USB: Implement PM FREEZE and PRETHAW
[linux-2.6/mini2440.git] / drivers / ieee1394 / ieee1394_core.c
blob0fc8c6e559e4a64d160bfbc0c7fcd4a04d8538e5
1 /*
2 * IEEE 1394 for Linux
4 * Core support: hpsb_packet management, packet handling and forwarding to
5 * highlevel or lowlevel code
7 * Copyright (C) 1999, 2000 Andreas E. Bombe
8 * 2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
10 * This code is licensed under the GPL. See the file COPYING in the root
11 * directory of the kernel sources for details.
14 * Contributions:
16 * Manfred Weihs <weihs@ict.tuwien.ac.at>
17 * loopback functionality in hpsb_send_packet
18 * allow highlevel drivers to disable automatic response generation
19 * and to generate responses themselves (deferred)
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/bitops.h>
32 #include <linux/kdev_t.h>
33 #include <linux/suspend.h>
34 #include <linux/kthread.h>
35 #include <linux/preempt.h>
36 #include <linux/time.h>
38 #include <asm/system.h>
39 #include <asm/byteorder.h>
41 #include "ieee1394_types.h"
42 #include "ieee1394.h"
43 #include "hosts.h"
44 #include "ieee1394_core.h"
45 #include "highlevel.h"
46 #include "ieee1394_transactions.h"
47 #include "csr.h"
48 #include "nodemgr.h"
49 #include "dma.h"
50 #include "iso.h"
51 #include "config_roms.h"
54 * Disable the nodemgr detection and config rom reading functionality.
56 static int disable_nodemgr;
57 module_param(disable_nodemgr, int, 0444);
58 MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
60 /* Disable Isochronous Resource Manager functionality */
61 int hpsb_disable_irm = 0;
62 module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
63 MODULE_PARM_DESC(disable_irm,
64 "Disable Isochronous Resource Manager functionality.");
66 /* We are GPL, so treat us special */
67 MODULE_LICENSE("GPL");
69 /* Some globals used */
70 const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
71 struct class *hpsb_protocol_class;
73 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
74 static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
76 int i;
78 size /= 4;
79 size = (size > 4 ? 4 : size);
81 printk(KERN_DEBUG "ieee1394: %s", text);
82 if (speed > -1 && speed < 6)
83 printk(" at %s", hpsb_speedto_str[speed]);
84 printk(":");
85 for (i = 0; i < size; i++)
86 printk(" %08x", data[i]);
87 printk("\n");
89 #else
90 #define dump_packet(a,b,c,d) do {} while (0)
91 #endif
93 static void abort_requests(struct hpsb_host *host);
94 static void queue_packet_complete(struct hpsb_packet *packet);
97 /**
98 * hpsb_set_packet_complete_task - set task that runs when a packet completes
99 * @packet: the packet whose completion we want the task added to
100 * @routine: function to call
101 * @data: data (if any) to pass to the above function
103 * Set the task that runs when a packet completes. You cannot call this more
104 * than once on a single packet before it is sent.
106 * Typically, the complete @routine is responsible to call hpsb_free_packet().
108 void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
109 void (*routine)(void *), void *data)
111 WARN_ON(packet->complete_routine != NULL);
112 packet->complete_routine = routine;
113 packet->complete_data = data;
114 return;
118 * hpsb_alloc_packet - allocate new packet structure
119 * @data_size: size of the data block to be allocated, in bytes
121 * This function allocates, initializes and returns a new &struct hpsb_packet.
122 * It can be used in interrupt context. A header block is always included and
123 * initialized with zeros. Its size is big enough to contain all possible 1394
124 * headers. The data block is only allocated if @data_size is not zero.
126 * For packets for which responses will be received the @data_size has to be big
127 * enough to contain the response's data block since no further allocation
128 * occurs at response matching time.
130 * The packet's generation value will be set to the current generation number
131 * for ease of use. Remember to overwrite it with your own recorded generation
132 * number if you can not be sure that your code will not race with a bus reset.
134 * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
135 * failure.
137 struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
139 struct hpsb_packet *packet;
141 data_size = ((data_size + 3) & ~3);
143 packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC);
144 if (!packet)
145 return NULL;
147 packet->state = hpsb_unused;
148 packet->generation = -1;
149 INIT_LIST_HEAD(&packet->driver_list);
150 INIT_LIST_HEAD(&packet->queue);
151 atomic_set(&packet->refcnt, 1);
153 if (data_size) {
154 packet->data = packet->embedded_data;
155 packet->allocated_data_size = data_size;
157 return packet;
161 * hpsb_free_packet - free packet and data associated with it
162 * @packet: packet to free (is NULL safe)
164 * Frees @packet->data only if it was allocated through hpsb_alloc_packet().
166 void hpsb_free_packet(struct hpsb_packet *packet)
168 if (packet && atomic_dec_and_test(&packet->refcnt)) {
169 BUG_ON(!list_empty(&packet->driver_list) ||
170 !list_empty(&packet->queue));
171 kfree(packet);
176 * hpsb_reset_bus - initiate bus reset on the given host
177 * @host: host controller whose bus to reset
178 * @type: one of enum reset_types
180 * Returns 1 if bus reset already in progress, 0 otherwise.
182 int hpsb_reset_bus(struct hpsb_host *host, int type)
184 if (!host->in_bus_reset) {
185 host->driver->devctl(host, RESET_BUS, type);
186 return 0;
187 } else {
188 return 1;
193 * hpsb_read_cycle_timer - read cycle timer register and system time
194 * @host: host whose isochronous cycle timer register is read
195 * @cycle_timer: address of bitfield to return the register contents
196 * @local_time: address to return the system time
198 * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
199 * format is also read from non-OHCI controllers. * @local_time contains the
200 * system time in microseconds since the Epoch, read at the moment when the
201 * cycle timer was read.
203 * Return value: 0 for success or error number otherwise.
205 int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
206 u64 *local_time)
208 int ctr;
209 struct timeval tv;
210 unsigned long flags;
212 if (!host || !cycle_timer || !local_time)
213 return -EINVAL;
215 preempt_disable();
216 local_irq_save(flags);
218 ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
219 if (ctr)
220 do_gettimeofday(&tv);
222 local_irq_restore(flags);
223 preempt_enable();
225 if (!ctr)
226 return -EIO;
227 *cycle_timer = ctr;
228 *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
229 return 0;
233 * hpsb_bus_reset - notify a bus reset to the core
235 * For host driver module usage. Safe to use in interrupt context, although
236 * quite complex; so you may want to run it in the bottom rather than top half.
238 * Returns 1 if bus reset already in progress, 0 otherwise.
240 int hpsb_bus_reset(struct hpsb_host *host)
242 if (host->in_bus_reset) {
243 HPSB_NOTICE("%s called while bus reset already in progress",
244 __FUNCTION__);
245 return 1;
248 abort_requests(host);
249 host->in_bus_reset = 1;
250 host->irm_id = -1;
251 host->is_irm = 0;
252 host->busmgr_id = -1;
253 host->is_busmgr = 0;
254 host->is_cycmst = 0;
255 host->node_count = 0;
256 host->selfid_count = 0;
258 return 0;
263 * Verify num_of_selfids SelfIDs and return number of nodes. Return zero in
264 * case verification failed.
266 static int check_selfids(struct hpsb_host *host)
268 int nodeid = -1;
269 int rest_of_selfids = host->selfid_count;
270 struct selfid *sid = (struct selfid *)host->topology_map;
271 struct ext_selfid *esid;
272 int esid_seq = 23;
274 host->nodes_active = 0;
276 while (rest_of_selfids--) {
277 if (!sid->extended) {
278 nodeid++;
279 esid_seq = 0;
281 if (sid->phy_id != nodeid) {
282 HPSB_INFO("SelfIDs failed monotony check with "
283 "%d", sid->phy_id);
284 return 0;
287 if (sid->link_active) {
288 host->nodes_active++;
289 if (sid->contender)
290 host->irm_id = LOCAL_BUS | sid->phy_id;
292 } else {
293 esid = (struct ext_selfid *)sid;
295 if ((esid->phy_id != nodeid)
296 || (esid->seq_nr != esid_seq)) {
297 HPSB_INFO("SelfIDs failed monotony check with "
298 "%d/%d", esid->phy_id, esid->seq_nr);
299 return 0;
301 esid_seq++;
303 sid++;
306 esid = (struct ext_selfid *)(sid - 1);
307 while (esid->extended) {
308 if ((esid->porta == SELFID_PORT_PARENT) ||
309 (esid->portb == SELFID_PORT_PARENT) ||
310 (esid->portc == SELFID_PORT_PARENT) ||
311 (esid->portd == SELFID_PORT_PARENT) ||
312 (esid->porte == SELFID_PORT_PARENT) ||
313 (esid->portf == SELFID_PORT_PARENT) ||
314 (esid->portg == SELFID_PORT_PARENT) ||
315 (esid->porth == SELFID_PORT_PARENT)) {
316 HPSB_INFO("SelfIDs failed root check on "
317 "extended SelfID");
318 return 0;
320 esid--;
323 sid = (struct selfid *)esid;
324 if ((sid->port0 == SELFID_PORT_PARENT) ||
325 (sid->port1 == SELFID_PORT_PARENT) ||
326 (sid->port2 == SELFID_PORT_PARENT)) {
327 HPSB_INFO("SelfIDs failed root check");
328 return 0;
331 host->node_count = nodeid + 1;
332 return 1;
335 static void build_speed_map(struct hpsb_host *host, int nodecount)
337 u8 cldcnt[nodecount];
338 u8 *map = host->speed_map;
339 u8 *speedcap = host->speed;
340 struct selfid *sid;
341 struct ext_selfid *esid;
342 int i, j, n;
344 for (i = 0; i < (nodecount * 64); i += 64) {
345 for (j = 0; j < nodecount; j++) {
346 map[i+j] = IEEE1394_SPEED_MAX;
350 for (i = 0; i < nodecount; i++) {
351 cldcnt[i] = 0;
354 /* find direct children count and speed */
355 for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
356 n = nodecount - 1;
357 (void *)sid >= (void *)host->topology_map; sid--) {
358 if (sid->extended) {
359 esid = (struct ext_selfid *)sid;
361 if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
362 if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
363 if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
364 if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
365 if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
366 if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
367 if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
368 if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
369 } else {
370 if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
371 if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
372 if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
374 speedcap[n] = sid->speed;
375 n--;
379 /* set self mapping */
380 for (i = 0; i < nodecount; i++) {
381 map[64*i + i] = speedcap[i];
384 /* fix up direct children count to total children count;
385 * also fix up speedcaps for sibling and parent communication */
386 for (i = 1; i < nodecount; i++) {
387 for (j = cldcnt[i], n = i - 1; j > 0; j--) {
388 cldcnt[i] += cldcnt[n];
389 speedcap[n] = min(speedcap[n], speedcap[i]);
390 n -= cldcnt[n] + 1;
394 for (n = 0; n < nodecount; n++) {
395 for (i = n - cldcnt[n]; i <= n; i++) {
396 for (j = 0; j < (n - cldcnt[n]); j++) {
397 map[j*64 + i] = map[i*64 + j] =
398 min(map[i*64 + j], speedcap[n]);
400 for (j = n + 1; j < nodecount; j++) {
401 map[j*64 + i] = map[i*64 + j] =
402 min(map[i*64 + j], speedcap[n]);
407 #if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
408 /* assume maximum speed for 1394b PHYs, nodemgr will correct it */
409 for (n = 0; n < nodecount; n++)
410 if (speedcap[n] == SELFID_SPEED_UNKNOWN)
411 speedcap[n] = IEEE1394_SPEED_MAX;
412 #endif
417 * hpsb_selfid_received - hand over received selfid packet to the core
419 * For host driver module usage. Safe to use in interrupt context.
421 * The host driver should have done a successful complement check (second
422 * quadlet is complement of first) beforehand.
424 void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
426 if (host->in_bus_reset) {
427 HPSB_VERBOSE("Including SelfID 0x%x", sid);
428 host->topology_map[host->selfid_count++] = sid;
429 } else {
430 HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
431 sid, NODEID_TO_BUS(host->node_id));
436 * hpsb_selfid_complete - notify completion of SelfID stage to the core
438 * For host driver module usage. Safe to use in interrupt context, although
439 * quite complex; so you may want to run it in the bottom rather than top half.
441 * Notify completion of SelfID stage to the core and report new physical ID
442 * and whether host is root now.
444 void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
446 if (!host->in_bus_reset)
447 HPSB_NOTICE("SelfID completion called outside of bus reset!");
449 host->node_id = LOCAL_BUS | phyid;
450 host->is_root = isroot;
452 if (!check_selfids(host)) {
453 if (host->reset_retries++ < 20) {
454 /* selfid stage did not complete without error */
455 HPSB_NOTICE("Error in SelfID stage, resetting");
456 host->in_bus_reset = 0;
457 /* this should work from ohci1394 now... */
458 hpsb_reset_bus(host, LONG_RESET);
459 return;
460 } else {
461 HPSB_NOTICE("Stopping out-of-control reset loop");
462 HPSB_NOTICE("Warning - topology map and speed map will not be valid");
463 host->reset_retries = 0;
465 } else {
466 host->reset_retries = 0;
467 build_speed_map(host, host->node_count);
470 HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
471 "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
473 /* irm_id is kept up to date by check_selfids() */
474 if (host->irm_id == host->node_id) {
475 host->is_irm = 1;
476 } else {
477 host->is_busmgr = 0;
478 host->is_irm = 0;
481 if (isroot) {
482 host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
483 host->is_cycmst = 1;
485 atomic_inc(&host->generation);
486 host->in_bus_reset = 0;
487 highlevel_host_reset(host);
490 static spinlock_t pending_packets_lock = SPIN_LOCK_UNLOCKED;
493 * hpsb_packet_sent - notify core of sending a packet
495 * For host driver module usage. Safe to call from within a transmit packet
496 * routine.
498 * Notify core of sending a packet. Ackcode is the ack code returned for async
499 * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
500 * for other cases (internal errors that don't justify a panic).
502 void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
503 int ackcode)
505 unsigned long flags;
507 spin_lock_irqsave(&pending_packets_lock, flags);
509 packet->ack_code = ackcode;
511 if (packet->no_waiter || packet->state == hpsb_complete) {
512 /* if packet->no_waiter, must not have a tlabel allocated */
513 spin_unlock_irqrestore(&pending_packets_lock, flags);
514 hpsb_free_packet(packet);
515 return;
518 atomic_dec(&packet->refcnt); /* drop HC's reference */
519 /* here the packet must be on the host->pending_packets queue */
521 if (ackcode != ACK_PENDING || !packet->expect_response) {
522 packet->state = hpsb_complete;
523 list_del_init(&packet->queue);
524 spin_unlock_irqrestore(&pending_packets_lock, flags);
525 queue_packet_complete(packet);
526 return;
529 packet->state = hpsb_pending;
530 packet->sendtime = jiffies;
532 spin_unlock_irqrestore(&pending_packets_lock, flags);
534 mod_timer(&host->timeout, jiffies + host->timeout_interval);
538 * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
539 * @host: host that PHY config packet gets sent through
540 * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
541 * @gapcnt: gap count value to set (-1 = don't set gap count)
543 * This function sends a PHY config packet on the bus through the specified
544 * host.
546 * Return value: 0 for success or negative error number otherwise.
548 int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
550 struct hpsb_packet *packet;
551 quadlet_t d = 0;
552 int retval = 0;
554 if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
555 (rootid == -1 && gapcnt == -1)) {
556 HPSB_DEBUG("Invalid Parameter: rootid = %d gapcnt = %d",
557 rootid, gapcnt);
558 return -EINVAL;
561 if (rootid != -1)
562 d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
563 if (gapcnt != -1)
564 d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
566 packet = hpsb_make_phypacket(host, d);
567 if (!packet)
568 return -ENOMEM;
570 packet->generation = get_hpsb_generation(host);
571 retval = hpsb_send_packet_and_wait(packet);
572 hpsb_free_packet(packet);
574 return retval;
578 * hpsb_send_packet - transmit a packet on the bus
579 * @packet: packet to send
581 * The packet is sent through the host specified in the packet->host field.
582 * Before sending, the packet's transmit speed is automatically determined
583 * using the local speed map when it is an async, non-broadcast packet.
585 * Possibilities for failure are that host is either not initialized, in bus
586 * reset, the packet's generation number doesn't match the current generation
587 * number or the host reports a transmit error.
589 * Return value: 0 on success, negative errno on failure.
591 int hpsb_send_packet(struct hpsb_packet *packet)
593 struct hpsb_host *host = packet->host;
595 if (host->is_shutdown)
596 return -EINVAL;
597 if (host->in_bus_reset ||
598 (packet->generation != get_hpsb_generation(host)))
599 return -EAGAIN;
601 packet->state = hpsb_queued;
603 /* This just seems silly to me */
604 WARN_ON(packet->no_waiter && packet->expect_response);
606 if (!packet->no_waiter || packet->expect_response) {
607 unsigned long flags;
609 atomic_inc(&packet->refcnt);
610 /* Set the initial "sendtime" to 10 seconds from now, to
611 prevent premature expiry. If a packet takes more than
612 10 seconds to hit the wire, we have bigger problems :) */
613 packet->sendtime = jiffies + 10 * HZ;
614 spin_lock_irqsave(&pending_packets_lock, flags);
615 list_add_tail(&packet->queue, &host->pending_packets);
616 spin_unlock_irqrestore(&pending_packets_lock, flags);
619 if (packet->node_id == host->node_id) {
620 /* it is a local request, so handle it locally */
622 quadlet_t *data;
623 size_t size = packet->data_size + packet->header_size;
625 data = kmalloc(size, GFP_ATOMIC);
626 if (!data) {
627 HPSB_ERR("unable to allocate memory for concatenating header and data");
628 return -ENOMEM;
631 memcpy(data, packet->header, packet->header_size);
633 if (packet->data_size)
634 memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
636 dump_packet("send packet local", packet->header, packet->header_size, -1);
638 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
639 hpsb_packet_received(host, data, size, 0);
641 kfree(data);
643 return 0;
646 if (packet->type == hpsb_async &&
647 NODEID_TO_NODE(packet->node_id) != ALL_NODES)
648 packet->speed_code =
649 host->speed[NODEID_TO_NODE(packet->node_id)];
651 dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
653 return host->driver->transmit_packet(host, packet);
656 /* We could just use complete() directly as the packet complete
657 * callback, but this is more typesafe, in the sense that we get a
658 * compiler error if the prototype for complete() changes. */
660 static void complete_packet(void *data)
662 complete((struct completion *) data);
666 * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
667 * @packet: packet to send
669 * Return value: 0 on success, negative errno on failure.
671 int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
673 struct completion done;
674 int retval;
676 init_completion(&done);
677 hpsb_set_packet_complete_task(packet, complete_packet, &done);
678 retval = hpsb_send_packet(packet);
679 if (retval == 0)
680 wait_for_completion(&done);
682 return retval;
685 static void send_packet_nocare(struct hpsb_packet *packet)
687 if (hpsb_send_packet(packet) < 0) {
688 hpsb_free_packet(packet);
692 static size_t packet_size_to_data_size(size_t packet_size, size_t header_size,
693 size_t buffer_size, int tcode)
695 size_t ret = packet_size <= header_size ? 0 : packet_size - header_size;
697 if (unlikely(ret > buffer_size))
698 ret = buffer_size;
700 if (unlikely(ret + header_size != packet_size))
701 HPSB_ERR("unexpected packet size %zd (tcode %d), bug?",
702 packet_size, tcode);
703 return ret;
706 static void handle_packet_response(struct hpsb_host *host, int tcode,
707 quadlet_t *data, size_t size)
709 struct hpsb_packet *packet;
710 int tlabel = (data[0] >> 10) & 0x3f;
711 size_t header_size;
712 unsigned long flags;
714 spin_lock_irqsave(&pending_packets_lock, flags);
716 list_for_each_entry(packet, &host->pending_packets, queue)
717 if (packet->tlabel == tlabel &&
718 packet->node_id == (data[1] >> 16))
719 goto found;
721 spin_unlock_irqrestore(&pending_packets_lock, flags);
722 HPSB_DEBUG("unsolicited response packet received - %s",
723 "no tlabel match");
724 dump_packet("contents", data, 16, -1);
725 return;
727 found:
728 switch (packet->tcode) {
729 case TCODE_WRITEQ:
730 case TCODE_WRITEB:
731 if (unlikely(tcode != TCODE_WRITE_RESPONSE))
732 break;
733 header_size = 12;
734 size = 0;
735 goto dequeue;
737 case TCODE_READQ:
738 if (unlikely(tcode != TCODE_READQ_RESPONSE))
739 break;
740 header_size = 16;
741 size = 0;
742 goto dequeue;
744 case TCODE_READB:
745 if (unlikely(tcode != TCODE_READB_RESPONSE))
746 break;
747 header_size = 16;
748 size = packet_size_to_data_size(size, header_size,
749 packet->allocated_data_size,
750 tcode);
751 goto dequeue;
753 case TCODE_LOCK_REQUEST:
754 if (unlikely(tcode != TCODE_LOCK_RESPONSE))
755 break;
756 header_size = 16;
757 size = packet_size_to_data_size(min(size, (size_t)(16 + 8)),
758 header_size,
759 packet->allocated_data_size,
760 tcode);
761 goto dequeue;
764 spin_unlock_irqrestore(&pending_packets_lock, flags);
765 HPSB_DEBUG("unsolicited response packet received - %s",
766 "tcode mismatch");
767 dump_packet("contents", data, 16, -1);
768 return;
770 dequeue:
771 list_del_init(&packet->queue);
772 spin_unlock_irqrestore(&pending_packets_lock, flags);
774 if (packet->state == hpsb_queued) {
775 packet->sendtime = jiffies;
776 packet->ack_code = ACK_PENDING;
778 packet->state = hpsb_complete;
780 memcpy(packet->header, data, header_size);
781 if (size)
782 memcpy(packet->data, data + 4, size);
784 queue_packet_complete(packet);
788 static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
789 quadlet_t *data, size_t dsize)
791 struct hpsb_packet *p;
793 p = hpsb_alloc_packet(dsize);
794 if (unlikely(p == NULL)) {
795 /* FIXME - send data_error response */
796 HPSB_ERR("out of memory, cannot send response packet");
797 return NULL;
800 p->type = hpsb_async;
801 p->state = hpsb_unused;
802 p->host = host;
803 p->node_id = data[1] >> 16;
804 p->tlabel = (data[0] >> 10) & 0x3f;
805 p->no_waiter = 1;
807 p->generation = get_hpsb_generation(host);
809 if (dsize % 4)
810 p->data[dsize / 4] = 0;
812 return p;
815 #define PREP_ASYNC_HEAD_RCODE(tc) \
816 packet->tcode = tc; \
817 packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
818 | (1 << 8) | (tc << 4); \
819 packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
820 packet->header[2] = 0
822 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
823 quadlet_t data)
825 PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
826 packet->header[3] = data;
827 packet->header_size = 16;
828 packet->data_size = 0;
831 static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
832 int length)
834 if (rcode != RCODE_COMPLETE)
835 length = 0;
837 PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
838 packet->header[3] = length << 16;
839 packet->header_size = 16;
840 packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
843 static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
845 PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
846 packet->header_size = 12;
847 packet->data_size = 0;
850 static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
851 int length)
853 if (rcode != RCODE_COMPLETE)
854 length = 0;
856 PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
857 packet->header[3] = (length << 16) | extcode;
858 packet->header_size = 16;
859 packet->data_size = length;
862 static void handle_incoming_packet(struct hpsb_host *host, int tcode,
863 quadlet_t *data, size_t size,
864 int write_acked)
866 struct hpsb_packet *packet;
867 int length, rcode, extcode;
868 quadlet_t buffer;
869 nodeid_t source = data[1] >> 16;
870 nodeid_t dest = data[0] >> 16;
871 u16 flags = (u16) data[0];
872 u64 addr;
874 /* FIXME?
875 * Out-of-bounds lengths are left for highlevel_read|write to cap. */
877 switch (tcode) {
878 case TCODE_WRITEQ:
879 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
880 rcode = highlevel_write(host, source, dest, data + 3,
881 addr, 4, flags);
882 goto handle_write_request;
884 case TCODE_WRITEB:
885 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
886 rcode = highlevel_write(host, source, dest, data + 4,
887 addr, data[3] >> 16, flags);
888 handle_write_request:
889 if (rcode < 0 || write_acked ||
890 NODEID_TO_NODE(data[0] >> 16) == NODE_MASK)
891 return;
892 /* not a broadcast write, reply */
893 packet = create_reply_packet(host, data, 0);
894 if (packet) {
895 fill_async_write_resp(packet, rcode);
896 send_packet_nocare(packet);
898 return;
900 case TCODE_READQ:
901 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
902 rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
903 if (rcode < 0)
904 return;
906 packet = create_reply_packet(host, data, 0);
907 if (packet) {
908 fill_async_readquad_resp(packet, rcode, buffer);
909 send_packet_nocare(packet);
911 return;
913 case TCODE_READB:
914 length = data[3] >> 16;
915 packet = create_reply_packet(host, data, length);
916 if (!packet)
917 return;
919 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
920 rcode = highlevel_read(host, source, packet->data, addr,
921 length, flags);
922 if (rcode < 0) {
923 hpsb_free_packet(packet);
924 return;
926 fill_async_readblock_resp(packet, rcode, length);
927 send_packet_nocare(packet);
928 return;
930 case TCODE_LOCK_REQUEST:
931 length = data[3] >> 16;
932 extcode = data[3] & 0xffff;
933 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
935 packet = create_reply_packet(host, data, 8);
936 if (!packet)
937 return;
939 if (extcode == 0 || extcode >= 7) {
940 /* let switch default handle error */
941 length = 0;
944 switch (length) {
945 case 4:
946 rcode = highlevel_lock(host, source, packet->data, addr,
947 data[4], 0, extcode, flags);
948 fill_async_lock_resp(packet, rcode, extcode, 4);
949 break;
950 case 8:
951 if (extcode != EXTCODE_FETCH_ADD &&
952 extcode != EXTCODE_LITTLE_ADD) {
953 rcode = highlevel_lock(host, source,
954 packet->data, addr,
955 data[5], data[4],
956 extcode, flags);
957 fill_async_lock_resp(packet, rcode, extcode, 4);
958 } else {
959 rcode = highlevel_lock64(host, source,
960 (octlet_t *)packet->data, addr,
961 *(octlet_t *)(data + 4), 0ULL,
962 extcode, flags);
963 fill_async_lock_resp(packet, rcode, extcode, 8);
965 break;
966 case 16:
967 rcode = highlevel_lock64(host, source,
968 (octlet_t *)packet->data, addr,
969 *(octlet_t *)(data + 6),
970 *(octlet_t *)(data + 4),
971 extcode, flags);
972 fill_async_lock_resp(packet, rcode, extcode, 8);
973 break;
974 default:
975 rcode = RCODE_TYPE_ERROR;
976 fill_async_lock_resp(packet, rcode, extcode, 0);
979 if (rcode < 0)
980 hpsb_free_packet(packet);
981 else
982 send_packet_nocare(packet);
983 return;
988 * hpsb_packet_received - hand over received packet to the core
990 * For host driver module usage.
992 * The contents of data are expected to be the full packet but with the CRCs
993 * left out (data block follows header immediately), with the header (i.e. the
994 * first four quadlets) in machine byte order and the data block in big endian.
995 * *@data can be safely overwritten after this call.
997 * If the packet is a write request, @write_acked is to be set to true if it was
998 * ack_complete'd already, false otherwise. This argument is ignored for any
999 * other packet type.
1001 void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
1002 int write_acked)
1004 int tcode;
1006 if (unlikely(host->in_bus_reset)) {
1007 HPSB_DEBUG("received packet during reset; ignoring");
1008 return;
1011 dump_packet("received packet", data, size, -1);
1013 tcode = (data[0] >> 4) & 0xf;
1015 switch (tcode) {
1016 case TCODE_WRITE_RESPONSE:
1017 case TCODE_READQ_RESPONSE:
1018 case TCODE_READB_RESPONSE:
1019 case TCODE_LOCK_RESPONSE:
1020 handle_packet_response(host, tcode, data, size);
1021 break;
1023 case TCODE_WRITEQ:
1024 case TCODE_WRITEB:
1025 case TCODE_READQ:
1026 case TCODE_READB:
1027 case TCODE_LOCK_REQUEST:
1028 handle_incoming_packet(host, tcode, data, size, write_acked);
1029 break;
1031 case TCODE_CYCLE_START:
1032 /* simply ignore this packet if it is passed on */
1033 break;
1035 default:
1036 HPSB_DEBUG("received packet with bogus transaction code %d",
1037 tcode);
1038 break;
1042 static void abort_requests(struct hpsb_host *host)
1044 struct hpsb_packet *packet, *p;
1045 struct list_head tmp;
1046 unsigned long flags;
1048 host->driver->devctl(host, CANCEL_REQUESTS, 0);
1050 INIT_LIST_HEAD(&tmp);
1051 spin_lock_irqsave(&pending_packets_lock, flags);
1052 list_splice_init(&host->pending_packets, &tmp);
1053 spin_unlock_irqrestore(&pending_packets_lock, flags);
1055 list_for_each_entry_safe(packet, p, &tmp, queue) {
1056 list_del_init(&packet->queue);
1057 packet->state = hpsb_complete;
1058 packet->ack_code = ACKX_ABORTED;
1059 queue_packet_complete(packet);
1063 void abort_timedouts(unsigned long __opaque)
1065 struct hpsb_host *host = (struct hpsb_host *)__opaque;
1066 struct hpsb_packet *packet, *p;
1067 struct list_head tmp;
1068 unsigned long flags, expire, j;
1070 spin_lock_irqsave(&host->csr.lock, flags);
1071 expire = host->csr.expire;
1072 spin_unlock_irqrestore(&host->csr.lock, flags);
1074 j = jiffies;
1075 INIT_LIST_HEAD(&tmp);
1076 spin_lock_irqsave(&pending_packets_lock, flags);
1078 list_for_each_entry_safe(packet, p, &host->pending_packets, queue) {
1079 if (time_before(packet->sendtime + expire, j))
1080 list_move_tail(&packet->queue, &tmp);
1081 else
1082 /* Since packets are added to the tail, the oldest
1083 * ones are first, always. When we get to one that
1084 * isn't timed out, the rest aren't either. */
1085 break;
1087 if (!list_empty(&host->pending_packets))
1088 mod_timer(&host->timeout, j + host->timeout_interval);
1090 spin_unlock_irqrestore(&pending_packets_lock, flags);
1092 list_for_each_entry_safe(packet, p, &tmp, queue) {
1093 list_del_init(&packet->queue);
1094 packet->state = hpsb_complete;
1095 packet->ack_code = ACKX_TIMEOUT;
1096 queue_packet_complete(packet);
1100 static struct task_struct *khpsbpkt_thread;
1101 static LIST_HEAD(hpsbpkt_queue);
1103 static void queue_packet_complete(struct hpsb_packet *packet)
1105 unsigned long flags;
1107 if (packet->no_waiter) {
1108 hpsb_free_packet(packet);
1109 return;
1111 if (packet->complete_routine != NULL) {
1112 spin_lock_irqsave(&pending_packets_lock, flags);
1113 list_add_tail(&packet->queue, &hpsbpkt_queue);
1114 spin_unlock_irqrestore(&pending_packets_lock, flags);
1115 wake_up_process(khpsbpkt_thread);
1117 return;
1121 * Kernel thread which handles packets that are completed. This way the
1122 * packet's "complete" function is asynchronously run in process context.
1123 * Only packets which have a "complete" function may be sent here.
1125 static int hpsbpkt_thread(void *__hi)
1127 struct hpsb_packet *packet, *p;
1128 struct list_head tmp;
1129 int may_schedule;
1131 current->flags |= PF_NOFREEZE;
1133 while (!kthread_should_stop()) {
1135 INIT_LIST_HEAD(&tmp);
1136 spin_lock_irq(&pending_packets_lock);
1137 list_splice_init(&hpsbpkt_queue, &tmp);
1138 spin_unlock_irq(&pending_packets_lock);
1140 list_for_each_entry_safe(packet, p, &tmp, queue) {
1141 list_del_init(&packet->queue);
1142 packet->complete_routine(packet->complete_data);
1145 set_current_state(TASK_INTERRUPTIBLE);
1146 spin_lock_irq(&pending_packets_lock);
1147 may_schedule = list_empty(&hpsbpkt_queue);
1148 spin_unlock_irq(&pending_packets_lock);
1149 if (may_schedule)
1150 schedule();
1151 __set_current_state(TASK_RUNNING);
1153 return 0;
1156 static int __init ieee1394_init(void)
1158 int i, ret;
1160 /* non-fatal error */
1161 if (hpsb_init_config_roms()) {
1162 HPSB_ERR("Failed to initialize some config rom entries.\n");
1163 HPSB_ERR("Some features may not be available\n");
1166 khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
1167 if (IS_ERR(khpsbpkt_thread)) {
1168 HPSB_ERR("Failed to start hpsbpkt thread!\n");
1169 ret = PTR_ERR(khpsbpkt_thread);
1170 goto exit_cleanup_config_roms;
1173 if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
1174 HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
1175 ret = -ENODEV;
1176 goto exit_release_kernel_thread;
1179 ret = bus_register(&ieee1394_bus_type);
1180 if (ret < 0) {
1181 HPSB_INFO("bus register failed");
1182 goto release_chrdev;
1185 for (i = 0; fw_bus_attrs[i]; i++) {
1186 ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1187 if (ret < 0) {
1188 while (i >= 0) {
1189 bus_remove_file(&ieee1394_bus_type,
1190 fw_bus_attrs[i--]);
1192 bus_unregister(&ieee1394_bus_type);
1193 goto release_chrdev;
1197 ret = class_register(&hpsb_host_class);
1198 if (ret < 0)
1199 goto release_all_bus;
1201 hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
1202 if (IS_ERR(hpsb_protocol_class)) {
1203 ret = PTR_ERR(hpsb_protocol_class);
1204 goto release_class_host;
1207 ret = init_csr();
1208 if (ret) {
1209 HPSB_INFO("init csr failed");
1210 ret = -ENOMEM;
1211 goto release_class_protocol;
1214 if (disable_nodemgr) {
1215 HPSB_INFO("nodemgr and IRM functionality disabled");
1216 /* We shouldn't contend for IRM with nodemgr disabled, since
1217 nodemgr implements functionality required of ieee1394a-2000
1218 IRMs */
1219 hpsb_disable_irm = 1;
1221 return 0;
1224 if (hpsb_disable_irm) {
1225 HPSB_INFO("IRM functionality disabled");
1228 ret = init_ieee1394_nodemgr();
1229 if (ret < 0) {
1230 HPSB_INFO("init nodemgr failed");
1231 goto cleanup_csr;
1234 return 0;
1236 cleanup_csr:
1237 cleanup_csr();
1238 release_class_protocol:
1239 class_destroy(hpsb_protocol_class);
1240 release_class_host:
1241 class_unregister(&hpsb_host_class);
1242 release_all_bus:
1243 for (i = 0; fw_bus_attrs[i]; i++)
1244 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1245 bus_unregister(&ieee1394_bus_type);
1246 release_chrdev:
1247 unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1248 exit_release_kernel_thread:
1249 kthread_stop(khpsbpkt_thread);
1250 exit_cleanup_config_roms:
1251 hpsb_cleanup_config_roms();
1252 return ret;
1255 static void __exit ieee1394_cleanup(void)
1257 int i;
1259 if (!disable_nodemgr)
1260 cleanup_ieee1394_nodemgr();
1262 cleanup_csr();
1264 class_destroy(hpsb_protocol_class);
1265 class_unregister(&hpsb_host_class);
1266 for (i = 0; fw_bus_attrs[i]; i++)
1267 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1268 bus_unregister(&ieee1394_bus_type);
1270 kthread_stop(khpsbpkt_thread);
1272 hpsb_cleanup_config_roms();
1274 unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1277 fs_initcall(ieee1394_init); /* same as ohci1394 */
1278 module_exit(ieee1394_cleanup);
1280 /* Exported symbols */
1282 /** hosts.c **/
1283 EXPORT_SYMBOL(hpsb_alloc_host);
1284 EXPORT_SYMBOL(hpsb_add_host);
1285 EXPORT_SYMBOL(hpsb_resume_host);
1286 EXPORT_SYMBOL(hpsb_remove_host);
1287 EXPORT_SYMBOL(hpsb_update_config_rom_image);
1289 /** ieee1394_core.c **/
1290 EXPORT_SYMBOL(hpsb_speedto_str);
1291 EXPORT_SYMBOL(hpsb_protocol_class);
1292 EXPORT_SYMBOL(hpsb_set_packet_complete_task);
1293 EXPORT_SYMBOL(hpsb_alloc_packet);
1294 EXPORT_SYMBOL(hpsb_free_packet);
1295 EXPORT_SYMBOL(hpsb_send_packet);
1296 EXPORT_SYMBOL(hpsb_reset_bus);
1297 EXPORT_SYMBOL(hpsb_read_cycle_timer);
1298 EXPORT_SYMBOL(hpsb_bus_reset);
1299 EXPORT_SYMBOL(hpsb_selfid_received);
1300 EXPORT_SYMBOL(hpsb_selfid_complete);
1301 EXPORT_SYMBOL(hpsb_packet_sent);
1302 EXPORT_SYMBOL(hpsb_packet_received);
1303 EXPORT_SYMBOL_GPL(hpsb_disable_irm);
1305 /** ieee1394_transactions.c **/
1306 EXPORT_SYMBOL(hpsb_get_tlabel);
1307 EXPORT_SYMBOL(hpsb_free_tlabel);
1308 EXPORT_SYMBOL(hpsb_make_readpacket);
1309 EXPORT_SYMBOL(hpsb_make_writepacket);
1310 EXPORT_SYMBOL(hpsb_make_streampacket);
1311 EXPORT_SYMBOL(hpsb_make_lockpacket);
1312 EXPORT_SYMBOL(hpsb_make_lock64packet);
1313 EXPORT_SYMBOL(hpsb_make_phypacket);
1314 EXPORT_SYMBOL(hpsb_read);
1315 EXPORT_SYMBOL(hpsb_write);
1316 EXPORT_SYMBOL(hpsb_packet_success);
1318 /** highlevel.c **/
1319 EXPORT_SYMBOL(hpsb_register_highlevel);
1320 EXPORT_SYMBOL(hpsb_unregister_highlevel);
1321 EXPORT_SYMBOL(hpsb_register_addrspace);
1322 EXPORT_SYMBOL(hpsb_unregister_addrspace);
1323 EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
1324 EXPORT_SYMBOL(hpsb_get_hostinfo);
1325 EXPORT_SYMBOL(hpsb_create_hostinfo);
1326 EXPORT_SYMBOL(hpsb_destroy_hostinfo);
1327 EXPORT_SYMBOL(hpsb_set_hostinfo_key);
1328 EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
1329 EXPORT_SYMBOL(hpsb_set_hostinfo);
1331 /** nodemgr.c **/
1332 EXPORT_SYMBOL(hpsb_node_fill_packet);
1333 EXPORT_SYMBOL(hpsb_node_write);
1334 EXPORT_SYMBOL(__hpsb_register_protocol);
1335 EXPORT_SYMBOL(hpsb_unregister_protocol);
1337 /** csr.c **/
1338 EXPORT_SYMBOL(hpsb_update_config_rom);
1340 /** dma.c **/
1341 EXPORT_SYMBOL(dma_prog_region_init);
1342 EXPORT_SYMBOL(dma_prog_region_alloc);
1343 EXPORT_SYMBOL(dma_prog_region_free);
1344 EXPORT_SYMBOL(dma_region_init);
1345 EXPORT_SYMBOL(dma_region_alloc);
1346 EXPORT_SYMBOL(dma_region_free);
1347 EXPORT_SYMBOL(dma_region_sync_for_cpu);
1348 EXPORT_SYMBOL(dma_region_sync_for_device);
1349 EXPORT_SYMBOL(dma_region_mmap);
1350 EXPORT_SYMBOL(dma_region_offset_to_bus);
1352 /** iso.c **/
1353 EXPORT_SYMBOL(hpsb_iso_xmit_init);
1354 EXPORT_SYMBOL(hpsb_iso_recv_init);
1355 EXPORT_SYMBOL(hpsb_iso_xmit_start);
1356 EXPORT_SYMBOL(hpsb_iso_recv_start);
1357 EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
1358 EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
1359 EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
1360 EXPORT_SYMBOL(hpsb_iso_stop);
1361 EXPORT_SYMBOL(hpsb_iso_shutdown);
1362 EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
1363 EXPORT_SYMBOL(hpsb_iso_xmit_sync);
1364 EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
1365 EXPORT_SYMBOL(hpsb_iso_n_ready);
1366 EXPORT_SYMBOL(hpsb_iso_packet_sent);
1367 EXPORT_SYMBOL(hpsb_iso_packet_received);
1368 EXPORT_SYMBOL(hpsb_iso_wake);
1369 EXPORT_SYMBOL(hpsb_iso_recv_flush);
1371 /** csr1212.c **/
1372 EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
1373 EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
1374 EXPORT_SYMBOL(csr1212_get_keyval);
1375 EXPORT_SYMBOL(csr1212_new_directory);
1376 EXPORT_SYMBOL(csr1212_parse_keyval);
1377 EXPORT_SYMBOL(csr1212_read);
1378 EXPORT_SYMBOL(csr1212_release_keyval);