
982 static void korina_poll_controller(struct net_device *dev)
984 disable_irq(dev->irq);
985 korina_tx_dma_interrupt(dev->irq, dev);
986 enable_irq(dev->irq);
988 #endif
990 static int korina_open(struct net_device *dev)
992 struct korina_private *lp = netdev_priv(dev);
993 int ret;
995 /* Initialize */
996 ret = korina_init(dev);
997 if (ret < 0) {
998 printk(KERN_ERR DRV_NAME "%s: cannot open device\n", dev->name);
999 goto out;
1002 /* Install the interrupt handler
1003 * that handles the Done Finished
1004 * Ovr and Und Events */
1005 ret = request_irq(lp->rx_irq, &korina_rx_dma_interrupt,
1006 IRQF_DISABLED, "Korina ethernet Rx", dev);
1007 if (ret < 0) {
1008 printk(KERN_ERR DRV_NAME "%s: unable to get Rx DMA IRQ %d\n",
1009 dev->name, lp->rx_irq);
1010 goto err_release;
1012 ret = request_irq(lp->tx_irq, &korina_tx_dma_interrupt,
1013 IRQF_DISABLED, "Korina ethernet Tx", dev);
1014 if (ret < 0) {
1015 printk(KERN_ERR DRV_NAME "%s: unable to get Tx DMA IRQ %d\n",
1016 dev->name, lp->tx_irq);
1017 goto err_free_rx_irq;
1020 /* Install handler for overrun error. */
1021 ret = request_irq(lp->ovr_irq, &korina_ovr_interrupt,
1022 IRQF_DISABLED, "Ethernet Overflow", dev);
1023 if (ret < 0) {
1024 printk(KERN_ERR DRV_NAME"%s: unable to get OVR IRQ %d\n",
1025 dev->name, lp->ovr_irq);
1026 goto err_free_tx_irq;
1029 /* Install handler for underflow error. */
1030 ret = request_irq(lp->und_irq, &korina_und_interrupt,
1031 IRQF_DISABLED, "Ethernet Underflow", dev);
1032 if (ret < 0) {
1033 printk(KERN_ERR DRV_NAME "%s: unable to get UND IRQ %d\n",
1034 dev->name, lp->und_irq);
1035 goto err_free_ovr_irq;
1037 out:
1038 return ret;
1040 err_free_ovr_irq:
1041 free_irq(lp->ovr_irq, dev);
1042 err_free_tx_irq:
1043 free_irq(lp->tx_irq, dev);
1044 err_free_rx_irq:
1045 free_irq(lp->rx_irq, dev);
1046 err_release:
1047 korina_free_ring(dev);
1048 goto out;
1051 static int korina_close(struct net_device *dev)
1053 struct korina_private *lp = netdev_priv(dev);
1054 u32 tmp;
1056 /* Disable interrupts */
1057 disable_irq(lp->rx_irq);
1058 disable_irq(lp->tx_irq);
1059 disable_irq(lp->ovr_irq);
1060 disable_irq(lp->und_irq);
1062 korina_abort_tx(dev);
1063 tmp = readl(&lp->tx_dma_regs->dmasm);
1064 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1065 writel(tmp, &lp->tx_dma_regs->dmasm);
1067 korina_abort_rx(dev);
1068 tmp = readl(&lp->rx_dma_regs->dmasm);
1069 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1070 writel(tmp, &lp->rx_dma_regs->dmasm);
1072 korina_free_ring(dev);
1074 napi_disable(&lp->napi);
1076 free_irq(lp->rx_irq, dev);
1077 free_irq(lp->tx_irq, dev);
1078 free_irq(lp->ovr_irq, dev);
1079 free_irq(lp->und_irq, dev);
1081 return 0;
1084 static int korina_probe(struct platform_device *pdev)
1086 struct korina_device *bif = platform_get_drvdata(pdev);
1087 struct korina_private *lp;
1088 struct net_device *dev;
1089 struct resource *r;
1090 int rc;
1092 dev = alloc_etherdev(sizeof(struct korina_private));
1093 if (!dev) {
1094 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1095 return -ENOMEM;
1097 SET_NETDEV_DEV(dev, &pdev->dev);
1098 lp = netdev_priv(dev);
1100 bif->dev = dev;
1101 memcpy(dev->dev_addr, bif->mac, 6);
1103 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1104 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1105 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1106 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1108 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1109 dev->base_addr = r->start;
1110 lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
1111 if (!lp->eth_regs) {
1112 printk(KERN_ERR DRV_NAME "cannot remap registers\n");
1113 rc = -ENXIO;
1114 goto probe_err_out;
1117 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1118 lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1119 if (!lp->rx_dma_regs) {
1120 printk(KERN_ERR DRV_NAME "cannot remap Rx DMA registers\n");
1121 rc = -ENXIO;
1122 goto probe_err_dma_rx;
1125 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1126 lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
1127 if (!lp->tx_dma_regs) {
1128 printk(KERN_ERR DRV_NAME "cannot remap Tx DMA registers\n");
1129 rc = -ENXIO;
1130 goto probe_err_dma_tx;
1133 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1134 if (!lp->td_ring) {
1135 printk(KERN_ERR DRV_NAME "cannot allocate descriptors\n");
1136 rc = -ENXIO;
1137 goto probe_err_td_ring;
1140 dma_cache_inv((unsigned long)(lp->td_ring),
1141 TD_RING_SIZE + RD_RING_SIZE);
1143 /* now convert TD_RING pointer to KSEG1 */
1144 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1145 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1147 spin_lock_init(&lp->lock);
1148 /* just use the rx dma irq */
1149 dev->irq = lp->rx_irq;
1150 lp->dev = dev;
1152 dev->open = korina_open;
1153 dev->stop = korina_close;
1154 dev->hard_start_xmit = korina_send_packet;
1155 dev->set_multicast_list = &korina_multicast_list;
1156 dev->ethtool_ops = &netdev_ethtool_ops;
1157 dev->tx_timeout = korina_tx_timeout;
1158 dev->watchdog_timeo = TX_TIMEOUT;
1159 dev->do_ioctl = &korina_ioctl;
1160 #ifdef CONFIG_NET_POLL_CONTROLLER
1161 dev->poll_controller = korina_poll_controller;
1162 #endif
1163 netif_napi_add(dev, &lp->napi, korina_poll, 64);
1165 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1166 lp->mii_if.dev = dev;
1167 lp->mii_if.mdio_read = mdio_read;
1168 lp->mii_if.mdio_write = mdio_write;
1169 lp->mii_if.phy_id = lp->phy_addr;
1170 lp->mii_if.phy_id_mask = 0x1f;
1171 lp->mii_if.reg_num_mask = 0x1f;
1173 rc = register_netdev(dev);
1174 if (rc < 0) {
1175 printk(KERN_ERR DRV_NAME
1176 ": cannot register net device %d\n", rc);
1177 goto probe_err_register;
1179 out:
1180 return rc;
1182 probe_err_register:
1183 kfree(lp->td_ring);
1184 probe_err_td_ring:
1185 iounmap(lp->tx_dma_regs);
1186 probe_err_dma_tx:
1187 iounmap(lp->rx_dma_regs);
1188 probe_err_dma_rx:
1189 iounmap(lp->eth_regs);
1190 probe_err_out:
1191 free_netdev(dev);
1192 goto out;
1195 static int korina_remove(struct platform_device *pdev)
1197 struct korina_device *bif = platform_get_drvdata(pdev);
1198 struct korina_private *lp = netdev_priv(bif->dev);
1200 iounmap(lp->eth_regs);
1201 iounmap(lp->rx_dma_regs);
1202 iounmap(lp->tx_dma_regs);
1204 platform_set_drvdata(pdev, NULL);
1205 unregister_netdev(bif->dev);
1206 free_netdev(bif->dev);
1208 return 0;
1211 static struct platform_driver korina_driver = {
1212 .driver.name = "korina",
1213 .probe = korina_probe,
1214 .remove = korina_remove,
1217 static int __init korina_init_module(void)
1219 return platform_driver_register(&korina_driver);
1222 static void korina_cleanup_module(void)
1224 return platform_driver_unregister(&korina_driver);
1227 module_init(korina_init_module);
1228 module_exit(korina_cleanup_module);
1230 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1231 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1232 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1233 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1234 MODULE_LICENSE("GPL");