x86: remove vestigial fix_ioremap prototypes
[linux-2.6/mini2440.git] / drivers / ata / libata-sff.c
blob714cb046b594200a17d096768f0d8a45f89a835a
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
40 #include "libata.h"
42 const struct ata_port_operations ata_sff_port_ops = {
43 .inherits = &ata_base_port_ops,
45 .qc_prep = ata_sff_qc_prep,
46 .qc_issue = ata_sff_qc_issue,
47 .qc_fill_rtf = ata_sff_qc_fill_rtf,
49 .freeze = ata_sff_freeze,
50 .thaw = ata_sff_thaw,
51 .prereset = ata_sff_prereset,
52 .softreset = ata_sff_softreset,
53 .hardreset = sata_sff_hardreset,
54 .postreset = ata_sff_postreset,
55 .error_handler = ata_sff_error_handler,
56 .post_internal_cmd = ata_sff_post_internal_cmd,
58 .sff_dev_select = ata_sff_dev_select,
59 .sff_check_status = ata_sff_check_status,
60 .sff_tf_load = ata_sff_tf_load,
61 .sff_tf_read = ata_sff_tf_read,
62 .sff_exec_command = ata_sff_exec_command,
63 .sff_data_xfer = ata_sff_data_xfer,
64 .sff_irq_on = ata_sff_irq_on,
65 .sff_irq_clear = ata_sff_irq_clear,
67 .port_start = ata_sff_port_start,
69 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
71 const struct ata_port_operations ata_bmdma_port_ops = {
72 .inherits = &ata_sff_port_ops,
74 .mode_filter = ata_bmdma_mode_filter,
76 .bmdma_setup = ata_bmdma_setup,
77 .bmdma_start = ata_bmdma_start,
78 .bmdma_stop = ata_bmdma_stop,
79 .bmdma_status = ata_bmdma_status,
81 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
83 const struct ata_port_operations ata_bmdma32_port_ops = {
84 .inherits = &ata_bmdma_port_ops,
86 .sff_data_xfer = ata_sff_data_xfer32,
88 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
90 /**
91 * ata_fill_sg - Fill PCI IDE PRD table
92 * @qc: Metadata associated with taskfile to be transferred
94 * Fill PCI IDE PRD (scatter-gather) table with segments
95 * associated with the current disk command.
97 * LOCKING:
98 * spin_lock_irqsave(host lock)
101 static void ata_fill_sg(struct ata_queued_cmd *qc)
103 struct ata_port *ap = qc->ap;
104 struct scatterlist *sg;
105 unsigned int si, pi;
107 pi = 0;
108 for_each_sg(qc->sg, sg, qc->n_elem, si) {
109 u32 addr, offset;
110 u32 sg_len, len;
112 /* determine if physical DMA addr spans 64K boundary.
113 * Note h/w doesn't support 64-bit, so we unconditionally
114 * truncate dma_addr_t to u32.
116 addr = (u32) sg_dma_address(sg);
117 sg_len = sg_dma_len(sg);
119 while (sg_len) {
120 offset = addr & 0xffff;
121 len = sg_len;
122 if ((offset + sg_len) > 0x10000)
123 len = 0x10000 - offset;
125 ap->prd[pi].addr = cpu_to_le32(addr);
126 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
127 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
129 pi++;
130 sg_len -= len;
131 addr += len;
135 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
139 * ata_fill_sg_dumb - Fill PCI IDE PRD table
140 * @qc: Metadata associated with taskfile to be transferred
142 * Fill PCI IDE PRD (scatter-gather) table with segments
143 * associated with the current disk command. Perform the fill
144 * so that we avoid writing any length 64K records for
145 * controllers that don't follow the spec.
147 * LOCKING:
148 * spin_lock_irqsave(host lock)
151 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
153 struct ata_port *ap = qc->ap;
154 struct scatterlist *sg;
155 unsigned int si, pi;
157 pi = 0;
158 for_each_sg(qc->sg, sg, qc->n_elem, si) {
159 u32 addr, offset;
160 u32 sg_len, len, blen;
162 /* determine if physical DMA addr spans 64K boundary.
163 * Note h/w doesn't support 64-bit, so we unconditionally
164 * truncate dma_addr_t to u32.
166 addr = (u32) sg_dma_address(sg);
167 sg_len = sg_dma_len(sg);
169 while (sg_len) {
170 offset = addr & 0xffff;
171 len = sg_len;
172 if ((offset + sg_len) > 0x10000)
173 len = 0x10000 - offset;
175 blen = len & 0xffff;
176 ap->prd[pi].addr = cpu_to_le32(addr);
177 if (blen == 0) {
178 /* Some PATA chipsets like the CS5530 can't
179 cope with 0x0000 meaning 64K as the spec
180 says */
181 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
182 blen = 0x8000;
183 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
185 ap->prd[pi].flags_len = cpu_to_le32(blen);
186 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
188 pi++;
189 sg_len -= len;
190 addr += len;
194 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
198 * ata_sff_qc_prep - Prepare taskfile for submission
199 * @qc: Metadata associated with taskfile to be prepared
201 * Prepare ATA taskfile for submission.
203 * LOCKING:
204 * spin_lock_irqsave(host lock)
206 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
208 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
209 return;
211 ata_fill_sg(qc);
213 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
216 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
217 * @qc: Metadata associated with taskfile to be prepared
219 * Prepare ATA taskfile for submission.
221 * LOCKING:
222 * spin_lock_irqsave(host lock)
224 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
226 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
227 return;
229 ata_fill_sg_dumb(qc);
231 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
234 * ata_sff_check_status - Read device status reg & clear interrupt
235 * @ap: port where the device is
237 * Reads ATA taskfile status register for currently-selected device
238 * and return its value. This also clears pending interrupts
239 * from this device
241 * LOCKING:
242 * Inherited from caller.
244 u8 ata_sff_check_status(struct ata_port *ap)
246 return ioread8(ap->ioaddr.status_addr);
248 EXPORT_SYMBOL_GPL(ata_sff_check_status);
251 * ata_sff_altstatus - Read device alternate status reg
252 * @ap: port where the device is
254 * Reads ATA taskfile alternate status register for
255 * currently-selected device and return its value.
257 * Note: may NOT be used as the check_altstatus() entry in
258 * ata_port_operations.
260 * LOCKING:
261 * Inherited from caller.
263 static u8 ata_sff_altstatus(struct ata_port *ap)
265 if (ap->ops->sff_check_altstatus)
266 return ap->ops->sff_check_altstatus(ap);
268 return ioread8(ap->ioaddr.altstatus_addr);
272 * ata_sff_irq_status - Check if the device is busy
273 * @ap: port where the device is
275 * Determine if the port is currently busy. Uses altstatus
276 * if available in order to avoid clearing shared IRQ status
277 * when finding an IRQ source. Non ctl capable devices don't
278 * share interrupt lines fortunately for us.
280 * LOCKING:
281 * Inherited from caller.
283 static u8 ata_sff_irq_status(struct ata_port *ap)
285 u8 status;
287 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
288 status = ata_sff_altstatus(ap);
289 /* Not us: We are busy */
290 if (status & ATA_BUSY)
291 return status;
293 /* Clear INTRQ latch */
294 status = ap->ops->sff_check_status(ap);
295 return status;
299 * ata_sff_sync - Flush writes
300 * @ap: Port to wait for.
302 * CAUTION:
303 * If we have an mmio device with no ctl and no altstatus
304 * method this will fail. No such devices are known to exist.
306 * LOCKING:
307 * Inherited from caller.
310 static void ata_sff_sync(struct ata_port *ap)
312 if (ap->ops->sff_check_altstatus)
313 ap->ops->sff_check_altstatus(ap);
314 else if (ap->ioaddr.altstatus_addr)
315 ioread8(ap->ioaddr.altstatus_addr);
319 * ata_sff_pause - Flush writes and wait 400nS
320 * @ap: Port to pause for.
322 * CAUTION:
323 * If we have an mmio device with no ctl and no altstatus
324 * method this will fail. No such devices are known to exist.
326 * LOCKING:
327 * Inherited from caller.
330 void ata_sff_pause(struct ata_port *ap)
332 ata_sff_sync(ap);
333 ndelay(400);
335 EXPORT_SYMBOL_GPL(ata_sff_pause);
338 * ata_sff_dma_pause - Pause before commencing DMA
339 * @ap: Port to pause for.
341 * Perform I/O fencing and ensure sufficient cycle delays occur
342 * for the HDMA1:0 transition
345 void ata_sff_dma_pause(struct ata_port *ap)
347 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
348 /* An altstatus read will cause the needed delay without
349 messing up the IRQ status */
350 ata_sff_altstatus(ap);
351 return;
353 /* There are no DMA controllers without ctl. BUG here to ensure
354 we never violate the HDMA1:0 transition timing and risk
355 corruption. */
356 BUG();
358 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
361 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
362 * @ap: port containing status register to be polled
363 * @tmout_pat: impatience timeout in msecs
364 * @tmout: overall timeout in msecs
366 * Sleep until ATA Status register bit BSY clears,
367 * or a timeout occurs.
369 * LOCKING:
370 * Kernel thread context (may sleep).
372 * RETURNS:
373 * 0 on success, -errno otherwise.
375 int ata_sff_busy_sleep(struct ata_port *ap,
376 unsigned long tmout_pat, unsigned long tmout)
378 unsigned long timer_start, timeout;
379 u8 status;
381 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
382 timer_start = jiffies;
383 timeout = ata_deadline(timer_start, tmout_pat);
384 while (status != 0xff && (status & ATA_BUSY) &&
385 time_before(jiffies, timeout)) {
386 msleep(50);
387 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
390 if (status != 0xff && (status & ATA_BUSY))
391 ata_port_printk(ap, KERN_WARNING,
392 "port is slow to respond, please be patient "
393 "(Status 0x%x)\n", status);
395 timeout = ata_deadline(timer_start, tmout);
396 while (status != 0xff && (status & ATA_BUSY) &&
397 time_before(jiffies, timeout)) {
398 msleep(50);
399 status = ap->ops->sff_check_status(ap);
402 if (status == 0xff)
403 return -ENODEV;
405 if (status & ATA_BUSY) {
406 ata_port_printk(ap, KERN_ERR, "port failed to respond "
407 "(%lu secs, Status 0x%x)\n",
408 DIV_ROUND_UP(tmout, 1000), status);
409 return -EBUSY;
412 return 0;
414 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
416 static int ata_sff_check_ready(struct ata_link *link)
418 u8 status = link->ap->ops->sff_check_status(link->ap);
420 return ata_check_ready(status);
424 * ata_sff_wait_ready - sleep until BSY clears, or timeout
425 * @link: SFF link to wait ready status for
426 * @deadline: deadline jiffies for the operation
428 * Sleep until ATA Status register bit BSY clears, or timeout
429 * occurs.
431 * LOCKING:
432 * Kernel thread context (may sleep).
434 * RETURNS:
435 * 0 on success, -errno otherwise.
437 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
439 return ata_wait_ready(link, deadline, ata_sff_check_ready);
441 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
444 * ata_sff_dev_select - Select device 0/1 on ATA bus
445 * @ap: ATA channel to manipulate
446 * @device: ATA device (numbered from zero) to select
448 * Use the method defined in the ATA specification to
449 * make either device 0, or device 1, active on the
450 * ATA channel. Works with both PIO and MMIO.
452 * May be used as the dev_select() entry in ata_port_operations.
454 * LOCKING:
455 * caller.
457 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
459 u8 tmp;
461 if (device == 0)
462 tmp = ATA_DEVICE_OBS;
463 else
464 tmp = ATA_DEVICE_OBS | ATA_DEV1;
466 iowrite8(tmp, ap->ioaddr.device_addr);
467 ata_sff_pause(ap); /* needed; also flushes, for mmio */
469 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
472 * ata_dev_select - Select device 0/1 on ATA bus
473 * @ap: ATA channel to manipulate
474 * @device: ATA device (numbered from zero) to select
475 * @wait: non-zero to wait for Status register BSY bit to clear
476 * @can_sleep: non-zero if context allows sleeping
478 * Use the method defined in the ATA specification to
479 * make either device 0, or device 1, active on the
480 * ATA channel.
482 * This is a high-level version of ata_sff_dev_select(), which
483 * additionally provides the services of inserting the proper
484 * pauses and status polling, where needed.
486 * LOCKING:
487 * caller.
489 void ata_dev_select(struct ata_port *ap, unsigned int device,
490 unsigned int wait, unsigned int can_sleep)
492 if (ata_msg_probe(ap))
493 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
494 "device %u, wait %u\n", device, wait);
496 if (wait)
497 ata_wait_idle(ap);
499 ap->ops->sff_dev_select(ap, device);
501 if (wait) {
502 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
503 msleep(150);
504 ata_wait_idle(ap);
509 * ata_sff_irq_on - Enable interrupts on a port.
510 * @ap: Port on which interrupts are enabled.
512 * Enable interrupts on a legacy IDE device using MMIO or PIO,
513 * wait for idle, clear any pending interrupts.
515 * LOCKING:
516 * Inherited from caller.
518 u8 ata_sff_irq_on(struct ata_port *ap)
520 struct ata_ioports *ioaddr = &ap->ioaddr;
521 u8 tmp;
523 ap->ctl &= ~ATA_NIEN;
524 ap->last_ctl = ap->ctl;
526 if (ioaddr->ctl_addr)
527 iowrite8(ap->ctl, ioaddr->ctl_addr);
528 tmp = ata_wait_idle(ap);
530 ap->ops->sff_irq_clear(ap);
532 return tmp;
534 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
537 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
538 * @ap: Port associated with this ATA transaction.
540 * Clear interrupt and error flags in DMA status register.
542 * May be used as the irq_clear() entry in ata_port_operations.
544 * LOCKING:
545 * spin_lock_irqsave(host lock)
547 void ata_sff_irq_clear(struct ata_port *ap)
549 void __iomem *mmio = ap->ioaddr.bmdma_addr;
551 if (!mmio)
552 return;
554 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
556 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
559 * ata_sff_tf_load - send taskfile registers to host controller
560 * @ap: Port to which output is sent
561 * @tf: ATA taskfile register set
563 * Outputs ATA taskfile to standard ATA host controller.
565 * LOCKING:
566 * Inherited from caller.
568 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
570 struct ata_ioports *ioaddr = &ap->ioaddr;
571 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
573 if (tf->ctl != ap->last_ctl) {
574 if (ioaddr->ctl_addr)
575 iowrite8(tf->ctl, ioaddr->ctl_addr);
576 ap->last_ctl = tf->ctl;
577 ata_wait_idle(ap);
580 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
581 WARN_ON_ONCE(!ioaddr->ctl_addr);
582 iowrite8(tf->hob_feature, ioaddr->feature_addr);
583 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
584 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
585 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
586 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
587 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
588 tf->hob_feature,
589 tf->hob_nsect,
590 tf->hob_lbal,
591 tf->hob_lbam,
592 tf->hob_lbah);
595 if (is_addr) {
596 iowrite8(tf->feature, ioaddr->feature_addr);
597 iowrite8(tf->nsect, ioaddr->nsect_addr);
598 iowrite8(tf->lbal, ioaddr->lbal_addr);
599 iowrite8(tf->lbam, ioaddr->lbam_addr);
600 iowrite8(tf->lbah, ioaddr->lbah_addr);
601 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
602 tf->feature,
603 tf->nsect,
604 tf->lbal,
605 tf->lbam,
606 tf->lbah);
609 if (tf->flags & ATA_TFLAG_DEVICE) {
610 iowrite8(tf->device, ioaddr->device_addr);
611 VPRINTK("device 0x%X\n", tf->device);
614 ata_wait_idle(ap);
616 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
619 * ata_sff_tf_read - input device's ATA taskfile shadow registers
620 * @ap: Port from which input is read
621 * @tf: ATA taskfile register set for storing input
623 * Reads ATA taskfile registers for currently-selected device
624 * into @tf. Assumes the device has a fully SFF compliant task file
625 * layout and behaviour. If you device does not (eg has a different
626 * status method) then you will need to provide a replacement tf_read
628 * LOCKING:
629 * Inherited from caller.
631 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
633 struct ata_ioports *ioaddr = &ap->ioaddr;
635 tf->command = ata_sff_check_status(ap);
636 tf->feature = ioread8(ioaddr->error_addr);
637 tf->nsect = ioread8(ioaddr->nsect_addr);
638 tf->lbal = ioread8(ioaddr->lbal_addr);
639 tf->lbam = ioread8(ioaddr->lbam_addr);
640 tf->lbah = ioread8(ioaddr->lbah_addr);
641 tf->device = ioread8(ioaddr->device_addr);
643 if (tf->flags & ATA_TFLAG_LBA48) {
644 if (likely(ioaddr->ctl_addr)) {
645 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
646 tf->hob_feature = ioread8(ioaddr->error_addr);
647 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
648 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
649 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
650 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
651 iowrite8(tf->ctl, ioaddr->ctl_addr);
652 ap->last_ctl = tf->ctl;
653 } else
654 WARN_ON_ONCE(1);
657 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
660 * ata_sff_exec_command - issue ATA command to host controller
661 * @ap: port to which command is being issued
662 * @tf: ATA taskfile register set
664 * Issues ATA command, with proper synchronization with interrupt
665 * handler / other threads.
667 * LOCKING:
668 * spin_lock_irqsave(host lock)
670 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
672 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
674 iowrite8(tf->command, ap->ioaddr.command_addr);
675 ata_sff_pause(ap);
677 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
680 * ata_tf_to_host - issue ATA taskfile to host controller
681 * @ap: port to which command is being issued
682 * @tf: ATA taskfile register set
684 * Issues ATA taskfile register set to ATA host controller,
685 * with proper synchronization with interrupt handler and
686 * other threads.
688 * LOCKING:
689 * spin_lock_irqsave(host lock)
691 static inline void ata_tf_to_host(struct ata_port *ap,
692 const struct ata_taskfile *tf)
694 ap->ops->sff_tf_load(ap, tf);
695 ap->ops->sff_exec_command(ap, tf);
699 * ata_sff_data_xfer - Transfer data by PIO
700 * @dev: device to target
701 * @buf: data buffer
702 * @buflen: buffer length
703 * @rw: read/write
705 * Transfer data from/to the device data register by PIO.
707 * LOCKING:
708 * Inherited from caller.
710 * RETURNS:
711 * Bytes consumed.
713 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
714 unsigned int buflen, int rw)
716 struct ata_port *ap = dev->link->ap;
717 void __iomem *data_addr = ap->ioaddr.data_addr;
718 unsigned int words = buflen >> 1;
720 /* Transfer multiple of 2 bytes */
721 if (rw == READ)
722 ioread16_rep(data_addr, buf, words);
723 else
724 iowrite16_rep(data_addr, buf, words);
726 /* Transfer trailing 1 byte, if any. */
727 if (unlikely(buflen & 0x01)) {
728 __le16 align_buf[1] = { 0 };
729 unsigned char *trailing_buf = buf + buflen - 1;
731 if (rw == READ) {
732 align_buf[0] = cpu_to_le16(ioread16(data_addr));
733 memcpy(trailing_buf, align_buf, 1);
734 } else {
735 memcpy(align_buf, trailing_buf, 1);
736 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
738 words++;
741 return words << 1;
743 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
746 * ata_sff_data_xfer32 - Transfer data by PIO
747 * @dev: device to target
748 * @buf: data buffer
749 * @buflen: buffer length
750 * @rw: read/write
752 * Transfer data from/to the device data register by PIO using 32bit
753 * I/O operations.
755 * LOCKING:
756 * Inherited from caller.
758 * RETURNS:
759 * Bytes consumed.
762 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
763 unsigned int buflen, int rw)
765 struct ata_port *ap = dev->link->ap;
766 void __iomem *data_addr = ap->ioaddr.data_addr;
767 unsigned int words = buflen >> 2;
768 int slop = buflen & 3;
770 /* Transfer multiple of 4 bytes */
771 if (rw == READ)
772 ioread32_rep(data_addr, buf, words);
773 else
774 iowrite32_rep(data_addr, buf, words);
776 /* Transfer trailing bytes, if any */
777 if (unlikely(slop)) {
778 unsigned char pad[4];
780 /* Point buf to the tail of buffer */
781 buf += buflen - slop;
784 * Use io*_rep() accessors here as well to avoid pointlessly
785 * swapping bytes to and fro on the big endian machines...
787 if (rw == READ) {
788 if (slop < 3)
789 ioread16_rep(data_addr, pad, 1);
790 else
791 ioread32_rep(data_addr, pad, 1);
792 memcpy(buf, pad, slop);
793 } else {
794 memcpy(pad, buf, slop);
795 if (slop < 3)
796 iowrite16_rep(data_addr, pad, 1);
797 else
798 iowrite32_rep(data_addr, pad, 1);
801 return (buflen + 1) & ~1;
803 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
806 * ata_sff_data_xfer_noirq - Transfer data by PIO
807 * @dev: device to target
808 * @buf: data buffer
809 * @buflen: buffer length
810 * @rw: read/write
812 * Transfer data from/to the device data register by PIO. Do the
813 * transfer with interrupts disabled.
815 * LOCKING:
816 * Inherited from caller.
818 * RETURNS:
819 * Bytes consumed.
821 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
822 unsigned int buflen, int rw)
824 unsigned long flags;
825 unsigned int consumed;
827 local_irq_save(flags);
828 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
829 local_irq_restore(flags);
831 return consumed;
833 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
836 * ata_pio_sector - Transfer a sector of data.
837 * @qc: Command on going
839 * Transfer qc->sect_size bytes of data from/to the ATA device.
841 * LOCKING:
842 * Inherited from caller.
844 static void ata_pio_sector(struct ata_queued_cmd *qc)
846 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
847 struct ata_port *ap = qc->ap;
848 struct page *page;
849 unsigned int offset;
850 unsigned char *buf;
852 if (qc->curbytes == qc->nbytes - qc->sect_size)
853 ap->hsm_task_state = HSM_ST_LAST;
855 page = sg_page(qc->cursg);
856 offset = qc->cursg->offset + qc->cursg_ofs;
858 /* get the current page and offset */
859 page = nth_page(page, (offset >> PAGE_SHIFT));
860 offset %= PAGE_SIZE;
862 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
864 if (PageHighMem(page)) {
865 unsigned long flags;
867 /* FIXME: use a bounce buffer */
868 local_irq_save(flags);
869 buf = kmap_atomic(page, KM_IRQ0);
871 /* do the actual data transfer */
872 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
873 do_write);
875 kunmap_atomic(buf, KM_IRQ0);
876 local_irq_restore(flags);
877 } else {
878 buf = page_address(page);
879 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
880 do_write);
883 qc->curbytes += qc->sect_size;
884 qc->cursg_ofs += qc->sect_size;
886 if (qc->cursg_ofs == qc->cursg->length) {
887 qc->cursg = sg_next(qc->cursg);
888 qc->cursg_ofs = 0;
893 * ata_pio_sectors - Transfer one or many sectors.
894 * @qc: Command on going
896 * Transfer one or many sectors of data from/to the
897 * ATA device for the DRQ request.
899 * LOCKING:
900 * Inherited from caller.
902 static void ata_pio_sectors(struct ata_queued_cmd *qc)
904 if (is_multi_taskfile(&qc->tf)) {
905 /* READ/WRITE MULTIPLE */
906 unsigned int nsect;
908 WARN_ON_ONCE(qc->dev->multi_count == 0);
910 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
911 qc->dev->multi_count);
912 while (nsect--)
913 ata_pio_sector(qc);
914 } else
915 ata_pio_sector(qc);
917 ata_sff_sync(qc->ap); /* flush */
921 * atapi_send_cdb - Write CDB bytes to hardware
922 * @ap: Port to which ATAPI device is attached.
923 * @qc: Taskfile currently active
925 * When device has indicated its readiness to accept
926 * a CDB, this function is called. Send the CDB.
928 * LOCKING:
929 * caller.
931 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
933 /* send SCSI cdb */
934 DPRINTK("send cdb\n");
935 WARN_ON_ONCE(qc->dev->cdb_len < 12);
937 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
938 ata_sff_sync(ap);
939 /* FIXME: If the CDB is for DMA do we need to do the transition delay
940 or is bmdma_start guaranteed to do it ? */
941 switch (qc->tf.protocol) {
942 case ATAPI_PROT_PIO:
943 ap->hsm_task_state = HSM_ST;
944 break;
945 case ATAPI_PROT_NODATA:
946 ap->hsm_task_state = HSM_ST_LAST;
947 break;
948 case ATAPI_PROT_DMA:
949 ap->hsm_task_state = HSM_ST_LAST;
950 /* initiate bmdma */
951 ap->ops->bmdma_start(qc);
952 break;
957 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
958 * @qc: Command on going
959 * @bytes: number of bytes
961 * Transfer Transfer data from/to the ATAPI device.
963 * LOCKING:
964 * Inherited from caller.
967 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
969 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
970 struct ata_port *ap = qc->ap;
971 struct ata_device *dev = qc->dev;
972 struct ata_eh_info *ehi = &dev->link->eh_info;
973 struct scatterlist *sg;
974 struct page *page;
975 unsigned char *buf;
976 unsigned int offset, count, consumed;
978 next_sg:
979 sg = qc->cursg;
980 if (unlikely(!sg)) {
981 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
982 "buf=%u cur=%u bytes=%u",
983 qc->nbytes, qc->curbytes, bytes);
984 return -1;
987 page = sg_page(sg);
988 offset = sg->offset + qc->cursg_ofs;
990 /* get the current page and offset */
991 page = nth_page(page, (offset >> PAGE_SHIFT));
992 offset %= PAGE_SIZE;
994 /* don't overrun current sg */
995 count = min(sg->length - qc->cursg_ofs, bytes);
997 /* don't cross page boundaries */
998 count = min(count, (unsigned int)PAGE_SIZE - offset);
1000 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1002 if (PageHighMem(page)) {
1003 unsigned long flags;
1005 /* FIXME: use bounce buffer */
1006 local_irq_save(flags);
1007 buf = kmap_atomic(page, KM_IRQ0);
1009 /* do the actual data transfer */
1010 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1011 count, rw);
1013 kunmap_atomic(buf, KM_IRQ0);
1014 local_irq_restore(flags);
1015 } else {
1016 buf = page_address(page);
1017 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1018 count, rw);
1021 bytes -= min(bytes, consumed);
1022 qc->curbytes += count;
1023 qc->cursg_ofs += count;
1025 if (qc->cursg_ofs == sg->length) {
1026 qc->cursg = sg_next(qc->cursg);
1027 qc->cursg_ofs = 0;
1031 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
1032 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1033 * check correctly as it doesn't know if it is the last request being
1034 * made. Somebody should implement a proper sanity check.
1036 if (bytes)
1037 goto next_sg;
1038 return 0;
1042 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
1043 * @qc: Command on going
1045 * Transfer Transfer data from/to the ATAPI device.
1047 * LOCKING:
1048 * Inherited from caller.
1050 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1052 struct ata_port *ap = qc->ap;
1053 struct ata_device *dev = qc->dev;
1054 struct ata_eh_info *ehi = &dev->link->eh_info;
1055 unsigned int ireason, bc_lo, bc_hi, bytes;
1056 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1058 /* Abuse qc->result_tf for temp storage of intermediate TF
1059 * here to save some kernel stack usage.
1060 * For normal completion, qc->result_tf is not relevant. For
1061 * error, qc->result_tf is later overwritten by ata_qc_complete().
1062 * So, the correctness of qc->result_tf is not affected.
1064 ap->ops->sff_tf_read(ap, &qc->result_tf);
1065 ireason = qc->result_tf.nsect;
1066 bc_lo = qc->result_tf.lbam;
1067 bc_hi = qc->result_tf.lbah;
1068 bytes = (bc_hi << 8) | bc_lo;
1070 /* shall be cleared to zero, indicating xfer of data */
1071 if (unlikely(ireason & (1 << 0)))
1072 goto atapi_check;
1074 /* make sure transfer direction matches expected */
1075 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1076 if (unlikely(do_write != i_write))
1077 goto atapi_check;
1079 if (unlikely(!bytes))
1080 goto atapi_check;
1082 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1084 if (unlikely(__atapi_pio_bytes(qc, bytes)))
1085 goto err_out;
1086 ata_sff_sync(ap); /* flush */
1088 return;
1090 atapi_check:
1091 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1092 ireason, bytes);
1093 err_out:
1094 qc->err_mask |= AC_ERR_HSM;
1095 ap->hsm_task_state = HSM_ST_ERR;
1099 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1100 * @ap: the target ata_port
1101 * @qc: qc on going
1103 * RETURNS:
1104 * 1 if ok in workqueue, 0 otherwise.
1106 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1107 struct ata_queued_cmd *qc)
1109 if (qc->tf.flags & ATA_TFLAG_POLLING)
1110 return 1;
1112 if (ap->hsm_task_state == HSM_ST_FIRST) {
1113 if (qc->tf.protocol == ATA_PROT_PIO &&
1114 (qc->tf.flags & ATA_TFLAG_WRITE))
1115 return 1;
1117 if (ata_is_atapi(qc->tf.protocol) &&
1118 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1119 return 1;
1122 return 0;
1126 * ata_hsm_qc_complete - finish a qc running on standard HSM
1127 * @qc: Command to complete
1128 * @in_wq: 1 if called from workqueue, 0 otherwise
1130 * Finish @qc which is running on standard HSM.
1132 * LOCKING:
1133 * If @in_wq is zero, spin_lock_irqsave(host lock).
1134 * Otherwise, none on entry and grabs host lock.
1136 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1138 struct ata_port *ap = qc->ap;
1139 unsigned long flags;
1141 if (ap->ops->error_handler) {
1142 if (in_wq) {
1143 spin_lock_irqsave(ap->lock, flags);
1145 /* EH might have kicked in while host lock is
1146 * released.
1148 qc = ata_qc_from_tag(ap, qc->tag);
1149 if (qc) {
1150 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1151 ap->ops->sff_irq_on(ap);
1152 ata_qc_complete(qc);
1153 } else
1154 ata_port_freeze(ap);
1157 spin_unlock_irqrestore(ap->lock, flags);
1158 } else {
1159 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1160 ata_qc_complete(qc);
1161 else
1162 ata_port_freeze(ap);
1164 } else {
1165 if (in_wq) {
1166 spin_lock_irqsave(ap->lock, flags);
1167 ap->ops->sff_irq_on(ap);
1168 ata_qc_complete(qc);
1169 spin_unlock_irqrestore(ap->lock, flags);
1170 } else
1171 ata_qc_complete(qc);
1176 * ata_sff_hsm_move - move the HSM to the next state.
1177 * @ap: the target ata_port
1178 * @qc: qc on going
1179 * @status: current device status
1180 * @in_wq: 1 if called from workqueue, 0 otherwise
1182 * RETURNS:
1183 * 1 when poll next status needed, 0 otherwise.
1185 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1186 u8 status, int in_wq)
1188 struct ata_eh_info *ehi = &ap->link.eh_info;
1189 unsigned long flags = 0;
1190 int poll_next;
1192 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1194 /* Make sure ata_sff_qc_issue() does not throw things
1195 * like DMA polling into the workqueue. Notice that
1196 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1198 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1200 fsm_start:
1201 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1202 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1204 switch (ap->hsm_task_state) {
1205 case HSM_ST_FIRST:
1206 /* Send first data block or PACKET CDB */
1208 /* If polling, we will stay in the work queue after
1209 * sending the data. Otherwise, interrupt handler
1210 * takes over after sending the data.
1212 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1214 /* check device status */
1215 if (unlikely((status & ATA_DRQ) == 0)) {
1216 /* handle BSY=0, DRQ=0 as error */
1217 if (likely(status & (ATA_ERR | ATA_DF)))
1218 /* device stops HSM for abort/error */
1219 qc->err_mask |= AC_ERR_DEV;
1220 else {
1221 /* HSM violation. Let EH handle this */
1222 ata_ehi_push_desc(ehi,
1223 "ST_FIRST: !(DRQ|ERR|DF)");
1224 qc->err_mask |= AC_ERR_HSM;
1227 ap->hsm_task_state = HSM_ST_ERR;
1228 goto fsm_start;
1231 /* Device should not ask for data transfer (DRQ=1)
1232 * when it finds something wrong.
1233 * We ignore DRQ here and stop the HSM by
1234 * changing hsm_task_state to HSM_ST_ERR and
1235 * let the EH abort the command or reset the device.
1237 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1238 /* Some ATAPI tape drives forget to clear the ERR bit
1239 * when doing the next command (mostly request sense).
1240 * We ignore ERR here to workaround and proceed sending
1241 * the CDB.
1243 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1244 ata_ehi_push_desc(ehi, "ST_FIRST: "
1245 "DRQ=1 with device error, "
1246 "dev_stat 0x%X", status);
1247 qc->err_mask |= AC_ERR_HSM;
1248 ap->hsm_task_state = HSM_ST_ERR;
1249 goto fsm_start;
1253 /* Send the CDB (atapi) or the first data block (ata pio out).
1254 * During the state transition, interrupt handler shouldn't
1255 * be invoked before the data transfer is complete and
1256 * hsm_task_state is changed. Hence, the following locking.
1258 if (in_wq)
1259 spin_lock_irqsave(ap->lock, flags);
1261 if (qc->tf.protocol == ATA_PROT_PIO) {
1262 /* PIO data out protocol.
1263 * send first data block.
1266 /* ata_pio_sectors() might change the state
1267 * to HSM_ST_LAST. so, the state is changed here
1268 * before ata_pio_sectors().
1270 ap->hsm_task_state = HSM_ST;
1271 ata_pio_sectors(qc);
1272 } else
1273 /* send CDB */
1274 atapi_send_cdb(ap, qc);
1276 if (in_wq)
1277 spin_unlock_irqrestore(ap->lock, flags);
1279 /* if polling, ata_pio_task() handles the rest.
1280 * otherwise, interrupt handler takes over from here.
1282 break;
1284 case HSM_ST:
1285 /* complete command or read/write the data register */
1286 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1287 /* ATAPI PIO protocol */
1288 if ((status & ATA_DRQ) == 0) {
1289 /* No more data to transfer or device error.
1290 * Device error will be tagged in HSM_ST_LAST.
1292 ap->hsm_task_state = HSM_ST_LAST;
1293 goto fsm_start;
1296 /* Device should not ask for data transfer (DRQ=1)
1297 * when it finds something wrong.
1298 * We ignore DRQ here and stop the HSM by
1299 * changing hsm_task_state to HSM_ST_ERR and
1300 * let the EH abort the command or reset the device.
1302 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1303 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1304 "DRQ=1 with device error, "
1305 "dev_stat 0x%X", status);
1306 qc->err_mask |= AC_ERR_HSM;
1307 ap->hsm_task_state = HSM_ST_ERR;
1308 goto fsm_start;
1311 atapi_pio_bytes(qc);
1313 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1314 /* bad ireason reported by device */
1315 goto fsm_start;
1317 } else {
1318 /* ATA PIO protocol */
1319 if (unlikely((status & ATA_DRQ) == 0)) {
1320 /* handle BSY=0, DRQ=0 as error */
1321 if (likely(status & (ATA_ERR | ATA_DF))) {
1322 /* device stops HSM for abort/error */
1323 qc->err_mask |= AC_ERR_DEV;
1325 /* If diagnostic failed and this is
1326 * IDENTIFY, it's likely a phantom
1327 * device. Mark hint.
1329 if (qc->dev->horkage &
1330 ATA_HORKAGE_DIAGNOSTIC)
1331 qc->err_mask |=
1332 AC_ERR_NODEV_HINT;
1333 } else {
1334 /* HSM violation. Let EH handle this.
1335 * Phantom devices also trigger this
1336 * condition. Mark hint.
1338 ata_ehi_push_desc(ehi, "ST-ATA: "
1339 "DRQ=0 without device error, "
1340 "dev_stat 0x%X", status);
1341 qc->err_mask |= AC_ERR_HSM |
1342 AC_ERR_NODEV_HINT;
1345 ap->hsm_task_state = HSM_ST_ERR;
1346 goto fsm_start;
1349 /* For PIO reads, some devices may ask for
1350 * data transfer (DRQ=1) alone with ERR=1.
1351 * We respect DRQ here and transfer one
1352 * block of junk data before changing the
1353 * hsm_task_state to HSM_ST_ERR.
1355 * For PIO writes, ERR=1 DRQ=1 doesn't make
1356 * sense since the data block has been
1357 * transferred to the device.
1359 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1360 /* data might be corrputed */
1361 qc->err_mask |= AC_ERR_DEV;
1363 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1364 ata_pio_sectors(qc);
1365 status = ata_wait_idle(ap);
1368 if (status & (ATA_BUSY | ATA_DRQ)) {
1369 ata_ehi_push_desc(ehi, "ST-ATA: "
1370 "BUSY|DRQ persists on ERR|DF, "
1371 "dev_stat 0x%X", status);
1372 qc->err_mask |= AC_ERR_HSM;
1375 /* There are oddball controllers with
1376 * status register stuck at 0x7f and
1377 * lbal/m/h at zero which makes it
1378 * pass all other presence detection
1379 * mechanisms we have. Set NODEV_HINT
1380 * for it. Kernel bz#7241.
1382 if (status == 0x7f)
1383 qc->err_mask |= AC_ERR_NODEV_HINT;
1385 /* ata_pio_sectors() might change the
1386 * state to HSM_ST_LAST. so, the state
1387 * is changed after ata_pio_sectors().
1389 ap->hsm_task_state = HSM_ST_ERR;
1390 goto fsm_start;
1393 ata_pio_sectors(qc);
1395 if (ap->hsm_task_state == HSM_ST_LAST &&
1396 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1397 /* all data read */
1398 status = ata_wait_idle(ap);
1399 goto fsm_start;
1403 poll_next = 1;
1404 break;
1406 case HSM_ST_LAST:
1407 if (unlikely(!ata_ok(status))) {
1408 qc->err_mask |= __ac_err_mask(status);
1409 ap->hsm_task_state = HSM_ST_ERR;
1410 goto fsm_start;
1413 /* no more data to transfer */
1414 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1415 ap->print_id, qc->dev->devno, status);
1417 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1419 ap->hsm_task_state = HSM_ST_IDLE;
1421 /* complete taskfile transaction */
1422 ata_hsm_qc_complete(qc, in_wq);
1424 poll_next = 0;
1425 break;
1427 case HSM_ST_ERR:
1428 ap->hsm_task_state = HSM_ST_IDLE;
1430 /* complete taskfile transaction */
1431 ata_hsm_qc_complete(qc, in_wq);
1433 poll_next = 0;
1434 break;
1435 default:
1436 poll_next = 0;
1437 BUG();
1440 return poll_next;
1442 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1444 void ata_pio_task(struct work_struct *work)
1446 struct ata_port *ap =
1447 container_of(work, struct ata_port, port_task.work);
1448 struct ata_queued_cmd *qc = ap->port_task_data;
1449 u8 status;
1450 int poll_next;
1452 fsm_start:
1453 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1456 * This is purely heuristic. This is a fast path.
1457 * Sometimes when we enter, BSY will be cleared in
1458 * a chk-status or two. If not, the drive is probably seeking
1459 * or something. Snooze for a couple msecs, then
1460 * chk-status again. If still busy, queue delayed work.
1462 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1463 if (status & ATA_BUSY) {
1464 msleep(2);
1465 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1466 if (status & ATA_BUSY) {
1467 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1468 return;
1472 /* move the HSM */
1473 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1475 /* another command or interrupt handler
1476 * may be running at this point.
1478 if (poll_next)
1479 goto fsm_start;
1483 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1484 * @qc: command to issue to device
1486 * Using various libata functions and hooks, this function
1487 * starts an ATA command. ATA commands are grouped into
1488 * classes called "protocols", and issuing each type of protocol
1489 * is slightly different.
1491 * May be used as the qc_issue() entry in ata_port_operations.
1493 * LOCKING:
1494 * spin_lock_irqsave(host lock)
1496 * RETURNS:
1497 * Zero on success, AC_ERR_* mask on failure
1499 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1501 struct ata_port *ap = qc->ap;
1503 /* Use polling pio if the LLD doesn't handle
1504 * interrupt driven pio and atapi CDB interrupt.
1506 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1507 switch (qc->tf.protocol) {
1508 case ATA_PROT_PIO:
1509 case ATA_PROT_NODATA:
1510 case ATAPI_PROT_PIO:
1511 case ATAPI_PROT_NODATA:
1512 qc->tf.flags |= ATA_TFLAG_POLLING;
1513 break;
1514 case ATAPI_PROT_DMA:
1515 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1516 /* see ata_dma_blacklisted() */
1517 BUG();
1518 break;
1519 default:
1520 break;
1524 /* select the device */
1525 ata_dev_select(ap, qc->dev->devno, 1, 0);
1527 /* start the command */
1528 switch (qc->tf.protocol) {
1529 case ATA_PROT_NODATA:
1530 if (qc->tf.flags & ATA_TFLAG_POLLING)
1531 ata_qc_set_polling(qc);
1533 ata_tf_to_host(ap, &qc->tf);
1534 ap->hsm_task_state = HSM_ST_LAST;
1536 if (qc->tf.flags & ATA_TFLAG_POLLING)
1537 ata_pio_queue_task(ap, qc, 0);
1539 break;
1541 case ATA_PROT_DMA:
1542 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1544 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1545 ap->ops->bmdma_setup(qc); /* set up bmdma */
1546 ap->ops->bmdma_start(qc); /* initiate bmdma */
1547 ap->hsm_task_state = HSM_ST_LAST;
1548 break;
1550 case ATA_PROT_PIO:
1551 if (qc->tf.flags & ATA_TFLAG_POLLING)
1552 ata_qc_set_polling(qc);
1554 ata_tf_to_host(ap, &qc->tf);
1556 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1557 /* PIO data out protocol */
1558 ap->hsm_task_state = HSM_ST_FIRST;
1559 ata_pio_queue_task(ap, qc, 0);
1561 /* always send first data block using
1562 * the ata_pio_task() codepath.
1564 } else {
1565 /* PIO data in protocol */
1566 ap->hsm_task_state = HSM_ST;
1568 if (qc->tf.flags & ATA_TFLAG_POLLING)
1569 ata_pio_queue_task(ap, qc, 0);
1571 /* if polling, ata_pio_task() handles the rest.
1572 * otherwise, interrupt handler takes over from here.
1576 break;
1578 case ATAPI_PROT_PIO:
1579 case ATAPI_PROT_NODATA:
1580 if (qc->tf.flags & ATA_TFLAG_POLLING)
1581 ata_qc_set_polling(qc);
1583 ata_tf_to_host(ap, &qc->tf);
1585 ap->hsm_task_state = HSM_ST_FIRST;
1587 /* send cdb by polling if no cdb interrupt */
1588 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1589 (qc->tf.flags & ATA_TFLAG_POLLING))
1590 ata_pio_queue_task(ap, qc, 0);
1591 break;
1593 case ATAPI_PROT_DMA:
1594 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1596 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1597 ap->ops->bmdma_setup(qc); /* set up bmdma */
1598 ap->hsm_task_state = HSM_ST_FIRST;
1600 /* send cdb by polling if no cdb interrupt */
1601 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1602 ata_pio_queue_task(ap, qc, 0);
1603 break;
1605 default:
1606 WARN_ON_ONCE(1);
1607 return AC_ERR_SYSTEM;
1610 return 0;
1612 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1615 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1616 * @qc: qc to fill result TF for
1618 * @qc is finished and result TF needs to be filled. Fill it
1619 * using ->sff_tf_read.
1621 * LOCKING:
1622 * spin_lock_irqsave(host lock)
1624 * RETURNS:
1625 * true indicating that result TF is successfully filled.
1627 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1629 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1630 return true;
1632 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1635 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1636 * @ap: Port on which interrupt arrived (possibly...)
1637 * @qc: Taskfile currently active in engine
1639 * Handle host interrupt for given queued command. Currently,
1640 * only DMA interrupts are handled. All other commands are
1641 * handled via polling with interrupts disabled (nIEN bit).
1643 * LOCKING:
1644 * spin_lock_irqsave(host lock)
1646 * RETURNS:
1647 * One if interrupt was handled, zero if not (shared irq).
1649 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1650 struct ata_queued_cmd *qc)
1652 struct ata_eh_info *ehi = &ap->link.eh_info;
1653 u8 status, host_stat = 0;
1655 VPRINTK("ata%u: protocol %d task_state %d\n",
1656 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1658 /* Check whether we are expecting interrupt in this state */
1659 switch (ap->hsm_task_state) {
1660 case HSM_ST_FIRST:
1661 /* Some pre-ATAPI-4 devices assert INTRQ
1662 * at this state when ready to receive CDB.
1665 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1666 * The flag was turned on only for atapi devices. No
1667 * need to check ata_is_atapi(qc->tf.protocol) again.
1669 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1670 goto idle_irq;
1671 break;
1672 case HSM_ST_LAST:
1673 if (qc->tf.protocol == ATA_PROT_DMA ||
1674 qc->tf.protocol == ATAPI_PROT_DMA) {
1675 /* check status of DMA engine */
1676 host_stat = ap->ops->bmdma_status(ap);
1677 VPRINTK("ata%u: host_stat 0x%X\n",
1678 ap->print_id, host_stat);
1680 /* if it's not our irq... */
1681 if (!(host_stat & ATA_DMA_INTR))
1682 goto idle_irq;
1684 /* before we do anything else, clear DMA-Start bit */
1685 ap->ops->bmdma_stop(qc);
1687 if (unlikely(host_stat & ATA_DMA_ERR)) {
1688 /* error when transfering data to/from memory */
1689 qc->err_mask |= AC_ERR_HOST_BUS;
1690 ap->hsm_task_state = HSM_ST_ERR;
1693 break;
1694 case HSM_ST:
1695 break;
1696 default:
1697 goto idle_irq;
1701 /* check main status, clearing INTRQ if needed */
1702 status = ata_sff_irq_status(ap);
1703 if (status & ATA_BUSY)
1704 goto idle_irq;
1706 /* ack bmdma irq events */
1707 ap->ops->sff_irq_clear(ap);
1709 ata_sff_hsm_move(ap, qc, status, 0);
1711 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1712 qc->tf.protocol == ATAPI_PROT_DMA))
1713 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1715 return 1; /* irq handled */
1717 idle_irq:
1718 ap->stats.idle_irq++;
1720 #ifdef ATA_IRQ_TRAP
1721 if ((ap->stats.idle_irq % 1000) == 0) {
1722 ap->ops->sff_check_status(ap);
1723 ap->ops->sff_irq_clear(ap);
1724 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1725 return 1;
1727 #endif
1728 return 0; /* irq not handled */
1730 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1733 * ata_sff_interrupt - Default ATA host interrupt handler
1734 * @irq: irq line (unused)
1735 * @dev_instance: pointer to our ata_host information structure
1737 * Default interrupt handler for PCI IDE devices. Calls
1738 * ata_sff_host_intr() for each port that is not disabled.
1740 * LOCKING:
1741 * Obtains host lock during operation.
1743 * RETURNS:
1744 * IRQ_NONE or IRQ_HANDLED.
1746 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1748 struct ata_host *host = dev_instance;
1749 unsigned int i;
1750 unsigned int handled = 0;
1751 unsigned long flags;
1753 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1754 spin_lock_irqsave(&host->lock, flags);
1756 for (i = 0; i < host->n_ports; i++) {
1757 struct ata_port *ap;
1759 ap = host->ports[i];
1760 if (ap &&
1761 !(ap->flags & ATA_FLAG_DISABLED)) {
1762 struct ata_queued_cmd *qc;
1764 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1765 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1766 (qc->flags & ATA_QCFLAG_ACTIVE))
1767 handled |= ata_sff_host_intr(ap, qc);
1771 spin_unlock_irqrestore(&host->lock, flags);
1773 return IRQ_RETVAL(handled);
1775 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1778 * ata_sff_freeze - Freeze SFF controller port
1779 * @ap: port to freeze
1781 * Freeze BMDMA controller port.
1783 * LOCKING:
1784 * Inherited from caller.
1786 void ata_sff_freeze(struct ata_port *ap)
1788 struct ata_ioports *ioaddr = &ap->ioaddr;
1790 ap->ctl |= ATA_NIEN;
1791 ap->last_ctl = ap->ctl;
1793 if (ioaddr->ctl_addr)
1794 iowrite8(ap->ctl, ioaddr->ctl_addr);
1796 /* Under certain circumstances, some controllers raise IRQ on
1797 * ATA_NIEN manipulation. Also, many controllers fail to mask
1798 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1800 ap->ops->sff_check_status(ap);
1802 ap->ops->sff_irq_clear(ap);
1804 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1807 * ata_sff_thaw - Thaw SFF controller port
1808 * @ap: port to thaw
1810 * Thaw SFF controller port.
1812 * LOCKING:
1813 * Inherited from caller.
1815 void ata_sff_thaw(struct ata_port *ap)
1817 /* clear & re-enable interrupts */
1818 ap->ops->sff_check_status(ap);
1819 ap->ops->sff_irq_clear(ap);
1820 ap->ops->sff_irq_on(ap);
1822 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1825 * ata_sff_prereset - prepare SFF link for reset
1826 * @link: SFF link to be reset
1827 * @deadline: deadline jiffies for the operation
1829 * SFF link @link is about to be reset. Initialize it. It first
1830 * calls ata_std_prereset() and wait for !BSY if the port is
1831 * being softreset.
1833 * LOCKING:
1834 * Kernel thread context (may sleep)
1836 * RETURNS:
1837 * 0 on success, -errno otherwise.
1839 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1841 struct ata_eh_context *ehc = &link->eh_context;
1842 int rc;
1844 rc = ata_std_prereset(link, deadline);
1845 if (rc)
1846 return rc;
1848 /* if we're about to do hardreset, nothing more to do */
1849 if (ehc->i.action & ATA_EH_HARDRESET)
1850 return 0;
1852 /* wait for !BSY if we don't know that no device is attached */
1853 if (!ata_link_offline(link)) {
1854 rc = ata_sff_wait_ready(link, deadline);
1855 if (rc && rc != -ENODEV) {
1856 ata_link_printk(link, KERN_WARNING, "device not ready "
1857 "(errno=%d), forcing hardreset\n", rc);
1858 ehc->i.action |= ATA_EH_HARDRESET;
1862 return 0;
1864 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1867 * ata_devchk - PATA device presence detection
1868 * @ap: ATA channel to examine
1869 * @device: Device to examine (starting at zero)
1871 * This technique was originally described in
1872 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1873 * later found its way into the ATA/ATAPI spec.
1875 * Write a pattern to the ATA shadow registers,
1876 * and if a device is present, it will respond by
1877 * correctly storing and echoing back the
1878 * ATA shadow register contents.
1880 * LOCKING:
1881 * caller.
1883 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1885 struct ata_ioports *ioaddr = &ap->ioaddr;
1886 u8 nsect, lbal;
1888 ap->ops->sff_dev_select(ap, device);
1890 iowrite8(0x55, ioaddr->nsect_addr);
1891 iowrite8(0xaa, ioaddr->lbal_addr);
1893 iowrite8(0xaa, ioaddr->nsect_addr);
1894 iowrite8(0x55, ioaddr->lbal_addr);
1896 iowrite8(0x55, ioaddr->nsect_addr);
1897 iowrite8(0xaa, ioaddr->lbal_addr);
1899 nsect = ioread8(ioaddr->nsect_addr);
1900 lbal = ioread8(ioaddr->lbal_addr);
1902 if ((nsect == 0x55) && (lbal == 0xaa))
1903 return 1; /* we found a device */
1905 return 0; /* nothing found */
1909 * ata_sff_dev_classify - Parse returned ATA device signature
1910 * @dev: ATA device to classify (starting at zero)
1911 * @present: device seems present
1912 * @r_err: Value of error register on completion
1914 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1915 * an ATA/ATAPI-defined set of values is placed in the ATA
1916 * shadow registers, indicating the results of device detection
1917 * and diagnostics.
1919 * Select the ATA device, and read the values from the ATA shadow
1920 * registers. Then parse according to the Error register value,
1921 * and the spec-defined values examined by ata_dev_classify().
1923 * LOCKING:
1924 * caller.
1926 * RETURNS:
1927 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1929 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1930 u8 *r_err)
1932 struct ata_port *ap = dev->link->ap;
1933 struct ata_taskfile tf;
1934 unsigned int class;
1935 u8 err;
1937 ap->ops->sff_dev_select(ap, dev->devno);
1939 memset(&tf, 0, sizeof(tf));
1941 ap->ops->sff_tf_read(ap, &tf);
1942 err = tf.feature;
1943 if (r_err)
1944 *r_err = err;
1946 /* see if device passed diags: continue and warn later */
1947 if (err == 0)
1948 /* diagnostic fail : do nothing _YET_ */
1949 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1950 else if (err == 1)
1951 /* do nothing */ ;
1952 else if ((dev->devno == 0) && (err == 0x81))
1953 /* do nothing */ ;
1954 else
1955 return ATA_DEV_NONE;
1957 /* determine if device is ATA or ATAPI */
1958 class = ata_dev_classify(&tf);
1960 if (class == ATA_DEV_UNKNOWN) {
1961 /* If the device failed diagnostic, it's likely to
1962 * have reported incorrect device signature too.
1963 * Assume ATA device if the device seems present but
1964 * device signature is invalid with diagnostic
1965 * failure.
1967 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1968 class = ATA_DEV_ATA;
1969 else
1970 class = ATA_DEV_NONE;
1971 } else if ((class == ATA_DEV_ATA) &&
1972 (ap->ops->sff_check_status(ap) == 0))
1973 class = ATA_DEV_NONE;
1975 return class;
1977 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1980 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1981 * @link: SFF link which is just reset
1982 * @devmask: mask of present devices
1983 * @deadline: deadline jiffies for the operation
1985 * Wait devices attached to SFF @link to become ready after
1986 * reset. It contains preceding 150ms wait to avoid accessing TF
1987 * status register too early.
1989 * LOCKING:
1990 * Kernel thread context (may sleep).
1992 * RETURNS:
1993 * 0 on success, -ENODEV if some or all of devices in @devmask
1994 * don't seem to exist. -errno on other errors.
1996 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1997 unsigned long deadline)
1999 struct ata_port *ap = link->ap;
2000 struct ata_ioports *ioaddr = &ap->ioaddr;
2001 unsigned int dev0 = devmask & (1 << 0);
2002 unsigned int dev1 = devmask & (1 << 1);
2003 int rc, ret = 0;
2005 msleep(ATA_WAIT_AFTER_RESET);
2007 /* always check readiness of the master device */
2008 rc = ata_sff_wait_ready(link, deadline);
2009 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
2010 * and TF status is 0xff, bail out on it too.
2012 if (rc)
2013 return rc;
2015 /* if device 1 was found in ata_devchk, wait for register
2016 * access briefly, then wait for BSY to clear.
2018 if (dev1) {
2019 int i;
2021 ap->ops->sff_dev_select(ap, 1);
2023 /* Wait for register access. Some ATAPI devices fail
2024 * to set nsect/lbal after reset, so don't waste too
2025 * much time on it. We're gonna wait for !BSY anyway.
2027 for (i = 0; i < 2; i++) {
2028 u8 nsect, lbal;
2030 nsect = ioread8(ioaddr->nsect_addr);
2031 lbal = ioread8(ioaddr->lbal_addr);
2032 if ((nsect == 1) && (lbal == 1))
2033 break;
2034 msleep(50); /* give drive a breather */
2037 rc = ata_sff_wait_ready(link, deadline);
2038 if (rc) {
2039 if (rc != -ENODEV)
2040 return rc;
2041 ret = rc;
2045 /* is all this really necessary? */
2046 ap->ops->sff_dev_select(ap, 0);
2047 if (dev1)
2048 ap->ops->sff_dev_select(ap, 1);
2049 if (dev0)
2050 ap->ops->sff_dev_select(ap, 0);
2052 return ret;
2054 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2056 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2057 unsigned long deadline)
2059 struct ata_ioports *ioaddr = &ap->ioaddr;
2061 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2063 /* software reset. causes dev0 to be selected */
2064 iowrite8(ap->ctl, ioaddr->ctl_addr);
2065 udelay(20); /* FIXME: flush */
2066 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2067 udelay(20); /* FIXME: flush */
2068 iowrite8(ap->ctl, ioaddr->ctl_addr);
2070 /* wait the port to become ready */
2071 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2075 * ata_sff_softreset - reset host port via ATA SRST
2076 * @link: ATA link to reset
2077 * @classes: resulting classes of attached devices
2078 * @deadline: deadline jiffies for the operation
2080 * Reset host port using ATA SRST.
2082 * LOCKING:
2083 * Kernel thread context (may sleep)
2085 * RETURNS:
2086 * 0 on success, -errno otherwise.
2088 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2089 unsigned long deadline)
2091 struct ata_port *ap = link->ap;
2092 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2093 unsigned int devmask = 0;
2094 int rc;
2095 u8 err;
2097 DPRINTK("ENTER\n");
2099 /* determine if device 0/1 are present */
2100 if (ata_devchk(ap, 0))
2101 devmask |= (1 << 0);
2102 if (slave_possible && ata_devchk(ap, 1))
2103 devmask |= (1 << 1);
2105 /* select device 0 again */
2106 ap->ops->sff_dev_select(ap, 0);
2108 /* issue bus reset */
2109 DPRINTK("about to softreset, devmask=%x\n", devmask);
2110 rc = ata_bus_softreset(ap, devmask, deadline);
2111 /* if link is occupied, -ENODEV too is an error */
2112 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2113 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2114 return rc;
2117 /* determine by signature whether we have ATA or ATAPI devices */
2118 classes[0] = ata_sff_dev_classify(&link->device[0],
2119 devmask & (1 << 0), &err);
2120 if (slave_possible && err != 0x81)
2121 classes[1] = ata_sff_dev_classify(&link->device[1],
2122 devmask & (1 << 1), &err);
2124 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2125 return 0;
2127 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2130 * sata_sff_hardreset - reset host port via SATA phy reset
2131 * @link: link to reset
2132 * @class: resulting class of attached device
2133 * @deadline: deadline jiffies for the operation
2135 * SATA phy-reset host port using DET bits of SControl register,
2136 * wait for !BSY and classify the attached device.
2138 * LOCKING:
2139 * Kernel thread context (may sleep)
2141 * RETURNS:
2142 * 0 on success, -errno otherwise.
2144 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2145 unsigned long deadline)
2147 struct ata_eh_context *ehc = &link->eh_context;
2148 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2149 bool online;
2150 int rc;
2152 rc = sata_link_hardreset(link, timing, deadline, &online,
2153 ata_sff_check_ready);
2154 if (online)
2155 *class = ata_sff_dev_classify(link->device, 1, NULL);
2157 DPRINTK("EXIT, class=%u\n", *class);
2158 return rc;
2160 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2163 * ata_sff_postreset - SFF postreset callback
2164 * @link: the target SFF ata_link
2165 * @classes: classes of attached devices
2167 * This function is invoked after a successful reset. It first
2168 * calls ata_std_postreset() and performs SFF specific postreset
2169 * processing.
2171 * LOCKING:
2172 * Kernel thread context (may sleep)
2174 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2176 struct ata_port *ap = link->ap;
2178 ata_std_postreset(link, classes);
2180 /* is double-select really necessary? */
2181 if (classes[0] != ATA_DEV_NONE)
2182 ap->ops->sff_dev_select(ap, 1);
2183 if (classes[1] != ATA_DEV_NONE)
2184 ap->ops->sff_dev_select(ap, 0);
2186 /* bail out if no device is present */
2187 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2188 DPRINTK("EXIT, no device\n");
2189 return;
2192 /* set up device control */
2193 if (ap->ioaddr.ctl_addr)
2194 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2196 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2199 * ata_sff_error_handler - Stock error handler for BMDMA controller
2200 * @ap: port to handle error for
2202 * Stock error handler for SFF controller. It can handle both
2203 * PATA and SATA controllers. Many controllers should be able to
2204 * use this EH as-is or with some added handling before and
2205 * after.
2207 * LOCKING:
2208 * Kernel thread context (may sleep)
2210 void ata_sff_error_handler(struct ata_port *ap)
2212 ata_reset_fn_t softreset = ap->ops->softreset;
2213 ata_reset_fn_t hardreset = ap->ops->hardreset;
2214 struct ata_queued_cmd *qc;
2215 unsigned long flags;
2216 int thaw = 0;
2218 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2219 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2220 qc = NULL;
2222 /* reset PIO HSM and stop DMA engine */
2223 spin_lock_irqsave(ap->lock, flags);
2225 ap->hsm_task_state = HSM_ST_IDLE;
2227 if (ap->ioaddr.bmdma_addr &&
2228 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2229 qc->tf.protocol == ATAPI_PROT_DMA)) {
2230 u8 host_stat;
2232 host_stat = ap->ops->bmdma_status(ap);
2234 /* BMDMA controllers indicate host bus error by
2235 * setting DMA_ERR bit and timing out. As it wasn't
2236 * really a timeout event, adjust error mask and
2237 * cancel frozen state.
2239 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2240 qc->err_mask = AC_ERR_HOST_BUS;
2241 thaw = 1;
2244 ap->ops->bmdma_stop(qc);
2247 ata_sff_sync(ap); /* FIXME: We don't need this */
2248 ap->ops->sff_check_status(ap);
2249 ap->ops->sff_irq_clear(ap);
2251 spin_unlock_irqrestore(ap->lock, flags);
2253 if (thaw)
2254 ata_eh_thaw_port(ap);
2256 /* PIO and DMA engines have been stopped, perform recovery */
2258 /* Ignore ata_sff_softreset if ctl isn't accessible and
2259 * built-in hardresets if SCR access isn't available.
2261 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2262 softreset = NULL;
2263 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2264 hardreset = NULL;
2266 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2267 ap->ops->postreset);
2269 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2272 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2273 * @qc: internal command to clean up
2275 * LOCKING:
2276 * Kernel thread context (may sleep)
2278 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2280 struct ata_port *ap = qc->ap;
2281 unsigned long flags;
2283 spin_lock_irqsave(ap->lock, flags);
2285 ap->hsm_task_state = HSM_ST_IDLE;
2287 if (ap->ioaddr.bmdma_addr)
2288 ata_bmdma_stop(qc);
2290 spin_unlock_irqrestore(ap->lock, flags);
2292 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2295 * ata_sff_port_start - Set port up for dma.
2296 * @ap: Port to initialize
2298 * Called just after data structures for each port are
2299 * initialized. Allocates space for PRD table if the device
2300 * is DMA capable SFF.
2302 * May be used as the port_start() entry in ata_port_operations.
2304 * LOCKING:
2305 * Inherited from caller.
2307 int ata_sff_port_start(struct ata_port *ap)
2309 if (ap->ioaddr.bmdma_addr)
2310 return ata_port_start(ap);
2311 return 0;
2313 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2316 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2317 * @ioaddr: IO address structure to be initialized
2319 * Utility function which initializes data_addr, error_addr,
2320 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2321 * device_addr, status_addr, and command_addr to standard offsets
2322 * relative to cmd_addr.
2324 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2326 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2328 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2329 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2330 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2331 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2332 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2333 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2334 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2335 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2336 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2337 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2339 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2341 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2342 unsigned long xfer_mask)
2344 /* Filter out DMA modes if the device has been configured by
2345 the BIOS as PIO only */
2347 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2348 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2349 return xfer_mask;
2351 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2354 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2355 * @qc: Info associated with this ATA transaction.
2357 * LOCKING:
2358 * spin_lock_irqsave(host lock)
2360 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2362 struct ata_port *ap = qc->ap;
2363 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2364 u8 dmactl;
2366 /* load PRD table addr. */
2367 mb(); /* make sure PRD table writes are visible to controller */
2368 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2370 /* specify data direction, triple-check start bit is clear */
2371 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2372 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2373 if (!rw)
2374 dmactl |= ATA_DMA_WR;
2375 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2377 /* issue r/w command */
2378 ap->ops->sff_exec_command(ap, &qc->tf);
2380 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2383 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2384 * @qc: Info associated with this ATA transaction.
2386 * LOCKING:
2387 * spin_lock_irqsave(host lock)
2389 void ata_bmdma_start(struct ata_queued_cmd *qc)
2391 struct ata_port *ap = qc->ap;
2392 u8 dmactl;
2394 /* start host DMA transaction */
2395 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2396 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2398 /* Strictly, one may wish to issue an ioread8() here, to
2399 * flush the mmio write. However, control also passes
2400 * to the hardware at this point, and it will interrupt
2401 * us when we are to resume control. So, in effect,
2402 * we don't care when the mmio write flushes.
2403 * Further, a read of the DMA status register _immediately_
2404 * following the write may not be what certain flaky hardware
2405 * is expected, so I think it is best to not add a readb()
2406 * without first all the MMIO ATA cards/mobos.
2407 * Or maybe I'm just being paranoid.
2409 * FIXME: The posting of this write means I/O starts are
2410 * unneccessarily delayed for MMIO
2413 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2416 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2417 * @qc: Command we are ending DMA for
2419 * Clears the ATA_DMA_START flag in the dma control register
2421 * May be used as the bmdma_stop() entry in ata_port_operations.
2423 * LOCKING:
2424 * spin_lock_irqsave(host lock)
2426 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2428 struct ata_port *ap = qc->ap;
2429 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2431 /* clear start/stop bit */
2432 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2433 mmio + ATA_DMA_CMD);
2435 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2436 ata_sff_dma_pause(ap);
2438 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2441 * ata_bmdma_status - Read PCI IDE BMDMA status
2442 * @ap: Port associated with this ATA transaction.
2444 * Read and return BMDMA status register.
2446 * May be used as the bmdma_status() entry in ata_port_operations.
2448 * LOCKING:
2449 * spin_lock_irqsave(host lock)
2451 u8 ata_bmdma_status(struct ata_port *ap)
2453 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2455 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2458 * ata_bus_reset - reset host port and associated ATA channel
2459 * @ap: port to reset
2461 * This is typically the first time we actually start issuing
2462 * commands to the ATA channel. We wait for BSY to clear, then
2463 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2464 * result. Determine what devices, if any, are on the channel
2465 * by looking at the device 0/1 error register. Look at the signature
2466 * stored in each device's taskfile registers, to determine if
2467 * the device is ATA or ATAPI.
2469 * LOCKING:
2470 * PCI/etc. bus probe sem.
2471 * Obtains host lock.
2473 * SIDE EFFECTS:
2474 * Sets ATA_FLAG_DISABLED if bus reset fails.
2476 * DEPRECATED:
2477 * This function is only for drivers which still use old EH and
2478 * will be removed soon.
2480 void ata_bus_reset(struct ata_port *ap)
2482 struct ata_device *device = ap->link.device;
2483 struct ata_ioports *ioaddr = &ap->ioaddr;
2484 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2485 u8 err;
2486 unsigned int dev0, dev1 = 0, devmask = 0;
2487 int rc;
2489 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2491 /* determine if device 0/1 are present */
2492 if (ap->flags & ATA_FLAG_SATA_RESET)
2493 dev0 = 1;
2494 else {
2495 dev0 = ata_devchk(ap, 0);
2496 if (slave_possible)
2497 dev1 = ata_devchk(ap, 1);
2500 if (dev0)
2501 devmask |= (1 << 0);
2502 if (dev1)
2503 devmask |= (1 << 1);
2505 /* select device 0 again */
2506 ap->ops->sff_dev_select(ap, 0);
2508 /* issue bus reset */
2509 if (ap->flags & ATA_FLAG_SRST) {
2510 rc = ata_bus_softreset(ap, devmask,
2511 ata_deadline(jiffies, 40000));
2512 if (rc && rc != -ENODEV)
2513 goto err_out;
2517 * determine by signature whether we have ATA or ATAPI devices
2519 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2520 if ((slave_possible) && (err != 0x81))
2521 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2523 /* is double-select really necessary? */
2524 if (device[1].class != ATA_DEV_NONE)
2525 ap->ops->sff_dev_select(ap, 1);
2526 if (device[0].class != ATA_DEV_NONE)
2527 ap->ops->sff_dev_select(ap, 0);
2529 /* if no devices were detected, disable this port */
2530 if ((device[0].class == ATA_DEV_NONE) &&
2531 (device[1].class == ATA_DEV_NONE))
2532 goto err_out;
2534 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2535 /* set up device control for ATA_FLAG_SATA_RESET */
2536 iowrite8(ap->ctl, ioaddr->ctl_addr);
2539 DPRINTK("EXIT\n");
2540 return;
2542 err_out:
2543 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2544 ata_port_disable(ap);
2546 DPRINTK("EXIT\n");
2548 EXPORT_SYMBOL_GPL(ata_bus_reset);
2550 #ifdef CONFIG_PCI
2553 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2554 * @pdev: PCI device
2556 * Some PCI ATA devices report simplex mode but in fact can be told to
2557 * enter non simplex mode. This implements the necessary logic to
2558 * perform the task on such devices. Calling it on other devices will
2559 * have -undefined- behaviour.
2561 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2563 unsigned long bmdma = pci_resource_start(pdev, 4);
2564 u8 simplex;
2566 if (bmdma == 0)
2567 return -ENOENT;
2569 simplex = inb(bmdma + 0x02);
2570 outb(simplex & 0x60, bmdma + 0x02);
2571 simplex = inb(bmdma + 0x02);
2572 if (simplex & 0x80)
2573 return -EOPNOTSUPP;
2574 return 0;
2576 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2579 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2580 * @host: target ATA host
2582 * Acquire PCI BMDMA resources and initialize @host accordingly.
2584 * LOCKING:
2585 * Inherited from calling layer (may sleep).
2587 * RETURNS:
2588 * 0 on success, -errno otherwise.
2590 int ata_pci_bmdma_init(struct ata_host *host)
2592 struct device *gdev = host->dev;
2593 struct pci_dev *pdev = to_pci_dev(gdev);
2594 int i, rc;
2596 /* No BAR4 allocation: No DMA */
2597 if (pci_resource_start(pdev, 4) == 0)
2598 return 0;
2600 /* TODO: If we get no DMA mask we should fall back to PIO */
2601 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2602 if (rc)
2603 return rc;
2604 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2605 if (rc)
2606 return rc;
2608 /* request and iomap DMA region */
2609 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2610 if (rc) {
2611 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2612 return -ENOMEM;
2614 host->iomap = pcim_iomap_table(pdev);
2616 for (i = 0; i < 2; i++) {
2617 struct ata_port *ap = host->ports[i];
2618 void __iomem *bmdma = host->iomap[4] + 8 * i;
2620 if (ata_port_is_dummy(ap))
2621 continue;
2623 ap->ioaddr.bmdma_addr = bmdma;
2624 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2625 (ioread8(bmdma + 2) & 0x80))
2626 host->flags |= ATA_HOST_SIMPLEX;
2628 ata_port_desc(ap, "bmdma 0x%llx",
2629 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2632 return 0;
2634 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2636 static int ata_resources_present(struct pci_dev *pdev, int port)
2638 int i;
2640 /* Check the PCI resources for this channel are enabled */
2641 port = port * 2;
2642 for (i = 0; i < 2; i++) {
2643 if (pci_resource_start(pdev, port + i) == 0 ||
2644 pci_resource_len(pdev, port + i) == 0)
2645 return 0;
2647 return 1;
2651 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2652 * @host: target ATA host
2654 * Acquire native PCI ATA resources for @host and initialize the
2655 * first two ports of @host accordingly. Ports marked dummy are
2656 * skipped and allocation failure makes the port dummy.
2658 * Note that native PCI resources are valid even for legacy hosts
2659 * as we fix up pdev resources array early in boot, so this
2660 * function can be used for both native and legacy SFF hosts.
2662 * LOCKING:
2663 * Inherited from calling layer (may sleep).
2665 * RETURNS:
2666 * 0 if at least one port is initialized, -ENODEV if no port is
2667 * available.
2669 int ata_pci_sff_init_host(struct ata_host *host)
2671 struct device *gdev = host->dev;
2672 struct pci_dev *pdev = to_pci_dev(gdev);
2673 unsigned int mask = 0;
2674 int i, rc;
2676 /* request, iomap BARs and init port addresses accordingly */
2677 for (i = 0; i < 2; i++) {
2678 struct ata_port *ap = host->ports[i];
2679 int base = i * 2;
2680 void __iomem * const *iomap;
2682 if (ata_port_is_dummy(ap))
2683 continue;
2685 /* Discard disabled ports. Some controllers show
2686 * their unused channels this way. Disabled ports are
2687 * made dummy.
2689 if (!ata_resources_present(pdev, i)) {
2690 ap->ops = &ata_dummy_port_ops;
2691 continue;
2694 rc = pcim_iomap_regions(pdev, 0x3 << base,
2695 dev_driver_string(gdev));
2696 if (rc) {
2697 dev_printk(KERN_WARNING, gdev,
2698 "failed to request/iomap BARs for port %d "
2699 "(errno=%d)\n", i, rc);
2700 if (rc == -EBUSY)
2701 pcim_pin_device(pdev);
2702 ap->ops = &ata_dummy_port_ops;
2703 continue;
2705 host->iomap = iomap = pcim_iomap_table(pdev);
2707 ap->ioaddr.cmd_addr = iomap[base];
2708 ap->ioaddr.altstatus_addr =
2709 ap->ioaddr.ctl_addr = (void __iomem *)
2710 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2711 ata_sff_std_ports(&ap->ioaddr);
2713 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2714 (unsigned long long)pci_resource_start(pdev, base),
2715 (unsigned long long)pci_resource_start(pdev, base + 1));
2717 mask |= 1 << i;
2720 if (!mask) {
2721 dev_printk(KERN_ERR, gdev, "no available native port\n");
2722 return -ENODEV;
2725 return 0;
2727 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2730 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2731 * @pdev: target PCI device
2732 * @ppi: array of port_info, must be enough for two ports
2733 * @r_host: out argument for the initialized ATA host
2735 * Helper to allocate ATA host for @pdev, acquire all native PCI
2736 * resources and initialize it accordingly in one go.
2738 * LOCKING:
2739 * Inherited from calling layer (may sleep).
2741 * RETURNS:
2742 * 0 on success, -errno otherwise.
2744 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2745 const struct ata_port_info * const *ppi,
2746 struct ata_host **r_host)
2748 struct ata_host *host;
2749 int rc;
2751 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2752 return -ENOMEM;
2754 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2755 if (!host) {
2756 dev_printk(KERN_ERR, &pdev->dev,
2757 "failed to allocate ATA host\n");
2758 rc = -ENOMEM;
2759 goto err_out;
2762 rc = ata_pci_sff_init_host(host);
2763 if (rc)
2764 goto err_out;
2766 /* init DMA related stuff */
2767 rc = ata_pci_bmdma_init(host);
2768 if (rc)
2769 goto err_bmdma;
2771 devres_remove_group(&pdev->dev, NULL);
2772 *r_host = host;
2773 return 0;
2775 err_bmdma:
2776 /* This is necessary because PCI and iomap resources are
2777 * merged and releasing the top group won't release the
2778 * acquired resources if some of those have been acquired
2779 * before entering this function.
2781 pcim_iounmap_regions(pdev, 0xf);
2782 err_out:
2783 devres_release_group(&pdev->dev, NULL);
2784 return rc;
2786 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2789 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2790 * @host: target SFF ATA host
2791 * @irq_handler: irq_handler used when requesting IRQ(s)
2792 * @sht: scsi_host_template to use when registering the host
2794 * This is the counterpart of ata_host_activate() for SFF ATA
2795 * hosts. This separate helper is necessary because SFF hosts
2796 * use two separate interrupts in legacy mode.
2798 * LOCKING:
2799 * Inherited from calling layer (may sleep).
2801 * RETURNS:
2802 * 0 on success, -errno otherwise.
2804 int ata_pci_sff_activate_host(struct ata_host *host,
2805 irq_handler_t irq_handler,
2806 struct scsi_host_template *sht)
2808 struct device *dev = host->dev;
2809 struct pci_dev *pdev = to_pci_dev(dev);
2810 const char *drv_name = dev_driver_string(host->dev);
2811 int legacy_mode = 0, rc;
2813 rc = ata_host_start(host);
2814 if (rc)
2815 return rc;
2817 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2818 u8 tmp8, mask;
2820 /* TODO: What if one channel is in native mode ... */
2821 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2822 mask = (1 << 2) | (1 << 0);
2823 if ((tmp8 & mask) != mask)
2824 legacy_mode = 1;
2825 #if defined(CONFIG_NO_ATA_LEGACY)
2826 /* Some platforms with PCI limits cannot address compat
2827 port space. In that case we punt if their firmware has
2828 left a device in compatibility mode */
2829 if (legacy_mode) {
2830 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2831 return -EOPNOTSUPP;
2833 #endif
2836 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2837 return -ENOMEM;
2839 if (!legacy_mode && pdev->irq) {
2840 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2841 IRQF_SHARED, drv_name, host);
2842 if (rc)
2843 goto out;
2845 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2846 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2847 } else if (legacy_mode) {
2848 if (!ata_port_is_dummy(host->ports[0])) {
2849 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2850 irq_handler, IRQF_SHARED,
2851 drv_name, host);
2852 if (rc)
2853 goto out;
2855 ata_port_desc(host->ports[0], "irq %d",
2856 ATA_PRIMARY_IRQ(pdev));
2859 if (!ata_port_is_dummy(host->ports[1])) {
2860 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2861 irq_handler, IRQF_SHARED,
2862 drv_name, host);
2863 if (rc)
2864 goto out;
2866 ata_port_desc(host->ports[1], "irq %d",
2867 ATA_SECONDARY_IRQ(pdev));
2871 rc = ata_host_register(host, sht);
2872 out:
2873 if (rc == 0)
2874 devres_remove_group(dev, NULL);
2875 else
2876 devres_release_group(dev, NULL);
2878 return rc;
2880 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2883 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2884 * @pdev: Controller to be initialized
2885 * @ppi: array of port_info, must be enough for two ports
2886 * @sht: scsi_host_template to use when registering the host
2887 * @host_priv: host private_data
2889 * This is a helper function which can be called from a driver's
2890 * xxx_init_one() probe function if the hardware uses traditional
2891 * IDE taskfile registers.
2893 * This function calls pci_enable_device(), reserves its register
2894 * regions, sets the dma mask, enables bus master mode, and calls
2895 * ata_device_add()
2897 * ASSUMPTION:
2898 * Nobody makes a single channel controller that appears solely as
2899 * the secondary legacy port on PCI.
2901 * LOCKING:
2902 * Inherited from PCI layer (may sleep).
2904 * RETURNS:
2905 * Zero on success, negative on errno-based value on error.
2907 int ata_pci_sff_init_one(struct pci_dev *pdev,
2908 const struct ata_port_info * const *ppi,
2909 struct scsi_host_template *sht, void *host_priv)
2911 struct device *dev = &pdev->dev;
2912 const struct ata_port_info *pi = NULL;
2913 struct ata_host *host = NULL;
2914 int i, rc;
2916 DPRINTK("ENTER\n");
2918 /* look up the first valid port_info */
2919 for (i = 0; i < 2 && ppi[i]; i++) {
2920 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2921 pi = ppi[i];
2922 break;
2926 if (!pi) {
2927 dev_printk(KERN_ERR, &pdev->dev,
2928 "no valid port_info specified\n");
2929 return -EINVAL;
2932 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2933 return -ENOMEM;
2935 rc = pcim_enable_device(pdev);
2936 if (rc)
2937 goto out;
2939 /* prepare and activate SFF host */
2940 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2941 if (rc)
2942 goto out;
2943 host->private_data = host_priv;
2945 pci_set_master(pdev);
2946 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2947 out:
2948 if (rc == 0)
2949 devres_remove_group(&pdev->dev, NULL);
2950 else
2951 devres_release_group(&pdev->dev, NULL);
2953 return rc;
2955 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2957 #endif /* CONFIG_PCI */