2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
93 * freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
99 * the fast path and disables lockless freelists.
102 #define FROZEN (1 << PG_active)
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
110 static inline int SlabFrozen(struct page
*page
)
112 return page
->flags
& FROZEN
;
115 static inline void SetSlabFrozen(struct page
*page
)
117 page
->flags
|= FROZEN
;
120 static inline void ClearSlabFrozen(struct page
*page
)
122 page
->flags
&= ~FROZEN
;
125 static inline int SlabDebug(struct page
*page
)
127 return page
->flags
& SLABDEBUG
;
130 static inline void SetSlabDebug(struct page
*page
)
132 page
->flags
|= SLABDEBUG
;
135 static inline void ClearSlabDebug(struct page
*page
)
137 page
->flags
&= ~SLABDEBUG
;
141 * Issues still to be resolved:
143 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 * - Variable sizing of the per node arrays
148 /* Enable to test recovery from slab corruption on boot */
149 #undef SLUB_RESILIENCY_TEST
154 * Small page size. Make sure that we do not fragment memory
156 #define DEFAULT_MAX_ORDER 1
157 #define DEFAULT_MIN_OBJECTS 4
162 * Large page machines are customarily able to handle larger
165 #define DEFAULT_MAX_ORDER 2
166 #define DEFAULT_MIN_OBJECTS 8
171 * Mininum number of partial slabs. These will be left on the partial
172 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 #define MIN_PARTIAL 2
177 * Maximum number of desirable partial slabs.
178 * The existence of more partial slabs makes kmem_cache_shrink
179 * sort the partial list by the number of objects in the.
181 #define MAX_PARTIAL 10
183 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
184 SLAB_POISON | SLAB_STORE_USER)
187 * Set of flags that will prevent slab merging
189 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
190 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
195 #ifndef ARCH_KMALLOC_MINALIGN
196 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
199 #ifndef ARCH_SLAB_MINALIGN
200 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
203 /* Internal SLUB flags */
204 #define __OBJECT_POISON 0x80000000 /* Poison object */
205 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 /* Not all arches define cache_line_size */
208 #ifndef cache_line_size
209 #define cache_line_size() L1_CACHE_BYTES
212 static int kmem_size
= sizeof(struct kmem_cache
);
215 static struct notifier_block slab_notifier
;
219 DOWN
, /* No slab functionality available */
220 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
221 UP
, /* Everything works but does not show up in sysfs */
225 /* A list of all slab caches on the system */
226 static DECLARE_RWSEM(slub_lock
);
227 static LIST_HEAD(slab_caches
);
230 * Tracking user of a slab.
233 void *addr
; /* Called from address */
234 int cpu
; /* Was running on cpu */
235 int pid
; /* Pid context */
236 unsigned long when
; /* When did the operation occur */
239 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
241 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
242 static int sysfs_slab_add(struct kmem_cache
*);
243 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
244 static void sysfs_slab_remove(struct kmem_cache
*);
246 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
247 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
249 static inline void sysfs_slab_remove(struct kmem_cache
*s
) {}
252 /********************************************************************
253 * Core slab cache functions
254 *******************************************************************/
256 int slab_is_available(void)
258 return slab_state
>= UP
;
261 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
264 return s
->node
[node
];
266 return &s
->local_node
;
270 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
273 return s
->cpu_slab
[cpu
];
279 static inline int check_valid_pointer(struct kmem_cache
*s
,
280 struct page
*page
, const void *object
)
287 base
= page_address(page
);
288 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
289 (object
- base
) % s
->size
) {
297 * Slow version of get and set free pointer.
299 * This version requires touching the cache lines of kmem_cache which
300 * we avoid to do in the fast alloc free paths. There we obtain the offset
301 * from the page struct.
303 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
305 return *(void **)(object
+ s
->offset
);
308 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
310 *(void **)(object
+ s
->offset
) = fp
;
313 /* Loop over all objects in a slab */
314 #define for_each_object(__p, __s, __addr) \
315 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
319 #define for_each_free_object(__p, __s, __free) \
320 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322 /* Determine object index from a given position */
323 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
325 return (p
- addr
) / s
->size
;
328 #ifdef CONFIG_SLUB_DEBUG
332 #ifdef CONFIG_SLUB_DEBUG_ON
333 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
335 static int slub_debug
;
338 static char *slub_debug_slabs
;
343 static void print_section(char *text
, u8
*addr
, unsigned int length
)
351 for (i
= 0; i
< length
; i
++) {
353 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
356 printk(" %02x", addr
[i
]);
358 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
360 printk(" %s\n",ascii
);
371 printk(" %s\n", ascii
);
375 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
376 enum track_item alloc
)
381 p
= object
+ s
->offset
+ sizeof(void *);
383 p
= object
+ s
->inuse
;
388 static void set_track(struct kmem_cache
*s
, void *object
,
389 enum track_item alloc
, void *addr
)
394 p
= object
+ s
->offset
+ sizeof(void *);
396 p
= object
+ s
->inuse
;
401 p
->cpu
= smp_processor_id();
402 p
->pid
= current
? current
->pid
: -1;
405 memset(p
, 0, sizeof(struct track
));
408 static void init_tracking(struct kmem_cache
*s
, void *object
)
410 if (!(s
->flags
& SLAB_STORE_USER
))
413 set_track(s
, object
, TRACK_FREE
, NULL
);
414 set_track(s
, object
, TRACK_ALLOC
, NULL
);
417 static void print_track(const char *s
, struct track
*t
)
422 printk(KERN_ERR
"INFO: %s in ", s
);
423 __print_symbol("%s", (unsigned long)t
->addr
);
424 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
427 static void print_tracking(struct kmem_cache
*s
, void *object
)
429 if (!(s
->flags
& SLAB_STORE_USER
))
432 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
433 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
436 static void print_page_info(struct page
*page
)
438 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
439 page
, page
->inuse
, page
->freelist
, page
->flags
);
443 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
449 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
451 printk(KERN_ERR
"========================================"
452 "=====================================\n");
453 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
454 printk(KERN_ERR
"----------------------------------------"
455 "-------------------------------------\n\n");
458 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
464 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
466 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
469 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
471 unsigned int off
; /* Offset of last byte */
472 u8
*addr
= page_address(page
);
474 print_tracking(s
, p
);
476 print_page_info(page
);
478 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
479 p
, p
- addr
, get_freepointer(s
, p
));
482 print_section("Bytes b4", p
- 16, 16);
484 print_section("Object", p
, min(s
->objsize
, 128));
486 if (s
->flags
& SLAB_RED_ZONE
)
487 print_section("Redzone", p
+ s
->objsize
,
488 s
->inuse
- s
->objsize
);
491 off
= s
->offset
+ sizeof(void *);
495 if (s
->flags
& SLAB_STORE_USER
)
496 off
+= 2 * sizeof(struct track
);
499 /* Beginning of the filler is the free pointer */
500 print_section("Padding", p
+ off
, s
->size
- off
);
505 static void object_err(struct kmem_cache
*s
, struct page
*page
,
506 u8
*object
, char *reason
)
509 print_trailer(s
, page
, object
);
512 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
518 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
521 print_page_info(page
);
525 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
529 if (s
->flags
& __OBJECT_POISON
) {
530 memset(p
, POISON_FREE
, s
->objsize
- 1);
531 p
[s
->objsize
-1] = POISON_END
;
534 if (s
->flags
& SLAB_RED_ZONE
)
535 memset(p
+ s
->objsize
,
536 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
537 s
->inuse
- s
->objsize
);
540 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
543 if (*start
!= (u8
)value
)
551 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
552 void *from
, void *to
)
554 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
555 memset(from
, data
, to
- from
);
558 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
559 u8
*object
, char *what
,
560 u8
* start
, unsigned int value
, unsigned int bytes
)
565 fault
= check_bytes(start
, value
, bytes
);
570 while (end
> fault
&& end
[-1] == value
)
573 slab_bug(s
, "%s overwritten", what
);
574 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
575 fault
, end
- 1, fault
[0], value
);
576 print_trailer(s
, page
, object
);
578 restore_bytes(s
, what
, value
, fault
, end
);
586 * Bytes of the object to be managed.
587 * If the freepointer may overlay the object then the free
588 * pointer is the first word of the object.
590 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
593 * object + s->objsize
594 * Padding to reach word boundary. This is also used for Redzoning.
595 * Padding is extended by another word if Redzoning is enabled and
598 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
599 * 0xcc (RED_ACTIVE) for objects in use.
602 * Meta data starts here.
604 * A. Free pointer (if we cannot overwrite object on free)
605 * B. Tracking data for SLAB_STORE_USER
606 * C. Padding to reach required alignment boundary or at mininum
607 * one word if debuggin is on to be able to detect writes
608 * before the word boundary.
610 * Padding is done using 0x5a (POISON_INUSE)
613 * Nothing is used beyond s->size.
615 * If slabcaches are merged then the objsize and inuse boundaries are mostly
616 * ignored. And therefore no slab options that rely on these boundaries
617 * may be used with merged slabcaches.
620 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
622 unsigned long off
= s
->inuse
; /* The end of info */
625 /* Freepointer is placed after the object. */
626 off
+= sizeof(void *);
628 if (s
->flags
& SLAB_STORE_USER
)
629 /* We also have user information there */
630 off
+= 2 * sizeof(struct track
);
635 return check_bytes_and_report(s
, page
, p
, "Object padding",
636 p
+ off
, POISON_INUSE
, s
->size
- off
);
639 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
647 if (!(s
->flags
& SLAB_POISON
))
650 start
= page_address(page
);
651 end
= start
+ (PAGE_SIZE
<< s
->order
);
652 length
= s
->objects
* s
->size
;
653 remainder
= end
- (start
+ length
);
657 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
660 while (end
> fault
&& end
[-1] == POISON_INUSE
)
663 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
664 print_section("Padding", start
, length
);
666 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
670 static int check_object(struct kmem_cache
*s
, struct page
*page
,
671 void *object
, int active
)
674 u8
*endobject
= object
+ s
->objsize
;
676 if (s
->flags
& SLAB_RED_ZONE
) {
678 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
680 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
681 endobject
, red
, s
->inuse
- s
->objsize
))
684 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
)
685 check_bytes_and_report(s
, page
, p
, "Alignment padding", endobject
,
686 POISON_INUSE
, s
->inuse
- s
->objsize
);
689 if (s
->flags
& SLAB_POISON
) {
690 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
691 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
692 POISON_FREE
, s
->objsize
- 1) ||
693 !check_bytes_and_report(s
, page
, p
, "Poison",
694 p
+ s
->objsize
-1, POISON_END
, 1)))
697 * check_pad_bytes cleans up on its own.
699 check_pad_bytes(s
, page
, p
);
702 if (!s
->offset
&& active
)
704 * Object and freepointer overlap. Cannot check
705 * freepointer while object is allocated.
709 /* Check free pointer validity */
710 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
711 object_err(s
, page
, p
, "Freepointer corrupt");
713 * No choice but to zap it and thus loose the remainder
714 * of the free objects in this slab. May cause
715 * another error because the object count is now wrong.
717 set_freepointer(s
, p
, NULL
);
723 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
725 VM_BUG_ON(!irqs_disabled());
727 if (!PageSlab(page
)) {
728 slab_err(s
, page
, "Not a valid slab page");
731 if (page
->inuse
> s
->objects
) {
732 slab_err(s
, page
, "inuse %u > max %u",
733 s
->name
, page
->inuse
, s
->objects
);
736 /* Slab_pad_check fixes things up after itself */
737 slab_pad_check(s
, page
);
742 * Determine if a certain object on a page is on the freelist. Must hold the
743 * slab lock to guarantee that the chains are in a consistent state.
745 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
748 void *fp
= page
->freelist
;
751 while (fp
&& nr
<= s
->objects
) {
754 if (!check_valid_pointer(s
, page
, fp
)) {
756 object_err(s
, page
, object
,
757 "Freechain corrupt");
758 set_freepointer(s
, object
, NULL
);
761 slab_err(s
, page
, "Freepointer corrupt");
762 page
->freelist
= NULL
;
763 page
->inuse
= s
->objects
;
764 slab_fix(s
, "Freelist cleared");
770 fp
= get_freepointer(s
, object
);
774 if (page
->inuse
!= s
->objects
- nr
) {
775 slab_err(s
, page
, "Wrong object count. Counter is %d but "
776 "counted were %d", page
->inuse
, s
->objects
- nr
);
777 page
->inuse
= s
->objects
- nr
;
778 slab_fix(s
, "Object count adjusted.");
780 return search
== NULL
;
783 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
785 if (s
->flags
& SLAB_TRACE
) {
786 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
788 alloc
? "alloc" : "free",
793 print_section("Object", (void *)object
, s
->objsize
);
800 * Tracking of fully allocated slabs for debugging purposes.
802 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
804 spin_lock(&n
->list_lock
);
805 list_add(&page
->lru
, &n
->full
);
806 spin_unlock(&n
->list_lock
);
809 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
811 struct kmem_cache_node
*n
;
813 if (!(s
->flags
& SLAB_STORE_USER
))
816 n
= get_node(s
, page_to_nid(page
));
818 spin_lock(&n
->list_lock
);
819 list_del(&page
->lru
);
820 spin_unlock(&n
->list_lock
);
823 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
826 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
829 init_object(s
, object
, 0);
830 init_tracking(s
, object
);
833 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
834 void *object
, void *addr
)
836 if (!check_slab(s
, page
))
839 if (object
&& !on_freelist(s
, page
, object
)) {
840 object_err(s
, page
, object
, "Object already allocated");
844 if (!check_valid_pointer(s
, page
, object
)) {
845 object_err(s
, page
, object
, "Freelist Pointer check fails");
849 if (object
&& !check_object(s
, page
, object
, 0))
852 /* Success perform special debug activities for allocs */
853 if (s
->flags
& SLAB_STORE_USER
)
854 set_track(s
, object
, TRACK_ALLOC
, addr
);
855 trace(s
, page
, object
, 1);
856 init_object(s
, object
, 1);
860 if (PageSlab(page
)) {
862 * If this is a slab page then lets do the best we can
863 * to avoid issues in the future. Marking all objects
864 * as used avoids touching the remaining objects.
866 slab_fix(s
, "Marking all objects used");
867 page
->inuse
= s
->objects
;
868 page
->freelist
= NULL
;
873 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
874 void *object
, void *addr
)
876 if (!check_slab(s
, page
))
879 if (!check_valid_pointer(s
, page
, object
)) {
880 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
884 if (on_freelist(s
, page
, object
)) {
885 object_err(s
, page
, object
, "Object already free");
889 if (!check_object(s
, page
, object
, 1))
892 if (unlikely(s
!= page
->slab
)) {
894 slab_err(s
, page
, "Attempt to free object(0x%p) "
895 "outside of slab", object
);
899 "SLUB <none>: no slab for object 0x%p.\n",
904 object_err(s
, page
, object
,
905 "page slab pointer corrupt.");
909 /* Special debug activities for freeing objects */
910 if (!SlabFrozen(page
) && !page
->freelist
)
911 remove_full(s
, page
);
912 if (s
->flags
& SLAB_STORE_USER
)
913 set_track(s
, object
, TRACK_FREE
, addr
);
914 trace(s
, page
, object
, 0);
915 init_object(s
, object
, 0);
919 slab_fix(s
, "Object at 0x%p not freed", object
);
923 static int __init
setup_slub_debug(char *str
)
925 slub_debug
= DEBUG_DEFAULT_FLAGS
;
926 if (*str
++ != '=' || !*str
)
928 * No options specified. Switch on full debugging.
934 * No options but restriction on slabs. This means full
935 * debugging for slabs matching a pattern.
942 * Switch off all debugging measures.
947 * Determine which debug features should be switched on
949 for ( ;*str
&& *str
!= ','; str
++) {
950 switch (tolower(*str
)) {
952 slub_debug
|= SLAB_DEBUG_FREE
;
955 slub_debug
|= SLAB_RED_ZONE
;
958 slub_debug
|= SLAB_POISON
;
961 slub_debug
|= SLAB_STORE_USER
;
964 slub_debug
|= SLAB_TRACE
;
967 printk(KERN_ERR
"slub_debug option '%c' "
968 "unknown. skipped\n",*str
);
974 slub_debug_slabs
= str
+ 1;
979 __setup("slub_debug", setup_slub_debug
);
981 static unsigned long kmem_cache_flags(unsigned long objsize
,
982 unsigned long flags
, const char *name
,
983 void (*ctor
)(void *, struct kmem_cache
*, unsigned long))
986 * The page->offset field is only 16 bit wide. This is an offset
987 * in units of words from the beginning of an object. If the slab
988 * size is bigger then we cannot move the free pointer behind the
991 * On 32 bit platforms the limit is 256k. On 64bit platforms
994 * Debugging or ctor may create a need to move the free
995 * pointer. Fail if this happens.
997 if (objsize
>= 65535 * sizeof(void *)) {
998 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
999 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1003 * Enable debugging if selected on the kernel commandline.
1005 if (slub_debug
&& (!slub_debug_slabs
||
1006 strncmp(slub_debug_slabs
, name
,
1007 strlen(slub_debug_slabs
)) == 0))
1008 flags
|= slub_debug
;
1014 static inline void setup_object_debug(struct kmem_cache
*s
,
1015 struct page
*page
, void *object
) {}
1017 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1018 struct page
*page
, void *object
, void *addr
) { return 0; }
1020 static inline int free_debug_processing(struct kmem_cache
*s
,
1021 struct page
*page
, void *object
, void *addr
) { return 0; }
1023 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1025 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1026 void *object
, int active
) { return 1; }
1027 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1028 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1029 unsigned long flags
, const char *name
,
1030 void (*ctor
)(void *, struct kmem_cache
*, unsigned long))
1034 #define slub_debug 0
1037 * Slab allocation and freeing
1039 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1042 int pages
= 1 << s
->order
;
1045 flags
|= __GFP_COMP
;
1047 if (s
->flags
& SLAB_CACHE_DMA
)
1050 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
1051 flags
|= __GFP_RECLAIMABLE
;
1054 page
= alloc_pages(flags
, s
->order
);
1056 page
= alloc_pages_node(node
, flags
, s
->order
);
1061 mod_zone_page_state(page_zone(page
),
1062 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1063 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1069 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1072 setup_object_debug(s
, page
, object
);
1073 if (unlikely(s
->ctor
))
1074 s
->ctor(object
, s
, 0);
1077 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1080 struct kmem_cache_node
*n
;
1086 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1088 if (flags
& __GFP_WAIT
)
1091 page
= allocate_slab(s
,
1092 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1096 n
= get_node(s
, page_to_nid(page
));
1098 atomic_long_inc(&n
->nr_slabs
);
1100 page
->flags
|= 1 << PG_slab
;
1101 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1102 SLAB_STORE_USER
| SLAB_TRACE
))
1105 start
= page_address(page
);
1106 end
= start
+ s
->objects
* s
->size
;
1108 if (unlikely(s
->flags
& SLAB_POISON
))
1109 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1112 for_each_object(p
, s
, start
) {
1113 setup_object(s
, page
, last
);
1114 set_freepointer(s
, last
, p
);
1117 setup_object(s
, page
, last
);
1118 set_freepointer(s
, last
, NULL
);
1120 page
->freelist
= start
;
1123 if (flags
& __GFP_WAIT
)
1124 local_irq_disable();
1128 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1130 int pages
= 1 << s
->order
;
1132 if (unlikely(SlabDebug(page
))) {
1135 slab_pad_check(s
, page
);
1136 for_each_object(p
, s
, page_address(page
))
1137 check_object(s
, page
, p
, 0);
1138 ClearSlabDebug(page
);
1141 mod_zone_page_state(page_zone(page
),
1142 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1143 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1146 __free_pages(page
, s
->order
);
1149 static void rcu_free_slab(struct rcu_head
*h
)
1153 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1154 __free_slab(page
->slab
, page
);
1157 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1159 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1161 * RCU free overloads the RCU head over the LRU
1163 struct rcu_head
*head
= (void *)&page
->lru
;
1165 call_rcu(head
, rcu_free_slab
);
1167 __free_slab(s
, page
);
1170 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1172 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1174 atomic_long_dec(&n
->nr_slabs
);
1175 reset_page_mapcount(page
);
1176 __ClearPageSlab(page
);
1181 * Per slab locking using the pagelock
1183 static __always_inline
void slab_lock(struct page
*page
)
1185 bit_spin_lock(PG_locked
, &page
->flags
);
1188 static __always_inline
void slab_unlock(struct page
*page
)
1190 bit_spin_unlock(PG_locked
, &page
->flags
);
1193 static __always_inline
int slab_trylock(struct page
*page
)
1197 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1202 * Management of partially allocated slabs
1204 static void add_partial_tail(struct kmem_cache_node
*n
, struct page
*page
)
1206 spin_lock(&n
->list_lock
);
1208 list_add_tail(&page
->lru
, &n
->partial
);
1209 spin_unlock(&n
->list_lock
);
1212 static void add_partial(struct kmem_cache_node
*n
, struct page
*page
)
1214 spin_lock(&n
->list_lock
);
1216 list_add(&page
->lru
, &n
->partial
);
1217 spin_unlock(&n
->list_lock
);
1220 static void remove_partial(struct kmem_cache
*s
,
1223 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1225 spin_lock(&n
->list_lock
);
1226 list_del(&page
->lru
);
1228 spin_unlock(&n
->list_lock
);
1232 * Lock slab and remove from the partial list.
1234 * Must hold list_lock.
1236 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1238 if (slab_trylock(page
)) {
1239 list_del(&page
->lru
);
1241 SetSlabFrozen(page
);
1248 * Try to allocate a partial slab from a specific node.
1250 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1255 * Racy check. If we mistakenly see no partial slabs then we
1256 * just allocate an empty slab. If we mistakenly try to get a
1257 * partial slab and there is none available then get_partials()
1260 if (!n
|| !n
->nr_partial
)
1263 spin_lock(&n
->list_lock
);
1264 list_for_each_entry(page
, &n
->partial
, lru
)
1265 if (lock_and_freeze_slab(n
, page
))
1269 spin_unlock(&n
->list_lock
);
1274 * Get a page from somewhere. Search in increasing NUMA distances.
1276 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1279 struct zonelist
*zonelist
;
1284 * The defrag ratio allows a configuration of the tradeoffs between
1285 * inter node defragmentation and node local allocations. A lower
1286 * defrag_ratio increases the tendency to do local allocations
1287 * instead of attempting to obtain partial slabs from other nodes.
1289 * If the defrag_ratio is set to 0 then kmalloc() always
1290 * returns node local objects. If the ratio is higher then kmalloc()
1291 * may return off node objects because partial slabs are obtained
1292 * from other nodes and filled up.
1294 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1295 * defrag_ratio = 1000) then every (well almost) allocation will
1296 * first attempt to defrag slab caches on other nodes. This means
1297 * scanning over all nodes to look for partial slabs which may be
1298 * expensive if we do it every time we are trying to find a slab
1299 * with available objects.
1301 if (!s
->defrag_ratio
|| get_cycles() % 1024 > s
->defrag_ratio
)
1304 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
1305 ->node_zonelists
[gfp_zone(flags
)];
1306 for (z
= zonelist
->zones
; *z
; z
++) {
1307 struct kmem_cache_node
*n
;
1309 n
= get_node(s
, zone_to_nid(*z
));
1311 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1312 n
->nr_partial
> MIN_PARTIAL
) {
1313 page
= get_partial_node(n
);
1323 * Get a partial page, lock it and return it.
1325 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1328 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1330 page
= get_partial_node(get_node(s
, searchnode
));
1331 if (page
|| (flags
& __GFP_THISNODE
))
1334 return get_any_partial(s
, flags
);
1338 * Move a page back to the lists.
1340 * Must be called with the slab lock held.
1342 * On exit the slab lock will have been dropped.
1344 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
)
1346 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1348 ClearSlabFrozen(page
);
1352 add_partial(n
, page
);
1353 else if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1358 if (n
->nr_partial
< MIN_PARTIAL
) {
1360 * Adding an empty slab to the partial slabs in order
1361 * to avoid page allocator overhead. This slab needs
1362 * to come after the other slabs with objects in
1363 * order to fill them up. That way the size of the
1364 * partial list stays small. kmem_cache_shrink can
1365 * reclaim empty slabs from the partial list.
1367 add_partial_tail(n
, page
);
1371 discard_slab(s
, page
);
1377 * Remove the cpu slab
1379 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1381 struct page
*page
= c
->page
;
1383 * Merge cpu freelist into freelist. Typically we get here
1384 * because both freelists are empty. So this is unlikely
1387 while (unlikely(c
->freelist
)) {
1390 /* Retrieve object from cpu_freelist */
1391 object
= c
->freelist
;
1392 c
->freelist
= c
->freelist
[c
->offset
];
1394 /* And put onto the regular freelist */
1395 object
[c
->offset
] = page
->freelist
;
1396 page
->freelist
= object
;
1400 unfreeze_slab(s
, page
);
1403 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1406 deactivate_slab(s
, c
);
1411 * Called from IPI handler with interrupts disabled.
1413 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1415 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1417 if (likely(c
&& c
->page
))
1421 static void flush_cpu_slab(void *d
)
1423 struct kmem_cache
*s
= d
;
1425 __flush_cpu_slab(s
, smp_processor_id());
1428 static void flush_all(struct kmem_cache
*s
)
1431 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1433 unsigned long flags
;
1435 local_irq_save(flags
);
1437 local_irq_restore(flags
);
1442 * Check if the objects in a per cpu structure fit numa
1443 * locality expectations.
1445 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1448 if (node
!= -1 && c
->node
!= node
)
1455 * Slow path. The lockless freelist is empty or we need to perform
1458 * Interrupts are disabled.
1460 * Processing is still very fast if new objects have been freed to the
1461 * regular freelist. In that case we simply take over the regular freelist
1462 * as the lockless freelist and zap the regular freelist.
1464 * If that is not working then we fall back to the partial lists. We take the
1465 * first element of the freelist as the object to allocate now and move the
1466 * rest of the freelist to the lockless freelist.
1468 * And if we were unable to get a new slab from the partial slab lists then
1469 * we need to allocate a new slab. This is slowest path since we may sleep.
1471 static void *__slab_alloc(struct kmem_cache
*s
,
1472 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1481 if (unlikely(!node_match(c
, node
)))
1484 object
= c
->page
->freelist
;
1485 if (unlikely(!object
))
1487 if (unlikely(SlabDebug(c
->page
)))
1490 object
= c
->page
->freelist
;
1491 c
->freelist
= object
[c
->offset
];
1492 c
->page
->inuse
= s
->objects
;
1493 c
->page
->freelist
= NULL
;
1494 c
->node
= page_to_nid(c
->page
);
1495 slab_unlock(c
->page
);
1499 deactivate_slab(s
, c
);
1502 new = get_partial(s
, gfpflags
, node
);
1508 new = new_slab(s
, gfpflags
, node
);
1510 c
= get_cpu_slab(s
, smp_processor_id());
1513 * Someone else populated the cpu_slab while we
1514 * enabled interrupts, or we have gotten scheduled
1515 * on another cpu. The page may not be on the
1516 * requested node even if __GFP_THISNODE was
1517 * specified. So we need to recheck.
1519 if (node_match(c
, node
)) {
1521 * Current cpuslab is acceptable and we
1522 * want the current one since its cache hot
1524 discard_slab(s
, new);
1528 /* New slab does not fit our expectations */
1538 object
= c
->page
->freelist
;
1539 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1543 c
->page
->freelist
= object
[c
->offset
];
1545 slab_unlock(c
->page
);
1550 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1551 * have the fastpath folded into their functions. So no function call
1552 * overhead for requests that can be satisfied on the fastpath.
1554 * The fastpath works by first checking if the lockless freelist can be used.
1555 * If not then __slab_alloc is called for slow processing.
1557 * Otherwise we can simply pick the next object from the lockless free list.
1559 static void __always_inline
*slab_alloc(struct kmem_cache
*s
,
1560 gfp_t gfpflags
, int node
, void *addr
)
1563 unsigned long flags
;
1564 struct kmem_cache_cpu
*c
;
1566 local_irq_save(flags
);
1567 c
= get_cpu_slab(s
, smp_processor_id());
1568 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1570 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1573 object
= c
->freelist
;
1574 c
->freelist
= object
[c
->offset
];
1576 local_irq_restore(flags
);
1578 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1579 memset(object
, 0, c
->objsize
);
1584 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1586 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1588 EXPORT_SYMBOL(kmem_cache_alloc
);
1591 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1593 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1595 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1599 * Slow patch handling. This may still be called frequently since objects
1600 * have a longer lifetime than the cpu slabs in most processing loads.
1602 * So we still attempt to reduce cache line usage. Just take the slab
1603 * lock and free the item. If there is no additional partial page
1604 * handling required then we can return immediately.
1606 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1607 void *x
, void *addr
, unsigned int offset
)
1610 void **object
= (void *)x
;
1614 if (unlikely(SlabDebug(page
)))
1617 prior
= object
[offset
] = page
->freelist
;
1618 page
->freelist
= object
;
1621 if (unlikely(SlabFrozen(page
)))
1624 if (unlikely(!page
->inuse
))
1628 * Objects left in the slab. If it
1629 * was not on the partial list before
1632 if (unlikely(!prior
))
1633 add_partial(get_node(s
, page_to_nid(page
)), page
);
1642 * Slab still on the partial list.
1644 remove_partial(s
, page
);
1647 discard_slab(s
, page
);
1651 if (!free_debug_processing(s
, page
, x
, addr
))
1657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1658 * can perform fastpath freeing without additional function calls.
1660 * The fastpath is only possible if we are freeing to the current cpu slab
1661 * of this processor. This typically the case if we have just allocated
1664 * If fastpath is not possible then fall back to __slab_free where we deal
1665 * with all sorts of special processing.
1667 static void __always_inline
slab_free(struct kmem_cache
*s
,
1668 struct page
*page
, void *x
, void *addr
)
1670 void **object
= (void *)x
;
1671 unsigned long flags
;
1672 struct kmem_cache_cpu
*c
;
1674 local_irq_save(flags
);
1675 debug_check_no_locks_freed(object
, s
->objsize
);
1676 c
= get_cpu_slab(s
, smp_processor_id());
1677 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1678 object
[c
->offset
] = c
->freelist
;
1679 c
->freelist
= object
;
1681 __slab_free(s
, page
, x
, addr
, c
->offset
);
1683 local_irq_restore(flags
);
1686 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1690 page
= virt_to_head_page(x
);
1692 slab_free(s
, page
, x
, __builtin_return_address(0));
1694 EXPORT_SYMBOL(kmem_cache_free
);
1696 /* Figure out on which slab object the object resides */
1697 static struct page
*get_object_page(const void *x
)
1699 struct page
*page
= virt_to_head_page(x
);
1701 if (!PageSlab(page
))
1708 * Object placement in a slab is made very easy because we always start at
1709 * offset 0. If we tune the size of the object to the alignment then we can
1710 * get the required alignment by putting one properly sized object after
1713 * Notice that the allocation order determines the sizes of the per cpu
1714 * caches. Each processor has always one slab available for allocations.
1715 * Increasing the allocation order reduces the number of times that slabs
1716 * must be moved on and off the partial lists and is therefore a factor in
1721 * Mininum / Maximum order of slab pages. This influences locking overhead
1722 * and slab fragmentation. A higher order reduces the number of partial slabs
1723 * and increases the number of allocations possible without having to
1724 * take the list_lock.
1726 static int slub_min_order
;
1727 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1728 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1731 * Merge control. If this is set then no merging of slab caches will occur.
1732 * (Could be removed. This was introduced to pacify the merge skeptics.)
1734 static int slub_nomerge
;
1737 * Calculate the order of allocation given an slab object size.
1739 * The order of allocation has significant impact on performance and other
1740 * system components. Generally order 0 allocations should be preferred since
1741 * order 0 does not cause fragmentation in the page allocator. Larger objects
1742 * be problematic to put into order 0 slabs because there may be too much
1743 * unused space left. We go to a higher order if more than 1/8th of the slab
1746 * In order to reach satisfactory performance we must ensure that a minimum
1747 * number of objects is in one slab. Otherwise we may generate too much
1748 * activity on the partial lists which requires taking the list_lock. This is
1749 * less a concern for large slabs though which are rarely used.
1751 * slub_max_order specifies the order where we begin to stop considering the
1752 * number of objects in a slab as critical. If we reach slub_max_order then
1753 * we try to keep the page order as low as possible. So we accept more waste
1754 * of space in favor of a small page order.
1756 * Higher order allocations also allow the placement of more objects in a
1757 * slab and thereby reduce object handling overhead. If the user has
1758 * requested a higher mininum order then we start with that one instead of
1759 * the smallest order which will fit the object.
1761 static inline int slab_order(int size
, int min_objects
,
1762 int max_order
, int fract_leftover
)
1766 int min_order
= slub_min_order
;
1768 for (order
= max(min_order
,
1769 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1770 order
<= max_order
; order
++) {
1772 unsigned long slab_size
= PAGE_SIZE
<< order
;
1774 if (slab_size
< min_objects
* size
)
1777 rem
= slab_size
% size
;
1779 if (rem
<= slab_size
/ fract_leftover
)
1787 static inline int calculate_order(int size
)
1794 * Attempt to find best configuration for a slab. This
1795 * works by first attempting to generate a layout with
1796 * the best configuration and backing off gradually.
1798 * First we reduce the acceptable waste in a slab. Then
1799 * we reduce the minimum objects required in a slab.
1801 min_objects
= slub_min_objects
;
1802 while (min_objects
> 1) {
1804 while (fraction
>= 4) {
1805 order
= slab_order(size
, min_objects
,
1806 slub_max_order
, fraction
);
1807 if (order
<= slub_max_order
)
1815 * We were unable to place multiple objects in a slab. Now
1816 * lets see if we can place a single object there.
1818 order
= slab_order(size
, 1, slub_max_order
, 1);
1819 if (order
<= slub_max_order
)
1823 * Doh this slab cannot be placed using slub_max_order.
1825 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1826 if (order
<= MAX_ORDER
)
1832 * Figure out what the alignment of the objects will be.
1834 static unsigned long calculate_alignment(unsigned long flags
,
1835 unsigned long align
, unsigned long size
)
1838 * If the user wants hardware cache aligned objects then
1839 * follow that suggestion if the object is sufficiently
1842 * The hardware cache alignment cannot override the
1843 * specified alignment though. If that is greater
1846 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1847 size
> cache_line_size() / 2)
1848 return max_t(unsigned long, align
, cache_line_size());
1850 if (align
< ARCH_SLAB_MINALIGN
)
1851 return ARCH_SLAB_MINALIGN
;
1853 return ALIGN(align
, sizeof(void *));
1856 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1857 struct kmem_cache_cpu
*c
)
1862 c
->offset
= s
->offset
/ sizeof(void *);
1863 c
->objsize
= s
->objsize
;
1866 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1869 atomic_long_set(&n
->nr_slabs
, 0);
1870 spin_lock_init(&n
->list_lock
);
1871 INIT_LIST_HEAD(&n
->partial
);
1872 #ifdef CONFIG_SLUB_DEBUG
1873 INIT_LIST_HEAD(&n
->full
);
1879 * Per cpu array for per cpu structures.
1881 * The per cpu array places all kmem_cache_cpu structures from one processor
1882 * close together meaning that it becomes possible that multiple per cpu
1883 * structures are contained in one cacheline. This may be particularly
1884 * beneficial for the kmalloc caches.
1886 * A desktop system typically has around 60-80 slabs. With 100 here we are
1887 * likely able to get per cpu structures for all caches from the array defined
1888 * here. We must be able to cover all kmalloc caches during bootstrap.
1890 * If the per cpu array is exhausted then fall back to kmalloc
1891 * of individual cachelines. No sharing is possible then.
1893 #define NR_KMEM_CACHE_CPU 100
1895 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1896 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1898 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1899 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1901 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1902 int cpu
, gfp_t flags
)
1904 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1907 per_cpu(kmem_cache_cpu_free
, cpu
) =
1908 (void *)c
->freelist
;
1910 /* Table overflow: So allocate ourselves */
1912 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1913 flags
, cpu_to_node(cpu
));
1918 init_kmem_cache_cpu(s
, c
);
1922 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1924 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1925 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1929 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1930 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1933 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1937 for_each_online_cpu(cpu
) {
1938 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1941 s
->cpu_slab
[cpu
] = NULL
;
1942 free_kmem_cache_cpu(c
, cpu
);
1947 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
1951 for_each_online_cpu(cpu
) {
1952 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1957 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
1959 free_kmem_cache_cpus(s
);
1962 s
->cpu_slab
[cpu
] = c
;
1968 * Initialize the per cpu array.
1970 static void init_alloc_cpu_cpu(int cpu
)
1974 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
1977 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
1978 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
1980 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
1983 static void __init
init_alloc_cpu(void)
1987 for_each_online_cpu(cpu
)
1988 init_alloc_cpu_cpu(cpu
);
1992 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
1993 static inline void init_alloc_cpu(void) {}
1995 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
1997 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2004 * No kmalloc_node yet so do it by hand. We know that this is the first
2005 * slab on the node for this slabcache. There are no concurrent accesses
2008 * Note that this function only works on the kmalloc_node_cache
2009 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2010 * memory on a fresh node that has no slab structures yet.
2012 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2016 struct kmem_cache_node
*n
;
2018 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2020 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2023 if (page_to_nid(page
) != node
) {
2024 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2026 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2027 "in order to be able to continue\n");
2032 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2034 kmalloc_caches
->node
[node
] = n
;
2035 #ifdef CONFIG_SLUB_DEBUG
2036 init_object(kmalloc_caches
, n
, 1);
2037 init_tracking(kmalloc_caches
, n
);
2039 init_kmem_cache_node(n
);
2040 atomic_long_inc(&n
->nr_slabs
);
2041 add_partial(n
, page
);
2044 * new_slab() disables interupts. If we do not reenable interrupts here
2045 * then bootup would continue with interrupts disabled.
2051 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2055 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2056 struct kmem_cache_node
*n
= s
->node
[node
];
2057 if (n
&& n
!= &s
->local_node
)
2058 kmem_cache_free(kmalloc_caches
, n
);
2059 s
->node
[node
] = NULL
;
2063 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2068 if (slab_state
>= UP
)
2069 local_node
= page_to_nid(virt_to_page(s
));
2073 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2074 struct kmem_cache_node
*n
;
2076 if (local_node
== node
)
2079 if (slab_state
== DOWN
) {
2080 n
= early_kmem_cache_node_alloc(gfpflags
,
2084 n
= kmem_cache_alloc_node(kmalloc_caches
,
2088 free_kmem_cache_nodes(s
);
2094 init_kmem_cache_node(n
);
2099 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2103 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2105 init_kmem_cache_node(&s
->local_node
);
2111 * calculate_sizes() determines the order and the distribution of data within
2114 static int calculate_sizes(struct kmem_cache
*s
)
2116 unsigned long flags
= s
->flags
;
2117 unsigned long size
= s
->objsize
;
2118 unsigned long align
= s
->align
;
2121 * Determine if we can poison the object itself. If the user of
2122 * the slab may touch the object after free or before allocation
2123 * then we should never poison the object itself.
2125 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2127 s
->flags
|= __OBJECT_POISON
;
2129 s
->flags
&= ~__OBJECT_POISON
;
2132 * Round up object size to the next word boundary. We can only
2133 * place the free pointer at word boundaries and this determines
2134 * the possible location of the free pointer.
2136 size
= ALIGN(size
, sizeof(void *));
2138 #ifdef CONFIG_SLUB_DEBUG
2140 * If we are Redzoning then check if there is some space between the
2141 * end of the object and the free pointer. If not then add an
2142 * additional word to have some bytes to store Redzone information.
2144 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2145 size
+= sizeof(void *);
2149 * With that we have determined the number of bytes in actual use
2150 * by the object. This is the potential offset to the free pointer.
2154 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2157 * Relocate free pointer after the object if it is not
2158 * permitted to overwrite the first word of the object on
2161 * This is the case if we do RCU, have a constructor or
2162 * destructor or are poisoning the objects.
2165 size
+= sizeof(void *);
2168 #ifdef CONFIG_SLUB_DEBUG
2169 if (flags
& SLAB_STORE_USER
)
2171 * Need to store information about allocs and frees after
2174 size
+= 2 * sizeof(struct track
);
2176 if (flags
& SLAB_RED_ZONE
)
2178 * Add some empty padding so that we can catch
2179 * overwrites from earlier objects rather than let
2180 * tracking information or the free pointer be
2181 * corrupted if an user writes before the start
2184 size
+= sizeof(void *);
2188 * Determine the alignment based on various parameters that the
2189 * user specified and the dynamic determination of cache line size
2192 align
= calculate_alignment(flags
, align
, s
->objsize
);
2195 * SLUB stores one object immediately after another beginning from
2196 * offset 0. In order to align the objects we have to simply size
2197 * each object to conform to the alignment.
2199 size
= ALIGN(size
, align
);
2202 s
->order
= calculate_order(size
);
2207 * Determine the number of objects per slab
2209 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2211 return !!s
->objects
;
2215 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2216 const char *name
, size_t size
,
2217 size_t align
, unsigned long flags
,
2218 void (*ctor
)(void *, struct kmem_cache
*, unsigned long))
2220 memset(s
, 0, kmem_size
);
2225 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2227 if (!calculate_sizes(s
))
2232 s
->defrag_ratio
= 100;
2234 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2237 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2239 free_kmem_cache_nodes(s
);
2241 if (flags
& SLAB_PANIC
)
2242 panic("Cannot create slab %s size=%lu realsize=%u "
2243 "order=%u offset=%u flags=%lx\n",
2244 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2250 * Check if a given pointer is valid
2252 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2256 page
= get_object_page(object
);
2258 if (!page
|| s
!= page
->slab
)
2259 /* No slab or wrong slab */
2262 if (!check_valid_pointer(s
, page
, object
))
2266 * We could also check if the object is on the slabs freelist.
2267 * But this would be too expensive and it seems that the main
2268 * purpose of kmem_ptr_valid is to check if the object belongs
2269 * to a certain slab.
2273 EXPORT_SYMBOL(kmem_ptr_validate
);
2276 * Determine the size of a slab object
2278 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2282 EXPORT_SYMBOL(kmem_cache_size
);
2284 const char *kmem_cache_name(struct kmem_cache
*s
)
2288 EXPORT_SYMBOL(kmem_cache_name
);
2291 * Attempt to free all slabs on a node. Return the number of slabs we
2292 * were unable to free.
2294 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2295 struct list_head
*list
)
2297 int slabs_inuse
= 0;
2298 unsigned long flags
;
2299 struct page
*page
, *h
;
2301 spin_lock_irqsave(&n
->list_lock
, flags
);
2302 list_for_each_entry_safe(page
, h
, list
, lru
)
2304 list_del(&page
->lru
);
2305 discard_slab(s
, page
);
2308 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2313 * Release all resources used by a slab cache.
2315 static inline int kmem_cache_close(struct kmem_cache
*s
)
2321 /* Attempt to free all objects */
2322 free_kmem_cache_cpus(s
);
2323 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2324 struct kmem_cache_node
*n
= get_node(s
, node
);
2326 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2327 if (atomic_long_read(&n
->nr_slabs
))
2330 free_kmem_cache_nodes(s
);
2335 * Close a cache and release the kmem_cache structure
2336 * (must be used for caches created using kmem_cache_create)
2338 void kmem_cache_destroy(struct kmem_cache
*s
)
2340 down_write(&slub_lock
);
2344 up_write(&slub_lock
);
2345 if (kmem_cache_close(s
))
2347 sysfs_slab_remove(s
);
2350 up_write(&slub_lock
);
2352 EXPORT_SYMBOL(kmem_cache_destroy
);
2354 /********************************************************************
2356 *******************************************************************/
2358 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
] __cacheline_aligned
;
2359 EXPORT_SYMBOL(kmalloc_caches
);
2361 #ifdef CONFIG_ZONE_DMA
2362 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
];
2365 static int __init
setup_slub_min_order(char *str
)
2367 get_option (&str
, &slub_min_order
);
2372 __setup("slub_min_order=", setup_slub_min_order
);
2374 static int __init
setup_slub_max_order(char *str
)
2376 get_option (&str
, &slub_max_order
);
2381 __setup("slub_max_order=", setup_slub_max_order
);
2383 static int __init
setup_slub_min_objects(char *str
)
2385 get_option (&str
, &slub_min_objects
);
2390 __setup("slub_min_objects=", setup_slub_min_objects
);
2392 static int __init
setup_slub_nomerge(char *str
)
2398 __setup("slub_nomerge", setup_slub_nomerge
);
2400 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2401 const char *name
, int size
, gfp_t gfp_flags
)
2403 unsigned int flags
= 0;
2405 if (gfp_flags
& SLUB_DMA
)
2406 flags
= SLAB_CACHE_DMA
;
2408 down_write(&slub_lock
);
2409 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2413 list_add(&s
->list
, &slab_caches
);
2414 up_write(&slub_lock
);
2415 if (sysfs_slab_add(s
))
2420 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2423 #ifdef CONFIG_ZONE_DMA
2425 static void sysfs_add_func(struct work_struct
*w
)
2427 struct kmem_cache
*s
;
2429 down_write(&slub_lock
);
2430 list_for_each_entry(s
, &slab_caches
, list
) {
2431 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2432 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2436 up_write(&slub_lock
);
2439 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2441 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2443 struct kmem_cache
*s
;
2447 s
= kmalloc_caches_dma
[index
];
2451 /* Dynamically create dma cache */
2452 if (flags
& __GFP_WAIT
)
2453 down_write(&slub_lock
);
2455 if (!down_write_trylock(&slub_lock
))
2459 if (kmalloc_caches_dma
[index
])
2462 realsize
= kmalloc_caches
[index
].objsize
;
2463 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d", (unsigned int)realsize
),
2464 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2466 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2467 realsize
, ARCH_KMALLOC_MINALIGN
,
2468 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2474 list_add(&s
->list
, &slab_caches
);
2475 kmalloc_caches_dma
[index
] = s
;
2477 schedule_work(&sysfs_add_work
);
2480 up_write(&slub_lock
);
2482 return kmalloc_caches_dma
[index
];
2487 * Conversion table for small slabs sizes / 8 to the index in the
2488 * kmalloc array. This is necessary for slabs < 192 since we have non power
2489 * of two cache sizes there. The size of larger slabs can be determined using
2492 static s8 size_index
[24] = {
2519 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2525 return ZERO_SIZE_PTR
;
2527 index
= size_index
[(size
- 1) / 8];
2529 index
= fls(size
- 1);
2531 #ifdef CONFIG_ZONE_DMA
2532 if (unlikely((flags
& SLUB_DMA
)))
2533 return dma_kmalloc_cache(index
, flags
);
2536 return &kmalloc_caches
[index
];
2539 void *__kmalloc(size_t size
, gfp_t flags
)
2541 struct kmem_cache
*s
;
2543 if (unlikely(size
> PAGE_SIZE
/ 2))
2544 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2547 s
= get_slab(size
, flags
);
2549 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2552 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2554 EXPORT_SYMBOL(__kmalloc
);
2557 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2559 struct kmem_cache
*s
;
2561 if (unlikely(size
> PAGE_SIZE
/ 2))
2562 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2565 s
= get_slab(size
, flags
);
2567 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2570 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2572 EXPORT_SYMBOL(__kmalloc_node
);
2575 size_t ksize(const void *object
)
2578 struct kmem_cache
*s
;
2581 if (unlikely(object
== ZERO_SIZE_PTR
))
2584 page
= get_object_page(object
);
2590 * Debugging requires use of the padding between object
2591 * and whatever may come after it.
2593 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2597 * If we have the need to store the freelist pointer
2598 * back there or track user information then we can
2599 * only use the space before that information.
2601 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2605 * Else we can use all the padding etc for the allocation
2609 EXPORT_SYMBOL(ksize
);
2611 void kfree(const void *x
)
2615 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2618 page
= virt_to_head_page(x
);
2619 if (unlikely(!PageSlab(page
))) {
2623 slab_free(page
->slab
, page
, (void *)x
, __builtin_return_address(0));
2625 EXPORT_SYMBOL(kfree
);
2628 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2629 * the remaining slabs by the number of items in use. The slabs with the
2630 * most items in use come first. New allocations will then fill those up
2631 * and thus they can be removed from the partial lists.
2633 * The slabs with the least items are placed last. This results in them
2634 * being allocated from last increasing the chance that the last objects
2635 * are freed in them.
2637 int kmem_cache_shrink(struct kmem_cache
*s
)
2641 struct kmem_cache_node
*n
;
2644 struct list_head
*slabs_by_inuse
=
2645 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2646 unsigned long flags
;
2648 if (!slabs_by_inuse
)
2652 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2653 n
= get_node(s
, node
);
2658 for (i
= 0; i
< s
->objects
; i
++)
2659 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2661 spin_lock_irqsave(&n
->list_lock
, flags
);
2664 * Build lists indexed by the items in use in each slab.
2666 * Note that concurrent frees may occur while we hold the
2667 * list_lock. page->inuse here is the upper limit.
2669 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2670 if (!page
->inuse
&& slab_trylock(page
)) {
2672 * Must hold slab lock here because slab_free
2673 * may have freed the last object and be
2674 * waiting to release the slab.
2676 list_del(&page
->lru
);
2679 discard_slab(s
, page
);
2681 list_move(&page
->lru
,
2682 slabs_by_inuse
+ page
->inuse
);
2687 * Rebuild the partial list with the slabs filled up most
2688 * first and the least used slabs at the end.
2690 for (i
= s
->objects
- 1; i
>= 0; i
--)
2691 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2693 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2696 kfree(slabs_by_inuse
);
2699 EXPORT_SYMBOL(kmem_cache_shrink
);
2701 /********************************************************************
2702 * Basic setup of slabs
2703 *******************************************************************/
2705 void __init
kmem_cache_init(void)
2714 * Must first have the slab cache available for the allocations of the
2715 * struct kmem_cache_node's. There is special bootstrap code in
2716 * kmem_cache_open for slab_state == DOWN.
2718 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2719 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2720 kmalloc_caches
[0].refcount
= -1;
2724 /* Able to allocate the per node structures */
2725 slab_state
= PARTIAL
;
2727 /* Caches that are not of the two-to-the-power-of size */
2728 if (KMALLOC_MIN_SIZE
<= 64) {
2729 create_kmalloc_cache(&kmalloc_caches
[1],
2730 "kmalloc-96", 96, GFP_KERNEL
);
2733 if (KMALLOC_MIN_SIZE
<= 128) {
2734 create_kmalloc_cache(&kmalloc_caches
[2],
2735 "kmalloc-192", 192, GFP_KERNEL
);
2739 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++) {
2740 create_kmalloc_cache(&kmalloc_caches
[i
],
2741 "kmalloc", 1 << i
, GFP_KERNEL
);
2747 * Patch up the size_index table if we have strange large alignment
2748 * requirements for the kmalloc array. This is only the case for
2749 * mips it seems. The standard arches will not generate any code here.
2751 * Largest permitted alignment is 256 bytes due to the way we
2752 * handle the index determination for the smaller caches.
2754 * Make sure that nothing crazy happens if someone starts tinkering
2755 * around with ARCH_KMALLOC_MINALIGN
2757 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
2758 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
2760 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
2761 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
2765 /* Provide the correct kmalloc names now that the caches are up */
2766 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++)
2767 kmalloc_caches
[i
]. name
=
2768 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2771 register_cpu_notifier(&slab_notifier
);
2772 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
2773 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
2775 kmem_size
= sizeof(struct kmem_cache
);
2779 printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2780 " CPUs=%d, Nodes=%d\n",
2781 caches
, cache_line_size(),
2782 slub_min_order
, slub_max_order
, slub_min_objects
,
2783 nr_cpu_ids
, nr_node_ids
);
2787 * Find a mergeable slab cache
2789 static int slab_unmergeable(struct kmem_cache
*s
)
2791 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
2798 * We may have set a slab to be unmergeable during bootstrap.
2800 if (s
->refcount
< 0)
2806 static struct kmem_cache
*find_mergeable(size_t size
,
2807 size_t align
, unsigned long flags
, const char *name
,
2808 void (*ctor
)(void *, struct kmem_cache
*, unsigned long))
2810 struct kmem_cache
*s
;
2812 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
2818 size
= ALIGN(size
, sizeof(void *));
2819 align
= calculate_alignment(flags
, align
, size
);
2820 size
= ALIGN(size
, align
);
2821 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
2823 list_for_each_entry(s
, &slab_caches
, list
) {
2824 if (slab_unmergeable(s
))
2830 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
2833 * Check if alignment is compatible.
2834 * Courtesy of Adrian Drzewiecki
2836 if ((s
->size
& ~(align
-1)) != s
->size
)
2839 if (s
->size
- size
>= sizeof(void *))
2847 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
2848 size_t align
, unsigned long flags
,
2849 void (*ctor
)(void *, struct kmem_cache
*, unsigned long))
2851 struct kmem_cache
*s
;
2853 down_write(&slub_lock
);
2854 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
2860 * Adjust the object sizes so that we clear
2861 * the complete object on kzalloc.
2863 s
->objsize
= max(s
->objsize
, (int)size
);
2866 * And then we need to update the object size in the
2867 * per cpu structures
2869 for_each_online_cpu(cpu
)
2870 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
2871 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
2872 up_write(&slub_lock
);
2873 if (sysfs_slab_alias(s
, name
))
2877 s
= kmalloc(kmem_size
, GFP_KERNEL
);
2879 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
2880 size
, align
, flags
, ctor
)) {
2881 list_add(&s
->list
, &slab_caches
);
2882 up_write(&slub_lock
);
2883 if (sysfs_slab_add(s
))
2889 up_write(&slub_lock
);
2892 if (flags
& SLAB_PANIC
)
2893 panic("Cannot create slabcache %s\n", name
);
2898 EXPORT_SYMBOL(kmem_cache_create
);
2902 * Use the cpu notifier to insure that the cpu slabs are flushed when
2905 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
2906 unsigned long action
, void *hcpu
)
2908 long cpu
= (long)hcpu
;
2909 struct kmem_cache
*s
;
2910 unsigned long flags
;
2913 case CPU_UP_PREPARE
:
2914 case CPU_UP_PREPARE_FROZEN
:
2915 init_alloc_cpu_cpu(cpu
);
2916 down_read(&slub_lock
);
2917 list_for_each_entry(s
, &slab_caches
, list
)
2918 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
2920 up_read(&slub_lock
);
2923 case CPU_UP_CANCELED
:
2924 case CPU_UP_CANCELED_FROZEN
:
2926 case CPU_DEAD_FROZEN
:
2927 down_read(&slub_lock
);
2928 list_for_each_entry(s
, &slab_caches
, list
) {
2929 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2931 local_irq_save(flags
);
2932 __flush_cpu_slab(s
, cpu
);
2933 local_irq_restore(flags
);
2934 free_kmem_cache_cpu(c
, cpu
);
2935 s
->cpu_slab
[cpu
] = NULL
;
2937 up_read(&slub_lock
);
2945 static struct notifier_block __cpuinitdata slab_notifier
=
2946 { &slab_cpuup_callback
, NULL
, 0 };
2950 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
2952 struct kmem_cache
*s
;
2954 if (unlikely(size
> PAGE_SIZE
/ 2))
2955 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
2957 s
= get_slab(size
, gfpflags
);
2959 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2962 return slab_alloc(s
, gfpflags
, -1, caller
);
2965 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
2966 int node
, void *caller
)
2968 struct kmem_cache
*s
;
2970 if (unlikely(size
> PAGE_SIZE
/ 2))
2971 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
2973 s
= get_slab(size
, gfpflags
);
2975 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2978 return slab_alloc(s
, gfpflags
, node
, caller
);
2981 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2982 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
2986 void *addr
= page_address(page
);
2988 if (!check_slab(s
, page
) ||
2989 !on_freelist(s
, page
, NULL
))
2992 /* Now we know that a valid freelist exists */
2993 bitmap_zero(map
, s
->objects
);
2995 for_each_free_object(p
, s
, page
->freelist
) {
2996 set_bit(slab_index(p
, s
, addr
), map
);
2997 if (!check_object(s
, page
, p
, 0))
3001 for_each_object(p
, s
, addr
)
3002 if (!test_bit(slab_index(p
, s
, addr
), map
))
3003 if (!check_object(s
, page
, p
, 1))
3008 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3011 if (slab_trylock(page
)) {
3012 validate_slab(s
, page
, map
);
3015 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3018 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3019 if (!SlabDebug(page
))
3020 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3021 "on slab 0x%p\n", s
->name
, page
);
3023 if (SlabDebug(page
))
3024 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3025 "slab 0x%p\n", s
->name
, page
);
3029 static int validate_slab_node(struct kmem_cache
*s
,
3030 struct kmem_cache_node
*n
, unsigned long *map
)
3032 unsigned long count
= 0;
3034 unsigned long flags
;
3036 spin_lock_irqsave(&n
->list_lock
, flags
);
3038 list_for_each_entry(page
, &n
->partial
, lru
) {
3039 validate_slab_slab(s
, page
, map
);
3042 if (count
!= n
->nr_partial
)
3043 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3044 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3046 if (!(s
->flags
& SLAB_STORE_USER
))
3049 list_for_each_entry(page
, &n
->full
, lru
) {
3050 validate_slab_slab(s
, page
, map
);
3053 if (count
!= atomic_long_read(&n
->nr_slabs
))
3054 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3055 "counter=%ld\n", s
->name
, count
,
3056 atomic_long_read(&n
->nr_slabs
));
3059 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3063 static long validate_slab_cache(struct kmem_cache
*s
)
3066 unsigned long count
= 0;
3067 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3068 sizeof(unsigned long), GFP_KERNEL
);
3074 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3075 struct kmem_cache_node
*n
= get_node(s
, node
);
3077 count
+= validate_slab_node(s
, n
, map
);
3083 #ifdef SLUB_RESILIENCY_TEST
3084 static void resiliency_test(void)
3088 printk(KERN_ERR
"SLUB resiliency testing\n");
3089 printk(KERN_ERR
"-----------------------\n");
3090 printk(KERN_ERR
"A. Corruption after allocation\n");
3092 p
= kzalloc(16, GFP_KERNEL
);
3094 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3095 " 0x12->0x%p\n\n", p
+ 16);
3097 validate_slab_cache(kmalloc_caches
+ 4);
3099 /* Hmmm... The next two are dangerous */
3100 p
= kzalloc(32, GFP_KERNEL
);
3101 p
[32 + sizeof(void *)] = 0x34;
3102 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3103 " 0x34 -> -0x%p\n", p
);
3104 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3106 validate_slab_cache(kmalloc_caches
+ 5);
3107 p
= kzalloc(64, GFP_KERNEL
);
3108 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3110 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3112 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3113 validate_slab_cache(kmalloc_caches
+ 6);
3115 printk(KERN_ERR
"\nB. Corruption after free\n");
3116 p
= kzalloc(128, GFP_KERNEL
);
3119 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3120 validate_slab_cache(kmalloc_caches
+ 7);
3122 p
= kzalloc(256, GFP_KERNEL
);
3125 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
3126 validate_slab_cache(kmalloc_caches
+ 8);
3128 p
= kzalloc(512, GFP_KERNEL
);
3131 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3132 validate_slab_cache(kmalloc_caches
+ 9);
3135 static void resiliency_test(void) {};
3139 * Generate lists of code addresses where slabcache objects are allocated
3144 unsigned long count
;
3157 unsigned long count
;
3158 struct location
*loc
;
3161 static void free_loc_track(struct loc_track
*t
)
3164 free_pages((unsigned long)t
->loc
,
3165 get_order(sizeof(struct location
) * t
->max
));
3168 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3173 order
= get_order(sizeof(struct location
) * max
);
3175 l
= (void *)__get_free_pages(flags
, order
);
3180 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3188 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3189 const struct track
*track
)
3191 long start
, end
, pos
;
3194 unsigned long age
= jiffies
- track
->when
;
3200 pos
= start
+ (end
- start
+ 1) / 2;
3203 * There is nothing at "end". If we end up there
3204 * we need to add something to before end.
3209 caddr
= t
->loc
[pos
].addr
;
3210 if (track
->addr
== caddr
) {
3216 if (age
< l
->min_time
)
3218 if (age
> l
->max_time
)
3221 if (track
->pid
< l
->min_pid
)
3222 l
->min_pid
= track
->pid
;
3223 if (track
->pid
> l
->max_pid
)
3224 l
->max_pid
= track
->pid
;
3226 cpu_set(track
->cpu
, l
->cpus
);
3228 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3232 if (track
->addr
< caddr
)
3239 * Not found. Insert new tracking element.
3241 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3247 (t
->count
- pos
) * sizeof(struct location
));
3250 l
->addr
= track
->addr
;
3254 l
->min_pid
= track
->pid
;
3255 l
->max_pid
= track
->pid
;
3256 cpus_clear(l
->cpus
);
3257 cpu_set(track
->cpu
, l
->cpus
);
3258 nodes_clear(l
->nodes
);
3259 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3263 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3264 struct page
*page
, enum track_item alloc
)
3266 void *addr
= page_address(page
);
3267 DECLARE_BITMAP(map
, s
->objects
);
3270 bitmap_zero(map
, s
->objects
);
3271 for_each_free_object(p
, s
, page
->freelist
)
3272 set_bit(slab_index(p
, s
, addr
), map
);
3274 for_each_object(p
, s
, addr
)
3275 if (!test_bit(slab_index(p
, s
, addr
), map
))
3276 add_location(t
, s
, get_track(s
, p
, alloc
));
3279 static int list_locations(struct kmem_cache
*s
, char *buf
,
3280 enum track_item alloc
)
3284 struct loc_track t
= { 0, 0, NULL
};
3287 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3289 return sprintf(buf
, "Out of memory\n");
3291 /* Push back cpu slabs */
3294 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3295 struct kmem_cache_node
*n
= get_node(s
, node
);
3296 unsigned long flags
;
3299 if (!atomic_long_read(&n
->nr_slabs
))
3302 spin_lock_irqsave(&n
->list_lock
, flags
);
3303 list_for_each_entry(page
, &n
->partial
, lru
)
3304 process_slab(&t
, s
, page
, alloc
);
3305 list_for_each_entry(page
, &n
->full
, lru
)
3306 process_slab(&t
, s
, page
, alloc
);
3307 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3310 for (i
= 0; i
< t
.count
; i
++) {
3311 struct location
*l
= &t
.loc
[i
];
3313 if (n
> PAGE_SIZE
- 100)
3315 n
+= sprintf(buf
+ n
, "%7ld ", l
->count
);
3318 n
+= sprint_symbol(buf
+ n
, (unsigned long)l
->addr
);
3320 n
+= sprintf(buf
+ n
, "<not-available>");
3322 if (l
->sum_time
!= l
->min_time
) {
3323 unsigned long remainder
;
3325 n
+= sprintf(buf
+ n
, " age=%ld/%ld/%ld",
3327 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3330 n
+= sprintf(buf
+ n
, " age=%ld",
3333 if (l
->min_pid
!= l
->max_pid
)
3334 n
+= sprintf(buf
+ n
, " pid=%ld-%ld",
3335 l
->min_pid
, l
->max_pid
);
3337 n
+= sprintf(buf
+ n
, " pid=%ld",
3340 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3341 n
< PAGE_SIZE
- 60) {
3342 n
+= sprintf(buf
+ n
, " cpus=");
3343 n
+= cpulist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
3347 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3348 n
< PAGE_SIZE
- 60) {
3349 n
+= sprintf(buf
+ n
, " nodes=");
3350 n
+= nodelist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
3354 n
+= sprintf(buf
+ n
, "\n");
3359 n
+= sprintf(buf
, "No data\n");
3363 static unsigned long count_partial(struct kmem_cache_node
*n
)
3365 unsigned long flags
;
3366 unsigned long x
= 0;
3369 spin_lock_irqsave(&n
->list_lock
, flags
);
3370 list_for_each_entry(page
, &n
->partial
, lru
)
3372 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3376 enum slab_stat_type
{
3383 #define SO_FULL (1 << SL_FULL)
3384 #define SO_PARTIAL (1 << SL_PARTIAL)
3385 #define SO_CPU (1 << SL_CPU)
3386 #define SO_OBJECTS (1 << SL_OBJECTS)
3388 static unsigned long slab_objects(struct kmem_cache
*s
,
3389 char *buf
, unsigned long flags
)
3391 unsigned long total
= 0;
3395 unsigned long *nodes
;
3396 unsigned long *per_cpu
;
3398 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3399 per_cpu
= nodes
+ nr_node_ids
;
3401 for_each_possible_cpu(cpu
) {
3404 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3414 if (flags
& SO_CPU
) {
3417 if (flags
& SO_OBJECTS
)
3428 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3429 struct kmem_cache_node
*n
= get_node(s
, node
);
3431 if (flags
& SO_PARTIAL
) {
3432 if (flags
& SO_OBJECTS
)
3433 x
= count_partial(n
);
3440 if (flags
& SO_FULL
) {
3441 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3445 if (flags
& SO_OBJECTS
)
3446 x
= full_slabs
* s
->objects
;
3454 x
= sprintf(buf
, "%lu", total
);
3456 for_each_node_state(node
, N_NORMAL_MEMORY
)
3458 x
+= sprintf(buf
+ x
, " N%d=%lu",
3462 return x
+ sprintf(buf
+ x
, "\n");
3465 static int any_slab_objects(struct kmem_cache
*s
)
3470 for_each_possible_cpu(cpu
) {
3471 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3477 for_each_online_node(node
) {
3478 struct kmem_cache_node
*n
= get_node(s
, node
);
3483 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3489 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3490 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3492 struct slab_attribute
{
3493 struct attribute attr
;
3494 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3495 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3498 #define SLAB_ATTR_RO(_name) \
3499 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3501 #define SLAB_ATTR(_name) \
3502 static struct slab_attribute _name##_attr = \
3503 __ATTR(_name, 0644, _name##_show, _name##_store)
3505 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3507 return sprintf(buf
, "%d\n", s
->size
);
3509 SLAB_ATTR_RO(slab_size
);
3511 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3513 return sprintf(buf
, "%d\n", s
->align
);
3515 SLAB_ATTR_RO(align
);
3517 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3519 return sprintf(buf
, "%d\n", s
->objsize
);
3521 SLAB_ATTR_RO(object_size
);
3523 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3525 return sprintf(buf
, "%d\n", s
->objects
);
3527 SLAB_ATTR_RO(objs_per_slab
);
3529 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3531 return sprintf(buf
, "%d\n", s
->order
);
3533 SLAB_ATTR_RO(order
);
3535 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3538 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3540 return n
+ sprintf(buf
+ n
, "\n");
3546 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3548 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3550 SLAB_ATTR_RO(aliases
);
3552 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3554 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3556 SLAB_ATTR_RO(slabs
);
3558 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3560 return slab_objects(s
, buf
, SO_PARTIAL
);
3562 SLAB_ATTR_RO(partial
);
3564 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3566 return slab_objects(s
, buf
, SO_CPU
);
3568 SLAB_ATTR_RO(cpu_slabs
);
3570 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3572 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3574 SLAB_ATTR_RO(objects
);
3576 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3578 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3581 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3582 const char *buf
, size_t length
)
3584 s
->flags
&= ~SLAB_DEBUG_FREE
;
3586 s
->flags
|= SLAB_DEBUG_FREE
;
3589 SLAB_ATTR(sanity_checks
);
3591 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3593 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3596 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3599 s
->flags
&= ~SLAB_TRACE
;
3601 s
->flags
|= SLAB_TRACE
;
3606 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3608 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3611 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3612 const char *buf
, size_t length
)
3614 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3616 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3619 SLAB_ATTR(reclaim_account
);
3621 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3623 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3625 SLAB_ATTR_RO(hwcache_align
);
3627 #ifdef CONFIG_ZONE_DMA
3628 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3630 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3632 SLAB_ATTR_RO(cache_dma
);
3635 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3637 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3639 SLAB_ATTR_RO(destroy_by_rcu
);
3641 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3643 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3646 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3647 const char *buf
, size_t length
)
3649 if (any_slab_objects(s
))
3652 s
->flags
&= ~SLAB_RED_ZONE
;
3654 s
->flags
|= SLAB_RED_ZONE
;
3658 SLAB_ATTR(red_zone
);
3660 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3662 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3665 static ssize_t
poison_store(struct kmem_cache
*s
,
3666 const char *buf
, size_t length
)
3668 if (any_slab_objects(s
))
3671 s
->flags
&= ~SLAB_POISON
;
3673 s
->flags
|= SLAB_POISON
;
3679 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3681 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3684 static ssize_t
store_user_store(struct kmem_cache
*s
,
3685 const char *buf
, size_t length
)
3687 if (any_slab_objects(s
))
3690 s
->flags
&= ~SLAB_STORE_USER
;
3692 s
->flags
|= SLAB_STORE_USER
;
3696 SLAB_ATTR(store_user
);
3698 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3703 static ssize_t
validate_store(struct kmem_cache
*s
,
3704 const char *buf
, size_t length
)
3708 if (buf
[0] == '1') {
3709 ret
= validate_slab_cache(s
);
3715 SLAB_ATTR(validate
);
3717 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3722 static ssize_t
shrink_store(struct kmem_cache
*s
,
3723 const char *buf
, size_t length
)
3725 if (buf
[0] == '1') {
3726 int rc
= kmem_cache_shrink(s
);
3736 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3738 if (!(s
->flags
& SLAB_STORE_USER
))
3740 return list_locations(s
, buf
, TRACK_ALLOC
);
3742 SLAB_ATTR_RO(alloc_calls
);
3744 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3746 if (!(s
->flags
& SLAB_STORE_USER
))
3748 return list_locations(s
, buf
, TRACK_FREE
);
3750 SLAB_ATTR_RO(free_calls
);
3753 static ssize_t
defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3755 return sprintf(buf
, "%d\n", s
->defrag_ratio
/ 10);
3758 static ssize_t
defrag_ratio_store(struct kmem_cache
*s
,
3759 const char *buf
, size_t length
)
3761 int n
= simple_strtoul(buf
, NULL
, 10);
3764 s
->defrag_ratio
= n
* 10;
3767 SLAB_ATTR(defrag_ratio
);
3770 static struct attribute
* slab_attrs
[] = {
3771 &slab_size_attr
.attr
,
3772 &object_size_attr
.attr
,
3773 &objs_per_slab_attr
.attr
,
3778 &cpu_slabs_attr
.attr
,
3782 &sanity_checks_attr
.attr
,
3784 &hwcache_align_attr
.attr
,
3785 &reclaim_account_attr
.attr
,
3786 &destroy_by_rcu_attr
.attr
,
3787 &red_zone_attr
.attr
,
3789 &store_user_attr
.attr
,
3790 &validate_attr
.attr
,
3792 &alloc_calls_attr
.attr
,
3793 &free_calls_attr
.attr
,
3794 #ifdef CONFIG_ZONE_DMA
3795 &cache_dma_attr
.attr
,
3798 &defrag_ratio_attr
.attr
,
3803 static struct attribute_group slab_attr_group
= {
3804 .attrs
= slab_attrs
,
3807 static ssize_t
slab_attr_show(struct kobject
*kobj
,
3808 struct attribute
*attr
,
3811 struct slab_attribute
*attribute
;
3812 struct kmem_cache
*s
;
3815 attribute
= to_slab_attr(attr
);
3818 if (!attribute
->show
)
3821 err
= attribute
->show(s
, buf
);
3826 static ssize_t
slab_attr_store(struct kobject
*kobj
,
3827 struct attribute
*attr
,
3828 const char *buf
, size_t len
)
3830 struct slab_attribute
*attribute
;
3831 struct kmem_cache
*s
;
3834 attribute
= to_slab_attr(attr
);
3837 if (!attribute
->store
)
3840 err
= attribute
->store(s
, buf
, len
);
3845 static struct sysfs_ops slab_sysfs_ops
= {
3846 .show
= slab_attr_show
,
3847 .store
= slab_attr_store
,
3850 static struct kobj_type slab_ktype
= {
3851 .sysfs_ops
= &slab_sysfs_ops
,
3854 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
3856 struct kobj_type
*ktype
= get_ktype(kobj
);
3858 if (ktype
== &slab_ktype
)
3863 static struct kset_uevent_ops slab_uevent_ops
= {
3864 .filter
= uevent_filter
,
3867 static decl_subsys(slab
, &slab_ktype
, &slab_uevent_ops
);
3869 #define ID_STR_LENGTH 64
3871 /* Create a unique string id for a slab cache:
3873 * :[flags-]size:[memory address of kmemcache]
3875 static char *create_unique_id(struct kmem_cache
*s
)
3877 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
3884 * First flags affecting slabcache operations. We will only
3885 * get here for aliasable slabs so we do not need to support
3886 * too many flags. The flags here must cover all flags that
3887 * are matched during merging to guarantee that the id is
3890 if (s
->flags
& SLAB_CACHE_DMA
)
3892 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3894 if (s
->flags
& SLAB_DEBUG_FREE
)
3898 p
+= sprintf(p
, "%07d", s
->size
);
3899 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
3903 static int sysfs_slab_add(struct kmem_cache
*s
)
3909 if (slab_state
< SYSFS
)
3910 /* Defer until later */
3913 unmergeable
= slab_unmergeable(s
);
3916 * Slabcache can never be merged so we can use the name proper.
3917 * This is typically the case for debug situations. In that
3918 * case we can catch duplicate names easily.
3920 sysfs_remove_link(&slab_subsys
.kobj
, s
->name
);
3924 * Create a unique name for the slab as a target
3927 name
= create_unique_id(s
);
3930 kobj_set_kset_s(s
, slab_subsys
);
3931 kobject_set_name(&s
->kobj
, name
);
3932 kobject_init(&s
->kobj
);
3933 err
= kobject_add(&s
->kobj
);
3937 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
3940 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
3942 /* Setup first alias */
3943 sysfs_slab_alias(s
, s
->name
);
3949 static void sysfs_slab_remove(struct kmem_cache
*s
)
3951 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
3952 kobject_del(&s
->kobj
);
3956 * Need to buffer aliases during bootup until sysfs becomes
3957 * available lest we loose that information.
3959 struct saved_alias
{
3960 struct kmem_cache
*s
;
3962 struct saved_alias
*next
;
3965 static struct saved_alias
*alias_list
;
3967 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
3969 struct saved_alias
*al
;
3971 if (slab_state
== SYSFS
) {
3973 * If we have a leftover link then remove it.
3975 sysfs_remove_link(&slab_subsys
.kobj
, name
);
3976 return sysfs_create_link(&slab_subsys
.kobj
,
3980 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
3986 al
->next
= alias_list
;
3991 static int __init
slab_sysfs_init(void)
3993 struct kmem_cache
*s
;
3996 err
= subsystem_register(&slab_subsys
);
3998 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4004 list_for_each_entry(s
, &slab_caches
, list
) {
4005 err
= sysfs_slab_add(s
);
4007 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4008 " to sysfs\n", s
->name
);
4011 while (alias_list
) {
4012 struct saved_alias
*al
= alias_list
;
4014 alias_list
= alias_list
->next
;
4015 err
= sysfs_slab_alias(al
->s
, al
->name
);
4017 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4018 " %s to sysfs\n", s
->name
);
4026 __initcall(slab_sysfs_init
);