2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
31 static struct kmem_cache
*bio_slab __read_mostly
;
33 static mempool_t
*bio_split_pool __read_mostly
;
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
41 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
42 static struct biovec_slab bvec_slabs
[BIOVEC_NR_POOLS
] __read_mostly
= {
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
51 struct bio_set
*fs_bio_set
;
53 unsigned int bvec_nr_vecs(unsigned short idx
)
55 return bvec_slabs
[idx
].nr_vecs
;
58 struct bio_vec
*bvec_alloc_bs(gfp_t gfp_mask
, int nr
, unsigned long *idx
, struct bio_set
*bs
)
63 * If 'bs' is given, lookup the pool and do the mempool alloc.
64 * If not, this is a bio_kmalloc() allocation and just do a
65 * kzalloc() for the exact number of vecs right away.
69 * see comment near bvec_array define!
87 case 129 ... BIO_MAX_PAGES
:
95 * idx now points to the pool we want to allocate from
97 bvl
= mempool_alloc(bs
->bvec_pools
[*idx
], gfp_mask
);
100 bvec_nr_vecs(*idx
) * sizeof(struct bio_vec
));
102 bvl
= kzalloc(nr
* sizeof(struct bio_vec
), gfp_mask
);
107 void bio_free(struct bio
*bio
, struct bio_set
*bio_set
)
109 if (bio
->bi_io_vec
) {
110 const int pool_idx
= BIO_POOL_IDX(bio
);
112 BIO_BUG_ON(pool_idx
>= BIOVEC_NR_POOLS
);
114 mempool_free(bio
->bi_io_vec
, bio_set
->bvec_pools
[pool_idx
]);
117 if (bio_integrity(bio
))
118 bio_integrity_free(bio
, bio_set
);
120 mempool_free(bio
, bio_set
->bio_pool
);
124 * default destructor for a bio allocated with bio_alloc_bioset()
126 static void bio_fs_destructor(struct bio
*bio
)
128 bio_free(bio
, fs_bio_set
);
131 static void bio_kmalloc_destructor(struct bio
*bio
)
133 kfree(bio
->bi_io_vec
);
137 void bio_init(struct bio
*bio
)
139 memset(bio
, 0, sizeof(*bio
));
140 bio
->bi_flags
= 1 << BIO_UPTODATE
;
141 bio
->bi_comp_cpu
= -1;
142 atomic_set(&bio
->bi_cnt
, 1);
146 * bio_alloc_bioset - allocate a bio for I/O
147 * @gfp_mask: the GFP_ mask given to the slab allocator
148 * @nr_iovecs: number of iovecs to pre-allocate
149 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
152 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
153 * If %__GFP_WAIT is set then we will block on the internal pool waiting
154 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
155 * fall back to just using @kmalloc to allocate the required memory.
157 * allocate bio and iovecs from the memory pools specified by the
158 * bio_set structure, or @kmalloc if none given.
160 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
165 bio
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
167 bio
= kmalloc(sizeof(*bio
), gfp_mask
);
170 struct bio_vec
*bvl
= NULL
;
173 if (likely(nr_iovecs
)) {
174 unsigned long uninitialized_var(idx
);
176 bvl
= bvec_alloc_bs(gfp_mask
, nr_iovecs
, &idx
, bs
);
177 if (unlikely(!bvl
)) {
179 mempool_free(bio
, bs
->bio_pool
);
185 bio
->bi_flags
|= idx
<< BIO_POOL_OFFSET
;
186 bio
->bi_max_vecs
= bvec_nr_vecs(idx
);
188 bio
->bi_io_vec
= bvl
;
194 struct bio
*bio_alloc(gfp_t gfp_mask
, int nr_iovecs
)
196 struct bio
*bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, fs_bio_set
);
199 bio
->bi_destructor
= bio_fs_destructor
;
205 * Like bio_alloc(), but doesn't use a mempool backing. This means that
206 * it CAN fail, but while bio_alloc() can only be used for allocations
207 * that have a short (finite) life span, bio_kmalloc() should be used
208 * for more permanent bio allocations (like allocating some bio's for
209 * initalization or setup purposes).
211 struct bio
*bio_kmalloc(gfp_t gfp_mask
, int nr_iovecs
)
213 struct bio
*bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, NULL
);
216 bio
->bi_destructor
= bio_kmalloc_destructor
;
221 void zero_fill_bio(struct bio
*bio
)
227 bio_for_each_segment(bv
, bio
, i
) {
228 char *data
= bvec_kmap_irq(bv
, &flags
);
229 memset(data
, 0, bv
->bv_len
);
230 flush_dcache_page(bv
->bv_page
);
231 bvec_kunmap_irq(data
, &flags
);
234 EXPORT_SYMBOL(zero_fill_bio
);
237 * bio_put - release a reference to a bio
238 * @bio: bio to release reference to
241 * Put a reference to a &struct bio, either one you have gotten with
242 * bio_alloc or bio_get. The last put of a bio will free it.
244 void bio_put(struct bio
*bio
)
246 BIO_BUG_ON(!atomic_read(&bio
->bi_cnt
));
251 if (atomic_dec_and_test(&bio
->bi_cnt
)) {
253 bio
->bi_destructor(bio
);
257 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
259 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
260 blk_recount_segments(q
, bio
);
262 return bio
->bi_phys_segments
;
266 * __bio_clone - clone a bio
267 * @bio: destination bio
268 * @bio_src: bio to clone
270 * Clone a &bio. Caller will own the returned bio, but not
271 * the actual data it points to. Reference count of returned
274 void __bio_clone(struct bio
*bio
, struct bio
*bio_src
)
276 memcpy(bio
->bi_io_vec
, bio_src
->bi_io_vec
,
277 bio_src
->bi_max_vecs
* sizeof(struct bio_vec
));
280 * most users will be overriding ->bi_bdev with a new target,
281 * so we don't set nor calculate new physical/hw segment counts here
283 bio
->bi_sector
= bio_src
->bi_sector
;
284 bio
->bi_bdev
= bio_src
->bi_bdev
;
285 bio
->bi_flags
|= 1 << BIO_CLONED
;
286 bio
->bi_rw
= bio_src
->bi_rw
;
287 bio
->bi_vcnt
= bio_src
->bi_vcnt
;
288 bio
->bi_size
= bio_src
->bi_size
;
289 bio
->bi_idx
= bio_src
->bi_idx
;
293 * bio_clone - clone a bio
295 * @gfp_mask: allocation priority
297 * Like __bio_clone, only also allocates the returned bio
299 struct bio
*bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
301 struct bio
*b
= bio_alloc_bioset(gfp_mask
, bio
->bi_max_vecs
, fs_bio_set
);
306 b
->bi_destructor
= bio_fs_destructor
;
309 if (bio_integrity(bio
)) {
312 ret
= bio_integrity_clone(b
, bio
, fs_bio_set
);
322 * bio_get_nr_vecs - return approx number of vecs
325 * Return the approximate number of pages we can send to this target.
326 * There's no guarantee that you will be able to fit this number of pages
327 * into a bio, it does not account for dynamic restrictions that vary
330 int bio_get_nr_vecs(struct block_device
*bdev
)
332 struct request_queue
*q
= bdev_get_queue(bdev
);
335 nr_pages
= ((q
->max_sectors
<< 9) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
336 if (nr_pages
> q
->max_phys_segments
)
337 nr_pages
= q
->max_phys_segments
;
338 if (nr_pages
> q
->max_hw_segments
)
339 nr_pages
= q
->max_hw_segments
;
344 static int __bio_add_page(struct request_queue
*q
, struct bio
*bio
, struct page
345 *page
, unsigned int len
, unsigned int offset
,
346 unsigned short max_sectors
)
348 int retried_segments
= 0;
349 struct bio_vec
*bvec
;
352 * cloned bio must not modify vec list
354 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
357 if (((bio
->bi_size
+ len
) >> 9) > max_sectors
)
361 * For filesystems with a blocksize smaller than the pagesize
362 * we will often be called with the same page as last time and
363 * a consecutive offset. Optimize this special case.
365 if (bio
->bi_vcnt
> 0) {
366 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
368 if (page
== prev
->bv_page
&&
369 offset
== prev
->bv_offset
+ prev
->bv_len
) {
372 if (q
->merge_bvec_fn
) {
373 struct bvec_merge_data bvm
= {
374 .bi_bdev
= bio
->bi_bdev
,
375 .bi_sector
= bio
->bi_sector
,
376 .bi_size
= bio
->bi_size
,
380 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < len
) {
390 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
394 * we might lose a segment or two here, but rather that than
395 * make this too complex.
398 while (bio
->bi_phys_segments
>= q
->max_phys_segments
399 || bio
->bi_phys_segments
>= q
->max_hw_segments
) {
401 if (retried_segments
)
404 retried_segments
= 1;
405 blk_recount_segments(q
, bio
);
409 * setup the new entry, we might clear it again later if we
410 * cannot add the page
412 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
413 bvec
->bv_page
= page
;
415 bvec
->bv_offset
= offset
;
418 * if queue has other restrictions (eg varying max sector size
419 * depending on offset), it can specify a merge_bvec_fn in the
420 * queue to get further control
422 if (q
->merge_bvec_fn
) {
423 struct bvec_merge_data bvm
= {
424 .bi_bdev
= bio
->bi_bdev
,
425 .bi_sector
= bio
->bi_sector
,
426 .bi_size
= bio
->bi_size
,
431 * merge_bvec_fn() returns number of bytes it can accept
434 if (q
->merge_bvec_fn(q
, &bvm
, bvec
) < len
) {
435 bvec
->bv_page
= NULL
;
442 /* If we may be able to merge these biovecs, force a recount */
443 if (bio
->bi_vcnt
&& (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
)))
444 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
447 bio
->bi_phys_segments
++;
454 * bio_add_pc_page - attempt to add page to bio
455 * @q: the target queue
456 * @bio: destination bio
458 * @len: vec entry length
459 * @offset: vec entry offset
461 * Attempt to add a page to the bio_vec maplist. This can fail for a
462 * number of reasons, such as the bio being full or target block
463 * device limitations. The target block device must allow bio's
464 * smaller than PAGE_SIZE, so it is always possible to add a single
465 * page to an empty bio. This should only be used by REQ_PC bios.
467 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
*page
,
468 unsigned int len
, unsigned int offset
)
470 return __bio_add_page(q
, bio
, page
, len
, offset
, q
->max_hw_sectors
);
474 * bio_add_page - attempt to add page to bio
475 * @bio: destination bio
477 * @len: vec entry length
478 * @offset: vec entry offset
480 * Attempt to add a page to the bio_vec maplist. This can fail for a
481 * number of reasons, such as the bio being full or target block
482 * device limitations. The target block device must allow bio's
483 * smaller than PAGE_SIZE, so it is always possible to add a single
484 * page to an empty bio.
486 int bio_add_page(struct bio
*bio
, struct page
*page
, unsigned int len
,
489 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
490 return __bio_add_page(q
, bio
, page
, len
, offset
, q
->max_sectors
);
493 struct bio_map_data
{
494 struct bio_vec
*iovecs
;
495 struct sg_iovec
*sgvecs
;
500 static void bio_set_map_data(struct bio_map_data
*bmd
, struct bio
*bio
,
501 struct sg_iovec
*iov
, int iov_count
,
504 memcpy(bmd
->iovecs
, bio
->bi_io_vec
, sizeof(struct bio_vec
) * bio
->bi_vcnt
);
505 memcpy(bmd
->sgvecs
, iov
, sizeof(struct sg_iovec
) * iov_count
);
506 bmd
->nr_sgvecs
= iov_count
;
507 bmd
->is_our_pages
= is_our_pages
;
508 bio
->bi_private
= bmd
;
511 static void bio_free_map_data(struct bio_map_data
*bmd
)
518 static struct bio_map_data
*bio_alloc_map_data(int nr_segs
, int iov_count
,
521 struct bio_map_data
*bmd
= kmalloc(sizeof(*bmd
), gfp_mask
);
526 bmd
->iovecs
= kmalloc(sizeof(struct bio_vec
) * nr_segs
, gfp_mask
);
532 bmd
->sgvecs
= kmalloc(sizeof(struct sg_iovec
) * iov_count
, gfp_mask
);
541 static int __bio_copy_iov(struct bio
*bio
, struct bio_vec
*iovecs
,
542 struct sg_iovec
*iov
, int iov_count
, int uncopy
,
546 struct bio_vec
*bvec
;
548 unsigned int iov_off
= 0;
549 int read
= bio_data_dir(bio
) == READ
;
551 __bio_for_each_segment(bvec
, bio
, i
, 0) {
552 char *bv_addr
= page_address(bvec
->bv_page
);
553 unsigned int bv_len
= iovecs
[i
].bv_len
;
555 while (bv_len
&& iov_idx
< iov_count
) {
559 bytes
= min_t(unsigned int,
560 iov
[iov_idx
].iov_len
- iov_off
, bv_len
);
561 iov_addr
= iov
[iov_idx
].iov_base
+ iov_off
;
564 if (!read
&& !uncopy
)
565 ret
= copy_from_user(bv_addr
, iov_addr
,
568 ret
= copy_to_user(iov_addr
, bv_addr
,
580 if (iov
[iov_idx
].iov_len
== iov_off
) {
587 __free_page(bvec
->bv_page
);
594 * bio_uncopy_user - finish previously mapped bio
595 * @bio: bio being terminated
597 * Free pages allocated from bio_copy_user() and write back data
598 * to user space in case of a read.
600 int bio_uncopy_user(struct bio
*bio
)
602 struct bio_map_data
*bmd
= bio
->bi_private
;
605 if (!bio_flagged(bio
, BIO_NULL_MAPPED
))
606 ret
= __bio_copy_iov(bio
, bmd
->iovecs
, bmd
->sgvecs
,
607 bmd
->nr_sgvecs
, 1, bmd
->is_our_pages
);
608 bio_free_map_data(bmd
);
614 * bio_copy_user_iov - copy user data to bio
615 * @q: destination block queue
616 * @map_data: pointer to the rq_map_data holding pages (if necessary)
618 * @iov_count: number of elements in the iovec
619 * @write_to_vm: bool indicating writing to pages or not
620 * @gfp_mask: memory allocation flags
622 * Prepares and returns a bio for indirect user io, bouncing data
623 * to/from kernel pages as necessary. Must be paired with
624 * call bio_uncopy_user() on io completion.
626 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
627 struct rq_map_data
*map_data
,
628 struct sg_iovec
*iov
, int iov_count
,
629 int write_to_vm
, gfp_t gfp_mask
)
631 struct bio_map_data
*bmd
;
632 struct bio_vec
*bvec
;
637 unsigned int len
= 0;
639 for (i
= 0; i
< iov_count
; i
++) {
644 uaddr
= (unsigned long)iov
[i
].iov_base
;
645 end
= (uaddr
+ iov
[i
].iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
646 start
= uaddr
>> PAGE_SHIFT
;
648 nr_pages
+= end
- start
;
649 len
+= iov
[i
].iov_len
;
652 bmd
= bio_alloc_map_data(nr_pages
, iov_count
, gfp_mask
);
654 return ERR_PTR(-ENOMEM
);
657 bio
= bio_alloc(gfp_mask
, nr_pages
);
661 bio
->bi_rw
|= (!write_to_vm
<< BIO_RW
);
669 bytes
= 1U << (PAGE_SHIFT
+ map_data
->page_order
);
677 if (i
== map_data
->nr_entries
) {
681 page
= map_data
->pages
[i
++];
683 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
689 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
702 ret
= __bio_copy_iov(bio
, bio
->bi_io_vec
, iov
, iov_count
, 0, 0);
707 bio_set_map_data(bmd
, bio
, iov
, iov_count
, map_data
? 0 : 1);
711 bio_for_each_segment(bvec
, bio
, i
)
712 __free_page(bvec
->bv_page
);
716 bio_free_map_data(bmd
);
721 * bio_copy_user - copy user data to bio
722 * @q: destination block queue
723 * @map_data: pointer to the rq_map_data holding pages (if necessary)
724 * @uaddr: start of user address
725 * @len: length in bytes
726 * @write_to_vm: bool indicating writing to pages or not
727 * @gfp_mask: memory allocation flags
729 * Prepares and returns a bio for indirect user io, bouncing data
730 * to/from kernel pages as necessary. Must be paired with
731 * call bio_uncopy_user() on io completion.
733 struct bio
*bio_copy_user(struct request_queue
*q
, struct rq_map_data
*map_data
,
734 unsigned long uaddr
, unsigned int len
,
735 int write_to_vm
, gfp_t gfp_mask
)
739 iov
.iov_base
= (void __user
*)uaddr
;
742 return bio_copy_user_iov(q
, map_data
, &iov
, 1, write_to_vm
, gfp_mask
);
745 static struct bio
*__bio_map_user_iov(struct request_queue
*q
,
746 struct block_device
*bdev
,
747 struct sg_iovec
*iov
, int iov_count
,
748 int write_to_vm
, gfp_t gfp_mask
)
757 for (i
= 0; i
< iov_count
; i
++) {
758 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
759 unsigned long len
= iov
[i
].iov_len
;
760 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
761 unsigned long start
= uaddr
>> PAGE_SHIFT
;
763 nr_pages
+= end
- start
;
765 * buffer must be aligned to at least hardsector size for now
767 if (uaddr
& queue_dma_alignment(q
))
768 return ERR_PTR(-EINVAL
);
772 return ERR_PTR(-EINVAL
);
774 bio
= bio_alloc(gfp_mask
, nr_pages
);
776 return ERR_PTR(-ENOMEM
);
779 pages
= kcalloc(nr_pages
, sizeof(struct page
*), gfp_mask
);
783 for (i
= 0; i
< iov_count
; i
++) {
784 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
785 unsigned long len
= iov
[i
].iov_len
;
786 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
787 unsigned long start
= uaddr
>> PAGE_SHIFT
;
788 const int local_nr_pages
= end
- start
;
789 const int page_limit
= cur_page
+ local_nr_pages
;
791 ret
= get_user_pages_fast(uaddr
, local_nr_pages
,
792 write_to_vm
, &pages
[cur_page
]);
793 if (ret
< local_nr_pages
) {
798 offset
= uaddr
& ~PAGE_MASK
;
799 for (j
= cur_page
; j
< page_limit
; j
++) {
800 unsigned int bytes
= PAGE_SIZE
- offset
;
811 if (bio_add_pc_page(q
, bio
, pages
[j
], bytes
, offset
) <
821 * release the pages we didn't map into the bio, if any
823 while (j
< page_limit
)
824 page_cache_release(pages
[j
++]);
830 * set data direction, and check if mapped pages need bouncing
833 bio
->bi_rw
|= (1 << BIO_RW
);
836 bio
->bi_flags
|= (1 << BIO_USER_MAPPED
);
840 for (i
= 0; i
< nr_pages
; i
++) {
843 page_cache_release(pages
[i
]);
852 * bio_map_user - map user address into bio
853 * @q: the struct request_queue for the bio
854 * @bdev: destination block device
855 * @uaddr: start of user address
856 * @len: length in bytes
857 * @write_to_vm: bool indicating writing to pages or not
858 * @gfp_mask: memory allocation flags
860 * Map the user space address into a bio suitable for io to a block
861 * device. Returns an error pointer in case of error.
863 struct bio
*bio_map_user(struct request_queue
*q
, struct block_device
*bdev
,
864 unsigned long uaddr
, unsigned int len
, int write_to_vm
,
869 iov
.iov_base
= (void __user
*)uaddr
;
872 return bio_map_user_iov(q
, bdev
, &iov
, 1, write_to_vm
, gfp_mask
);
876 * bio_map_user_iov - map user sg_iovec table into bio
877 * @q: the struct request_queue for the bio
878 * @bdev: destination block device
880 * @iov_count: number of elements in the iovec
881 * @write_to_vm: bool indicating writing to pages or not
882 * @gfp_mask: memory allocation flags
884 * Map the user space address into a bio suitable for io to a block
885 * device. Returns an error pointer in case of error.
887 struct bio
*bio_map_user_iov(struct request_queue
*q
, struct block_device
*bdev
,
888 struct sg_iovec
*iov
, int iov_count
,
889 int write_to_vm
, gfp_t gfp_mask
)
893 bio
= __bio_map_user_iov(q
, bdev
, iov
, iov_count
, write_to_vm
,
899 * subtle -- if __bio_map_user() ended up bouncing a bio,
900 * it would normally disappear when its bi_end_io is run.
901 * however, we need it for the unmap, so grab an extra
909 static void __bio_unmap_user(struct bio
*bio
)
911 struct bio_vec
*bvec
;
915 * make sure we dirty pages we wrote to
917 __bio_for_each_segment(bvec
, bio
, i
, 0) {
918 if (bio_data_dir(bio
) == READ
)
919 set_page_dirty_lock(bvec
->bv_page
);
921 page_cache_release(bvec
->bv_page
);
928 * bio_unmap_user - unmap a bio
929 * @bio: the bio being unmapped
931 * Unmap a bio previously mapped by bio_map_user(). Must be called with
934 * bio_unmap_user() may sleep.
936 void bio_unmap_user(struct bio
*bio
)
938 __bio_unmap_user(bio
);
942 static void bio_map_kern_endio(struct bio
*bio
, int err
)
948 static struct bio
*__bio_map_kern(struct request_queue
*q
, void *data
,
949 unsigned int len
, gfp_t gfp_mask
)
951 unsigned long kaddr
= (unsigned long)data
;
952 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
953 unsigned long start
= kaddr
>> PAGE_SHIFT
;
954 const int nr_pages
= end
- start
;
958 bio
= bio_alloc(gfp_mask
, nr_pages
);
960 return ERR_PTR(-ENOMEM
);
962 offset
= offset_in_page(kaddr
);
963 for (i
= 0; i
< nr_pages
; i
++) {
964 unsigned int bytes
= PAGE_SIZE
- offset
;
972 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
981 bio
->bi_end_io
= bio_map_kern_endio
;
986 * bio_map_kern - map kernel address into bio
987 * @q: the struct request_queue for the bio
988 * @data: pointer to buffer to map
989 * @len: length in bytes
990 * @gfp_mask: allocation flags for bio allocation
992 * Map the kernel address into a bio suitable for io to a block
993 * device. Returns an error pointer in case of error.
995 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1000 bio
= __bio_map_kern(q
, data
, len
, gfp_mask
);
1004 if (bio
->bi_size
== len
)
1008 * Don't support partial mappings.
1011 return ERR_PTR(-EINVAL
);
1014 static void bio_copy_kern_endio(struct bio
*bio
, int err
)
1016 struct bio_vec
*bvec
;
1017 const int read
= bio_data_dir(bio
) == READ
;
1018 struct bio_map_data
*bmd
= bio
->bi_private
;
1020 char *p
= bmd
->sgvecs
[0].iov_base
;
1022 __bio_for_each_segment(bvec
, bio
, i
, 0) {
1023 char *addr
= page_address(bvec
->bv_page
);
1024 int len
= bmd
->iovecs
[i
].bv_len
;
1027 memcpy(p
, addr
, len
);
1029 __free_page(bvec
->bv_page
);
1033 bio_free_map_data(bmd
);
1038 * bio_copy_kern - copy kernel address into bio
1039 * @q: the struct request_queue for the bio
1040 * @data: pointer to buffer to copy
1041 * @len: length in bytes
1042 * @gfp_mask: allocation flags for bio and page allocation
1043 * @reading: data direction is READ
1045 * copy the kernel address into a bio suitable for io to a block
1046 * device. Returns an error pointer in case of error.
1048 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1049 gfp_t gfp_mask
, int reading
)
1052 struct bio_vec
*bvec
;
1055 bio
= bio_copy_user(q
, NULL
, (unsigned long)data
, len
, 1, gfp_mask
);
1062 bio_for_each_segment(bvec
, bio
, i
) {
1063 char *addr
= page_address(bvec
->bv_page
);
1065 memcpy(addr
, p
, bvec
->bv_len
);
1070 bio
->bi_end_io
= bio_copy_kern_endio
;
1076 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1077 * for performing direct-IO in BIOs.
1079 * The problem is that we cannot run set_page_dirty() from interrupt context
1080 * because the required locks are not interrupt-safe. So what we can do is to
1081 * mark the pages dirty _before_ performing IO. And in interrupt context,
1082 * check that the pages are still dirty. If so, fine. If not, redirty them
1083 * in process context.
1085 * We special-case compound pages here: normally this means reads into hugetlb
1086 * pages. The logic in here doesn't really work right for compound pages
1087 * because the VM does not uniformly chase down the head page in all cases.
1088 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1089 * handle them at all. So we skip compound pages here at an early stage.
1091 * Note that this code is very hard to test under normal circumstances because
1092 * direct-io pins the pages with get_user_pages(). This makes
1093 * is_page_cache_freeable return false, and the VM will not clean the pages.
1094 * But other code (eg, pdflush) could clean the pages if they are mapped
1097 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1098 * deferred bio dirtying paths.
1102 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1104 void bio_set_pages_dirty(struct bio
*bio
)
1106 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1109 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1110 struct page
*page
= bvec
[i
].bv_page
;
1112 if (page
&& !PageCompound(page
))
1113 set_page_dirty_lock(page
);
1117 static void bio_release_pages(struct bio
*bio
)
1119 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1122 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1123 struct page
*page
= bvec
[i
].bv_page
;
1131 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1132 * If they are, then fine. If, however, some pages are clean then they must
1133 * have been written out during the direct-IO read. So we take another ref on
1134 * the BIO and the offending pages and re-dirty the pages in process context.
1136 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1137 * here on. It will run one page_cache_release() against each page and will
1138 * run one bio_put() against the BIO.
1141 static void bio_dirty_fn(struct work_struct
*work
);
1143 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1144 static DEFINE_SPINLOCK(bio_dirty_lock
);
1145 static struct bio
*bio_dirty_list
;
1148 * This runs in process context
1150 static void bio_dirty_fn(struct work_struct
*work
)
1152 unsigned long flags
;
1155 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1156 bio
= bio_dirty_list
;
1157 bio_dirty_list
= NULL
;
1158 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1161 struct bio
*next
= bio
->bi_private
;
1163 bio_set_pages_dirty(bio
);
1164 bio_release_pages(bio
);
1170 void bio_check_pages_dirty(struct bio
*bio
)
1172 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1173 int nr_clean_pages
= 0;
1176 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1177 struct page
*page
= bvec
[i
].bv_page
;
1179 if (PageDirty(page
) || PageCompound(page
)) {
1180 page_cache_release(page
);
1181 bvec
[i
].bv_page
= NULL
;
1187 if (nr_clean_pages
) {
1188 unsigned long flags
;
1190 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1191 bio
->bi_private
= bio_dirty_list
;
1192 bio_dirty_list
= bio
;
1193 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1194 schedule_work(&bio_dirty_work
);
1201 * bio_endio - end I/O on a bio
1203 * @error: error, if any
1206 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1207 * preferred way to end I/O on a bio, it takes care of clearing
1208 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1209 * established -Exxxx (-EIO, for instance) error values in case
1210 * something went wrong. Noone should call bi_end_io() directly on a
1211 * bio unless they own it and thus know that it has an end_io
1214 void bio_endio(struct bio
*bio
, int error
)
1217 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1218 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1222 bio
->bi_end_io(bio
, error
);
1225 void bio_pair_release(struct bio_pair
*bp
)
1227 if (atomic_dec_and_test(&bp
->cnt
)) {
1228 struct bio
*master
= bp
->bio1
.bi_private
;
1230 bio_endio(master
, bp
->error
);
1231 mempool_free(bp
, bp
->bio2
.bi_private
);
1235 static void bio_pair_end_1(struct bio
*bi
, int err
)
1237 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio1
);
1242 bio_pair_release(bp
);
1245 static void bio_pair_end_2(struct bio
*bi
, int err
)
1247 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio2
);
1252 bio_pair_release(bp
);
1256 * split a bio - only worry about a bio with a single page
1259 struct bio_pair
*bio_split(struct bio
*bi
, int first_sectors
)
1261 struct bio_pair
*bp
= mempool_alloc(bio_split_pool
, GFP_NOIO
);
1266 blk_add_trace_pdu_int(bdev_get_queue(bi
->bi_bdev
), BLK_TA_SPLIT
, bi
,
1267 bi
->bi_sector
+ first_sectors
);
1269 BUG_ON(bi
->bi_vcnt
!= 1);
1270 BUG_ON(bi
->bi_idx
!= 0);
1271 atomic_set(&bp
->cnt
, 3);
1275 bp
->bio2
.bi_sector
+= first_sectors
;
1276 bp
->bio2
.bi_size
-= first_sectors
<< 9;
1277 bp
->bio1
.bi_size
= first_sectors
<< 9;
1279 bp
->bv1
= bi
->bi_io_vec
[0];
1280 bp
->bv2
= bi
->bi_io_vec
[0];
1281 bp
->bv2
.bv_offset
+= first_sectors
<< 9;
1282 bp
->bv2
.bv_len
-= first_sectors
<< 9;
1283 bp
->bv1
.bv_len
= first_sectors
<< 9;
1285 bp
->bio1
.bi_io_vec
= &bp
->bv1
;
1286 bp
->bio2
.bi_io_vec
= &bp
->bv2
;
1288 bp
->bio1
.bi_max_vecs
= 1;
1289 bp
->bio2
.bi_max_vecs
= 1;
1291 bp
->bio1
.bi_end_io
= bio_pair_end_1
;
1292 bp
->bio2
.bi_end_io
= bio_pair_end_2
;
1294 bp
->bio1
.bi_private
= bi
;
1295 bp
->bio2
.bi_private
= bio_split_pool
;
1297 if (bio_integrity(bi
))
1298 bio_integrity_split(bi
, bp
, first_sectors
);
1304 * bio_sector_offset - Find hardware sector offset in bio
1305 * @bio: bio to inspect
1306 * @index: bio_vec index
1307 * @offset: offset in bv_page
1309 * Return the number of hardware sectors between beginning of bio
1310 * and an end point indicated by a bio_vec index and an offset
1311 * within that vector's page.
1313 sector_t
bio_sector_offset(struct bio
*bio
, unsigned short index
,
1314 unsigned int offset
)
1316 unsigned int sector_sz
= queue_hardsect_size(bio
->bi_bdev
->bd_disk
->queue
);
1323 if (index
>= bio
->bi_idx
)
1324 index
= bio
->bi_vcnt
- 1;
1326 __bio_for_each_segment(bv
, bio
, i
, 0) {
1328 if (offset
> bv
->bv_offset
)
1329 sectors
+= (offset
- bv
->bv_offset
) / sector_sz
;
1333 sectors
+= bv
->bv_len
/ sector_sz
;
1338 EXPORT_SYMBOL(bio_sector_offset
);
1341 * create memory pools for biovec's in a bio_set.
1342 * use the global biovec slabs created for general use.
1344 static int biovec_create_pools(struct bio_set
*bs
, int pool_entries
)
1348 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1349 struct biovec_slab
*bp
= bvec_slabs
+ i
;
1350 mempool_t
**bvp
= bs
->bvec_pools
+ i
;
1352 *bvp
= mempool_create_slab_pool(pool_entries
, bp
->slab
);
1359 static void biovec_free_pools(struct bio_set
*bs
)
1363 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1364 mempool_t
*bvp
= bs
->bvec_pools
[i
];
1367 mempool_destroy(bvp
);
1372 void bioset_free(struct bio_set
*bs
)
1375 mempool_destroy(bs
->bio_pool
);
1377 bioset_integrity_free(bs
);
1378 biovec_free_pools(bs
);
1383 struct bio_set
*bioset_create(int bio_pool_size
, int bvec_pool_size
)
1385 struct bio_set
*bs
= kzalloc(sizeof(*bs
), GFP_KERNEL
);
1390 bs
->bio_pool
= mempool_create_slab_pool(bio_pool_size
, bio_slab
);
1394 if (bioset_integrity_create(bs
, bio_pool_size
))
1397 if (!biovec_create_pools(bs
, bvec_pool_size
))
1405 static void __init
biovec_init_slabs(void)
1409 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1411 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
1413 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
1414 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
1415 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1419 static int __init
init_bio(void)
1421 bio_slab
= KMEM_CACHE(bio
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
1423 bio_integrity_init_slab();
1424 biovec_init_slabs();
1426 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, 2);
1428 panic("bio: can't allocate bios\n");
1430 bio_split_pool
= mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES
,
1431 sizeof(struct bio_pair
));
1432 if (!bio_split_pool
)
1433 panic("bio: can't create split pool\n");
1438 subsys_initcall(init_bio
);
1440 EXPORT_SYMBOL(bio_alloc
);
1441 EXPORT_SYMBOL(bio_kmalloc
);
1442 EXPORT_SYMBOL(bio_put
);
1443 EXPORT_SYMBOL(bio_free
);
1444 EXPORT_SYMBOL(bio_endio
);
1445 EXPORT_SYMBOL(bio_init
);
1446 EXPORT_SYMBOL(__bio_clone
);
1447 EXPORT_SYMBOL(bio_clone
);
1448 EXPORT_SYMBOL(bio_phys_segments
);
1449 EXPORT_SYMBOL(bio_add_page
);
1450 EXPORT_SYMBOL(bio_add_pc_page
);
1451 EXPORT_SYMBOL(bio_get_nr_vecs
);
1452 EXPORT_SYMBOL(bio_map_user
);
1453 EXPORT_SYMBOL(bio_unmap_user
);
1454 EXPORT_SYMBOL(bio_map_kern
);
1455 EXPORT_SYMBOL(bio_copy_kern
);
1456 EXPORT_SYMBOL(bio_pair_release
);
1457 EXPORT_SYMBOL(bio_split
);
1458 EXPORT_SYMBOL(bio_copy_user
);
1459 EXPORT_SYMBOL(bio_uncopy_user
);
1460 EXPORT_SYMBOL(bioset_create
);
1461 EXPORT_SYMBOL(bioset_free
);
1462 EXPORT_SYMBOL(bio_alloc_bioset
);