4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
73 #include <asm/irq_regs.h>
76 * Scheduler clock - returns current time in nanosec units.
77 * This is default implementation.
78 * Architectures and sub-architectures can override this.
80 unsigned long long __attribute__((weak
)) sched_clock(void)
82 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
126 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
127 * Since cpu_power is a 'constant', we can use a reciprocal divide.
129 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
131 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
135 * Each time a sched group cpu_power is changed,
136 * we must compute its reciprocal value
138 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
140 sg
->__cpu_power
+= val
;
141 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
145 static inline int rt_policy(int policy
)
147 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
152 static inline int task_has_rt_policy(struct task_struct
*p
)
154 return rt_policy(p
->policy
);
158 * This is the priority-queue data structure of the RT scheduling class:
160 struct rt_prio_array
{
161 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
162 struct list_head queue
[MAX_RT_PRIO
];
165 struct rt_bandwidth
{
166 /* nests inside the rq lock: */
167 spinlock_t rt_runtime_lock
;
170 struct hrtimer rt_period_timer
;
173 static struct rt_bandwidth def_rt_bandwidth
;
175 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
177 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
179 struct rt_bandwidth
*rt_b
=
180 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
186 now
= hrtimer_cb_get_time(timer
);
187 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
192 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
195 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
199 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
201 rt_b
->rt_period
= ns_to_ktime(period
);
202 rt_b
->rt_runtime
= runtime
;
204 spin_lock_init(&rt_b
->rt_runtime_lock
);
206 hrtimer_init(&rt_b
->rt_period_timer
,
207 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
208 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
209 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
212 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
216 if (rt_b
->rt_runtime
== RUNTIME_INF
)
219 if (hrtimer_active(&rt_b
->rt_period_timer
))
222 spin_lock(&rt_b
->rt_runtime_lock
);
224 if (hrtimer_active(&rt_b
->rt_period_timer
))
227 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
228 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
229 hrtimer_start(&rt_b
->rt_period_timer
,
230 rt_b
->rt_period_timer
.expires
,
233 spin_unlock(&rt_b
->rt_runtime_lock
);
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
239 hrtimer_cancel(&rt_b
->rt_period_timer
);
243 #ifdef CONFIG_GROUP_SCHED
245 #include <linux/cgroup.h>
249 static LIST_HEAD(task_groups
);
251 /* task group related information */
253 #ifdef CONFIG_CGROUP_SCHED
254 struct cgroup_subsys_state css
;
257 #ifdef CONFIG_FAIR_GROUP_SCHED
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity
**se
;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq
**cfs_rq
;
262 unsigned long shares
;
265 #ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity
**rt_se
;
267 struct rt_rq
**rt_rq
;
269 struct rt_bandwidth rt_bandwidth
;
273 struct list_head list
;
275 struct task_group
*parent
;
276 struct list_head siblings
;
277 struct list_head children
;
280 #ifdef CONFIG_USER_SCHED
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
287 struct task_group root_task_group
;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 /* Default task group's sched entity on each cpu */
291 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
292 /* Default task group's cfs_rq on each cpu */
293 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
296 #ifdef CONFIG_RT_GROUP_SCHED
297 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
298 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
301 #define root_task_group init_task_group
304 /* task_group_lock serializes add/remove of task groups and also changes to
305 * a task group's cpu shares.
307 static DEFINE_SPINLOCK(task_group_lock
);
309 /* doms_cur_mutex serializes access to doms_cur[] array */
310 static DEFINE_MUTEX(doms_cur_mutex
);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313 #ifdef CONFIG_USER_SCHED
314 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
316 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
319 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
322 /* Default task group.
323 * Every task in system belong to this group at bootup.
325 struct task_group init_task_group
;
327 /* return group to which a task belongs */
328 static inline struct task_group
*task_group(struct task_struct
*p
)
330 struct task_group
*tg
;
332 #ifdef CONFIG_USER_SCHED
334 #elif defined(CONFIG_CGROUP_SCHED)
335 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
336 struct task_group
, css
);
338 tg
= &init_task_group
;
343 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
344 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
346 #ifdef CONFIG_FAIR_GROUP_SCHED
347 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
348 p
->se
.parent
= task_group(p
)->se
[cpu
];
351 #ifdef CONFIG_RT_GROUP_SCHED
352 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
353 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
357 static inline void lock_doms_cur(void)
359 mutex_lock(&doms_cur_mutex
);
362 static inline void unlock_doms_cur(void)
364 mutex_unlock(&doms_cur_mutex
);
369 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
370 static inline void lock_doms_cur(void) { }
371 static inline void unlock_doms_cur(void) { }
373 #endif /* CONFIG_GROUP_SCHED */
375 /* CFS-related fields in a runqueue */
377 struct load_weight load
;
378 unsigned long nr_running
;
383 struct rb_root tasks_timeline
;
384 struct rb_node
*rb_leftmost
;
385 struct rb_node
*rb_load_balance_curr
;
386 /* 'curr' points to currently running entity on this cfs_rq.
387 * It is set to NULL otherwise (i.e when none are currently running).
389 struct sched_entity
*curr
, *next
;
391 unsigned long nr_spread_over
;
393 #ifdef CONFIG_FAIR_GROUP_SCHED
394 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
397 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
398 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
399 * (like users, containers etc.)
401 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
402 * list is used during load balance.
404 struct list_head leaf_cfs_rq_list
;
405 struct task_group
*tg
; /* group that "owns" this runqueue */
409 /* Real-Time classes' related field in a runqueue: */
411 struct rt_prio_array active
;
412 unsigned long rt_nr_running
;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 int highest_prio
; /* highest queued rt task prio */
417 unsigned long rt_nr_migratory
;
423 /* Nests inside the rq lock: */
424 spinlock_t rt_runtime_lock
;
426 #ifdef CONFIG_RT_GROUP_SCHED
427 unsigned long rt_nr_boosted
;
430 struct list_head leaf_rt_rq_list
;
431 struct task_group
*tg
;
432 struct sched_rt_entity
*rt_se
;
439 * We add the notion of a root-domain which will be used to define per-domain
440 * variables. Each exclusive cpuset essentially defines an island domain by
441 * fully partitioning the member cpus from any other cpuset. Whenever a new
442 * exclusive cpuset is created, we also create and attach a new root-domain
452 * The "RT overload" flag: it gets set if a CPU has more than
453 * one runnable RT task.
460 * By default the system creates a single root-domain with all cpus as
461 * members (mimicking the global state we have today).
463 static struct root_domain def_root_domain
;
468 * This is the main, per-CPU runqueue data structure.
470 * Locking rule: those places that want to lock multiple runqueues
471 * (such as the load balancing or the thread migration code), lock
472 * acquire operations must be ordered by ascending &runqueue.
479 * nr_running and cpu_load should be in the same cacheline because
480 * remote CPUs use both these fields when doing load calculation.
482 unsigned long nr_running
;
483 #define CPU_LOAD_IDX_MAX 5
484 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
485 unsigned char idle_at_tick
;
487 unsigned long last_tick_seen
;
488 unsigned char in_nohz_recently
;
490 /* capture load from *all* tasks on this cpu: */
491 struct load_weight load
;
492 unsigned long nr_load_updates
;
498 #ifdef CONFIG_FAIR_GROUP_SCHED
499 /* list of leaf cfs_rq on this cpu: */
500 struct list_head leaf_cfs_rq_list
;
502 #ifdef CONFIG_RT_GROUP_SCHED
503 struct list_head leaf_rt_rq_list
;
507 * This is part of a global counter where only the total sum
508 * over all CPUs matters. A task can increase this counter on
509 * one CPU and if it got migrated afterwards it may decrease
510 * it on another CPU. Always updated under the runqueue lock:
512 unsigned long nr_uninterruptible
;
514 struct task_struct
*curr
, *idle
;
515 unsigned long next_balance
;
516 struct mm_struct
*prev_mm
;
518 u64 clock
, prev_clock_raw
;
521 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
523 unsigned int clock_deep_idle_events
;
529 struct root_domain
*rd
;
530 struct sched_domain
*sd
;
532 /* For active balancing */
535 /* cpu of this runqueue: */
538 struct task_struct
*migration_thread
;
539 struct list_head migration_queue
;
542 #ifdef CONFIG_SCHED_HRTICK
543 unsigned long hrtick_flags
;
544 ktime_t hrtick_expire
;
545 struct hrtimer hrtick_timer
;
548 #ifdef CONFIG_SCHEDSTATS
550 struct sched_info rq_sched_info
;
552 /* sys_sched_yield() stats */
553 unsigned int yld_exp_empty
;
554 unsigned int yld_act_empty
;
555 unsigned int yld_both_empty
;
556 unsigned int yld_count
;
558 /* schedule() stats */
559 unsigned int sched_switch
;
560 unsigned int sched_count
;
561 unsigned int sched_goidle
;
563 /* try_to_wake_up() stats */
564 unsigned int ttwu_count
;
565 unsigned int ttwu_local
;
568 unsigned int bkl_count
;
570 struct lock_class_key rq_lock_key
;
573 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
575 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
577 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
580 static inline int cpu_of(struct rq
*rq
)
590 static inline bool nohz_on(int cpu
)
592 return tick_get_tick_sched(cpu
)->nohz_mode
!= NOHZ_MODE_INACTIVE
;
595 static inline u64
max_skipped_ticks(struct rq
*rq
)
597 return nohz_on(cpu_of(rq
)) ? jiffies
- rq
->last_tick_seen
+ 2 : 1;
600 static inline void update_last_tick_seen(struct rq
*rq
)
602 rq
->last_tick_seen
= jiffies
;
605 static inline u64
max_skipped_ticks(struct rq
*rq
)
610 static inline void update_last_tick_seen(struct rq
*rq
)
616 * Update the per-runqueue clock, as finegrained as the platform can give
617 * us, but without assuming monotonicity, etc.:
619 static void __update_rq_clock(struct rq
*rq
)
621 u64 prev_raw
= rq
->prev_clock_raw
;
622 u64 now
= sched_clock();
623 s64 delta
= now
- prev_raw
;
624 u64 clock
= rq
->clock
;
626 #ifdef CONFIG_SCHED_DEBUG
627 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
630 * Protect against sched_clock() occasionally going backwards:
632 if (unlikely(delta
< 0)) {
637 * Catch too large forward jumps too:
639 u64 max_jump
= max_skipped_ticks(rq
) * TICK_NSEC
;
640 u64 max_time
= rq
->tick_timestamp
+ max_jump
;
642 if (unlikely(clock
+ delta
> max_time
)) {
643 if (clock
< max_time
)
647 rq
->clock_overflows
++;
649 if (unlikely(delta
> rq
->clock_max_delta
))
650 rq
->clock_max_delta
= delta
;
655 rq
->prev_clock_raw
= now
;
659 static void update_rq_clock(struct rq
*rq
)
661 if (likely(smp_processor_id() == cpu_of(rq
)))
662 __update_rq_clock(rq
);
666 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
667 * See detach_destroy_domains: synchronize_sched for details.
669 * The domain tree of any CPU may only be accessed from within
670 * preempt-disabled sections.
672 #define for_each_domain(cpu, __sd) \
673 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
675 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
676 #define this_rq() (&__get_cpu_var(runqueues))
677 #define task_rq(p) cpu_rq(task_cpu(p))
678 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
681 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
683 #ifdef CONFIG_SCHED_DEBUG
684 # define const_debug __read_mostly
686 # define const_debug static const
690 * Debugging: various feature bits
693 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
694 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
695 SCHED_FEAT_START_DEBIT
= 4,
696 SCHED_FEAT_AFFINE_WAKEUPS
= 8,
697 SCHED_FEAT_CACHE_HOT_BUDDY
= 16,
698 SCHED_FEAT_SYNC_WAKEUPS
= 32,
699 SCHED_FEAT_HRTICK
= 64,
700 SCHED_FEAT_DOUBLE_TICK
= 128,
701 SCHED_FEAT_NORMALIZED_SLEEPER
= 256,
704 const_debug
unsigned int sysctl_sched_features
=
705 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
706 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
707 SCHED_FEAT_START_DEBIT
* 1 |
708 SCHED_FEAT_AFFINE_WAKEUPS
* 1 |
709 SCHED_FEAT_CACHE_HOT_BUDDY
* 1 |
710 SCHED_FEAT_SYNC_WAKEUPS
* 1 |
711 SCHED_FEAT_HRTICK
* 1 |
712 SCHED_FEAT_DOUBLE_TICK
* 0 |
713 SCHED_FEAT_NORMALIZED_SLEEPER
* 1;
715 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
718 * Number of tasks to iterate in a single balance run.
719 * Limited because this is done with IRQs disabled.
721 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
724 * period over which we measure -rt task cpu usage in us.
727 unsigned int sysctl_sched_rt_period
= 1000000;
729 static __read_mostly
int scheduler_running
;
732 * part of the period that we allow rt tasks to run in us.
735 int sysctl_sched_rt_runtime
= 950000;
737 static inline u64
global_rt_period(void)
739 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
742 static inline u64
global_rt_runtime(void)
744 if (sysctl_sched_rt_period
< 0)
747 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
750 static const unsigned long long time_sync_thresh
= 100000;
752 static DEFINE_PER_CPU(unsigned long long, time_offset
);
753 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time
);
756 * Global lock which we take every now and then to synchronize
757 * the CPUs time. This method is not warp-safe, but it's good
758 * enough to synchronize slowly diverging time sources and thus
759 * it's good enough for tracing:
761 static DEFINE_SPINLOCK(time_sync_lock
);
762 static unsigned long long prev_global_time
;
764 static unsigned long long __sync_cpu_clock(cycles_t time
, int cpu
)
768 spin_lock_irqsave(&time_sync_lock
, flags
);
770 if (time
< prev_global_time
) {
771 per_cpu(time_offset
, cpu
) += prev_global_time
- time
;
772 time
= prev_global_time
;
774 prev_global_time
= time
;
777 spin_unlock_irqrestore(&time_sync_lock
, flags
);
782 static unsigned long long __cpu_clock(int cpu
)
784 unsigned long long now
;
789 * Only call sched_clock() if the scheduler has already been
790 * initialized (some code might call cpu_clock() very early):
792 if (unlikely(!scheduler_running
))
795 local_irq_save(flags
);
799 local_irq_restore(flags
);
805 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
806 * clock constructed from sched_clock():
808 unsigned long long cpu_clock(int cpu
)
810 unsigned long long prev_cpu_time
, time
, delta_time
;
812 prev_cpu_time
= per_cpu(prev_cpu_time
, cpu
);
813 time
= __cpu_clock(cpu
) + per_cpu(time_offset
, cpu
);
814 delta_time
= time
-prev_cpu_time
;
816 if (unlikely(delta_time
> time_sync_thresh
))
817 time
= __sync_cpu_clock(time
, cpu
);
821 EXPORT_SYMBOL_GPL(cpu_clock
);
823 #ifndef prepare_arch_switch
824 # define prepare_arch_switch(next) do { } while (0)
826 #ifndef finish_arch_switch
827 # define finish_arch_switch(prev) do { } while (0)
830 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
832 return rq
->curr
== p
;
835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
836 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
838 return task_current(rq
, p
);
841 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
845 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
847 #ifdef CONFIG_DEBUG_SPINLOCK
848 /* this is a valid case when another task releases the spinlock */
849 rq
->lock
.owner
= current
;
852 * If we are tracking spinlock dependencies then we have to
853 * fix up the runqueue lock - which gets 'carried over' from
856 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
858 spin_unlock_irq(&rq
->lock
);
861 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
862 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
867 return task_current(rq
, p
);
871 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 spin_unlock_irq(&rq
->lock
);
884 spin_unlock(&rq
->lock
);
888 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
892 * After ->oncpu is cleared, the task can be moved to a different CPU.
893 * We must ensure this doesn't happen until the switch is completely
899 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
906 * __task_rq_lock - lock the runqueue a given task resides on.
907 * Must be called interrupts disabled.
909 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
913 struct rq
*rq
= task_rq(p
);
914 spin_lock(&rq
->lock
);
915 if (likely(rq
== task_rq(p
)))
917 spin_unlock(&rq
->lock
);
922 * task_rq_lock - lock the runqueue a given task resides on and disable
923 * interrupts. Note the ordering: we can safely lookup the task_rq without
924 * explicitly disabling preemption.
926 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
932 local_irq_save(*flags
);
934 spin_lock(&rq
->lock
);
935 if (likely(rq
== task_rq(p
)))
937 spin_unlock_irqrestore(&rq
->lock
, *flags
);
941 static void __task_rq_unlock(struct rq
*rq
)
944 spin_unlock(&rq
->lock
);
947 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
950 spin_unlock_irqrestore(&rq
->lock
, *flags
);
954 * this_rq_lock - lock this runqueue and disable interrupts.
956 static struct rq
*this_rq_lock(void)
963 spin_lock(&rq
->lock
);
969 * We are going deep-idle (irqs are disabled):
971 void sched_clock_idle_sleep_event(void)
973 struct rq
*rq
= cpu_rq(smp_processor_id());
975 spin_lock(&rq
->lock
);
976 __update_rq_clock(rq
);
977 spin_unlock(&rq
->lock
);
978 rq
->clock_deep_idle_events
++;
980 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
983 * We just idled delta nanoseconds (called with irqs disabled):
985 void sched_clock_idle_wakeup_event(u64 delta_ns
)
987 struct rq
*rq
= cpu_rq(smp_processor_id());
988 u64 now
= sched_clock();
990 rq
->idle_clock
+= delta_ns
;
992 * Override the previous timestamp and ignore all
993 * sched_clock() deltas that occured while we idled,
994 * and use the PM-provided delta_ns to advance the
997 spin_lock(&rq
->lock
);
998 rq
->prev_clock_raw
= now
;
999 rq
->clock
+= delta_ns
;
1000 spin_unlock(&rq
->lock
);
1001 touch_softlockup_watchdog();
1003 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
1005 static void __resched_task(struct task_struct
*p
, int tif_bit
);
1007 static inline void resched_task(struct task_struct
*p
)
1009 __resched_task(p
, TIF_NEED_RESCHED
);
1012 #ifdef CONFIG_SCHED_HRTICK
1014 * Use HR-timers to deliver accurate preemption points.
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 static inline void resched_hrt(struct task_struct
*p
)
1025 __resched_task(p
, TIF_HRTICK_RESCHED
);
1028 static inline void resched_rq(struct rq
*rq
)
1030 unsigned long flags
;
1032 spin_lock_irqsave(&rq
->lock
, flags
);
1033 resched_task(rq
->curr
);
1034 spin_unlock_irqrestore(&rq
->lock
, flags
);
1038 HRTICK_SET
, /* re-programm hrtick_timer */
1039 HRTICK_RESET
, /* not a new slice */
1044 * - enabled by features
1045 * - hrtimer is actually high res
1047 static inline int hrtick_enabled(struct rq
*rq
)
1049 if (!sched_feat(HRTICK
))
1051 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1055 * Called to set the hrtick timer state.
1057 * called with rq->lock held and irqs disabled
1059 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
1061 assert_spin_locked(&rq
->lock
);
1064 * preempt at: now + delay
1067 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
1069 * indicate we need to program the timer
1071 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1073 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1076 * New slices are called from the schedule path and don't need a
1077 * forced reschedule.
1080 resched_hrt(rq
->curr
);
1083 static void hrtick_clear(struct rq
*rq
)
1085 if (hrtimer_active(&rq
->hrtick_timer
))
1086 hrtimer_cancel(&rq
->hrtick_timer
);
1090 * Update the timer from the possible pending state.
1092 static void hrtick_set(struct rq
*rq
)
1096 unsigned long flags
;
1098 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1100 spin_lock_irqsave(&rq
->lock
, flags
);
1101 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1102 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1103 time
= rq
->hrtick_expire
;
1104 clear_thread_flag(TIF_HRTICK_RESCHED
);
1105 spin_unlock_irqrestore(&rq
->lock
, flags
);
1108 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1109 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1116 * High-resolution timer tick.
1117 * Runs from hardirq context with interrupts disabled.
1119 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1121 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1123 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1125 spin_lock(&rq
->lock
);
1126 __update_rq_clock(rq
);
1127 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1128 spin_unlock(&rq
->lock
);
1130 return HRTIMER_NORESTART
;
1133 static inline void init_rq_hrtick(struct rq
*rq
)
1135 rq
->hrtick_flags
= 0;
1136 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1137 rq
->hrtick_timer
.function
= hrtick
;
1138 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1141 void hrtick_resched(void)
1144 unsigned long flags
;
1146 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1149 local_irq_save(flags
);
1150 rq
= cpu_rq(smp_processor_id());
1152 local_irq_restore(flags
);
1155 static inline void hrtick_clear(struct rq
*rq
)
1159 static inline void hrtick_set(struct rq
*rq
)
1163 static inline void init_rq_hrtick(struct rq
*rq
)
1167 void hrtick_resched(void)
1173 * resched_task - mark a task 'to be rescheduled now'.
1175 * On UP this means the setting of the need_resched flag, on SMP it
1176 * might also involve a cross-CPU call to trigger the scheduler on
1181 #ifndef tsk_is_polling
1182 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1185 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1189 assert_spin_locked(&task_rq(p
)->lock
);
1191 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1194 set_tsk_thread_flag(p
, tif_bit
);
1197 if (cpu
== smp_processor_id())
1200 /* NEED_RESCHED must be visible before we test polling */
1202 if (!tsk_is_polling(p
))
1203 smp_send_reschedule(cpu
);
1206 static void resched_cpu(int cpu
)
1208 struct rq
*rq
= cpu_rq(cpu
);
1209 unsigned long flags
;
1211 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1213 resched_task(cpu_curr(cpu
));
1214 spin_unlock_irqrestore(&rq
->lock
, flags
);
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1228 void wake_up_idle_cpu(int cpu
)
1230 struct rq
*rq
= cpu_rq(cpu
);
1232 if (cpu
== smp_processor_id())
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1242 if (rq
->curr
!= rq
->idle
)
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1250 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1252 /* NEED_RESCHED must be visible before we test polling */
1254 if (!tsk_is_polling(rq
->idle
))
1255 smp_send_reschedule(cpu
);
1260 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1262 assert_spin_locked(&task_rq(p
)->lock
);
1263 set_tsk_thread_flag(p
, tif_bit
);
1267 #if BITS_PER_LONG == 32
1268 # define WMULT_CONST (~0UL)
1270 # define WMULT_CONST (1UL << 32)
1273 #define WMULT_SHIFT 32
1276 * Shift right and round:
1278 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1280 static unsigned long
1281 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1282 struct load_weight
*lw
)
1286 if (unlikely(!lw
->inv_weight
))
1287 lw
->inv_weight
= (WMULT_CONST
-lw
->weight
/2) / (lw
->weight
+1);
1289 tmp
= (u64
)delta_exec
* weight
;
1291 * Check whether we'd overflow the 64-bit multiplication:
1293 if (unlikely(tmp
> WMULT_CONST
))
1294 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1297 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1299 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1302 static inline unsigned long
1303 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1305 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1308 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1314 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1321 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1322 * of tasks with abnormal "nice" values across CPUs the contribution that
1323 * each task makes to its run queue's load is weighted according to its
1324 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1325 * scaled version of the new time slice allocation that they receive on time
1329 #define WEIGHT_IDLEPRIO 2
1330 #define WMULT_IDLEPRIO (1 << 31)
1333 * Nice levels are multiplicative, with a gentle 10% change for every
1334 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1335 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1336 * that remained on nice 0.
1338 * The "10% effect" is relative and cumulative: from _any_ nice level,
1339 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1340 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1341 * If a task goes up by ~10% and another task goes down by ~10% then
1342 * the relative distance between them is ~25%.)
1344 static const int prio_to_weight
[40] = {
1345 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1346 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1347 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1348 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1349 /* 0 */ 1024, 820, 655, 526, 423,
1350 /* 5 */ 335, 272, 215, 172, 137,
1351 /* 10 */ 110, 87, 70, 56, 45,
1352 /* 15 */ 36, 29, 23, 18, 15,
1356 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1358 * In cases where the weight does not change often, we can use the
1359 * precalculated inverse to speed up arithmetics by turning divisions
1360 * into multiplications:
1362 static const u32 prio_to_wmult
[40] = {
1363 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1364 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1365 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1366 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1367 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1368 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1369 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1370 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1373 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1376 * runqueue iterator, to support SMP load-balancing between different
1377 * scheduling classes, without having to expose their internal data
1378 * structures to the load-balancing proper:
1380 struct rq_iterator
{
1382 struct task_struct
*(*start
)(void *);
1383 struct task_struct
*(*next
)(void *);
1387 static unsigned long
1388 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1389 unsigned long max_load_move
, struct sched_domain
*sd
,
1390 enum cpu_idle_type idle
, int *all_pinned
,
1391 int *this_best_prio
, struct rq_iterator
*iterator
);
1394 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1395 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1396 struct rq_iterator
*iterator
);
1399 #ifdef CONFIG_CGROUP_CPUACCT
1400 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1402 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1406 static unsigned long source_load(int cpu
, int type
);
1407 static unsigned long target_load(int cpu
, int type
);
1408 static unsigned long cpu_avg_load_per_task(int cpu
);
1409 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1410 #endif /* CONFIG_SMP */
1412 #include "sched_stats.h"
1413 #include "sched_idletask.c"
1414 #include "sched_fair.c"
1415 #include "sched_rt.c"
1416 #ifdef CONFIG_SCHED_DEBUG
1417 # include "sched_debug.c"
1420 #define sched_class_highest (&rt_sched_class)
1422 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
1424 update_load_add(&rq
->load
, p
->se
.load
.weight
);
1427 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
1429 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
1432 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
1438 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
1444 static void set_load_weight(struct task_struct
*p
)
1446 if (task_has_rt_policy(p
)) {
1447 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1448 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1453 * SCHED_IDLE tasks get minimal weight:
1455 if (p
->policy
== SCHED_IDLE
) {
1456 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1457 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1461 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1462 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1465 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1467 sched_info_queued(p
);
1468 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1472 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1474 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1479 * __normal_prio - return the priority that is based on the static prio
1481 static inline int __normal_prio(struct task_struct
*p
)
1483 return p
->static_prio
;
1487 * Calculate the expected normal priority: i.e. priority
1488 * without taking RT-inheritance into account. Might be
1489 * boosted by interactivity modifiers. Changes upon fork,
1490 * setprio syscalls, and whenever the interactivity
1491 * estimator recalculates.
1493 static inline int normal_prio(struct task_struct
*p
)
1497 if (task_has_rt_policy(p
))
1498 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1500 prio
= __normal_prio(p
);
1505 * Calculate the current priority, i.e. the priority
1506 * taken into account by the scheduler. This value might
1507 * be boosted by RT tasks, or might be boosted by
1508 * interactivity modifiers. Will be RT if the task got
1509 * RT-boosted. If not then it returns p->normal_prio.
1511 static int effective_prio(struct task_struct
*p
)
1513 p
->normal_prio
= normal_prio(p
);
1515 * If we are RT tasks or we were boosted to RT priority,
1516 * keep the priority unchanged. Otherwise, update priority
1517 * to the normal priority:
1519 if (!rt_prio(p
->prio
))
1520 return p
->normal_prio
;
1525 * activate_task - move a task to the runqueue.
1527 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1529 if (task_contributes_to_load(p
))
1530 rq
->nr_uninterruptible
--;
1532 enqueue_task(rq
, p
, wakeup
);
1533 inc_nr_running(p
, rq
);
1537 * deactivate_task - remove a task from the runqueue.
1539 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1541 if (task_contributes_to_load(p
))
1542 rq
->nr_uninterruptible
++;
1544 dequeue_task(rq
, p
, sleep
);
1545 dec_nr_running(p
, rq
);
1549 * task_curr - is this task currently executing on a CPU?
1550 * @p: the task in question.
1552 inline int task_curr(const struct task_struct
*p
)
1554 return cpu_curr(task_cpu(p
)) == p
;
1557 /* Used instead of source_load when we know the type == 0 */
1558 unsigned long weighted_cpuload(const int cpu
)
1560 return cpu_rq(cpu
)->load
.weight
;
1563 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1565 set_task_rq(p
, cpu
);
1568 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1569 * successfuly executed on another CPU. We must ensure that updates of
1570 * per-task data have been completed by this moment.
1573 task_thread_info(p
)->cpu
= cpu
;
1577 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1578 const struct sched_class
*prev_class
,
1579 int oldprio
, int running
)
1581 if (prev_class
!= p
->sched_class
) {
1582 if (prev_class
->switched_from
)
1583 prev_class
->switched_from(rq
, p
, running
);
1584 p
->sched_class
->switched_to(rq
, p
, running
);
1586 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1592 * Is this task likely cache-hot:
1595 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1600 * Buddy candidates are cache hot:
1602 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
1605 if (p
->sched_class
!= &fair_sched_class
)
1608 if (sysctl_sched_migration_cost
== -1)
1610 if (sysctl_sched_migration_cost
== 0)
1613 delta
= now
- p
->se
.exec_start
;
1615 return delta
< (s64
)sysctl_sched_migration_cost
;
1619 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1621 int old_cpu
= task_cpu(p
);
1622 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1623 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1624 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1627 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1629 #ifdef CONFIG_SCHEDSTATS
1630 if (p
->se
.wait_start
)
1631 p
->se
.wait_start
-= clock_offset
;
1632 if (p
->se
.sleep_start
)
1633 p
->se
.sleep_start
-= clock_offset
;
1634 if (p
->se
.block_start
)
1635 p
->se
.block_start
-= clock_offset
;
1636 if (old_cpu
!= new_cpu
) {
1637 schedstat_inc(p
, se
.nr_migrations
);
1638 if (task_hot(p
, old_rq
->clock
, NULL
))
1639 schedstat_inc(p
, se
.nr_forced2_migrations
);
1642 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1643 new_cfsrq
->min_vruntime
;
1645 __set_task_cpu(p
, new_cpu
);
1648 struct migration_req
{
1649 struct list_head list
;
1651 struct task_struct
*task
;
1654 struct completion done
;
1658 * The task's runqueue lock must be held.
1659 * Returns true if you have to wait for migration thread.
1662 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1664 struct rq
*rq
= task_rq(p
);
1667 * If the task is not on a runqueue (and not running), then
1668 * it is sufficient to simply update the task's cpu field.
1670 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1671 set_task_cpu(p
, dest_cpu
);
1675 init_completion(&req
->done
);
1677 req
->dest_cpu
= dest_cpu
;
1678 list_add(&req
->list
, &rq
->migration_queue
);
1684 * wait_task_inactive - wait for a thread to unschedule.
1686 * The caller must ensure that the task *will* unschedule sometime soon,
1687 * else this function might spin for a *long* time. This function can't
1688 * be called with interrupts off, or it may introduce deadlock with
1689 * smp_call_function() if an IPI is sent by the same process we are
1690 * waiting to become inactive.
1692 void wait_task_inactive(struct task_struct
*p
)
1694 unsigned long flags
;
1700 * We do the initial early heuristics without holding
1701 * any task-queue locks at all. We'll only try to get
1702 * the runqueue lock when things look like they will
1708 * If the task is actively running on another CPU
1709 * still, just relax and busy-wait without holding
1712 * NOTE! Since we don't hold any locks, it's not
1713 * even sure that "rq" stays as the right runqueue!
1714 * But we don't care, since "task_running()" will
1715 * return false if the runqueue has changed and p
1716 * is actually now running somewhere else!
1718 while (task_running(rq
, p
))
1722 * Ok, time to look more closely! We need the rq
1723 * lock now, to be *sure*. If we're wrong, we'll
1724 * just go back and repeat.
1726 rq
= task_rq_lock(p
, &flags
);
1727 running
= task_running(rq
, p
);
1728 on_rq
= p
->se
.on_rq
;
1729 task_rq_unlock(rq
, &flags
);
1732 * Was it really running after all now that we
1733 * checked with the proper locks actually held?
1735 * Oops. Go back and try again..
1737 if (unlikely(running
)) {
1743 * It's not enough that it's not actively running,
1744 * it must be off the runqueue _entirely_, and not
1747 * So if it wa still runnable (but just not actively
1748 * running right now), it's preempted, and we should
1749 * yield - it could be a while.
1751 if (unlikely(on_rq
)) {
1752 schedule_timeout_uninterruptible(1);
1757 * Ahh, all good. It wasn't running, and it wasn't
1758 * runnable, which means that it will never become
1759 * running in the future either. We're all done!
1766 * kick_process - kick a running thread to enter/exit the kernel
1767 * @p: the to-be-kicked thread
1769 * Cause a process which is running on another CPU to enter
1770 * kernel-mode, without any delay. (to get signals handled.)
1772 * NOTE: this function doesnt have to take the runqueue lock,
1773 * because all it wants to ensure is that the remote task enters
1774 * the kernel. If the IPI races and the task has been migrated
1775 * to another CPU then no harm is done and the purpose has been
1778 void kick_process(struct task_struct
*p
)
1784 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1785 smp_send_reschedule(cpu
);
1790 * Return a low guess at the load of a migration-source cpu weighted
1791 * according to the scheduling class and "nice" value.
1793 * We want to under-estimate the load of migration sources, to
1794 * balance conservatively.
1796 static unsigned long source_load(int cpu
, int type
)
1798 struct rq
*rq
= cpu_rq(cpu
);
1799 unsigned long total
= weighted_cpuload(cpu
);
1804 return min(rq
->cpu_load
[type
-1], total
);
1808 * Return a high guess at the load of a migration-target cpu weighted
1809 * according to the scheduling class and "nice" value.
1811 static unsigned long target_load(int cpu
, int type
)
1813 struct rq
*rq
= cpu_rq(cpu
);
1814 unsigned long total
= weighted_cpuload(cpu
);
1819 return max(rq
->cpu_load
[type
-1], total
);
1823 * Return the average load per task on the cpu's run queue
1825 static unsigned long cpu_avg_load_per_task(int cpu
)
1827 struct rq
*rq
= cpu_rq(cpu
);
1828 unsigned long total
= weighted_cpuload(cpu
);
1829 unsigned long n
= rq
->nr_running
;
1831 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1835 * find_idlest_group finds and returns the least busy CPU group within the
1838 static struct sched_group
*
1839 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1841 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1842 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1843 int load_idx
= sd
->forkexec_idx
;
1844 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1847 unsigned long load
, avg_load
;
1851 /* Skip over this group if it has no CPUs allowed */
1852 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1855 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1857 /* Tally up the load of all CPUs in the group */
1860 for_each_cpu_mask(i
, group
->cpumask
) {
1861 /* Bias balancing toward cpus of our domain */
1863 load
= source_load(i
, load_idx
);
1865 load
= target_load(i
, load_idx
);
1870 /* Adjust by relative CPU power of the group */
1871 avg_load
= sg_div_cpu_power(group
,
1872 avg_load
* SCHED_LOAD_SCALE
);
1875 this_load
= avg_load
;
1877 } else if (avg_load
< min_load
) {
1878 min_load
= avg_load
;
1881 } while (group
= group
->next
, group
!= sd
->groups
);
1883 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1889 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1892 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
1895 unsigned long load
, min_load
= ULONG_MAX
;
1899 /* Traverse only the allowed CPUs */
1900 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
1902 for_each_cpu_mask(i
, *tmp
) {
1903 load
= weighted_cpuload(i
);
1905 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1915 * sched_balance_self: balance the current task (running on cpu) in domains
1916 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1919 * Balance, ie. select the least loaded group.
1921 * Returns the target CPU number, or the same CPU if no balancing is needed.
1923 * preempt must be disabled.
1925 static int sched_balance_self(int cpu
, int flag
)
1927 struct task_struct
*t
= current
;
1928 struct sched_domain
*tmp
, *sd
= NULL
;
1930 for_each_domain(cpu
, tmp
) {
1932 * If power savings logic is enabled for a domain, stop there.
1934 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1936 if (tmp
->flags
& flag
)
1941 cpumask_t span
, tmpmask
;
1942 struct sched_group
*group
;
1943 int new_cpu
, weight
;
1945 if (!(sd
->flags
& flag
)) {
1951 group
= find_idlest_group(sd
, t
, cpu
);
1957 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
1958 if (new_cpu
== -1 || new_cpu
== cpu
) {
1959 /* Now try balancing at a lower domain level of cpu */
1964 /* Now try balancing at a lower domain level of new_cpu */
1967 weight
= cpus_weight(span
);
1968 for_each_domain(cpu
, tmp
) {
1969 if (weight
<= cpus_weight(tmp
->span
))
1971 if (tmp
->flags
& flag
)
1974 /* while loop will break here if sd == NULL */
1980 #endif /* CONFIG_SMP */
1983 * try_to_wake_up - wake up a thread
1984 * @p: the to-be-woken-up thread
1985 * @state: the mask of task states that can be woken
1986 * @sync: do a synchronous wakeup?
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1994 * returns failure only if the task is already active.
1996 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1998 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1999 unsigned long flags
;
2003 if (!sched_feat(SYNC_WAKEUPS
))
2007 rq
= task_rq_lock(p
, &flags
);
2008 old_state
= p
->state
;
2009 if (!(old_state
& state
))
2017 this_cpu
= smp_processor_id();
2020 if (unlikely(task_running(rq
, p
)))
2023 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2024 if (cpu
!= orig_cpu
) {
2025 set_task_cpu(p
, cpu
);
2026 task_rq_unlock(rq
, &flags
);
2027 /* might preempt at this point */
2028 rq
= task_rq_lock(p
, &flags
);
2029 old_state
= p
->state
;
2030 if (!(old_state
& state
))
2035 this_cpu
= smp_processor_id();
2039 #ifdef CONFIG_SCHEDSTATS
2040 schedstat_inc(rq
, ttwu_count
);
2041 if (cpu
== this_cpu
)
2042 schedstat_inc(rq
, ttwu_local
);
2044 struct sched_domain
*sd
;
2045 for_each_domain(this_cpu
, sd
) {
2046 if (cpu_isset(cpu
, sd
->span
)) {
2047 schedstat_inc(sd
, ttwu_wake_remote
);
2055 #endif /* CONFIG_SMP */
2056 schedstat_inc(p
, se
.nr_wakeups
);
2058 schedstat_inc(p
, se
.nr_wakeups_sync
);
2059 if (orig_cpu
!= cpu
)
2060 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2061 if (cpu
== this_cpu
)
2062 schedstat_inc(p
, se
.nr_wakeups_local
);
2064 schedstat_inc(p
, se
.nr_wakeups_remote
);
2065 update_rq_clock(rq
);
2066 activate_task(rq
, p
, 1);
2070 check_preempt_curr(rq
, p
);
2072 p
->state
= TASK_RUNNING
;
2074 if (p
->sched_class
->task_wake_up
)
2075 p
->sched_class
->task_wake_up(rq
, p
);
2078 task_rq_unlock(rq
, &flags
);
2083 int wake_up_process(struct task_struct
*p
)
2085 return try_to_wake_up(p
, TASK_ALL
, 0);
2087 EXPORT_SYMBOL(wake_up_process
);
2089 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2091 return try_to_wake_up(p
, state
, 0);
2095 * Perform scheduler related setup for a newly forked process p.
2096 * p is forked by current.
2098 * __sched_fork() is basic setup used by init_idle() too:
2100 static void __sched_fork(struct task_struct
*p
)
2102 p
->se
.exec_start
= 0;
2103 p
->se
.sum_exec_runtime
= 0;
2104 p
->se
.prev_sum_exec_runtime
= 0;
2105 p
->se
.last_wakeup
= 0;
2106 p
->se
.avg_overlap
= 0;
2108 #ifdef CONFIG_SCHEDSTATS
2109 p
->se
.wait_start
= 0;
2110 p
->se
.sum_sleep_runtime
= 0;
2111 p
->se
.sleep_start
= 0;
2112 p
->se
.block_start
= 0;
2113 p
->se
.sleep_max
= 0;
2114 p
->se
.block_max
= 0;
2116 p
->se
.slice_max
= 0;
2120 INIT_LIST_HEAD(&p
->rt
.run_list
);
2123 #ifdef CONFIG_PREEMPT_NOTIFIERS
2124 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2128 * We mark the process as running here, but have not actually
2129 * inserted it onto the runqueue yet. This guarantees that
2130 * nobody will actually run it, and a signal or other external
2131 * event cannot wake it up and insert it on the runqueue either.
2133 p
->state
= TASK_RUNNING
;
2137 * fork()/clone()-time setup:
2139 void sched_fork(struct task_struct
*p
, int clone_flags
)
2141 int cpu
= get_cpu();
2146 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2148 set_task_cpu(p
, cpu
);
2151 * Make sure we do not leak PI boosting priority to the child:
2153 p
->prio
= current
->normal_prio
;
2154 if (!rt_prio(p
->prio
))
2155 p
->sched_class
= &fair_sched_class
;
2157 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2158 if (likely(sched_info_on()))
2159 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2161 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2164 #ifdef CONFIG_PREEMPT
2165 /* Want to start with kernel preemption disabled. */
2166 task_thread_info(p
)->preempt_count
= 1;
2172 * wake_up_new_task - wake up a newly created task for the first time.
2174 * This function will do some initial scheduler statistics housekeeping
2175 * that must be done for every newly created context, then puts the task
2176 * on the runqueue and wakes it.
2178 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2180 unsigned long flags
;
2183 rq
= task_rq_lock(p
, &flags
);
2184 BUG_ON(p
->state
!= TASK_RUNNING
);
2185 update_rq_clock(rq
);
2187 p
->prio
= effective_prio(p
);
2189 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2190 activate_task(rq
, p
, 0);
2193 * Let the scheduling class do new task startup
2194 * management (if any):
2196 p
->sched_class
->task_new(rq
, p
);
2197 inc_nr_running(p
, rq
);
2199 check_preempt_curr(rq
, p
);
2201 if (p
->sched_class
->task_wake_up
)
2202 p
->sched_class
->task_wake_up(rq
, p
);
2204 task_rq_unlock(rq
, &flags
);
2207 #ifdef CONFIG_PREEMPT_NOTIFIERS
2210 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2211 * @notifier: notifier struct to register
2213 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2215 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2217 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2220 * preempt_notifier_unregister - no longer interested in preemption notifications
2221 * @notifier: notifier struct to unregister
2223 * This is safe to call from within a preemption notifier.
2225 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2227 hlist_del(¬ifier
->link
);
2229 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2231 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2233 struct preempt_notifier
*notifier
;
2234 struct hlist_node
*node
;
2236 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2237 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2241 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2242 struct task_struct
*next
)
2244 struct preempt_notifier
*notifier
;
2245 struct hlist_node
*node
;
2247 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2248 notifier
->ops
->sched_out(notifier
, next
);
2253 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2258 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2259 struct task_struct
*next
)
2266 * prepare_task_switch - prepare to switch tasks
2267 * @rq: the runqueue preparing to switch
2268 * @prev: the current task that is being switched out
2269 * @next: the task we are going to switch to.
2271 * This is called with the rq lock held and interrupts off. It must
2272 * be paired with a subsequent finish_task_switch after the context
2275 * prepare_task_switch sets up locking and calls architecture specific
2279 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2280 struct task_struct
*next
)
2282 fire_sched_out_preempt_notifiers(prev
, next
);
2283 prepare_lock_switch(rq
, next
);
2284 prepare_arch_switch(next
);
2288 * finish_task_switch - clean up after a task-switch
2289 * @rq: runqueue associated with task-switch
2290 * @prev: the thread we just switched away from.
2292 * finish_task_switch must be called after the context switch, paired
2293 * with a prepare_task_switch call before the context switch.
2294 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2295 * and do any other architecture-specific cleanup actions.
2297 * Note that we may have delayed dropping an mm in context_switch(). If
2298 * so, we finish that here outside of the runqueue lock. (Doing it
2299 * with the lock held can cause deadlocks; see schedule() for
2302 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2303 __releases(rq
->lock
)
2305 struct mm_struct
*mm
= rq
->prev_mm
;
2311 * A task struct has one reference for the use as "current".
2312 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2313 * schedule one last time. The schedule call will never return, and
2314 * the scheduled task must drop that reference.
2315 * The test for TASK_DEAD must occur while the runqueue locks are
2316 * still held, otherwise prev could be scheduled on another cpu, die
2317 * there before we look at prev->state, and then the reference would
2319 * Manfred Spraul <manfred@colorfullife.com>
2321 prev_state
= prev
->state
;
2322 finish_arch_switch(prev
);
2323 finish_lock_switch(rq
, prev
);
2325 if (current
->sched_class
->post_schedule
)
2326 current
->sched_class
->post_schedule(rq
);
2329 fire_sched_in_preempt_notifiers(current
);
2332 if (unlikely(prev_state
== TASK_DEAD
)) {
2334 * Remove function-return probe instances associated with this
2335 * task and put them back on the free list.
2337 kprobe_flush_task(prev
);
2338 put_task_struct(prev
);
2343 * schedule_tail - first thing a freshly forked thread must call.
2344 * @prev: the thread we just switched away from.
2346 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2347 __releases(rq
->lock
)
2349 struct rq
*rq
= this_rq();
2351 finish_task_switch(rq
, prev
);
2352 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2353 /* In this case, finish_task_switch does not reenable preemption */
2356 if (current
->set_child_tid
)
2357 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2361 * context_switch - switch to the new MM and the new
2362 * thread's register state.
2365 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2366 struct task_struct
*next
)
2368 struct mm_struct
*mm
, *oldmm
;
2370 prepare_task_switch(rq
, prev
, next
);
2372 oldmm
= prev
->active_mm
;
2374 * For paravirt, this is coupled with an exit in switch_to to
2375 * combine the page table reload and the switch backend into
2378 arch_enter_lazy_cpu_mode();
2380 if (unlikely(!mm
)) {
2381 next
->active_mm
= oldmm
;
2382 atomic_inc(&oldmm
->mm_count
);
2383 enter_lazy_tlb(oldmm
, next
);
2385 switch_mm(oldmm
, mm
, next
);
2387 if (unlikely(!prev
->mm
)) {
2388 prev
->active_mm
= NULL
;
2389 rq
->prev_mm
= oldmm
;
2392 * Since the runqueue lock will be released by the next
2393 * task (which is an invalid locking op but in the case
2394 * of the scheduler it's an obvious special-case), so we
2395 * do an early lockdep release here:
2397 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2398 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2401 /* Here we just switch the register state and the stack. */
2402 switch_to(prev
, next
, prev
);
2406 * this_rq must be evaluated again because prev may have moved
2407 * CPUs since it called schedule(), thus the 'rq' on its stack
2408 * frame will be invalid.
2410 finish_task_switch(this_rq(), prev
);
2414 * nr_running, nr_uninterruptible and nr_context_switches:
2416 * externally visible scheduler statistics: current number of runnable
2417 * threads, current number of uninterruptible-sleeping threads, total
2418 * number of context switches performed since bootup.
2420 unsigned long nr_running(void)
2422 unsigned long i
, sum
= 0;
2424 for_each_online_cpu(i
)
2425 sum
+= cpu_rq(i
)->nr_running
;
2430 unsigned long nr_uninterruptible(void)
2432 unsigned long i
, sum
= 0;
2434 for_each_possible_cpu(i
)
2435 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2438 * Since we read the counters lockless, it might be slightly
2439 * inaccurate. Do not allow it to go below zero though:
2441 if (unlikely((long)sum
< 0))
2447 unsigned long long nr_context_switches(void)
2450 unsigned long long sum
= 0;
2452 for_each_possible_cpu(i
)
2453 sum
+= cpu_rq(i
)->nr_switches
;
2458 unsigned long nr_iowait(void)
2460 unsigned long i
, sum
= 0;
2462 for_each_possible_cpu(i
)
2463 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2468 unsigned long nr_active(void)
2470 unsigned long i
, running
= 0, uninterruptible
= 0;
2472 for_each_online_cpu(i
) {
2473 running
+= cpu_rq(i
)->nr_running
;
2474 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2477 if (unlikely((long)uninterruptible
< 0))
2478 uninterruptible
= 0;
2480 return running
+ uninterruptible
;
2484 * Update rq->cpu_load[] statistics. This function is usually called every
2485 * scheduler tick (TICK_NSEC).
2487 static void update_cpu_load(struct rq
*this_rq
)
2489 unsigned long this_load
= this_rq
->load
.weight
;
2492 this_rq
->nr_load_updates
++;
2494 /* Update our load: */
2495 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2496 unsigned long old_load
, new_load
;
2498 /* scale is effectively 1 << i now, and >> i divides by scale */
2500 old_load
= this_rq
->cpu_load
[i
];
2501 new_load
= this_load
;
2503 * Round up the averaging division if load is increasing. This
2504 * prevents us from getting stuck on 9 if the load is 10, for
2507 if (new_load
> old_load
)
2508 new_load
+= scale
-1;
2509 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2516 * double_rq_lock - safely lock two runqueues
2518 * Note this does not disable interrupts like task_rq_lock,
2519 * you need to do so manually before calling.
2521 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2522 __acquires(rq1
->lock
)
2523 __acquires(rq2
->lock
)
2525 BUG_ON(!irqs_disabled());
2527 spin_lock(&rq1
->lock
);
2528 __acquire(rq2
->lock
); /* Fake it out ;) */
2531 spin_lock(&rq1
->lock
);
2532 spin_lock(&rq2
->lock
);
2534 spin_lock(&rq2
->lock
);
2535 spin_lock(&rq1
->lock
);
2538 update_rq_clock(rq1
);
2539 update_rq_clock(rq2
);
2543 * double_rq_unlock - safely unlock two runqueues
2545 * Note this does not restore interrupts like task_rq_unlock,
2546 * you need to do so manually after calling.
2548 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2549 __releases(rq1
->lock
)
2550 __releases(rq2
->lock
)
2552 spin_unlock(&rq1
->lock
);
2554 spin_unlock(&rq2
->lock
);
2556 __release(rq2
->lock
);
2560 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2562 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2563 __releases(this_rq
->lock
)
2564 __acquires(busiest
->lock
)
2565 __acquires(this_rq
->lock
)
2569 if (unlikely(!irqs_disabled())) {
2570 /* printk() doesn't work good under rq->lock */
2571 spin_unlock(&this_rq
->lock
);
2574 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2575 if (busiest
< this_rq
) {
2576 spin_unlock(&this_rq
->lock
);
2577 spin_lock(&busiest
->lock
);
2578 spin_lock(&this_rq
->lock
);
2581 spin_lock(&busiest
->lock
);
2587 * If dest_cpu is allowed for this process, migrate the task to it.
2588 * This is accomplished by forcing the cpu_allowed mask to only
2589 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2590 * the cpu_allowed mask is restored.
2592 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2594 struct migration_req req
;
2595 unsigned long flags
;
2598 rq
= task_rq_lock(p
, &flags
);
2599 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2600 || unlikely(cpu_is_offline(dest_cpu
)))
2603 /* force the process onto the specified CPU */
2604 if (migrate_task(p
, dest_cpu
, &req
)) {
2605 /* Need to wait for migration thread (might exit: take ref). */
2606 struct task_struct
*mt
= rq
->migration_thread
;
2608 get_task_struct(mt
);
2609 task_rq_unlock(rq
, &flags
);
2610 wake_up_process(mt
);
2611 put_task_struct(mt
);
2612 wait_for_completion(&req
.done
);
2617 task_rq_unlock(rq
, &flags
);
2621 * sched_exec - execve() is a valuable balancing opportunity, because at
2622 * this point the task has the smallest effective memory and cache footprint.
2624 void sched_exec(void)
2626 int new_cpu
, this_cpu
= get_cpu();
2627 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2629 if (new_cpu
!= this_cpu
)
2630 sched_migrate_task(current
, new_cpu
);
2634 * pull_task - move a task from a remote runqueue to the local runqueue.
2635 * Both runqueues must be locked.
2637 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2638 struct rq
*this_rq
, int this_cpu
)
2640 deactivate_task(src_rq
, p
, 0);
2641 set_task_cpu(p
, this_cpu
);
2642 activate_task(this_rq
, p
, 0);
2644 * Note that idle threads have a prio of MAX_PRIO, for this test
2645 * to be always true for them.
2647 check_preempt_curr(this_rq
, p
);
2651 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2654 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2655 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2659 * We do not migrate tasks that are:
2660 * 1) running (obviously), or
2661 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2662 * 3) are cache-hot on their current CPU.
2664 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2665 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2670 if (task_running(rq
, p
)) {
2671 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2676 * Aggressive migration if:
2677 * 1) task is cache cold, or
2678 * 2) too many balance attempts have failed.
2681 if (!task_hot(p
, rq
->clock
, sd
) ||
2682 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2683 #ifdef CONFIG_SCHEDSTATS
2684 if (task_hot(p
, rq
->clock
, sd
)) {
2685 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2686 schedstat_inc(p
, se
.nr_forced_migrations
);
2692 if (task_hot(p
, rq
->clock
, sd
)) {
2693 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2699 static unsigned long
2700 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2701 unsigned long max_load_move
, struct sched_domain
*sd
,
2702 enum cpu_idle_type idle
, int *all_pinned
,
2703 int *this_best_prio
, struct rq_iterator
*iterator
)
2705 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2706 struct task_struct
*p
;
2707 long rem_load_move
= max_load_move
;
2709 if (max_load_move
== 0)
2715 * Start the load-balancing iterator:
2717 p
= iterator
->start(iterator
->arg
);
2719 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2722 * To help distribute high priority tasks across CPUs we don't
2723 * skip a task if it will be the highest priority task (i.e. smallest
2724 * prio value) on its new queue regardless of its load weight
2726 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2727 SCHED_LOAD_SCALE_FUZZ
;
2728 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2729 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2730 p
= iterator
->next(iterator
->arg
);
2734 pull_task(busiest
, p
, this_rq
, this_cpu
);
2736 rem_load_move
-= p
->se
.load
.weight
;
2739 * We only want to steal up to the prescribed amount of weighted load.
2741 if (rem_load_move
> 0) {
2742 if (p
->prio
< *this_best_prio
)
2743 *this_best_prio
= p
->prio
;
2744 p
= iterator
->next(iterator
->arg
);
2749 * Right now, this is one of only two places pull_task() is called,
2750 * so we can safely collect pull_task() stats here rather than
2751 * inside pull_task().
2753 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2756 *all_pinned
= pinned
;
2758 return max_load_move
- rem_load_move
;
2762 * move_tasks tries to move up to max_load_move weighted load from busiest to
2763 * this_rq, as part of a balancing operation within domain "sd".
2764 * Returns 1 if successful and 0 otherwise.
2766 * Called with both runqueues locked.
2768 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2769 unsigned long max_load_move
,
2770 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2773 const struct sched_class
*class = sched_class_highest
;
2774 unsigned long total_load_moved
= 0;
2775 int this_best_prio
= this_rq
->curr
->prio
;
2779 class->load_balance(this_rq
, this_cpu
, busiest
,
2780 max_load_move
- total_load_moved
,
2781 sd
, idle
, all_pinned
, &this_best_prio
);
2782 class = class->next
;
2783 } while (class && max_load_move
> total_load_moved
);
2785 return total_load_moved
> 0;
2789 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2790 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2791 struct rq_iterator
*iterator
)
2793 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2797 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2798 pull_task(busiest
, p
, this_rq
, this_cpu
);
2800 * Right now, this is only the second place pull_task()
2801 * is called, so we can safely collect pull_task()
2802 * stats here rather than inside pull_task().
2804 schedstat_inc(sd
, lb_gained
[idle
]);
2808 p
= iterator
->next(iterator
->arg
);
2815 * move_one_task tries to move exactly one task from busiest to this_rq, as
2816 * part of active balancing operations within "domain".
2817 * Returns 1 if successful and 0 otherwise.
2819 * Called with both runqueues locked.
2821 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2822 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2824 const struct sched_class
*class;
2826 for (class = sched_class_highest
; class; class = class->next
)
2827 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2834 * find_busiest_group finds and returns the busiest CPU group within the
2835 * domain. It calculates and returns the amount of weighted load which
2836 * should be moved to restore balance via the imbalance parameter.
2838 static struct sched_group
*
2839 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2840 unsigned long *imbalance
, enum cpu_idle_type idle
,
2841 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
2843 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2844 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2845 unsigned long max_pull
;
2846 unsigned long busiest_load_per_task
, busiest_nr_running
;
2847 unsigned long this_load_per_task
, this_nr_running
;
2848 int load_idx
, group_imb
= 0;
2849 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2850 int power_savings_balance
= 1;
2851 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2852 unsigned long min_nr_running
= ULONG_MAX
;
2853 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2856 max_load
= this_load
= total_load
= total_pwr
= 0;
2857 busiest_load_per_task
= busiest_nr_running
= 0;
2858 this_load_per_task
= this_nr_running
= 0;
2859 if (idle
== CPU_NOT_IDLE
)
2860 load_idx
= sd
->busy_idx
;
2861 else if (idle
== CPU_NEWLY_IDLE
)
2862 load_idx
= sd
->newidle_idx
;
2864 load_idx
= sd
->idle_idx
;
2867 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2870 int __group_imb
= 0;
2871 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2872 unsigned long sum_nr_running
, sum_weighted_load
;
2874 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2877 balance_cpu
= first_cpu(group
->cpumask
);
2879 /* Tally up the load of all CPUs in the group */
2880 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2882 min_cpu_load
= ~0UL;
2884 for_each_cpu_mask(i
, group
->cpumask
) {
2887 if (!cpu_isset(i
, *cpus
))
2892 if (*sd_idle
&& rq
->nr_running
)
2895 /* Bias balancing toward cpus of our domain */
2897 if (idle_cpu(i
) && !first_idle_cpu
) {
2902 load
= target_load(i
, load_idx
);
2904 load
= source_load(i
, load_idx
);
2905 if (load
> max_cpu_load
)
2906 max_cpu_load
= load
;
2907 if (min_cpu_load
> load
)
2908 min_cpu_load
= load
;
2912 sum_nr_running
+= rq
->nr_running
;
2913 sum_weighted_load
+= weighted_cpuload(i
);
2917 * First idle cpu or the first cpu(busiest) in this sched group
2918 * is eligible for doing load balancing at this and above
2919 * domains. In the newly idle case, we will allow all the cpu's
2920 * to do the newly idle load balance.
2922 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2923 balance_cpu
!= this_cpu
&& balance
) {
2928 total_load
+= avg_load
;
2929 total_pwr
+= group
->__cpu_power
;
2931 /* Adjust by relative CPU power of the group */
2932 avg_load
= sg_div_cpu_power(group
,
2933 avg_load
* SCHED_LOAD_SCALE
);
2935 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2938 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2941 this_load
= avg_load
;
2943 this_nr_running
= sum_nr_running
;
2944 this_load_per_task
= sum_weighted_load
;
2945 } else if (avg_load
> max_load
&&
2946 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2947 max_load
= avg_load
;
2949 busiest_nr_running
= sum_nr_running
;
2950 busiest_load_per_task
= sum_weighted_load
;
2951 group_imb
= __group_imb
;
2954 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2956 * Busy processors will not participate in power savings
2959 if (idle
== CPU_NOT_IDLE
||
2960 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2964 * If the local group is idle or completely loaded
2965 * no need to do power savings balance at this domain
2967 if (local_group
&& (this_nr_running
>= group_capacity
||
2969 power_savings_balance
= 0;
2972 * If a group is already running at full capacity or idle,
2973 * don't include that group in power savings calculations
2975 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2980 * Calculate the group which has the least non-idle load.
2981 * This is the group from where we need to pick up the load
2984 if ((sum_nr_running
< min_nr_running
) ||
2985 (sum_nr_running
== min_nr_running
&&
2986 first_cpu(group
->cpumask
) <
2987 first_cpu(group_min
->cpumask
))) {
2989 min_nr_running
= sum_nr_running
;
2990 min_load_per_task
= sum_weighted_load
/
2995 * Calculate the group which is almost near its
2996 * capacity but still has some space to pick up some load
2997 * from other group and save more power
2999 if (sum_nr_running
<= group_capacity
- 1) {
3000 if (sum_nr_running
> leader_nr_running
||
3001 (sum_nr_running
== leader_nr_running
&&
3002 first_cpu(group
->cpumask
) >
3003 first_cpu(group_leader
->cpumask
))) {
3004 group_leader
= group
;
3005 leader_nr_running
= sum_nr_running
;
3010 group
= group
->next
;
3011 } while (group
!= sd
->groups
);
3013 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3016 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3018 if (this_load
>= avg_load
||
3019 100*max_load
<= sd
->imbalance_pct
*this_load
)
3022 busiest_load_per_task
/= busiest_nr_running
;
3024 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3027 * We're trying to get all the cpus to the average_load, so we don't
3028 * want to push ourselves above the average load, nor do we wish to
3029 * reduce the max loaded cpu below the average load, as either of these
3030 * actions would just result in more rebalancing later, and ping-pong
3031 * tasks around. Thus we look for the minimum possible imbalance.
3032 * Negative imbalances (*we* are more loaded than anyone else) will
3033 * be counted as no imbalance for these purposes -- we can't fix that
3034 * by pulling tasks to us. Be careful of negative numbers as they'll
3035 * appear as very large values with unsigned longs.
3037 if (max_load
<= busiest_load_per_task
)
3041 * In the presence of smp nice balancing, certain scenarios can have
3042 * max load less than avg load(as we skip the groups at or below
3043 * its cpu_power, while calculating max_load..)
3045 if (max_load
< avg_load
) {
3047 goto small_imbalance
;
3050 /* Don't want to pull so many tasks that a group would go idle */
3051 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3053 /* How much load to actually move to equalise the imbalance */
3054 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3055 (avg_load
- this_load
) * this->__cpu_power
)
3059 * if *imbalance is less than the average load per runnable task
3060 * there is no gaurantee that any tasks will be moved so we'll have
3061 * a think about bumping its value to force at least one task to be
3064 if (*imbalance
< busiest_load_per_task
) {
3065 unsigned long tmp
, pwr_now
, pwr_move
;
3069 pwr_move
= pwr_now
= 0;
3071 if (this_nr_running
) {
3072 this_load_per_task
/= this_nr_running
;
3073 if (busiest_load_per_task
> this_load_per_task
)
3076 this_load_per_task
= SCHED_LOAD_SCALE
;
3078 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
3079 busiest_load_per_task
* imbn
) {
3080 *imbalance
= busiest_load_per_task
;
3085 * OK, we don't have enough imbalance to justify moving tasks,
3086 * however we may be able to increase total CPU power used by
3090 pwr_now
+= busiest
->__cpu_power
*
3091 min(busiest_load_per_task
, max_load
);
3092 pwr_now
+= this->__cpu_power
*
3093 min(this_load_per_task
, this_load
);
3094 pwr_now
/= SCHED_LOAD_SCALE
;
3096 /* Amount of load we'd subtract */
3097 tmp
= sg_div_cpu_power(busiest
,
3098 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3100 pwr_move
+= busiest
->__cpu_power
*
3101 min(busiest_load_per_task
, max_load
- tmp
);
3103 /* Amount of load we'd add */
3104 if (max_load
* busiest
->__cpu_power
<
3105 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3106 tmp
= sg_div_cpu_power(this,
3107 max_load
* busiest
->__cpu_power
);
3109 tmp
= sg_div_cpu_power(this,
3110 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3111 pwr_move
+= this->__cpu_power
*
3112 min(this_load_per_task
, this_load
+ tmp
);
3113 pwr_move
/= SCHED_LOAD_SCALE
;
3115 /* Move if we gain throughput */
3116 if (pwr_move
> pwr_now
)
3117 *imbalance
= busiest_load_per_task
;
3123 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3124 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3127 if (this == group_leader
&& group_leader
!= group_min
) {
3128 *imbalance
= min_load_per_task
;
3138 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3141 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3142 unsigned long imbalance
, const cpumask_t
*cpus
)
3144 struct rq
*busiest
= NULL
, *rq
;
3145 unsigned long max_load
= 0;
3148 for_each_cpu_mask(i
, group
->cpumask
) {
3151 if (!cpu_isset(i
, *cpus
))
3155 wl
= weighted_cpuload(i
);
3157 if (rq
->nr_running
== 1 && wl
> imbalance
)
3160 if (wl
> max_load
) {
3170 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3171 * so long as it is large enough.
3173 #define MAX_PINNED_INTERVAL 512
3176 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3177 * tasks if there is an imbalance.
3179 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3180 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3181 int *balance
, cpumask_t
*cpus
)
3183 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3184 struct sched_group
*group
;
3185 unsigned long imbalance
;
3187 unsigned long flags
;
3192 * When power savings policy is enabled for the parent domain, idle
3193 * sibling can pick up load irrespective of busy siblings. In this case,
3194 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3195 * portraying it as CPU_NOT_IDLE.
3197 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3198 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3201 schedstat_inc(sd
, lb_count
[idle
]);
3204 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3211 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3215 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3217 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3221 BUG_ON(busiest
== this_rq
);
3223 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3226 if (busiest
->nr_running
> 1) {
3228 * Attempt to move tasks. If find_busiest_group has found
3229 * an imbalance but busiest->nr_running <= 1, the group is
3230 * still unbalanced. ld_moved simply stays zero, so it is
3231 * correctly treated as an imbalance.
3233 local_irq_save(flags
);
3234 double_rq_lock(this_rq
, busiest
);
3235 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3236 imbalance
, sd
, idle
, &all_pinned
);
3237 double_rq_unlock(this_rq
, busiest
);
3238 local_irq_restore(flags
);
3241 * some other cpu did the load balance for us.
3243 if (ld_moved
&& this_cpu
!= smp_processor_id())
3244 resched_cpu(this_cpu
);
3246 /* All tasks on this runqueue were pinned by CPU affinity */
3247 if (unlikely(all_pinned
)) {
3248 cpu_clear(cpu_of(busiest
), *cpus
);
3249 if (!cpus_empty(*cpus
))
3256 schedstat_inc(sd
, lb_failed
[idle
]);
3257 sd
->nr_balance_failed
++;
3259 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3261 spin_lock_irqsave(&busiest
->lock
, flags
);
3263 /* don't kick the migration_thread, if the curr
3264 * task on busiest cpu can't be moved to this_cpu
3266 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3267 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3269 goto out_one_pinned
;
3272 if (!busiest
->active_balance
) {
3273 busiest
->active_balance
= 1;
3274 busiest
->push_cpu
= this_cpu
;
3277 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3279 wake_up_process(busiest
->migration_thread
);
3282 * We've kicked active balancing, reset the failure
3285 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3288 sd
->nr_balance_failed
= 0;
3290 if (likely(!active_balance
)) {
3291 /* We were unbalanced, so reset the balancing interval */
3292 sd
->balance_interval
= sd
->min_interval
;
3295 * If we've begun active balancing, start to back off. This
3296 * case may not be covered by the all_pinned logic if there
3297 * is only 1 task on the busy runqueue (because we don't call
3300 if (sd
->balance_interval
< sd
->max_interval
)
3301 sd
->balance_interval
*= 2;
3304 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3305 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3310 schedstat_inc(sd
, lb_balanced
[idle
]);
3312 sd
->nr_balance_failed
= 0;
3315 /* tune up the balancing interval */
3316 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3317 (sd
->balance_interval
< sd
->max_interval
))
3318 sd
->balance_interval
*= 2;
3320 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3321 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3327 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3328 * tasks if there is an imbalance.
3330 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3331 * this_rq is locked.
3334 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3337 struct sched_group
*group
;
3338 struct rq
*busiest
= NULL
;
3339 unsigned long imbalance
;
3347 * When power savings policy is enabled for the parent domain, idle
3348 * sibling can pick up load irrespective of busy siblings. In this case,
3349 * let the state of idle sibling percolate up as IDLE, instead of
3350 * portraying it as CPU_NOT_IDLE.
3352 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3353 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3356 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3358 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3359 &sd_idle
, cpus
, NULL
);
3361 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3365 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3367 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3371 BUG_ON(busiest
== this_rq
);
3373 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3376 if (busiest
->nr_running
> 1) {
3377 /* Attempt to move tasks */
3378 double_lock_balance(this_rq
, busiest
);
3379 /* this_rq->clock is already updated */
3380 update_rq_clock(busiest
);
3381 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3382 imbalance
, sd
, CPU_NEWLY_IDLE
,
3384 spin_unlock(&busiest
->lock
);
3386 if (unlikely(all_pinned
)) {
3387 cpu_clear(cpu_of(busiest
), *cpus
);
3388 if (!cpus_empty(*cpus
))
3394 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3395 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3396 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3399 sd
->nr_balance_failed
= 0;
3404 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3405 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3406 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3408 sd
->nr_balance_failed
= 0;
3414 * idle_balance is called by schedule() if this_cpu is about to become
3415 * idle. Attempts to pull tasks from other CPUs.
3417 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3419 struct sched_domain
*sd
;
3420 int pulled_task
= -1;
3421 unsigned long next_balance
= jiffies
+ HZ
;
3424 for_each_domain(this_cpu
, sd
) {
3425 unsigned long interval
;
3427 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3430 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3431 /* If we've pulled tasks over stop searching: */
3432 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3435 interval
= msecs_to_jiffies(sd
->balance_interval
);
3436 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3437 next_balance
= sd
->last_balance
+ interval
;
3441 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3443 * We are going idle. next_balance may be set based on
3444 * a busy processor. So reset next_balance.
3446 this_rq
->next_balance
= next_balance
;
3451 * active_load_balance is run by migration threads. It pushes running tasks
3452 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3453 * running on each physical CPU where possible, and avoids physical /
3454 * logical imbalances.
3456 * Called with busiest_rq locked.
3458 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3460 int target_cpu
= busiest_rq
->push_cpu
;
3461 struct sched_domain
*sd
;
3462 struct rq
*target_rq
;
3464 /* Is there any task to move? */
3465 if (busiest_rq
->nr_running
<= 1)
3468 target_rq
= cpu_rq(target_cpu
);
3471 * This condition is "impossible", if it occurs
3472 * we need to fix it. Originally reported by
3473 * Bjorn Helgaas on a 128-cpu setup.
3475 BUG_ON(busiest_rq
== target_rq
);
3477 /* move a task from busiest_rq to target_rq */
3478 double_lock_balance(busiest_rq
, target_rq
);
3479 update_rq_clock(busiest_rq
);
3480 update_rq_clock(target_rq
);
3482 /* Search for an sd spanning us and the target CPU. */
3483 for_each_domain(target_cpu
, sd
) {
3484 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3485 cpu_isset(busiest_cpu
, sd
->span
))
3490 schedstat_inc(sd
, alb_count
);
3492 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3494 schedstat_inc(sd
, alb_pushed
);
3496 schedstat_inc(sd
, alb_failed
);
3498 spin_unlock(&target_rq
->lock
);
3503 atomic_t load_balancer
;
3505 } nohz ____cacheline_aligned
= {
3506 .load_balancer
= ATOMIC_INIT(-1),
3507 .cpu_mask
= CPU_MASK_NONE
,
3511 * This routine will try to nominate the ilb (idle load balancing)
3512 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3513 * load balancing on behalf of all those cpus. If all the cpus in the system
3514 * go into this tickless mode, then there will be no ilb owner (as there is
3515 * no need for one) and all the cpus will sleep till the next wakeup event
3518 * For the ilb owner, tick is not stopped. And this tick will be used
3519 * for idle load balancing. ilb owner will still be part of
3522 * While stopping the tick, this cpu will become the ilb owner if there
3523 * is no other owner. And will be the owner till that cpu becomes busy
3524 * or if all cpus in the system stop their ticks at which point
3525 * there is no need for ilb owner.
3527 * When the ilb owner becomes busy, it nominates another owner, during the
3528 * next busy scheduler_tick()
3530 int select_nohz_load_balancer(int stop_tick
)
3532 int cpu
= smp_processor_id();
3535 cpu_set(cpu
, nohz
.cpu_mask
);
3536 cpu_rq(cpu
)->in_nohz_recently
= 1;
3539 * If we are going offline and still the leader, give up!
3541 if (cpu_is_offline(cpu
) &&
3542 atomic_read(&nohz
.load_balancer
) == cpu
) {
3543 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3548 /* time for ilb owner also to sleep */
3549 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3550 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3551 atomic_set(&nohz
.load_balancer
, -1);
3555 if (atomic_read(&nohz
.load_balancer
) == -1) {
3556 /* make me the ilb owner */
3557 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3559 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3562 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3565 cpu_clear(cpu
, nohz
.cpu_mask
);
3567 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3568 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3575 static DEFINE_SPINLOCK(balancing
);
3578 * It checks each scheduling domain to see if it is due to be balanced,
3579 * and initiates a balancing operation if so.
3581 * Balancing parameters are set up in arch_init_sched_domains.
3583 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3586 struct rq
*rq
= cpu_rq(cpu
);
3587 unsigned long interval
;
3588 struct sched_domain
*sd
;
3589 /* Earliest time when we have to do rebalance again */
3590 unsigned long next_balance
= jiffies
+ 60*HZ
;
3591 int update_next_balance
= 0;
3594 for_each_domain(cpu
, sd
) {
3595 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3598 interval
= sd
->balance_interval
;
3599 if (idle
!= CPU_IDLE
)
3600 interval
*= sd
->busy_factor
;
3602 /* scale ms to jiffies */
3603 interval
= msecs_to_jiffies(interval
);
3604 if (unlikely(!interval
))
3606 if (interval
> HZ
*NR_CPUS
/10)
3607 interval
= HZ
*NR_CPUS
/10;
3610 if (sd
->flags
& SD_SERIALIZE
) {
3611 if (!spin_trylock(&balancing
))
3615 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3616 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3618 * We've pulled tasks over so either we're no
3619 * longer idle, or one of our SMT siblings is
3622 idle
= CPU_NOT_IDLE
;
3624 sd
->last_balance
= jiffies
;
3626 if (sd
->flags
& SD_SERIALIZE
)
3627 spin_unlock(&balancing
);
3629 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3630 next_balance
= sd
->last_balance
+ interval
;
3631 update_next_balance
= 1;
3635 * Stop the load balance at this level. There is another
3636 * CPU in our sched group which is doing load balancing more
3644 * next_balance will be updated only when there is a need.
3645 * When the cpu is attached to null domain for ex, it will not be
3648 if (likely(update_next_balance
))
3649 rq
->next_balance
= next_balance
;
3653 * run_rebalance_domains is triggered when needed from the scheduler tick.
3654 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3655 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3657 static void run_rebalance_domains(struct softirq_action
*h
)
3659 int this_cpu
= smp_processor_id();
3660 struct rq
*this_rq
= cpu_rq(this_cpu
);
3661 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3662 CPU_IDLE
: CPU_NOT_IDLE
;
3664 rebalance_domains(this_cpu
, idle
);
3668 * If this cpu is the owner for idle load balancing, then do the
3669 * balancing on behalf of the other idle cpus whose ticks are
3672 if (this_rq
->idle_at_tick
&&
3673 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3674 cpumask_t cpus
= nohz
.cpu_mask
;
3678 cpu_clear(this_cpu
, cpus
);
3679 for_each_cpu_mask(balance_cpu
, cpus
) {
3681 * If this cpu gets work to do, stop the load balancing
3682 * work being done for other cpus. Next load
3683 * balancing owner will pick it up.
3688 rebalance_domains(balance_cpu
, CPU_IDLE
);
3690 rq
= cpu_rq(balance_cpu
);
3691 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3692 this_rq
->next_balance
= rq
->next_balance
;
3699 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3701 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3702 * idle load balancing owner or decide to stop the periodic load balancing,
3703 * if the whole system is idle.
3705 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3709 * If we were in the nohz mode recently and busy at the current
3710 * scheduler tick, then check if we need to nominate new idle
3713 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3714 rq
->in_nohz_recently
= 0;
3716 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3717 cpu_clear(cpu
, nohz
.cpu_mask
);
3718 atomic_set(&nohz
.load_balancer
, -1);
3721 if (atomic_read(&nohz
.load_balancer
) == -1) {
3723 * simple selection for now: Nominate the
3724 * first cpu in the nohz list to be the next
3727 * TBD: Traverse the sched domains and nominate
3728 * the nearest cpu in the nohz.cpu_mask.
3730 int ilb
= first_cpu(nohz
.cpu_mask
);
3732 if (ilb
< nr_cpu_ids
)
3738 * If this cpu is idle and doing idle load balancing for all the
3739 * cpus with ticks stopped, is it time for that to stop?
3741 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3742 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3748 * If this cpu is idle and the idle load balancing is done by
3749 * someone else, then no need raise the SCHED_SOFTIRQ
3751 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3752 cpu_isset(cpu
, nohz
.cpu_mask
))
3755 if (time_after_eq(jiffies
, rq
->next_balance
))
3756 raise_softirq(SCHED_SOFTIRQ
);
3759 #else /* CONFIG_SMP */
3762 * on UP we do not need to balance between CPUs:
3764 static inline void idle_balance(int cpu
, struct rq
*rq
)
3770 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3772 EXPORT_PER_CPU_SYMBOL(kstat
);
3775 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3776 * that have not yet been banked in case the task is currently running.
3778 unsigned long long task_sched_runtime(struct task_struct
*p
)
3780 unsigned long flags
;
3784 rq
= task_rq_lock(p
, &flags
);
3785 ns
= p
->se
.sum_exec_runtime
;
3786 if (task_current(rq
, p
)) {
3787 update_rq_clock(rq
);
3788 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3789 if ((s64
)delta_exec
> 0)
3792 task_rq_unlock(rq
, &flags
);
3798 * Account user cpu time to a process.
3799 * @p: the process that the cpu time gets accounted to
3800 * @cputime: the cpu time spent in user space since the last update
3802 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3804 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3807 p
->utime
= cputime_add(p
->utime
, cputime
);
3809 /* Add user time to cpustat. */
3810 tmp
= cputime_to_cputime64(cputime
);
3811 if (TASK_NICE(p
) > 0)
3812 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3814 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3818 * Account guest cpu time to a process.
3819 * @p: the process that the cpu time gets accounted to
3820 * @cputime: the cpu time spent in virtual machine since the last update
3822 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3825 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3827 tmp
= cputime_to_cputime64(cputime
);
3829 p
->utime
= cputime_add(p
->utime
, cputime
);
3830 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3832 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3833 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3837 * Account scaled user cpu time to a process.
3838 * @p: the process that the cpu time gets accounted to
3839 * @cputime: the cpu time spent in user space since the last update
3841 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3843 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3847 * Account system cpu time to a process.
3848 * @p: the process that the cpu time gets accounted to
3849 * @hardirq_offset: the offset to subtract from hardirq_count()
3850 * @cputime: the cpu time spent in kernel space since the last update
3852 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3855 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3856 struct rq
*rq
= this_rq();
3859 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3860 return account_guest_time(p
, cputime
);
3862 p
->stime
= cputime_add(p
->stime
, cputime
);
3864 /* Add system time to cpustat. */
3865 tmp
= cputime_to_cputime64(cputime
);
3866 if (hardirq_count() - hardirq_offset
)
3867 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3868 else if (softirq_count())
3869 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3870 else if (p
!= rq
->idle
)
3871 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3872 else if (atomic_read(&rq
->nr_iowait
) > 0)
3873 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3875 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3876 /* Account for system time used */
3877 acct_update_integrals(p
);
3881 * Account scaled system cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
3883 * @hardirq_offset: the offset to subtract from hardirq_count()
3884 * @cputime: the cpu time spent in kernel space since the last update
3886 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3888 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3892 * Account for involuntary wait time.
3893 * @p: the process from which the cpu time has been stolen
3894 * @steal: the cpu time spent in involuntary wait
3896 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3898 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3899 cputime64_t tmp
= cputime_to_cputime64(steal
);
3900 struct rq
*rq
= this_rq();
3902 if (p
== rq
->idle
) {
3903 p
->stime
= cputime_add(p
->stime
, steal
);
3904 if (atomic_read(&rq
->nr_iowait
) > 0)
3905 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3907 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3909 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3913 * This function gets called by the timer code, with HZ frequency.
3914 * We call it with interrupts disabled.
3916 * It also gets called by the fork code, when changing the parent's
3919 void scheduler_tick(void)
3921 int cpu
= smp_processor_id();
3922 struct rq
*rq
= cpu_rq(cpu
);
3923 struct task_struct
*curr
= rq
->curr
;
3924 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3926 spin_lock(&rq
->lock
);
3927 __update_rq_clock(rq
);
3929 * Let rq->clock advance by at least TICK_NSEC:
3931 if (unlikely(rq
->clock
< next_tick
)) {
3932 rq
->clock
= next_tick
;
3933 rq
->clock_underflows
++;
3935 rq
->tick_timestamp
= rq
->clock
;
3936 update_last_tick_seen(rq
);
3937 update_cpu_load(rq
);
3938 curr
->sched_class
->task_tick(rq
, curr
, 0);
3939 spin_unlock(&rq
->lock
);
3942 rq
->idle_at_tick
= idle_cpu(cpu
);
3943 trigger_load_balance(rq
, cpu
);
3947 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3949 void __kprobes
add_preempt_count(int val
)
3954 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3956 preempt_count() += val
;
3958 * Spinlock count overflowing soon?
3960 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3963 EXPORT_SYMBOL(add_preempt_count
);
3965 void __kprobes
sub_preempt_count(int val
)
3970 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3973 * Is the spinlock portion underflowing?
3975 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3976 !(preempt_count() & PREEMPT_MASK
)))
3979 preempt_count() -= val
;
3981 EXPORT_SYMBOL(sub_preempt_count
);
3986 * Print scheduling while atomic bug:
3988 static noinline
void __schedule_bug(struct task_struct
*prev
)
3990 struct pt_regs
*regs
= get_irq_regs();
3992 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3993 prev
->comm
, prev
->pid
, preempt_count());
3995 debug_show_held_locks(prev
);
3996 if (irqs_disabled())
3997 print_irqtrace_events(prev
);
4006 * Various schedule()-time debugging checks and statistics:
4008 static inline void schedule_debug(struct task_struct
*prev
)
4011 * Test if we are atomic. Since do_exit() needs to call into
4012 * schedule() atomically, we ignore that path for now.
4013 * Otherwise, whine if we are scheduling when we should not be.
4015 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
4016 __schedule_bug(prev
);
4018 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4020 schedstat_inc(this_rq(), sched_count
);
4021 #ifdef CONFIG_SCHEDSTATS
4022 if (unlikely(prev
->lock_depth
>= 0)) {
4023 schedstat_inc(this_rq(), bkl_count
);
4024 schedstat_inc(prev
, sched_info
.bkl_count
);
4030 * Pick up the highest-prio task:
4032 static inline struct task_struct
*
4033 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4035 const struct sched_class
*class;
4036 struct task_struct
*p
;
4039 * Optimization: we know that if all tasks are in
4040 * the fair class we can call that function directly:
4042 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4043 p
= fair_sched_class
.pick_next_task(rq
);
4048 class = sched_class_highest
;
4050 p
= class->pick_next_task(rq
);
4054 * Will never be NULL as the idle class always
4055 * returns a non-NULL p:
4057 class = class->next
;
4062 * schedule() is the main scheduler function.
4064 asmlinkage
void __sched
schedule(void)
4066 struct task_struct
*prev
, *next
;
4067 unsigned long *switch_count
;
4073 cpu
= smp_processor_id();
4077 switch_count
= &prev
->nivcsw
;
4079 release_kernel_lock(prev
);
4080 need_resched_nonpreemptible
:
4082 schedule_debug(prev
);
4087 * Do the rq-clock update outside the rq lock:
4089 local_irq_disable();
4090 __update_rq_clock(rq
);
4091 spin_lock(&rq
->lock
);
4092 clear_tsk_need_resched(prev
);
4094 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4095 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
4096 signal_pending(prev
))) {
4097 prev
->state
= TASK_RUNNING
;
4099 deactivate_task(rq
, prev
, 1);
4101 switch_count
= &prev
->nvcsw
;
4105 if (prev
->sched_class
->pre_schedule
)
4106 prev
->sched_class
->pre_schedule(rq
, prev
);
4109 if (unlikely(!rq
->nr_running
))
4110 idle_balance(cpu
, rq
);
4112 prev
->sched_class
->put_prev_task(rq
, prev
);
4113 next
= pick_next_task(rq
, prev
);
4115 sched_info_switch(prev
, next
);
4117 if (likely(prev
!= next
)) {
4122 context_switch(rq
, prev
, next
); /* unlocks the rq */
4124 * the context switch might have flipped the stack from under
4125 * us, hence refresh the local variables.
4127 cpu
= smp_processor_id();
4130 spin_unlock_irq(&rq
->lock
);
4134 if (unlikely(reacquire_kernel_lock(current
) < 0))
4135 goto need_resched_nonpreemptible
;
4137 preempt_enable_no_resched();
4138 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4141 EXPORT_SYMBOL(schedule
);
4143 #ifdef CONFIG_PREEMPT
4145 * this is the entry point to schedule() from in-kernel preemption
4146 * off of preempt_enable. Kernel preemptions off return from interrupt
4147 * occur there and call schedule directly.
4149 asmlinkage
void __sched
preempt_schedule(void)
4151 struct thread_info
*ti
= current_thread_info();
4152 struct task_struct
*task
= current
;
4153 int saved_lock_depth
;
4156 * If there is a non-zero preempt_count or interrupts are disabled,
4157 * we do not want to preempt the current task. Just return..
4159 if (likely(ti
->preempt_count
|| irqs_disabled()))
4163 add_preempt_count(PREEMPT_ACTIVE
);
4166 * We keep the big kernel semaphore locked, but we
4167 * clear ->lock_depth so that schedule() doesnt
4168 * auto-release the semaphore:
4170 saved_lock_depth
= task
->lock_depth
;
4171 task
->lock_depth
= -1;
4173 task
->lock_depth
= saved_lock_depth
;
4174 sub_preempt_count(PREEMPT_ACTIVE
);
4177 * Check again in case we missed a preemption opportunity
4178 * between schedule and now.
4181 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4183 EXPORT_SYMBOL(preempt_schedule
);
4186 * this is the entry point to schedule() from kernel preemption
4187 * off of irq context.
4188 * Note, that this is called and return with irqs disabled. This will
4189 * protect us against recursive calling from irq.
4191 asmlinkage
void __sched
preempt_schedule_irq(void)
4193 struct thread_info
*ti
= current_thread_info();
4194 struct task_struct
*task
= current
;
4195 int saved_lock_depth
;
4197 /* Catch callers which need to be fixed */
4198 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4201 add_preempt_count(PREEMPT_ACTIVE
);
4204 * We keep the big kernel semaphore locked, but we
4205 * clear ->lock_depth so that schedule() doesnt
4206 * auto-release the semaphore:
4208 saved_lock_depth
= task
->lock_depth
;
4209 task
->lock_depth
= -1;
4212 local_irq_disable();
4213 task
->lock_depth
= saved_lock_depth
;
4214 sub_preempt_count(PREEMPT_ACTIVE
);
4217 * Check again in case we missed a preemption opportunity
4218 * between schedule and now.
4221 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4224 #endif /* CONFIG_PREEMPT */
4226 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4229 return try_to_wake_up(curr
->private, mode
, sync
);
4231 EXPORT_SYMBOL(default_wake_function
);
4234 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4235 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4236 * number) then we wake all the non-exclusive tasks and one exclusive task.
4238 * There are circumstances in which we can try to wake a task which has already
4239 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4240 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4242 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4243 int nr_exclusive
, int sync
, void *key
)
4245 wait_queue_t
*curr
, *next
;
4247 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4248 unsigned flags
= curr
->flags
;
4250 if (curr
->func(curr
, mode
, sync
, key
) &&
4251 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4257 * __wake_up - wake up threads blocked on a waitqueue.
4259 * @mode: which threads
4260 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4261 * @key: is directly passed to the wakeup function
4263 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4264 int nr_exclusive
, void *key
)
4266 unsigned long flags
;
4268 spin_lock_irqsave(&q
->lock
, flags
);
4269 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4270 spin_unlock_irqrestore(&q
->lock
, flags
);
4272 EXPORT_SYMBOL(__wake_up
);
4275 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4277 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4279 __wake_up_common(q
, mode
, 1, 0, NULL
);
4283 * __wake_up_sync - wake up threads blocked on a waitqueue.
4285 * @mode: which threads
4286 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4288 * The sync wakeup differs that the waker knows that it will schedule
4289 * away soon, so while the target thread will be woken up, it will not
4290 * be migrated to another CPU - ie. the two threads are 'synchronized'
4291 * with each other. This can prevent needless bouncing between CPUs.
4293 * On UP it can prevent extra preemption.
4296 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4298 unsigned long flags
;
4304 if (unlikely(!nr_exclusive
))
4307 spin_lock_irqsave(&q
->lock
, flags
);
4308 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4309 spin_unlock_irqrestore(&q
->lock
, flags
);
4311 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4313 void complete(struct completion
*x
)
4315 unsigned long flags
;
4317 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4319 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4320 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4322 EXPORT_SYMBOL(complete
);
4324 void complete_all(struct completion
*x
)
4326 unsigned long flags
;
4328 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4329 x
->done
+= UINT_MAX
/2;
4330 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4331 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4333 EXPORT_SYMBOL(complete_all
);
4335 static inline long __sched
4336 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4339 DECLARE_WAITQUEUE(wait
, current
);
4341 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4342 __add_wait_queue_tail(&x
->wait
, &wait
);
4344 if ((state
== TASK_INTERRUPTIBLE
&&
4345 signal_pending(current
)) ||
4346 (state
== TASK_KILLABLE
&&
4347 fatal_signal_pending(current
))) {
4348 __remove_wait_queue(&x
->wait
, &wait
);
4349 return -ERESTARTSYS
;
4351 __set_current_state(state
);
4352 spin_unlock_irq(&x
->wait
.lock
);
4353 timeout
= schedule_timeout(timeout
);
4354 spin_lock_irq(&x
->wait
.lock
);
4356 __remove_wait_queue(&x
->wait
, &wait
);
4360 __remove_wait_queue(&x
->wait
, &wait
);
4367 wait_for_common(struct completion
*x
, long timeout
, int state
)
4371 spin_lock_irq(&x
->wait
.lock
);
4372 timeout
= do_wait_for_common(x
, timeout
, state
);
4373 spin_unlock_irq(&x
->wait
.lock
);
4377 void __sched
wait_for_completion(struct completion
*x
)
4379 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4381 EXPORT_SYMBOL(wait_for_completion
);
4383 unsigned long __sched
4384 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4386 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4388 EXPORT_SYMBOL(wait_for_completion_timeout
);
4390 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4392 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4393 if (t
== -ERESTARTSYS
)
4397 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4399 unsigned long __sched
4400 wait_for_completion_interruptible_timeout(struct completion
*x
,
4401 unsigned long timeout
)
4403 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4405 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4407 int __sched
wait_for_completion_killable(struct completion
*x
)
4409 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4410 if (t
== -ERESTARTSYS
)
4414 EXPORT_SYMBOL(wait_for_completion_killable
);
4417 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4419 unsigned long flags
;
4422 init_waitqueue_entry(&wait
, current
);
4424 __set_current_state(state
);
4426 spin_lock_irqsave(&q
->lock
, flags
);
4427 __add_wait_queue(q
, &wait
);
4428 spin_unlock(&q
->lock
);
4429 timeout
= schedule_timeout(timeout
);
4430 spin_lock_irq(&q
->lock
);
4431 __remove_wait_queue(q
, &wait
);
4432 spin_unlock_irqrestore(&q
->lock
, flags
);
4437 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4439 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4441 EXPORT_SYMBOL(interruptible_sleep_on
);
4444 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4446 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4448 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4450 void __sched
sleep_on(wait_queue_head_t
*q
)
4452 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4454 EXPORT_SYMBOL(sleep_on
);
4456 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4458 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4460 EXPORT_SYMBOL(sleep_on_timeout
);
4462 #ifdef CONFIG_RT_MUTEXES
4465 * rt_mutex_setprio - set the current priority of a task
4467 * @prio: prio value (kernel-internal form)
4469 * This function changes the 'effective' priority of a task. It does
4470 * not touch ->normal_prio like __setscheduler().
4472 * Used by the rt_mutex code to implement priority inheritance logic.
4474 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4476 unsigned long flags
;
4477 int oldprio
, on_rq
, running
;
4479 const struct sched_class
*prev_class
= p
->sched_class
;
4481 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4483 rq
= task_rq_lock(p
, &flags
);
4484 update_rq_clock(rq
);
4487 on_rq
= p
->se
.on_rq
;
4488 running
= task_current(rq
, p
);
4490 dequeue_task(rq
, p
, 0);
4492 p
->sched_class
->put_prev_task(rq
, p
);
4495 p
->sched_class
= &rt_sched_class
;
4497 p
->sched_class
= &fair_sched_class
;
4502 p
->sched_class
->set_curr_task(rq
);
4504 enqueue_task(rq
, p
, 0);
4506 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4508 task_rq_unlock(rq
, &flags
);
4513 void set_user_nice(struct task_struct
*p
, long nice
)
4515 int old_prio
, delta
, on_rq
;
4516 unsigned long flags
;
4519 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4522 * We have to be careful, if called from sys_setpriority(),
4523 * the task might be in the middle of scheduling on another CPU.
4525 rq
= task_rq_lock(p
, &flags
);
4526 update_rq_clock(rq
);
4528 * The RT priorities are set via sched_setscheduler(), but we still
4529 * allow the 'normal' nice value to be set - but as expected
4530 * it wont have any effect on scheduling until the task is
4531 * SCHED_FIFO/SCHED_RR:
4533 if (task_has_rt_policy(p
)) {
4534 p
->static_prio
= NICE_TO_PRIO(nice
);
4537 on_rq
= p
->se
.on_rq
;
4539 dequeue_task(rq
, p
, 0);
4543 p
->static_prio
= NICE_TO_PRIO(nice
);
4546 p
->prio
= effective_prio(p
);
4547 delta
= p
->prio
- old_prio
;
4550 enqueue_task(rq
, p
, 0);
4553 * If the task increased its priority or is running and
4554 * lowered its priority, then reschedule its CPU:
4556 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4557 resched_task(rq
->curr
);
4560 task_rq_unlock(rq
, &flags
);
4562 EXPORT_SYMBOL(set_user_nice
);
4565 * can_nice - check if a task can reduce its nice value
4569 int can_nice(const struct task_struct
*p
, const int nice
)
4571 /* convert nice value [19,-20] to rlimit style value [1,40] */
4572 int nice_rlim
= 20 - nice
;
4574 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4575 capable(CAP_SYS_NICE
));
4578 #ifdef __ARCH_WANT_SYS_NICE
4581 * sys_nice - change the priority of the current process.
4582 * @increment: priority increment
4584 * sys_setpriority is a more generic, but much slower function that
4585 * does similar things.
4587 asmlinkage
long sys_nice(int increment
)
4592 * Setpriority might change our priority at the same moment.
4593 * We don't have to worry. Conceptually one call occurs first
4594 * and we have a single winner.
4596 if (increment
< -40)
4601 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4607 if (increment
< 0 && !can_nice(current
, nice
))
4610 retval
= security_task_setnice(current
, nice
);
4614 set_user_nice(current
, nice
);
4621 * task_prio - return the priority value of a given task.
4622 * @p: the task in question.
4624 * This is the priority value as seen by users in /proc.
4625 * RT tasks are offset by -200. Normal tasks are centered
4626 * around 0, value goes from -16 to +15.
4628 int task_prio(const struct task_struct
*p
)
4630 return p
->prio
- MAX_RT_PRIO
;
4634 * task_nice - return the nice value of a given task.
4635 * @p: the task in question.
4637 int task_nice(const struct task_struct
*p
)
4639 return TASK_NICE(p
);
4641 EXPORT_SYMBOL(task_nice
);
4644 * idle_cpu - is a given cpu idle currently?
4645 * @cpu: the processor in question.
4647 int idle_cpu(int cpu
)
4649 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4653 * idle_task - return the idle task for a given cpu.
4654 * @cpu: the processor in question.
4656 struct task_struct
*idle_task(int cpu
)
4658 return cpu_rq(cpu
)->idle
;
4662 * find_process_by_pid - find a process with a matching PID value.
4663 * @pid: the pid in question.
4665 static struct task_struct
*find_process_by_pid(pid_t pid
)
4667 return pid
? find_task_by_vpid(pid
) : current
;
4670 /* Actually do priority change: must hold rq lock. */
4672 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4674 BUG_ON(p
->se
.on_rq
);
4677 switch (p
->policy
) {
4681 p
->sched_class
= &fair_sched_class
;
4685 p
->sched_class
= &rt_sched_class
;
4689 p
->rt_priority
= prio
;
4690 p
->normal_prio
= normal_prio(p
);
4691 /* we are holding p->pi_lock already */
4692 p
->prio
= rt_mutex_getprio(p
);
4697 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4698 * @p: the task in question.
4699 * @policy: new policy.
4700 * @param: structure containing the new RT priority.
4702 * NOTE that the task may be already dead.
4704 int sched_setscheduler(struct task_struct
*p
, int policy
,
4705 struct sched_param
*param
)
4707 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4708 unsigned long flags
;
4709 const struct sched_class
*prev_class
= p
->sched_class
;
4712 /* may grab non-irq protected spin_locks */
4713 BUG_ON(in_interrupt());
4715 /* double check policy once rq lock held */
4717 policy
= oldpolicy
= p
->policy
;
4718 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4719 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4720 policy
!= SCHED_IDLE
)
4723 * Valid priorities for SCHED_FIFO and SCHED_RR are
4724 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4725 * SCHED_BATCH and SCHED_IDLE is 0.
4727 if (param
->sched_priority
< 0 ||
4728 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4729 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4731 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4735 * Allow unprivileged RT tasks to decrease priority:
4737 if (!capable(CAP_SYS_NICE
)) {
4738 if (rt_policy(policy
)) {
4739 unsigned long rlim_rtprio
;
4741 if (!lock_task_sighand(p
, &flags
))
4743 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4744 unlock_task_sighand(p
, &flags
);
4746 /* can't set/change the rt policy */
4747 if (policy
!= p
->policy
&& !rlim_rtprio
)
4750 /* can't increase priority */
4751 if (param
->sched_priority
> p
->rt_priority
&&
4752 param
->sched_priority
> rlim_rtprio
)
4756 * Like positive nice levels, dont allow tasks to
4757 * move out of SCHED_IDLE either:
4759 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4762 /* can't change other user's priorities */
4763 if ((current
->euid
!= p
->euid
) &&
4764 (current
->euid
!= p
->uid
))
4768 #ifdef CONFIG_RT_GROUP_SCHED
4770 * Do not allow realtime tasks into groups that have no runtime
4773 if (rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4777 retval
= security_task_setscheduler(p
, policy
, param
);
4781 * make sure no PI-waiters arrive (or leave) while we are
4782 * changing the priority of the task:
4784 spin_lock_irqsave(&p
->pi_lock
, flags
);
4786 * To be able to change p->policy safely, the apropriate
4787 * runqueue lock must be held.
4789 rq
= __task_rq_lock(p
);
4790 /* recheck policy now with rq lock held */
4791 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4792 policy
= oldpolicy
= -1;
4793 __task_rq_unlock(rq
);
4794 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4797 update_rq_clock(rq
);
4798 on_rq
= p
->se
.on_rq
;
4799 running
= task_current(rq
, p
);
4801 deactivate_task(rq
, p
, 0);
4803 p
->sched_class
->put_prev_task(rq
, p
);
4806 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4809 p
->sched_class
->set_curr_task(rq
);
4811 activate_task(rq
, p
, 0);
4813 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4815 __task_rq_unlock(rq
);
4816 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4818 rt_mutex_adjust_pi(p
);
4822 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4825 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4827 struct sched_param lparam
;
4828 struct task_struct
*p
;
4831 if (!param
|| pid
< 0)
4833 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4838 p
= find_process_by_pid(pid
);
4840 retval
= sched_setscheduler(p
, policy
, &lparam
);
4847 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4848 * @pid: the pid in question.
4849 * @policy: new policy.
4850 * @param: structure containing the new RT priority.
4853 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4855 /* negative values for policy are not valid */
4859 return do_sched_setscheduler(pid
, policy
, param
);
4863 * sys_sched_setparam - set/change the RT priority of a thread
4864 * @pid: the pid in question.
4865 * @param: structure containing the new RT priority.
4867 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4869 return do_sched_setscheduler(pid
, -1, param
);
4873 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4874 * @pid: the pid in question.
4876 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4878 struct task_struct
*p
;
4885 read_lock(&tasklist_lock
);
4886 p
= find_process_by_pid(pid
);
4888 retval
= security_task_getscheduler(p
);
4892 read_unlock(&tasklist_lock
);
4897 * sys_sched_getscheduler - get the RT priority of a thread
4898 * @pid: the pid in question.
4899 * @param: structure containing the RT priority.
4901 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4903 struct sched_param lp
;
4904 struct task_struct
*p
;
4907 if (!param
|| pid
< 0)
4910 read_lock(&tasklist_lock
);
4911 p
= find_process_by_pid(pid
);
4916 retval
= security_task_getscheduler(p
);
4920 lp
.sched_priority
= p
->rt_priority
;
4921 read_unlock(&tasklist_lock
);
4924 * This one might sleep, we cannot do it with a spinlock held ...
4926 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4931 read_unlock(&tasklist_lock
);
4935 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
4937 cpumask_t cpus_allowed
;
4938 cpumask_t new_mask
= *in_mask
;
4939 struct task_struct
*p
;
4943 read_lock(&tasklist_lock
);
4945 p
= find_process_by_pid(pid
);
4947 read_unlock(&tasklist_lock
);
4953 * It is not safe to call set_cpus_allowed with the
4954 * tasklist_lock held. We will bump the task_struct's
4955 * usage count and then drop tasklist_lock.
4958 read_unlock(&tasklist_lock
);
4961 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4962 !capable(CAP_SYS_NICE
))
4965 retval
= security_task_setscheduler(p
, 0, NULL
);
4969 cpuset_cpus_allowed(p
, &cpus_allowed
);
4970 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4972 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
4975 cpuset_cpus_allowed(p
, &cpus_allowed
);
4976 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4978 * We must have raced with a concurrent cpuset
4979 * update. Just reset the cpus_allowed to the
4980 * cpuset's cpus_allowed
4982 new_mask
= cpus_allowed
;
4992 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4993 cpumask_t
*new_mask
)
4995 if (len
< sizeof(cpumask_t
)) {
4996 memset(new_mask
, 0, sizeof(cpumask_t
));
4997 } else if (len
> sizeof(cpumask_t
)) {
4998 len
= sizeof(cpumask_t
);
5000 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5004 * sys_sched_setaffinity - set the cpu affinity of a process
5005 * @pid: pid of the process
5006 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5007 * @user_mask_ptr: user-space pointer to the new cpu mask
5009 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5010 unsigned long __user
*user_mask_ptr
)
5015 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5019 return sched_setaffinity(pid
, &new_mask
);
5023 * Represents all cpu's present in the system
5024 * In systems capable of hotplug, this map could dynamically grow
5025 * as new cpu's are detected in the system via any platform specific
5026 * method, such as ACPI for e.g.
5029 cpumask_t cpu_present_map __read_mostly
;
5030 EXPORT_SYMBOL(cpu_present_map
);
5033 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
5034 EXPORT_SYMBOL(cpu_online_map
);
5036 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
5037 EXPORT_SYMBOL(cpu_possible_map
);
5040 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5042 struct task_struct
*p
;
5046 read_lock(&tasklist_lock
);
5049 p
= find_process_by_pid(pid
);
5053 retval
= security_task_getscheduler(p
);
5057 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5060 read_unlock(&tasklist_lock
);
5067 * sys_sched_getaffinity - get the cpu affinity of a process
5068 * @pid: pid of the process
5069 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5070 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5072 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5073 unsigned long __user
*user_mask_ptr
)
5078 if (len
< sizeof(cpumask_t
))
5081 ret
= sched_getaffinity(pid
, &mask
);
5085 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5088 return sizeof(cpumask_t
);
5092 * sys_sched_yield - yield the current processor to other threads.
5094 * This function yields the current CPU to other tasks. If there are no
5095 * other threads running on this CPU then this function will return.
5097 asmlinkage
long sys_sched_yield(void)
5099 struct rq
*rq
= this_rq_lock();
5101 schedstat_inc(rq
, yld_count
);
5102 current
->sched_class
->yield_task(rq
);
5105 * Since we are going to call schedule() anyway, there's
5106 * no need to preempt or enable interrupts:
5108 __release(rq
->lock
);
5109 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5110 _raw_spin_unlock(&rq
->lock
);
5111 preempt_enable_no_resched();
5118 static void __cond_resched(void)
5120 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5121 __might_sleep(__FILE__
, __LINE__
);
5124 * The BKS might be reacquired before we have dropped
5125 * PREEMPT_ACTIVE, which could trigger a second
5126 * cond_resched() call.
5129 add_preempt_count(PREEMPT_ACTIVE
);
5131 sub_preempt_count(PREEMPT_ACTIVE
);
5132 } while (need_resched());
5135 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5136 int __sched
_cond_resched(void)
5138 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5139 system_state
== SYSTEM_RUNNING
) {
5145 EXPORT_SYMBOL(_cond_resched
);
5149 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5150 * call schedule, and on return reacquire the lock.
5152 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5153 * operations here to prevent schedule() from being called twice (once via
5154 * spin_unlock(), once by hand).
5156 int cond_resched_lock(spinlock_t
*lock
)
5158 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5161 if (spin_needbreak(lock
) || resched
) {
5163 if (resched
&& need_resched())
5172 EXPORT_SYMBOL(cond_resched_lock
);
5174 int __sched
cond_resched_softirq(void)
5176 BUG_ON(!in_softirq());
5178 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5186 EXPORT_SYMBOL(cond_resched_softirq
);
5189 * yield - yield the current processor to other threads.
5191 * This is a shortcut for kernel-space yielding - it marks the
5192 * thread runnable and calls sys_sched_yield().
5194 void __sched
yield(void)
5196 set_current_state(TASK_RUNNING
);
5199 EXPORT_SYMBOL(yield
);
5202 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5203 * that process accounting knows that this is a task in IO wait state.
5205 * But don't do that if it is a deliberate, throttling IO wait (this task
5206 * has set its backing_dev_info: the queue against which it should throttle)
5208 void __sched
io_schedule(void)
5210 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5212 delayacct_blkio_start();
5213 atomic_inc(&rq
->nr_iowait
);
5215 atomic_dec(&rq
->nr_iowait
);
5216 delayacct_blkio_end();
5218 EXPORT_SYMBOL(io_schedule
);
5220 long __sched
io_schedule_timeout(long timeout
)
5222 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5225 delayacct_blkio_start();
5226 atomic_inc(&rq
->nr_iowait
);
5227 ret
= schedule_timeout(timeout
);
5228 atomic_dec(&rq
->nr_iowait
);
5229 delayacct_blkio_end();
5234 * sys_sched_get_priority_max - return maximum RT priority.
5235 * @policy: scheduling class.
5237 * this syscall returns the maximum rt_priority that can be used
5238 * by a given scheduling class.
5240 asmlinkage
long sys_sched_get_priority_max(int policy
)
5247 ret
= MAX_USER_RT_PRIO
-1;
5259 * sys_sched_get_priority_min - return minimum RT priority.
5260 * @policy: scheduling class.
5262 * this syscall returns the minimum rt_priority that can be used
5263 * by a given scheduling class.
5265 asmlinkage
long sys_sched_get_priority_min(int policy
)
5283 * sys_sched_rr_get_interval - return the default timeslice of a process.
5284 * @pid: pid of the process.
5285 * @interval: userspace pointer to the timeslice value.
5287 * this syscall writes the default timeslice value of a given process
5288 * into the user-space timespec buffer. A value of '0' means infinity.
5291 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5293 struct task_struct
*p
;
5294 unsigned int time_slice
;
5302 read_lock(&tasklist_lock
);
5303 p
= find_process_by_pid(pid
);
5307 retval
= security_task_getscheduler(p
);
5312 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5313 * tasks that are on an otherwise idle runqueue:
5316 if (p
->policy
== SCHED_RR
) {
5317 time_slice
= DEF_TIMESLICE
;
5318 } else if (p
->policy
!= SCHED_FIFO
) {
5319 struct sched_entity
*se
= &p
->se
;
5320 unsigned long flags
;
5323 rq
= task_rq_lock(p
, &flags
);
5324 if (rq
->cfs
.load
.weight
)
5325 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5326 task_rq_unlock(rq
, &flags
);
5328 read_unlock(&tasklist_lock
);
5329 jiffies_to_timespec(time_slice
, &t
);
5330 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5334 read_unlock(&tasklist_lock
);
5338 static const char stat_nam
[] = "RSDTtZX";
5340 void sched_show_task(struct task_struct
*p
)
5342 unsigned long free
= 0;
5345 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5346 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5347 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5348 #if BITS_PER_LONG == 32
5349 if (state
== TASK_RUNNING
)
5350 printk(KERN_CONT
" running ");
5352 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5354 if (state
== TASK_RUNNING
)
5355 printk(KERN_CONT
" running task ");
5357 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5359 #ifdef CONFIG_DEBUG_STACK_USAGE
5361 unsigned long *n
= end_of_stack(p
);
5364 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5367 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5368 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5370 show_stack(p
, NULL
);
5373 void show_state_filter(unsigned long state_filter
)
5375 struct task_struct
*g
, *p
;
5377 #if BITS_PER_LONG == 32
5379 " task PC stack pid father\n");
5382 " task PC stack pid father\n");
5384 read_lock(&tasklist_lock
);
5385 do_each_thread(g
, p
) {
5387 * reset the NMI-timeout, listing all files on a slow
5388 * console might take alot of time:
5390 touch_nmi_watchdog();
5391 if (!state_filter
|| (p
->state
& state_filter
))
5393 } while_each_thread(g
, p
);
5395 touch_all_softlockup_watchdogs();
5397 #ifdef CONFIG_SCHED_DEBUG
5398 sysrq_sched_debug_show();
5400 read_unlock(&tasklist_lock
);
5402 * Only show locks if all tasks are dumped:
5404 if (state_filter
== -1)
5405 debug_show_all_locks();
5408 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5410 idle
->sched_class
= &idle_sched_class
;
5414 * init_idle - set up an idle thread for a given CPU
5415 * @idle: task in question
5416 * @cpu: cpu the idle task belongs to
5418 * NOTE: this function does not set the idle thread's NEED_RESCHED
5419 * flag, to make booting more robust.
5421 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5423 struct rq
*rq
= cpu_rq(cpu
);
5424 unsigned long flags
;
5427 idle
->se
.exec_start
= sched_clock();
5429 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5430 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5431 __set_task_cpu(idle
, cpu
);
5433 spin_lock_irqsave(&rq
->lock
, flags
);
5434 rq
->curr
= rq
->idle
= idle
;
5435 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5438 spin_unlock_irqrestore(&rq
->lock
, flags
);
5440 /* Set the preempt count _outside_ the spinlocks! */
5441 task_thread_info(idle
)->preempt_count
= 0;
5444 * The idle tasks have their own, simple scheduling class:
5446 idle
->sched_class
= &idle_sched_class
;
5450 * In a system that switches off the HZ timer nohz_cpu_mask
5451 * indicates which cpus entered this state. This is used
5452 * in the rcu update to wait only for active cpus. For system
5453 * which do not switch off the HZ timer nohz_cpu_mask should
5454 * always be CPU_MASK_NONE.
5456 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5459 * Increase the granularity value when there are more CPUs,
5460 * because with more CPUs the 'effective latency' as visible
5461 * to users decreases. But the relationship is not linear,
5462 * so pick a second-best guess by going with the log2 of the
5465 * This idea comes from the SD scheduler of Con Kolivas:
5467 static inline void sched_init_granularity(void)
5469 unsigned int factor
= 1 + ilog2(num_online_cpus());
5470 const unsigned long limit
= 200000000;
5472 sysctl_sched_min_granularity
*= factor
;
5473 if (sysctl_sched_min_granularity
> limit
)
5474 sysctl_sched_min_granularity
= limit
;
5476 sysctl_sched_latency
*= factor
;
5477 if (sysctl_sched_latency
> limit
)
5478 sysctl_sched_latency
= limit
;
5480 sysctl_sched_wakeup_granularity
*= factor
;
5485 * This is how migration works:
5487 * 1) we queue a struct migration_req structure in the source CPU's
5488 * runqueue and wake up that CPU's migration thread.
5489 * 2) we down() the locked semaphore => thread blocks.
5490 * 3) migration thread wakes up (implicitly it forces the migrated
5491 * thread off the CPU)
5492 * 4) it gets the migration request and checks whether the migrated
5493 * task is still in the wrong runqueue.
5494 * 5) if it's in the wrong runqueue then the migration thread removes
5495 * it and puts it into the right queue.
5496 * 6) migration thread up()s the semaphore.
5497 * 7) we wake up and the migration is done.
5501 * Change a given task's CPU affinity. Migrate the thread to a
5502 * proper CPU and schedule it away if the CPU it's executing on
5503 * is removed from the allowed bitmask.
5505 * NOTE: the caller must have a valid reference to the task, the
5506 * task must not exit() & deallocate itself prematurely. The
5507 * call is not atomic; no spinlocks may be held.
5509 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5511 struct migration_req req
;
5512 unsigned long flags
;
5516 rq
= task_rq_lock(p
, &flags
);
5517 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5522 if (p
->sched_class
->set_cpus_allowed
)
5523 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5525 p
->cpus_allowed
= *new_mask
;
5526 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5529 /* Can the task run on the task's current CPU? If so, we're done */
5530 if (cpu_isset(task_cpu(p
), *new_mask
))
5533 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5534 /* Need help from migration thread: drop lock and wait. */
5535 task_rq_unlock(rq
, &flags
);
5536 wake_up_process(rq
->migration_thread
);
5537 wait_for_completion(&req
.done
);
5538 tlb_migrate_finish(p
->mm
);
5542 task_rq_unlock(rq
, &flags
);
5546 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5549 * Move (not current) task off this cpu, onto dest cpu. We're doing
5550 * this because either it can't run here any more (set_cpus_allowed()
5551 * away from this CPU, or CPU going down), or because we're
5552 * attempting to rebalance this task on exec (sched_exec).
5554 * So we race with normal scheduler movements, but that's OK, as long
5555 * as the task is no longer on this CPU.
5557 * Returns non-zero if task was successfully migrated.
5559 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5561 struct rq
*rq_dest
, *rq_src
;
5564 if (unlikely(cpu_is_offline(dest_cpu
)))
5567 rq_src
= cpu_rq(src_cpu
);
5568 rq_dest
= cpu_rq(dest_cpu
);
5570 double_rq_lock(rq_src
, rq_dest
);
5571 /* Already moved. */
5572 if (task_cpu(p
) != src_cpu
)
5574 /* Affinity changed (again). */
5575 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5578 on_rq
= p
->se
.on_rq
;
5580 deactivate_task(rq_src
, p
, 0);
5582 set_task_cpu(p
, dest_cpu
);
5584 activate_task(rq_dest
, p
, 0);
5585 check_preempt_curr(rq_dest
, p
);
5589 double_rq_unlock(rq_src
, rq_dest
);
5594 * migration_thread - this is a highprio system thread that performs
5595 * thread migration by bumping thread off CPU then 'pushing' onto
5598 static int migration_thread(void *data
)
5600 int cpu
= (long)data
;
5604 BUG_ON(rq
->migration_thread
!= current
);
5606 set_current_state(TASK_INTERRUPTIBLE
);
5607 while (!kthread_should_stop()) {
5608 struct migration_req
*req
;
5609 struct list_head
*head
;
5611 spin_lock_irq(&rq
->lock
);
5613 if (cpu_is_offline(cpu
)) {
5614 spin_unlock_irq(&rq
->lock
);
5618 if (rq
->active_balance
) {
5619 active_load_balance(rq
, cpu
);
5620 rq
->active_balance
= 0;
5623 head
= &rq
->migration_queue
;
5625 if (list_empty(head
)) {
5626 spin_unlock_irq(&rq
->lock
);
5628 set_current_state(TASK_INTERRUPTIBLE
);
5631 req
= list_entry(head
->next
, struct migration_req
, list
);
5632 list_del_init(head
->next
);
5634 spin_unlock(&rq
->lock
);
5635 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5638 complete(&req
->done
);
5640 __set_current_state(TASK_RUNNING
);
5644 /* Wait for kthread_stop */
5645 set_current_state(TASK_INTERRUPTIBLE
);
5646 while (!kthread_should_stop()) {
5648 set_current_state(TASK_INTERRUPTIBLE
);
5650 __set_current_state(TASK_RUNNING
);
5654 #ifdef CONFIG_HOTPLUG_CPU
5656 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5660 local_irq_disable();
5661 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5667 * Figure out where task on dead CPU should go, use force if necessary.
5668 * NOTE: interrupts should be disabled by the caller
5670 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5672 unsigned long flags
;
5679 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5680 cpus_and(mask
, mask
, p
->cpus_allowed
);
5681 dest_cpu
= any_online_cpu(mask
);
5683 /* On any allowed CPU? */
5684 if (dest_cpu
>= nr_cpu_ids
)
5685 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5687 /* No more Mr. Nice Guy. */
5688 if (dest_cpu
>= nr_cpu_ids
) {
5689 cpumask_t cpus_allowed
;
5691 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
5693 * Try to stay on the same cpuset, where the
5694 * current cpuset may be a subset of all cpus.
5695 * The cpuset_cpus_allowed_locked() variant of
5696 * cpuset_cpus_allowed() will not block. It must be
5697 * called within calls to cpuset_lock/cpuset_unlock.
5699 rq
= task_rq_lock(p
, &flags
);
5700 p
->cpus_allowed
= cpus_allowed
;
5701 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5702 task_rq_unlock(rq
, &flags
);
5705 * Don't tell them about moving exiting tasks or
5706 * kernel threads (both mm NULL), since they never
5709 if (p
->mm
&& printk_ratelimit()) {
5710 printk(KERN_INFO
"process %d (%s) no "
5711 "longer affine to cpu%d\n",
5712 task_pid_nr(p
), p
->comm
, dead_cpu
);
5715 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5719 * While a dead CPU has no uninterruptible tasks queued at this point,
5720 * it might still have a nonzero ->nr_uninterruptible counter, because
5721 * for performance reasons the counter is not stricly tracking tasks to
5722 * their home CPUs. So we just add the counter to another CPU's counter,
5723 * to keep the global sum constant after CPU-down:
5725 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5727 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
5728 unsigned long flags
;
5730 local_irq_save(flags
);
5731 double_rq_lock(rq_src
, rq_dest
);
5732 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5733 rq_src
->nr_uninterruptible
= 0;
5734 double_rq_unlock(rq_src
, rq_dest
);
5735 local_irq_restore(flags
);
5738 /* Run through task list and migrate tasks from the dead cpu. */
5739 static void migrate_live_tasks(int src_cpu
)
5741 struct task_struct
*p
, *t
;
5743 read_lock(&tasklist_lock
);
5745 do_each_thread(t
, p
) {
5749 if (task_cpu(p
) == src_cpu
)
5750 move_task_off_dead_cpu(src_cpu
, p
);
5751 } while_each_thread(t
, p
);
5753 read_unlock(&tasklist_lock
);
5757 * Schedules idle task to be the next runnable task on current CPU.
5758 * It does so by boosting its priority to highest possible.
5759 * Used by CPU offline code.
5761 void sched_idle_next(void)
5763 int this_cpu
= smp_processor_id();
5764 struct rq
*rq
= cpu_rq(this_cpu
);
5765 struct task_struct
*p
= rq
->idle
;
5766 unsigned long flags
;
5768 /* cpu has to be offline */
5769 BUG_ON(cpu_online(this_cpu
));
5772 * Strictly not necessary since rest of the CPUs are stopped by now
5773 * and interrupts disabled on the current cpu.
5775 spin_lock_irqsave(&rq
->lock
, flags
);
5777 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5779 update_rq_clock(rq
);
5780 activate_task(rq
, p
, 0);
5782 spin_unlock_irqrestore(&rq
->lock
, flags
);
5786 * Ensures that the idle task is using init_mm right before its cpu goes
5789 void idle_task_exit(void)
5791 struct mm_struct
*mm
= current
->active_mm
;
5793 BUG_ON(cpu_online(smp_processor_id()));
5796 switch_mm(mm
, &init_mm
, current
);
5800 /* called under rq->lock with disabled interrupts */
5801 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5803 struct rq
*rq
= cpu_rq(dead_cpu
);
5805 /* Must be exiting, otherwise would be on tasklist. */
5806 BUG_ON(!p
->exit_state
);
5808 /* Cannot have done final schedule yet: would have vanished. */
5809 BUG_ON(p
->state
== TASK_DEAD
);
5814 * Drop lock around migration; if someone else moves it,
5815 * that's OK. No task can be added to this CPU, so iteration is
5818 spin_unlock_irq(&rq
->lock
);
5819 move_task_off_dead_cpu(dead_cpu
, p
);
5820 spin_lock_irq(&rq
->lock
);
5825 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5826 static void migrate_dead_tasks(unsigned int dead_cpu
)
5828 struct rq
*rq
= cpu_rq(dead_cpu
);
5829 struct task_struct
*next
;
5832 if (!rq
->nr_running
)
5834 update_rq_clock(rq
);
5835 next
= pick_next_task(rq
, rq
->curr
);
5838 migrate_dead(dead_cpu
, next
);
5842 #endif /* CONFIG_HOTPLUG_CPU */
5844 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5846 static struct ctl_table sd_ctl_dir
[] = {
5848 .procname
= "sched_domain",
5854 static struct ctl_table sd_ctl_root
[] = {
5856 .ctl_name
= CTL_KERN
,
5857 .procname
= "kernel",
5859 .child
= sd_ctl_dir
,
5864 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5866 struct ctl_table
*entry
=
5867 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5872 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5874 struct ctl_table
*entry
;
5877 * In the intermediate directories, both the child directory and
5878 * procname are dynamically allocated and could fail but the mode
5879 * will always be set. In the lowest directory the names are
5880 * static strings and all have proc handlers.
5882 for (entry
= *tablep
; entry
->mode
; entry
++) {
5884 sd_free_ctl_entry(&entry
->child
);
5885 if (entry
->proc_handler
== NULL
)
5886 kfree(entry
->procname
);
5894 set_table_entry(struct ctl_table
*entry
,
5895 const char *procname
, void *data
, int maxlen
,
5896 mode_t mode
, proc_handler
*proc_handler
)
5898 entry
->procname
= procname
;
5900 entry
->maxlen
= maxlen
;
5902 entry
->proc_handler
= proc_handler
;
5905 static struct ctl_table
*
5906 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5908 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5913 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5914 sizeof(long), 0644, proc_doulongvec_minmax
);
5915 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5916 sizeof(long), 0644, proc_doulongvec_minmax
);
5917 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5918 sizeof(int), 0644, proc_dointvec_minmax
);
5919 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5920 sizeof(int), 0644, proc_dointvec_minmax
);
5921 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5922 sizeof(int), 0644, proc_dointvec_minmax
);
5923 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5924 sizeof(int), 0644, proc_dointvec_minmax
);
5925 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5926 sizeof(int), 0644, proc_dointvec_minmax
);
5927 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5928 sizeof(int), 0644, proc_dointvec_minmax
);
5929 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5930 sizeof(int), 0644, proc_dointvec_minmax
);
5931 set_table_entry(&table
[9], "cache_nice_tries",
5932 &sd
->cache_nice_tries
,
5933 sizeof(int), 0644, proc_dointvec_minmax
);
5934 set_table_entry(&table
[10], "flags", &sd
->flags
,
5935 sizeof(int), 0644, proc_dointvec_minmax
);
5936 /* &table[11] is terminator */
5941 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5943 struct ctl_table
*entry
, *table
;
5944 struct sched_domain
*sd
;
5945 int domain_num
= 0, i
;
5948 for_each_domain(cpu
, sd
)
5950 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5955 for_each_domain(cpu
, sd
) {
5956 snprintf(buf
, 32, "domain%d", i
);
5957 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5959 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5966 static struct ctl_table_header
*sd_sysctl_header
;
5967 static void register_sched_domain_sysctl(void)
5969 int i
, cpu_num
= num_online_cpus();
5970 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5973 WARN_ON(sd_ctl_dir
[0].child
);
5974 sd_ctl_dir
[0].child
= entry
;
5979 for_each_online_cpu(i
) {
5980 snprintf(buf
, 32, "cpu%d", i
);
5981 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5983 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5987 WARN_ON(sd_sysctl_header
);
5988 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5991 /* may be called multiple times per register */
5992 static void unregister_sched_domain_sysctl(void)
5994 if (sd_sysctl_header
)
5995 unregister_sysctl_table(sd_sysctl_header
);
5996 sd_sysctl_header
= NULL
;
5997 if (sd_ctl_dir
[0].child
)
5998 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6001 static void register_sched_domain_sysctl(void)
6004 static void unregister_sched_domain_sysctl(void)
6010 * migration_call - callback that gets triggered when a CPU is added.
6011 * Here we can start up the necessary migration thread for the new CPU.
6013 static int __cpuinit
6014 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6016 struct task_struct
*p
;
6017 int cpu
= (long)hcpu
;
6018 unsigned long flags
;
6023 case CPU_UP_PREPARE
:
6024 case CPU_UP_PREPARE_FROZEN
:
6025 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6028 kthread_bind(p
, cpu
);
6029 /* Must be high prio: stop_machine expects to yield to it. */
6030 rq
= task_rq_lock(p
, &flags
);
6031 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6032 task_rq_unlock(rq
, &flags
);
6033 cpu_rq(cpu
)->migration_thread
= p
;
6037 case CPU_ONLINE_FROZEN
:
6038 /* Strictly unnecessary, as first user will wake it. */
6039 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6041 /* Update our root-domain */
6043 spin_lock_irqsave(&rq
->lock
, flags
);
6045 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6046 cpu_set(cpu
, rq
->rd
->online
);
6048 spin_unlock_irqrestore(&rq
->lock
, flags
);
6051 #ifdef CONFIG_HOTPLUG_CPU
6052 case CPU_UP_CANCELED
:
6053 case CPU_UP_CANCELED_FROZEN
:
6054 if (!cpu_rq(cpu
)->migration_thread
)
6056 /* Unbind it from offline cpu so it can run. Fall thru. */
6057 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6058 any_online_cpu(cpu_online_map
));
6059 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6060 cpu_rq(cpu
)->migration_thread
= NULL
;
6064 case CPU_DEAD_FROZEN
:
6065 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6066 migrate_live_tasks(cpu
);
6068 kthread_stop(rq
->migration_thread
);
6069 rq
->migration_thread
= NULL
;
6070 /* Idle task back to normal (off runqueue, low prio) */
6071 spin_lock_irq(&rq
->lock
);
6072 update_rq_clock(rq
);
6073 deactivate_task(rq
, rq
->idle
, 0);
6074 rq
->idle
->static_prio
= MAX_PRIO
;
6075 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6076 rq
->idle
->sched_class
= &idle_sched_class
;
6077 migrate_dead_tasks(cpu
);
6078 spin_unlock_irq(&rq
->lock
);
6080 migrate_nr_uninterruptible(rq
);
6081 BUG_ON(rq
->nr_running
!= 0);
6084 * No need to migrate the tasks: it was best-effort if
6085 * they didn't take sched_hotcpu_mutex. Just wake up
6088 spin_lock_irq(&rq
->lock
);
6089 while (!list_empty(&rq
->migration_queue
)) {
6090 struct migration_req
*req
;
6092 req
= list_entry(rq
->migration_queue
.next
,
6093 struct migration_req
, list
);
6094 list_del_init(&req
->list
);
6095 complete(&req
->done
);
6097 spin_unlock_irq(&rq
->lock
);
6101 case CPU_DYING_FROZEN
:
6102 /* Update our root-domain */
6104 spin_lock_irqsave(&rq
->lock
, flags
);
6106 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6107 cpu_clear(cpu
, rq
->rd
->online
);
6109 spin_unlock_irqrestore(&rq
->lock
, flags
);
6116 /* Register at highest priority so that task migration (migrate_all_tasks)
6117 * happens before everything else.
6119 static struct notifier_block __cpuinitdata migration_notifier
= {
6120 .notifier_call
= migration_call
,
6124 void __init
migration_init(void)
6126 void *cpu
= (void *)(long)smp_processor_id();
6129 /* Start one for the boot CPU: */
6130 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6131 BUG_ON(err
== NOTIFY_BAD
);
6132 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6133 register_cpu_notifier(&migration_notifier
);
6139 #ifdef CONFIG_SCHED_DEBUG
6141 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6142 cpumask_t
*groupmask
)
6144 struct sched_group
*group
= sd
->groups
;
6147 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6148 cpus_clear(*groupmask
);
6150 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6152 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6153 printk("does not load-balance\n");
6155 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6160 printk(KERN_CONT
"span %s\n", str
);
6162 if (!cpu_isset(cpu
, sd
->span
)) {
6163 printk(KERN_ERR
"ERROR: domain->span does not contain "
6166 if (!cpu_isset(cpu
, group
->cpumask
)) {
6167 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6171 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6175 printk(KERN_ERR
"ERROR: group is NULL\n");
6179 if (!group
->__cpu_power
) {
6180 printk(KERN_CONT
"\n");
6181 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6186 if (!cpus_weight(group
->cpumask
)) {
6187 printk(KERN_CONT
"\n");
6188 printk(KERN_ERR
"ERROR: empty group\n");
6192 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6193 printk(KERN_CONT
"\n");
6194 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6198 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6200 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6201 printk(KERN_CONT
" %s", str
);
6203 group
= group
->next
;
6204 } while (group
!= sd
->groups
);
6205 printk(KERN_CONT
"\n");
6207 if (!cpus_equal(sd
->span
, *groupmask
))
6208 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6210 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6211 printk(KERN_ERR
"ERROR: parent span is not a superset "
6212 "of domain->span\n");
6216 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6218 cpumask_t
*groupmask
;
6222 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6226 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6228 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6230 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6235 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6245 # define sched_domain_debug(sd, cpu) do { } while (0)
6248 static int sd_degenerate(struct sched_domain
*sd
)
6250 if (cpus_weight(sd
->span
) == 1)
6253 /* Following flags need at least 2 groups */
6254 if (sd
->flags
& (SD_LOAD_BALANCE
|
6255 SD_BALANCE_NEWIDLE
|
6259 SD_SHARE_PKG_RESOURCES
)) {
6260 if (sd
->groups
!= sd
->groups
->next
)
6264 /* Following flags don't use groups */
6265 if (sd
->flags
& (SD_WAKE_IDLE
|
6274 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6276 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6278 if (sd_degenerate(parent
))
6281 if (!cpus_equal(sd
->span
, parent
->span
))
6284 /* Does parent contain flags not in child? */
6285 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6286 if (cflags
& SD_WAKE_AFFINE
)
6287 pflags
&= ~SD_WAKE_BALANCE
;
6288 /* Flags needing groups don't count if only 1 group in parent */
6289 if (parent
->groups
== parent
->groups
->next
) {
6290 pflags
&= ~(SD_LOAD_BALANCE
|
6291 SD_BALANCE_NEWIDLE
|
6295 SD_SHARE_PKG_RESOURCES
);
6297 if (~cflags
& pflags
)
6303 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6305 unsigned long flags
;
6306 const struct sched_class
*class;
6308 spin_lock_irqsave(&rq
->lock
, flags
);
6311 struct root_domain
*old_rd
= rq
->rd
;
6313 for (class = sched_class_highest
; class; class = class->next
) {
6314 if (class->leave_domain
)
6315 class->leave_domain(rq
);
6318 cpu_clear(rq
->cpu
, old_rd
->span
);
6319 cpu_clear(rq
->cpu
, old_rd
->online
);
6321 if (atomic_dec_and_test(&old_rd
->refcount
))
6325 atomic_inc(&rd
->refcount
);
6328 cpu_set(rq
->cpu
, rd
->span
);
6329 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6330 cpu_set(rq
->cpu
, rd
->online
);
6332 for (class = sched_class_highest
; class; class = class->next
) {
6333 if (class->join_domain
)
6334 class->join_domain(rq
);
6337 spin_unlock_irqrestore(&rq
->lock
, flags
);
6340 static void init_rootdomain(struct root_domain
*rd
)
6342 memset(rd
, 0, sizeof(*rd
));
6344 cpus_clear(rd
->span
);
6345 cpus_clear(rd
->online
);
6348 static void init_defrootdomain(void)
6350 init_rootdomain(&def_root_domain
);
6351 atomic_set(&def_root_domain
.refcount
, 1);
6354 static struct root_domain
*alloc_rootdomain(void)
6356 struct root_domain
*rd
;
6358 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6362 init_rootdomain(rd
);
6368 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6369 * hold the hotplug lock.
6372 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6374 struct rq
*rq
= cpu_rq(cpu
);
6375 struct sched_domain
*tmp
;
6377 /* Remove the sched domains which do not contribute to scheduling. */
6378 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6379 struct sched_domain
*parent
= tmp
->parent
;
6382 if (sd_parent_degenerate(tmp
, parent
)) {
6383 tmp
->parent
= parent
->parent
;
6385 parent
->parent
->child
= tmp
;
6389 if (sd
&& sd_degenerate(sd
)) {
6395 sched_domain_debug(sd
, cpu
);
6397 rq_attach_root(rq
, rd
);
6398 rcu_assign_pointer(rq
->sd
, sd
);
6401 /* cpus with isolated domains */
6402 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6404 /* Setup the mask of cpus configured for isolated domains */
6405 static int __init
isolated_cpu_setup(char *str
)
6407 int ints
[NR_CPUS
], i
;
6409 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6410 cpus_clear(cpu_isolated_map
);
6411 for (i
= 1; i
<= ints
[0]; i
++)
6412 if (ints
[i
] < NR_CPUS
)
6413 cpu_set(ints
[i
], cpu_isolated_map
);
6417 __setup("isolcpus=", isolated_cpu_setup
);
6420 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6421 * to a function which identifies what group(along with sched group) a CPU
6422 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6423 * (due to the fact that we keep track of groups covered with a cpumask_t).
6425 * init_sched_build_groups will build a circular linked list of the groups
6426 * covered by the given span, and will set each group's ->cpumask correctly,
6427 * and ->cpu_power to 0.
6430 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6431 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6432 struct sched_group
**sg
,
6433 cpumask_t
*tmpmask
),
6434 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6436 struct sched_group
*first
= NULL
, *last
= NULL
;
6439 cpus_clear(*covered
);
6441 for_each_cpu_mask(i
, *span
) {
6442 struct sched_group
*sg
;
6443 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6446 if (cpu_isset(i
, *covered
))
6449 cpus_clear(sg
->cpumask
);
6450 sg
->__cpu_power
= 0;
6452 for_each_cpu_mask(j
, *span
) {
6453 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6456 cpu_set(j
, *covered
);
6457 cpu_set(j
, sg
->cpumask
);
6468 #define SD_NODES_PER_DOMAIN 16
6473 * find_next_best_node - find the next node to include in a sched_domain
6474 * @node: node whose sched_domain we're building
6475 * @used_nodes: nodes already in the sched_domain
6477 * Find the next node to include in a given scheduling domain. Simply
6478 * finds the closest node not already in the @used_nodes map.
6480 * Should use nodemask_t.
6482 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6484 int i
, n
, val
, min_val
, best_node
= 0;
6488 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6489 /* Start at @node */
6490 n
= (node
+ i
) % MAX_NUMNODES
;
6492 if (!nr_cpus_node(n
))
6495 /* Skip already used nodes */
6496 if (node_isset(n
, *used_nodes
))
6499 /* Simple min distance search */
6500 val
= node_distance(node
, n
);
6502 if (val
< min_val
) {
6508 node_set(best_node
, *used_nodes
);
6513 * sched_domain_node_span - get a cpumask for a node's sched_domain
6514 * @node: node whose cpumask we're constructing
6516 * Given a node, construct a good cpumask for its sched_domain to span. It
6517 * should be one that prevents unnecessary balancing, but also spreads tasks
6520 static void sched_domain_node_span(int node
, cpumask_t
*span
)
6522 nodemask_t used_nodes
;
6523 node_to_cpumask_ptr(nodemask
, node
);
6527 nodes_clear(used_nodes
);
6529 cpus_or(*span
, *span
, *nodemask
);
6530 node_set(node
, used_nodes
);
6532 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6533 int next_node
= find_next_best_node(node
, &used_nodes
);
6535 node_to_cpumask_ptr_next(nodemask
, next_node
);
6536 cpus_or(*span
, *span
, *nodemask
);
6541 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6544 * SMT sched-domains:
6546 #ifdef CONFIG_SCHED_SMT
6547 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6548 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6551 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6555 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6561 * multi-core sched-domains:
6563 #ifdef CONFIG_SCHED_MC
6564 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6565 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6568 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6570 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6575 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6576 cpus_and(*mask
, *mask
, *cpu_map
);
6577 group
= first_cpu(*mask
);
6579 *sg
= &per_cpu(sched_group_core
, group
);
6582 #elif defined(CONFIG_SCHED_MC)
6584 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6588 *sg
= &per_cpu(sched_group_core
, cpu
);
6593 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6594 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6597 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6601 #ifdef CONFIG_SCHED_MC
6602 *mask
= cpu_coregroup_map(cpu
);
6603 cpus_and(*mask
, *mask
, *cpu_map
);
6604 group
= first_cpu(*mask
);
6605 #elif defined(CONFIG_SCHED_SMT)
6606 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6607 cpus_and(*mask
, *mask
, *cpu_map
);
6608 group
= first_cpu(*mask
);
6613 *sg
= &per_cpu(sched_group_phys
, group
);
6619 * The init_sched_build_groups can't handle what we want to do with node
6620 * groups, so roll our own. Now each node has its own list of groups which
6621 * gets dynamically allocated.
6623 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6624 static struct sched_group
***sched_group_nodes_bycpu
;
6626 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6627 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6629 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6630 struct sched_group
**sg
, cpumask_t
*nodemask
)
6634 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6635 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6636 group
= first_cpu(*nodemask
);
6639 *sg
= &per_cpu(sched_group_allnodes
, group
);
6643 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6645 struct sched_group
*sg
= group_head
;
6651 for_each_cpu_mask(j
, sg
->cpumask
) {
6652 struct sched_domain
*sd
;
6654 sd
= &per_cpu(phys_domains
, j
);
6655 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6657 * Only add "power" once for each
6663 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6666 } while (sg
!= group_head
);
6671 /* Free memory allocated for various sched_group structures */
6672 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
6676 for_each_cpu_mask(cpu
, *cpu_map
) {
6677 struct sched_group
**sched_group_nodes
6678 = sched_group_nodes_bycpu
[cpu
];
6680 if (!sched_group_nodes
)
6683 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6684 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6686 *nodemask
= node_to_cpumask(i
);
6687 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6688 if (cpus_empty(*nodemask
))
6698 if (oldsg
!= sched_group_nodes
[i
])
6701 kfree(sched_group_nodes
);
6702 sched_group_nodes_bycpu
[cpu
] = NULL
;
6706 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
6712 * Initialize sched groups cpu_power.
6714 * cpu_power indicates the capacity of sched group, which is used while
6715 * distributing the load between different sched groups in a sched domain.
6716 * Typically cpu_power for all the groups in a sched domain will be same unless
6717 * there are asymmetries in the topology. If there are asymmetries, group
6718 * having more cpu_power will pickup more load compared to the group having
6721 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6722 * the maximum number of tasks a group can handle in the presence of other idle
6723 * or lightly loaded groups in the same sched domain.
6725 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6727 struct sched_domain
*child
;
6728 struct sched_group
*group
;
6730 WARN_ON(!sd
|| !sd
->groups
);
6732 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6737 sd
->groups
->__cpu_power
= 0;
6740 * For perf policy, if the groups in child domain share resources
6741 * (for example cores sharing some portions of the cache hierarchy
6742 * or SMT), then set this domain groups cpu_power such that each group
6743 * can handle only one task, when there are other idle groups in the
6744 * same sched domain.
6746 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6748 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6749 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6754 * add cpu_power of each child group to this groups cpu_power
6756 group
= child
->groups
;
6758 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6759 group
= group
->next
;
6760 } while (group
!= child
->groups
);
6764 * Initializers for schedule domains
6765 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6768 #define SD_INIT(sd, type) sd_init_##type(sd)
6769 #define SD_INIT_FUNC(type) \
6770 static noinline void sd_init_##type(struct sched_domain *sd) \
6772 memset(sd, 0, sizeof(*sd)); \
6773 *sd = SD_##type##_INIT; \
6778 SD_INIT_FUNC(ALLNODES
)
6781 #ifdef CONFIG_SCHED_SMT
6782 SD_INIT_FUNC(SIBLING
)
6784 #ifdef CONFIG_SCHED_MC
6789 * To minimize stack usage kmalloc room for cpumasks and share the
6790 * space as the usage in build_sched_domains() dictates. Used only
6791 * if the amount of space is significant.
6794 cpumask_t tmpmask
; /* make this one first */
6797 cpumask_t this_sibling_map
;
6798 cpumask_t this_core_map
;
6800 cpumask_t send_covered
;
6803 cpumask_t domainspan
;
6805 cpumask_t notcovered
;
6810 #define SCHED_CPUMASK_ALLOC 1
6811 #define SCHED_CPUMASK_FREE(v) kfree(v)
6812 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6814 #define SCHED_CPUMASK_ALLOC 0
6815 #define SCHED_CPUMASK_FREE(v)
6816 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6819 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6820 ((unsigned long)(a) + offsetof(struct allmasks, v))
6823 * Build sched domains for a given set of cpus and attach the sched domains
6824 * to the individual cpus
6826 static int build_sched_domains(const cpumask_t
*cpu_map
)
6829 struct root_domain
*rd
;
6830 SCHED_CPUMASK_DECLARE(allmasks
);
6833 struct sched_group
**sched_group_nodes
= NULL
;
6834 int sd_allnodes
= 0;
6837 * Allocate the per-node list of sched groups
6839 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6841 if (!sched_group_nodes
) {
6842 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6847 rd
= alloc_rootdomain();
6849 printk(KERN_WARNING
"Cannot alloc root domain\n");
6851 kfree(sched_group_nodes
);
6856 #if SCHED_CPUMASK_ALLOC
6857 /* get space for all scratch cpumask variables */
6858 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
6860 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
6863 kfree(sched_group_nodes
);
6868 tmpmask
= (cpumask_t
*)allmasks
;
6872 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6876 * Set up domains for cpus specified by the cpu_map.
6878 for_each_cpu_mask(i
, *cpu_map
) {
6879 struct sched_domain
*sd
= NULL
, *p
;
6880 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
6882 *nodemask
= node_to_cpumask(cpu_to_node(i
));
6883 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6886 if (cpus_weight(*cpu_map
) >
6887 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
6888 sd
= &per_cpu(allnodes_domains
, i
);
6889 SD_INIT(sd
, ALLNODES
);
6890 sd
->span
= *cpu_map
;
6891 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
6897 sd
= &per_cpu(node_domains
, i
);
6899 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
6903 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6907 sd
= &per_cpu(phys_domains
, i
);
6909 sd
->span
= *nodemask
;
6913 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
6915 #ifdef CONFIG_SCHED_MC
6917 sd
= &per_cpu(core_domains
, i
);
6919 sd
->span
= cpu_coregroup_map(i
);
6920 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6923 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
6926 #ifdef CONFIG_SCHED_SMT
6928 sd
= &per_cpu(cpu_domains
, i
);
6929 SD_INIT(sd
, SIBLING
);
6930 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6931 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6934 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
6938 #ifdef CONFIG_SCHED_SMT
6939 /* Set up CPU (sibling) groups */
6940 for_each_cpu_mask(i
, *cpu_map
) {
6941 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
6942 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
6944 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6945 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
6946 if (i
!= first_cpu(*this_sibling_map
))
6949 init_sched_build_groups(this_sibling_map
, cpu_map
,
6951 send_covered
, tmpmask
);
6955 #ifdef CONFIG_SCHED_MC
6956 /* Set up multi-core groups */
6957 for_each_cpu_mask(i
, *cpu_map
) {
6958 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
6959 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
6961 *this_core_map
= cpu_coregroup_map(i
);
6962 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
6963 if (i
!= first_cpu(*this_core_map
))
6966 init_sched_build_groups(this_core_map
, cpu_map
,
6968 send_covered
, tmpmask
);
6972 /* Set up physical groups */
6973 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6974 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
6975 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
6977 *nodemask
= node_to_cpumask(i
);
6978 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
6979 if (cpus_empty(*nodemask
))
6982 init_sched_build_groups(nodemask
, cpu_map
,
6984 send_covered
, tmpmask
);
6988 /* Set up node groups */
6990 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
6992 init_sched_build_groups(cpu_map
, cpu_map
,
6993 &cpu_to_allnodes_group
,
6994 send_covered
, tmpmask
);
6997 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6998 /* Set up node groups */
6999 struct sched_group
*sg
, *prev
;
7000 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7001 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7002 SCHED_CPUMASK_VAR(covered
, allmasks
);
7005 *nodemask
= node_to_cpumask(i
);
7006 cpus_clear(*covered
);
7008 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7009 if (cpus_empty(*nodemask
)) {
7010 sched_group_nodes
[i
] = NULL
;
7014 sched_domain_node_span(i
, domainspan
);
7015 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7017 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7019 printk(KERN_WARNING
"Can not alloc domain group for "
7023 sched_group_nodes
[i
] = sg
;
7024 for_each_cpu_mask(j
, *nodemask
) {
7025 struct sched_domain
*sd
;
7027 sd
= &per_cpu(node_domains
, j
);
7030 sg
->__cpu_power
= 0;
7031 sg
->cpumask
= *nodemask
;
7033 cpus_or(*covered
, *covered
, *nodemask
);
7036 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
7037 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7038 int n
= (i
+ j
) % MAX_NUMNODES
;
7039 node_to_cpumask_ptr(pnodemask
, n
);
7041 cpus_complement(*notcovered
, *covered
);
7042 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7043 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7044 if (cpus_empty(*tmpmask
))
7047 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7048 if (cpus_empty(*tmpmask
))
7051 sg
= kmalloc_node(sizeof(struct sched_group
),
7055 "Can not alloc domain group for node %d\n", j
);
7058 sg
->__cpu_power
= 0;
7059 sg
->cpumask
= *tmpmask
;
7060 sg
->next
= prev
->next
;
7061 cpus_or(*covered
, *covered
, *tmpmask
);
7068 /* Calculate CPU power for physical packages and nodes */
7069 #ifdef CONFIG_SCHED_SMT
7070 for_each_cpu_mask(i
, *cpu_map
) {
7071 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7073 init_sched_groups_power(i
, sd
);
7076 #ifdef CONFIG_SCHED_MC
7077 for_each_cpu_mask(i
, *cpu_map
) {
7078 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7080 init_sched_groups_power(i
, sd
);
7084 for_each_cpu_mask(i
, *cpu_map
) {
7085 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7087 init_sched_groups_power(i
, sd
);
7091 for (i
= 0; i
< MAX_NUMNODES
; i
++)
7092 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7095 struct sched_group
*sg
;
7097 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7099 init_numa_sched_groups_power(sg
);
7103 /* Attach the domains */
7104 for_each_cpu_mask(i
, *cpu_map
) {
7105 struct sched_domain
*sd
;
7106 #ifdef CONFIG_SCHED_SMT
7107 sd
= &per_cpu(cpu_domains
, i
);
7108 #elif defined(CONFIG_SCHED_MC)
7109 sd
= &per_cpu(core_domains
, i
);
7111 sd
= &per_cpu(phys_domains
, i
);
7113 cpu_attach_domain(sd
, rd
, i
);
7116 SCHED_CPUMASK_FREE((void *)allmasks
);
7121 free_sched_groups(cpu_map
, tmpmask
);
7122 SCHED_CPUMASK_FREE((void *)allmasks
);
7127 static cpumask_t
*doms_cur
; /* current sched domains */
7128 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7131 * Special case: If a kmalloc of a doms_cur partition (array of
7132 * cpumask_t) fails, then fallback to a single sched domain,
7133 * as determined by the single cpumask_t fallback_doms.
7135 static cpumask_t fallback_doms
;
7137 void __attribute__((weak
)) arch_update_cpu_topology(void)
7142 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7143 * For now this just excludes isolated cpus, but could be used to
7144 * exclude other special cases in the future.
7146 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7150 arch_update_cpu_topology();
7152 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7154 doms_cur
= &fallback_doms
;
7155 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7156 err
= build_sched_domains(doms_cur
);
7157 register_sched_domain_sysctl();
7162 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7165 free_sched_groups(cpu_map
, tmpmask
);
7169 * Detach sched domains from a group of cpus specified in cpu_map
7170 * These cpus will now be attached to the NULL domain
7172 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7177 unregister_sched_domain_sysctl();
7179 for_each_cpu_mask(i
, *cpu_map
)
7180 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7181 synchronize_sched();
7182 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7186 * Partition sched domains as specified by the 'ndoms_new'
7187 * cpumasks in the array doms_new[] of cpumasks. This compares
7188 * doms_new[] to the current sched domain partitioning, doms_cur[].
7189 * It destroys each deleted domain and builds each new domain.
7191 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7192 * The masks don't intersect (don't overlap.) We should setup one
7193 * sched domain for each mask. CPUs not in any of the cpumasks will
7194 * not be load balanced. If the same cpumask appears both in the
7195 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7198 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7199 * ownership of it and will kfree it when done with it. If the caller
7200 * failed the kmalloc call, then it can pass in doms_new == NULL,
7201 * and partition_sched_domains() will fallback to the single partition
7204 * Call with hotplug lock held
7206 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
7212 /* always unregister in case we don't destroy any domains */
7213 unregister_sched_domain_sysctl();
7215 if (doms_new
== NULL
) {
7217 doms_new
= &fallback_doms
;
7218 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7221 /* Destroy deleted domains */
7222 for (i
= 0; i
< ndoms_cur
; i
++) {
7223 for (j
= 0; j
< ndoms_new
; j
++) {
7224 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
7227 /* no match - a current sched domain not in new doms_new[] */
7228 detach_destroy_domains(doms_cur
+ i
);
7233 /* Build new domains */
7234 for (i
= 0; i
< ndoms_new
; i
++) {
7235 for (j
= 0; j
< ndoms_cur
; j
++) {
7236 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
7239 /* no match - add a new doms_new */
7240 build_sched_domains(doms_new
+ i
);
7245 /* Remember the new sched domains */
7246 if (doms_cur
!= &fallback_doms
)
7248 doms_cur
= doms_new
;
7249 ndoms_cur
= ndoms_new
;
7251 register_sched_domain_sysctl();
7256 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7257 int arch_reinit_sched_domains(void)
7262 detach_destroy_domains(&cpu_online_map
);
7263 err
= arch_init_sched_domains(&cpu_online_map
);
7269 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7273 if (buf
[0] != '0' && buf
[0] != '1')
7277 sched_smt_power_savings
= (buf
[0] == '1');
7279 sched_mc_power_savings
= (buf
[0] == '1');
7281 ret
= arch_reinit_sched_domains();
7283 return ret
? ret
: count
;
7286 #ifdef CONFIG_SCHED_MC
7287 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7289 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7291 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7292 const char *buf
, size_t count
)
7294 return sched_power_savings_store(buf
, count
, 0);
7296 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7297 sched_mc_power_savings_store
);
7300 #ifdef CONFIG_SCHED_SMT
7301 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7303 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7305 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7306 const char *buf
, size_t count
)
7308 return sched_power_savings_store(buf
, count
, 1);
7310 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7311 sched_smt_power_savings_store
);
7314 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7318 #ifdef CONFIG_SCHED_SMT
7320 err
= sysfs_create_file(&cls
->kset
.kobj
,
7321 &attr_sched_smt_power_savings
.attr
);
7323 #ifdef CONFIG_SCHED_MC
7324 if (!err
&& mc_capable())
7325 err
= sysfs_create_file(&cls
->kset
.kobj
,
7326 &attr_sched_mc_power_savings
.attr
);
7333 * Force a reinitialization of the sched domains hierarchy. The domains
7334 * and groups cannot be updated in place without racing with the balancing
7335 * code, so we temporarily attach all running cpus to the NULL domain
7336 * which will prevent rebalancing while the sched domains are recalculated.
7338 static int update_sched_domains(struct notifier_block
*nfb
,
7339 unsigned long action
, void *hcpu
)
7342 case CPU_UP_PREPARE
:
7343 case CPU_UP_PREPARE_FROZEN
:
7344 case CPU_DOWN_PREPARE
:
7345 case CPU_DOWN_PREPARE_FROZEN
:
7346 detach_destroy_domains(&cpu_online_map
);
7349 case CPU_UP_CANCELED
:
7350 case CPU_UP_CANCELED_FROZEN
:
7351 case CPU_DOWN_FAILED
:
7352 case CPU_DOWN_FAILED_FROZEN
:
7354 case CPU_ONLINE_FROZEN
:
7356 case CPU_DEAD_FROZEN
:
7358 * Fall through and re-initialise the domains.
7365 /* The hotplug lock is already held by cpu_up/cpu_down */
7366 arch_init_sched_domains(&cpu_online_map
);
7371 void __init
sched_init_smp(void)
7373 cpumask_t non_isolated_cpus
;
7375 #if defined(CONFIG_NUMA)
7376 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7378 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7381 arch_init_sched_domains(&cpu_online_map
);
7382 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7383 if (cpus_empty(non_isolated_cpus
))
7384 cpu_set(smp_processor_id(), non_isolated_cpus
);
7386 /* XXX: Theoretical race here - CPU may be hotplugged now */
7387 hotcpu_notifier(update_sched_domains
, 0);
7389 /* Move init over to a non-isolated CPU */
7390 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7392 sched_init_granularity();
7395 void __init
sched_init_smp(void)
7397 #if defined(CONFIG_NUMA)
7398 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7400 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7402 sched_init_granularity();
7404 #endif /* CONFIG_SMP */
7406 int in_sched_functions(unsigned long addr
)
7408 return in_lock_functions(addr
) ||
7409 (addr
>= (unsigned long)__sched_text_start
7410 && addr
< (unsigned long)__sched_text_end
);
7413 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7415 cfs_rq
->tasks_timeline
= RB_ROOT
;
7416 #ifdef CONFIG_FAIR_GROUP_SCHED
7419 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7422 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7424 struct rt_prio_array
*array
;
7427 array
= &rt_rq
->active
;
7428 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7429 INIT_LIST_HEAD(array
->queue
+ i
);
7430 __clear_bit(i
, array
->bitmap
);
7432 /* delimiter for bitsearch: */
7433 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7435 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7436 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7439 rt_rq
->rt_nr_migratory
= 0;
7440 rt_rq
->overloaded
= 0;
7444 rt_rq
->rt_throttled
= 0;
7445 rt_rq
->rt_runtime
= 0;
7446 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7448 #ifdef CONFIG_RT_GROUP_SCHED
7449 rt_rq
->rt_nr_boosted
= 0;
7454 #ifdef CONFIG_FAIR_GROUP_SCHED
7455 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7456 struct sched_entity
*se
, int cpu
, int add
,
7457 struct sched_entity
*parent
)
7459 struct rq
*rq
= cpu_rq(cpu
);
7460 tg
->cfs_rq
[cpu
] = cfs_rq
;
7461 init_cfs_rq(cfs_rq
, rq
);
7464 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7467 /* se could be NULL for init_task_group */
7472 se
->cfs_rq
= &rq
->cfs
;
7474 se
->cfs_rq
= parent
->my_q
;
7477 se
->load
.weight
= tg
->shares
;
7478 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
7479 se
->parent
= parent
;
7483 #ifdef CONFIG_RT_GROUP_SCHED
7484 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7485 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7486 struct sched_rt_entity
*parent
)
7488 struct rq
*rq
= cpu_rq(cpu
);
7490 tg
->rt_rq
[cpu
] = rt_rq
;
7491 init_rt_rq(rt_rq
, rq
);
7493 rt_rq
->rt_se
= rt_se
;
7494 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7496 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7498 tg
->rt_se
[cpu
] = rt_se
;
7503 rt_se
->rt_rq
= &rq
->rt
;
7505 rt_se
->rt_rq
= parent
->my_q
;
7507 rt_se
->rt_rq
= &rq
->rt
;
7508 rt_se
->my_q
= rt_rq
;
7509 rt_se
->parent
= parent
;
7510 INIT_LIST_HEAD(&rt_se
->run_list
);
7514 void __init
sched_init(void)
7517 unsigned long alloc_size
= 0, ptr
;
7519 #ifdef CONFIG_FAIR_GROUP_SCHED
7520 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7522 #ifdef CONFIG_RT_GROUP_SCHED
7523 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7525 #ifdef CONFIG_USER_SCHED
7529 * As sched_init() is called before page_alloc is setup,
7530 * we use alloc_bootmem().
7533 ptr
= (unsigned long)alloc_bootmem_low(alloc_size
);
7535 #ifdef CONFIG_FAIR_GROUP_SCHED
7536 init_task_group
.se
= (struct sched_entity
**)ptr
;
7537 ptr
+= nr_cpu_ids
* sizeof(void **);
7539 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7540 ptr
+= nr_cpu_ids
* sizeof(void **);
7542 #ifdef CONFIG_USER_SCHED
7543 root_task_group
.se
= (struct sched_entity
**)ptr
;
7544 ptr
+= nr_cpu_ids
* sizeof(void **);
7546 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7547 ptr
+= nr_cpu_ids
* sizeof(void **);
7550 #ifdef CONFIG_RT_GROUP_SCHED
7551 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7552 ptr
+= nr_cpu_ids
* sizeof(void **);
7554 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7555 ptr
+= nr_cpu_ids
* sizeof(void **);
7557 #ifdef CONFIG_USER_SCHED
7558 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7559 ptr
+= nr_cpu_ids
* sizeof(void **);
7561 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7562 ptr
+= nr_cpu_ids
* sizeof(void **);
7568 init_defrootdomain();
7571 init_rt_bandwidth(&def_rt_bandwidth
,
7572 global_rt_period(), global_rt_runtime());
7574 #ifdef CONFIG_RT_GROUP_SCHED
7575 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7576 global_rt_period(), global_rt_runtime());
7577 #ifdef CONFIG_USER_SCHED
7578 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7579 global_rt_period(), RUNTIME_INF
);
7583 #ifdef CONFIG_GROUP_SCHED
7584 list_add(&init_task_group
.list
, &task_groups
);
7585 INIT_LIST_HEAD(&init_task_group
.children
);
7587 #ifdef CONFIG_USER_SCHED
7588 INIT_LIST_HEAD(&root_task_group
.children
);
7589 init_task_group
.parent
= &root_task_group
;
7590 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
7594 for_each_possible_cpu(i
) {
7598 spin_lock_init(&rq
->lock
);
7599 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7602 update_last_tick_seen(rq
);
7603 init_cfs_rq(&rq
->cfs
, rq
);
7604 init_rt_rq(&rq
->rt
, rq
);
7605 #ifdef CONFIG_FAIR_GROUP_SCHED
7606 init_task_group
.shares
= init_task_group_load
;
7607 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7608 #ifdef CONFIG_CGROUP_SCHED
7610 * How much cpu bandwidth does init_task_group get?
7612 * In case of task-groups formed thr' the cgroup filesystem, it
7613 * gets 100% of the cpu resources in the system. This overall
7614 * system cpu resource is divided among the tasks of
7615 * init_task_group and its child task-groups in a fair manner,
7616 * based on each entity's (task or task-group's) weight
7617 * (se->load.weight).
7619 * In other words, if init_task_group has 10 tasks of weight
7620 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7621 * then A0's share of the cpu resource is:
7623 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7625 * We achieve this by letting init_task_group's tasks sit
7626 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7628 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7629 #elif defined CONFIG_USER_SCHED
7630 root_task_group
.shares
= NICE_0_LOAD
;
7631 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
7633 * In case of task-groups formed thr' the user id of tasks,
7634 * init_task_group represents tasks belonging to root user.
7635 * Hence it forms a sibling of all subsequent groups formed.
7636 * In this case, init_task_group gets only a fraction of overall
7637 * system cpu resource, based on the weight assigned to root
7638 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7639 * by letting tasks of init_task_group sit in a separate cfs_rq
7640 * (init_cfs_rq) and having one entity represent this group of
7641 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7643 init_tg_cfs_entry(&init_task_group
,
7644 &per_cpu(init_cfs_rq
, i
),
7645 &per_cpu(init_sched_entity
, i
), i
, 1,
7646 root_task_group
.se
[i
]);
7649 #endif /* CONFIG_FAIR_GROUP_SCHED */
7651 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7652 #ifdef CONFIG_RT_GROUP_SCHED
7653 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7654 #ifdef CONFIG_CGROUP_SCHED
7655 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7656 #elif defined CONFIG_USER_SCHED
7657 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
7658 init_tg_rt_entry(&init_task_group
,
7659 &per_cpu(init_rt_rq
, i
),
7660 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
7661 root_task_group
.rt_se
[i
]);
7665 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7666 rq
->cpu_load
[j
] = 0;
7670 rq
->active_balance
= 0;
7671 rq
->next_balance
= jiffies
;
7674 rq
->migration_thread
= NULL
;
7675 INIT_LIST_HEAD(&rq
->migration_queue
);
7676 rq_attach_root(rq
, &def_root_domain
);
7679 atomic_set(&rq
->nr_iowait
, 0);
7682 set_load_weight(&init_task
);
7684 #ifdef CONFIG_PREEMPT_NOTIFIERS
7685 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7689 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7692 #ifdef CONFIG_RT_MUTEXES
7693 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7697 * The boot idle thread does lazy MMU switching as well:
7699 atomic_inc(&init_mm
.mm_count
);
7700 enter_lazy_tlb(&init_mm
, current
);
7703 * Make us the idle thread. Technically, schedule() should not be
7704 * called from this thread, however somewhere below it might be,
7705 * but because we are the idle thread, we just pick up running again
7706 * when this runqueue becomes "idle".
7708 init_idle(current
, smp_processor_id());
7710 * During early bootup we pretend to be a normal task:
7712 current
->sched_class
= &fair_sched_class
;
7714 scheduler_running
= 1;
7717 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7718 void __might_sleep(char *file
, int line
)
7721 static unsigned long prev_jiffy
; /* ratelimiting */
7723 if ((in_atomic() || irqs_disabled()) &&
7724 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7725 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7727 prev_jiffy
= jiffies
;
7728 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7729 " context at %s:%d\n", file
, line
);
7730 printk("in_atomic():%d, irqs_disabled():%d\n",
7731 in_atomic(), irqs_disabled());
7732 debug_show_held_locks(current
);
7733 if (irqs_disabled())
7734 print_irqtrace_events(current
);
7739 EXPORT_SYMBOL(__might_sleep
);
7742 #ifdef CONFIG_MAGIC_SYSRQ
7743 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7746 update_rq_clock(rq
);
7747 on_rq
= p
->se
.on_rq
;
7749 deactivate_task(rq
, p
, 0);
7750 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7752 activate_task(rq
, p
, 0);
7753 resched_task(rq
->curr
);
7757 void normalize_rt_tasks(void)
7759 struct task_struct
*g
, *p
;
7760 unsigned long flags
;
7763 read_lock_irqsave(&tasklist_lock
, flags
);
7764 do_each_thread(g
, p
) {
7766 * Only normalize user tasks:
7771 p
->se
.exec_start
= 0;
7772 #ifdef CONFIG_SCHEDSTATS
7773 p
->se
.wait_start
= 0;
7774 p
->se
.sleep_start
= 0;
7775 p
->se
.block_start
= 0;
7777 task_rq(p
)->clock
= 0;
7781 * Renice negative nice level userspace
7784 if (TASK_NICE(p
) < 0 && p
->mm
)
7785 set_user_nice(p
, 0);
7789 spin_lock(&p
->pi_lock
);
7790 rq
= __task_rq_lock(p
);
7792 normalize_task(rq
, p
);
7794 __task_rq_unlock(rq
);
7795 spin_unlock(&p
->pi_lock
);
7796 } while_each_thread(g
, p
);
7798 read_unlock_irqrestore(&tasklist_lock
, flags
);
7801 #endif /* CONFIG_MAGIC_SYSRQ */
7805 * These functions are only useful for the IA64 MCA handling.
7807 * They can only be called when the whole system has been
7808 * stopped - every CPU needs to be quiescent, and no scheduling
7809 * activity can take place. Using them for anything else would
7810 * be a serious bug, and as a result, they aren't even visible
7811 * under any other configuration.
7815 * curr_task - return the current task for a given cpu.
7816 * @cpu: the processor in question.
7818 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7820 struct task_struct
*curr_task(int cpu
)
7822 return cpu_curr(cpu
);
7826 * set_curr_task - set the current task for a given cpu.
7827 * @cpu: the processor in question.
7828 * @p: the task pointer to set.
7830 * Description: This function must only be used when non-maskable interrupts
7831 * are serviced on a separate stack. It allows the architecture to switch the
7832 * notion of the current task on a cpu in a non-blocking manner. This function
7833 * must be called with all CPU's synchronized, and interrupts disabled, the
7834 * and caller must save the original value of the current task (see
7835 * curr_task() above) and restore that value before reenabling interrupts and
7836 * re-starting the system.
7838 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7840 void set_curr_task(int cpu
, struct task_struct
*p
)
7847 #ifdef CONFIG_FAIR_GROUP_SCHED
7848 static void free_fair_sched_group(struct task_group
*tg
)
7852 for_each_possible_cpu(i
) {
7854 kfree(tg
->cfs_rq
[i
]);
7864 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7866 struct cfs_rq
*cfs_rq
;
7867 struct sched_entity
*se
, *parent_se
;
7871 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7874 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
7878 tg
->shares
= NICE_0_LOAD
;
7880 for_each_possible_cpu(i
) {
7883 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7884 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7888 se
= kmalloc_node(sizeof(struct sched_entity
),
7889 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7893 parent_se
= parent
? parent
->se
[i
] : NULL
;
7894 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
7903 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7905 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7906 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7909 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7911 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7914 static inline void free_fair_sched_group(struct task_group
*tg
)
7919 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7924 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7928 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7933 #ifdef CONFIG_RT_GROUP_SCHED
7934 static void free_rt_sched_group(struct task_group
*tg
)
7938 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
7940 for_each_possible_cpu(i
) {
7942 kfree(tg
->rt_rq
[i
]);
7944 kfree(tg
->rt_se
[i
]);
7952 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7954 struct rt_rq
*rt_rq
;
7955 struct sched_rt_entity
*rt_se
, *parent_se
;
7959 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7962 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
7966 init_rt_bandwidth(&tg
->rt_bandwidth
,
7967 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
7969 for_each_possible_cpu(i
) {
7972 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
7973 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7977 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
7978 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7982 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
7983 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
7992 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7994 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7995 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7998 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8000 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8003 static inline void free_rt_sched_group(struct task_group
*tg
)
8008 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8013 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8017 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8022 #ifdef CONFIG_GROUP_SCHED
8023 static void free_sched_group(struct task_group
*tg
)
8025 free_fair_sched_group(tg
);
8026 free_rt_sched_group(tg
);
8030 /* allocate runqueue etc for a new task group */
8031 struct task_group
*sched_create_group(struct task_group
*parent
)
8033 struct task_group
*tg
;
8034 unsigned long flags
;
8037 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8039 return ERR_PTR(-ENOMEM
);
8041 if (!alloc_fair_sched_group(tg
, parent
))
8044 if (!alloc_rt_sched_group(tg
, parent
))
8047 spin_lock_irqsave(&task_group_lock
, flags
);
8048 for_each_possible_cpu(i
) {
8049 register_fair_sched_group(tg
, i
);
8050 register_rt_sched_group(tg
, i
);
8052 list_add_rcu(&tg
->list
, &task_groups
);
8054 WARN_ON(!parent
); /* root should already exist */
8056 tg
->parent
= parent
;
8057 list_add_rcu(&tg
->siblings
, &parent
->children
);
8058 INIT_LIST_HEAD(&tg
->children
);
8059 spin_unlock_irqrestore(&task_group_lock
, flags
);
8064 free_sched_group(tg
);
8065 return ERR_PTR(-ENOMEM
);
8068 /* rcu callback to free various structures associated with a task group */
8069 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8071 /* now it should be safe to free those cfs_rqs */
8072 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8075 /* Destroy runqueue etc associated with a task group */
8076 void sched_destroy_group(struct task_group
*tg
)
8078 unsigned long flags
;
8081 spin_lock_irqsave(&task_group_lock
, flags
);
8082 for_each_possible_cpu(i
) {
8083 unregister_fair_sched_group(tg
, i
);
8084 unregister_rt_sched_group(tg
, i
);
8086 list_del_rcu(&tg
->list
);
8087 list_del_rcu(&tg
->siblings
);
8088 spin_unlock_irqrestore(&task_group_lock
, flags
);
8090 /* wait for possible concurrent references to cfs_rqs complete */
8091 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8094 /* change task's runqueue when it moves between groups.
8095 * The caller of this function should have put the task in its new group
8096 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8097 * reflect its new group.
8099 void sched_move_task(struct task_struct
*tsk
)
8102 unsigned long flags
;
8105 rq
= task_rq_lock(tsk
, &flags
);
8107 update_rq_clock(rq
);
8109 running
= task_current(rq
, tsk
);
8110 on_rq
= tsk
->se
.on_rq
;
8113 dequeue_task(rq
, tsk
, 0);
8114 if (unlikely(running
))
8115 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8117 set_task_rq(tsk
, task_cpu(tsk
));
8119 #ifdef CONFIG_FAIR_GROUP_SCHED
8120 if (tsk
->sched_class
->moved_group
)
8121 tsk
->sched_class
->moved_group(tsk
);
8124 if (unlikely(running
))
8125 tsk
->sched_class
->set_curr_task(rq
);
8127 enqueue_task(rq
, tsk
, 0);
8129 task_rq_unlock(rq
, &flags
);
8133 #ifdef CONFIG_FAIR_GROUP_SCHED
8134 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8136 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8137 struct rq
*rq
= cfs_rq
->rq
;
8140 spin_lock_irq(&rq
->lock
);
8144 dequeue_entity(cfs_rq
, se
, 0);
8146 se
->load
.weight
= shares
;
8147 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
8150 enqueue_entity(cfs_rq
, se
, 0);
8152 spin_unlock_irq(&rq
->lock
);
8155 static DEFINE_MUTEX(shares_mutex
);
8157 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8160 unsigned long flags
;
8163 * We can't change the weight of the root cgroup.
8169 * A weight of 0 or 1 can cause arithmetics problems.
8170 * (The default weight is 1024 - so there's no practical
8171 * limitation from this.)
8176 mutex_lock(&shares_mutex
);
8177 if (tg
->shares
== shares
)
8180 spin_lock_irqsave(&task_group_lock
, flags
);
8181 for_each_possible_cpu(i
)
8182 unregister_fair_sched_group(tg
, i
);
8183 list_del_rcu(&tg
->siblings
);
8184 spin_unlock_irqrestore(&task_group_lock
, flags
);
8186 /* wait for any ongoing reference to this group to finish */
8187 synchronize_sched();
8190 * Now we are free to modify the group's share on each cpu
8191 * w/o tripping rebalance_share or load_balance_fair.
8193 tg
->shares
= shares
;
8194 for_each_possible_cpu(i
)
8195 set_se_shares(tg
->se
[i
], shares
);
8198 * Enable load balance activity on this group, by inserting it back on
8199 * each cpu's rq->leaf_cfs_rq_list.
8201 spin_lock_irqsave(&task_group_lock
, flags
);
8202 for_each_possible_cpu(i
)
8203 register_fair_sched_group(tg
, i
);
8204 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8205 spin_unlock_irqrestore(&task_group_lock
, flags
);
8207 mutex_unlock(&shares_mutex
);
8211 unsigned long sched_group_shares(struct task_group
*tg
)
8217 #ifdef CONFIG_RT_GROUP_SCHED
8219 * Ensure that the real time constraints are schedulable.
8221 static DEFINE_MUTEX(rt_constraints_mutex
);
8223 static unsigned long to_ratio(u64 period
, u64 runtime
)
8225 if (runtime
== RUNTIME_INF
)
8228 return div64_64(runtime
<< 16, period
);
8231 #ifdef CONFIG_CGROUP_SCHED
8232 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8234 struct task_group
*tgi
, *parent
= tg
->parent
;
8235 unsigned long total
= 0;
8238 if (global_rt_period() < period
)
8241 return to_ratio(period
, runtime
) <
8242 to_ratio(global_rt_period(), global_rt_runtime());
8245 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8249 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8253 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8254 tgi
->rt_bandwidth
.rt_runtime
);
8258 return total
+ to_ratio(period
, runtime
) <
8259 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8260 parent
->rt_bandwidth
.rt_runtime
);
8262 #elif defined CONFIG_USER_SCHED
8263 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8265 struct task_group
*tgi
;
8266 unsigned long total
= 0;
8267 unsigned long global_ratio
=
8268 to_ratio(global_rt_period(), global_rt_runtime());
8271 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8275 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8276 tgi
->rt_bandwidth
.rt_runtime
);
8280 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8284 /* Must be called with tasklist_lock held */
8285 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8287 struct task_struct
*g
, *p
;
8288 do_each_thread(g
, p
) {
8289 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8291 } while_each_thread(g
, p
);
8295 static int tg_set_bandwidth(struct task_group
*tg
,
8296 u64 rt_period
, u64 rt_runtime
)
8300 mutex_lock(&rt_constraints_mutex
);
8301 read_lock(&tasklist_lock
);
8302 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8306 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8311 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8312 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8313 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8315 for_each_possible_cpu(i
) {
8316 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8318 spin_lock(&rt_rq
->rt_runtime_lock
);
8319 rt_rq
->rt_runtime
= rt_runtime
;
8320 spin_unlock(&rt_rq
->rt_runtime_lock
);
8322 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8324 read_unlock(&tasklist_lock
);
8325 mutex_unlock(&rt_constraints_mutex
);
8330 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8332 u64 rt_runtime
, rt_period
;
8334 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8335 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8336 if (rt_runtime_us
< 0)
8337 rt_runtime
= RUNTIME_INF
;
8339 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8342 long sched_group_rt_runtime(struct task_group
*tg
)
8346 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8349 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8350 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8351 return rt_runtime_us
;
8354 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8356 u64 rt_runtime
, rt_period
;
8358 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8359 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8361 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8364 long sched_group_rt_period(struct task_group
*tg
)
8368 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8369 do_div(rt_period_us
, NSEC_PER_USEC
);
8370 return rt_period_us
;
8373 static int sched_rt_global_constraints(void)
8377 mutex_lock(&rt_constraints_mutex
);
8378 if (!__rt_schedulable(NULL
, 1, 0))
8380 mutex_unlock(&rt_constraints_mutex
);
8385 static int sched_rt_global_constraints(void)
8387 unsigned long flags
;
8390 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8391 for_each_possible_cpu(i
) {
8392 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8394 spin_lock(&rt_rq
->rt_runtime_lock
);
8395 rt_rq
->rt_runtime
= global_rt_runtime();
8396 spin_unlock(&rt_rq
->rt_runtime_lock
);
8398 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8404 int sched_rt_handler(struct ctl_table
*table
, int write
,
8405 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8409 int old_period
, old_runtime
;
8410 static DEFINE_MUTEX(mutex
);
8413 old_period
= sysctl_sched_rt_period
;
8414 old_runtime
= sysctl_sched_rt_runtime
;
8416 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8418 if (!ret
&& write
) {
8419 ret
= sched_rt_global_constraints();
8421 sysctl_sched_rt_period
= old_period
;
8422 sysctl_sched_rt_runtime
= old_runtime
;
8424 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8425 def_rt_bandwidth
.rt_period
=
8426 ns_to_ktime(global_rt_period());
8429 mutex_unlock(&mutex
);
8434 #ifdef CONFIG_CGROUP_SCHED
8436 /* return corresponding task_group object of a cgroup */
8437 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8439 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8440 struct task_group
, css
);
8443 static struct cgroup_subsys_state
*
8444 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8446 struct task_group
*tg
, *parent
;
8448 if (!cgrp
->parent
) {
8449 /* This is early initialization for the top cgroup */
8450 init_task_group
.css
.cgroup
= cgrp
;
8451 return &init_task_group
.css
;
8454 parent
= cgroup_tg(cgrp
->parent
);
8455 tg
= sched_create_group(parent
);
8457 return ERR_PTR(-ENOMEM
);
8459 /* Bind the cgroup to task_group object we just created */
8460 tg
->css
.cgroup
= cgrp
;
8466 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8468 struct task_group
*tg
= cgroup_tg(cgrp
);
8470 sched_destroy_group(tg
);
8474 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8475 struct task_struct
*tsk
)
8477 #ifdef CONFIG_RT_GROUP_SCHED
8478 /* Don't accept realtime tasks when there is no way for them to run */
8479 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
8482 /* We don't support RT-tasks being in separate groups */
8483 if (tsk
->sched_class
!= &fair_sched_class
)
8491 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8492 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8494 sched_move_task(tsk
);
8497 #ifdef CONFIG_FAIR_GROUP_SCHED
8498 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8501 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8504 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8506 struct task_group
*tg
= cgroup_tg(cgrp
);
8508 return (u64
) tg
->shares
;
8512 #ifdef CONFIG_RT_GROUP_SCHED
8513 static ssize_t
cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8515 const char __user
*userbuf
,
8516 size_t nbytes
, loff_t
*unused_ppos
)
8525 if (nbytes
>= sizeof(buffer
))
8527 if (copy_from_user(buffer
, userbuf
, nbytes
))
8530 buffer
[nbytes
] = 0; /* nul-terminate */
8532 /* strip newline if necessary */
8533 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
8534 buffer
[nbytes
-1] = 0;
8535 val
= simple_strtoll(buffer
, &end
, 0);
8539 /* Pass to subsystem */
8540 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8546 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
8548 char __user
*buf
, size_t nbytes
,
8552 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
8553 int len
= sprintf(tmp
, "%ld\n", val
);
8555 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
8558 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8561 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8564 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8566 return sched_group_rt_period(cgroup_tg(cgrp
));
8570 static struct cftype cpu_files
[] = {
8571 #ifdef CONFIG_FAIR_GROUP_SCHED
8574 .read_uint
= cpu_shares_read_uint
,
8575 .write_uint
= cpu_shares_write_uint
,
8578 #ifdef CONFIG_RT_GROUP_SCHED
8580 .name
= "rt_runtime_us",
8581 .read
= cpu_rt_runtime_read
,
8582 .write
= cpu_rt_runtime_write
,
8585 .name
= "rt_period_us",
8586 .read_uint
= cpu_rt_period_read_uint
,
8587 .write_uint
= cpu_rt_period_write_uint
,
8592 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8594 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8597 struct cgroup_subsys cpu_cgroup_subsys
= {
8599 .create
= cpu_cgroup_create
,
8600 .destroy
= cpu_cgroup_destroy
,
8601 .can_attach
= cpu_cgroup_can_attach
,
8602 .attach
= cpu_cgroup_attach
,
8603 .populate
= cpu_cgroup_populate
,
8604 .subsys_id
= cpu_cgroup_subsys_id
,
8608 #endif /* CONFIG_CGROUP_SCHED */
8610 #ifdef CONFIG_CGROUP_CPUACCT
8613 * CPU accounting code for task groups.
8615 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8616 * (balbir@in.ibm.com).
8619 /* track cpu usage of a group of tasks */
8621 struct cgroup_subsys_state css
;
8622 /* cpuusage holds pointer to a u64-type object on every cpu */
8626 struct cgroup_subsys cpuacct_subsys
;
8628 /* return cpu accounting group corresponding to this container */
8629 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8631 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8632 struct cpuacct
, css
);
8635 /* return cpu accounting group to which this task belongs */
8636 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8638 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8639 struct cpuacct
, css
);
8642 /* create a new cpu accounting group */
8643 static struct cgroup_subsys_state
*cpuacct_create(
8644 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8646 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8649 return ERR_PTR(-ENOMEM
);
8651 ca
->cpuusage
= alloc_percpu(u64
);
8652 if (!ca
->cpuusage
) {
8654 return ERR_PTR(-ENOMEM
);
8660 /* destroy an existing cpu accounting group */
8662 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8664 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8666 free_percpu(ca
->cpuusage
);
8670 /* return total cpu usage (in nanoseconds) of a group */
8671 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8673 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8674 u64 totalcpuusage
= 0;
8677 for_each_possible_cpu(i
) {
8678 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8681 * Take rq->lock to make 64-bit addition safe on 32-bit
8684 spin_lock_irq(&cpu_rq(i
)->lock
);
8685 totalcpuusage
+= *cpuusage
;
8686 spin_unlock_irq(&cpu_rq(i
)->lock
);
8689 return totalcpuusage
;
8692 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8695 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8704 for_each_possible_cpu(i
) {
8705 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8707 spin_lock_irq(&cpu_rq(i
)->lock
);
8709 spin_unlock_irq(&cpu_rq(i
)->lock
);
8715 static struct cftype files
[] = {
8718 .read_uint
= cpuusage_read
,
8719 .write_uint
= cpuusage_write
,
8723 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8725 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8729 * charge this task's execution time to its accounting group.
8731 * called with rq->lock held.
8733 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8737 if (!cpuacct_subsys
.active
)
8742 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8744 *cpuusage
+= cputime
;
8748 struct cgroup_subsys cpuacct_subsys
= {
8750 .create
= cpuacct_create
,
8751 .destroy
= cpuacct_destroy
,
8752 .populate
= cpuacct_populate
,
8753 .subsys_id
= cpuacct_subsys_id
,
8755 #endif /* CONFIG_CGROUP_CPUACCT */