sh/kernel/ cleanups
[linux-2.6/mini2440.git] / arch / sh / kernel / process_64.c
blobb9dbd2d3b4a5845624829c547ed613c8fe259b51
1 /*
2 * arch/sh/kernel/process_64.c
4 * This file handles the architecture-dependent parts of process handling..
6 * Copyright (C) 2000, 2001 Paolo Alberelli
7 * Copyright (C) 2003 - 2007 Paul Mundt
8 * Copyright (C) 2003, 2004 Richard Curnow
10 * Started from SH3/4 version:
11 * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
13 * In turn started from i386 version:
14 * Copyright (C) 1995 Linus Torvalds
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file "COPYING" in the main directory of this archive
18 * for more details.
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/ptrace.h>
23 #include <linux/reboot.h>
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/proc_fs.h>
27 #include <linux/io.h>
28 #include <asm/uaccess.h>
29 #include <asm/pgtable.h>
30 #include <asm/mmu_context.h>
31 #include <asm/fpu.h>
33 struct task_struct *last_task_used_math = NULL;
35 static int hlt_counter = 1;
37 #define HARD_IDLE_TIMEOUT (HZ / 3)
39 static int __init nohlt_setup(char *__unused)
41 hlt_counter = 1;
42 return 1;
45 static int __init hlt_setup(char *__unused)
47 hlt_counter = 0;
48 return 1;
51 __setup("nohlt", nohlt_setup);
52 __setup("hlt", hlt_setup);
54 static inline void hlt(void)
56 __asm__ __volatile__ ("sleep" : : : "memory");
60 * The idle loop on a uniprocessor SH..
62 void cpu_idle(void)
64 /* endless idle loop with no priority at all */
65 while (1) {
66 if (hlt_counter) {
67 while (!need_resched())
68 cpu_relax();
69 } else {
70 local_irq_disable();
71 while (!need_resched()) {
72 local_irq_enable();
73 hlt();
74 local_irq_disable();
76 local_irq_enable();
78 preempt_enable_no_resched();
79 schedule();
80 preempt_disable();
85 void machine_restart(char * __unused)
87 extern void phys_stext(void);
89 phys_stext();
92 void machine_halt(void)
94 for (;;);
97 void machine_power_off(void)
99 #if 0
100 /* Disable watchdog timer */
101 ctrl_outl(0xa5000000, WTCSR);
102 /* Configure deep standby on sleep */
103 ctrl_outl(0x03, STBCR);
104 #endif
106 __asm__ __volatile__ (
107 "sleep\n\t"
108 "synci\n\t"
109 "nop;nop;nop;nop\n\t"
112 panic("Unexpected wakeup!\n");
115 void (*pm_power_off)(void) = machine_power_off;
116 EXPORT_SYMBOL(pm_power_off);
118 void show_regs(struct pt_regs * regs)
120 unsigned long long ah, al, bh, bl, ch, cl;
122 printk("\n");
124 ah = (regs->pc) >> 32;
125 al = (regs->pc) & 0xffffffff;
126 bh = (regs->regs[18]) >> 32;
127 bl = (regs->regs[18]) & 0xffffffff;
128 ch = (regs->regs[15]) >> 32;
129 cl = (regs->regs[15]) & 0xffffffff;
130 printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
131 ah, al, bh, bl, ch, cl);
133 ah = (regs->sr) >> 32;
134 al = (regs->sr) & 0xffffffff;
135 asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
136 asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
137 bh = (bh) >> 32;
138 bl = (bl) & 0xffffffff;
139 asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
140 asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
141 ch = (ch) >> 32;
142 cl = (cl) & 0xffffffff;
143 printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
144 ah, al, bh, bl, ch, cl);
146 ah = (regs->regs[0]) >> 32;
147 al = (regs->regs[0]) & 0xffffffff;
148 bh = (regs->regs[1]) >> 32;
149 bl = (regs->regs[1]) & 0xffffffff;
150 ch = (regs->regs[2]) >> 32;
151 cl = (regs->regs[2]) & 0xffffffff;
152 printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
153 ah, al, bh, bl, ch, cl);
155 ah = (regs->regs[3]) >> 32;
156 al = (regs->regs[3]) & 0xffffffff;
157 bh = (regs->regs[4]) >> 32;
158 bl = (regs->regs[4]) & 0xffffffff;
159 ch = (regs->regs[5]) >> 32;
160 cl = (regs->regs[5]) & 0xffffffff;
161 printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
162 ah, al, bh, bl, ch, cl);
164 ah = (regs->regs[6]) >> 32;
165 al = (regs->regs[6]) & 0xffffffff;
166 bh = (regs->regs[7]) >> 32;
167 bl = (regs->regs[7]) & 0xffffffff;
168 ch = (regs->regs[8]) >> 32;
169 cl = (regs->regs[8]) & 0xffffffff;
170 printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
171 ah, al, bh, bl, ch, cl);
173 ah = (regs->regs[9]) >> 32;
174 al = (regs->regs[9]) & 0xffffffff;
175 bh = (regs->regs[10]) >> 32;
176 bl = (regs->regs[10]) & 0xffffffff;
177 ch = (regs->regs[11]) >> 32;
178 cl = (regs->regs[11]) & 0xffffffff;
179 printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
180 ah, al, bh, bl, ch, cl);
182 ah = (regs->regs[12]) >> 32;
183 al = (regs->regs[12]) & 0xffffffff;
184 bh = (regs->regs[13]) >> 32;
185 bl = (regs->regs[13]) & 0xffffffff;
186 ch = (regs->regs[14]) >> 32;
187 cl = (regs->regs[14]) & 0xffffffff;
188 printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
189 ah, al, bh, bl, ch, cl);
191 ah = (regs->regs[16]) >> 32;
192 al = (regs->regs[16]) & 0xffffffff;
193 bh = (regs->regs[17]) >> 32;
194 bl = (regs->regs[17]) & 0xffffffff;
195 ch = (regs->regs[19]) >> 32;
196 cl = (regs->regs[19]) & 0xffffffff;
197 printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
198 ah, al, bh, bl, ch, cl);
200 ah = (regs->regs[20]) >> 32;
201 al = (regs->regs[20]) & 0xffffffff;
202 bh = (regs->regs[21]) >> 32;
203 bl = (regs->regs[21]) & 0xffffffff;
204 ch = (regs->regs[22]) >> 32;
205 cl = (regs->regs[22]) & 0xffffffff;
206 printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
207 ah, al, bh, bl, ch, cl);
209 ah = (regs->regs[23]) >> 32;
210 al = (regs->regs[23]) & 0xffffffff;
211 bh = (regs->regs[24]) >> 32;
212 bl = (regs->regs[24]) & 0xffffffff;
213 ch = (regs->regs[25]) >> 32;
214 cl = (regs->regs[25]) & 0xffffffff;
215 printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
216 ah, al, bh, bl, ch, cl);
218 ah = (regs->regs[26]) >> 32;
219 al = (regs->regs[26]) & 0xffffffff;
220 bh = (regs->regs[27]) >> 32;
221 bl = (regs->regs[27]) & 0xffffffff;
222 ch = (regs->regs[28]) >> 32;
223 cl = (regs->regs[28]) & 0xffffffff;
224 printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
225 ah, al, bh, bl, ch, cl);
227 ah = (regs->regs[29]) >> 32;
228 al = (regs->regs[29]) & 0xffffffff;
229 bh = (regs->regs[30]) >> 32;
230 bl = (regs->regs[30]) & 0xffffffff;
231 ch = (regs->regs[31]) >> 32;
232 cl = (regs->regs[31]) & 0xffffffff;
233 printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
234 ah, al, bh, bl, ch, cl);
236 ah = (regs->regs[32]) >> 32;
237 al = (regs->regs[32]) & 0xffffffff;
238 bh = (regs->regs[33]) >> 32;
239 bl = (regs->regs[33]) & 0xffffffff;
240 ch = (regs->regs[34]) >> 32;
241 cl = (regs->regs[34]) & 0xffffffff;
242 printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
243 ah, al, bh, bl, ch, cl);
245 ah = (regs->regs[35]) >> 32;
246 al = (regs->regs[35]) & 0xffffffff;
247 bh = (regs->regs[36]) >> 32;
248 bl = (regs->regs[36]) & 0xffffffff;
249 ch = (regs->regs[37]) >> 32;
250 cl = (regs->regs[37]) & 0xffffffff;
251 printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
252 ah, al, bh, bl, ch, cl);
254 ah = (regs->regs[38]) >> 32;
255 al = (regs->regs[38]) & 0xffffffff;
256 bh = (regs->regs[39]) >> 32;
257 bl = (regs->regs[39]) & 0xffffffff;
258 ch = (regs->regs[40]) >> 32;
259 cl = (regs->regs[40]) & 0xffffffff;
260 printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
261 ah, al, bh, bl, ch, cl);
263 ah = (regs->regs[41]) >> 32;
264 al = (regs->regs[41]) & 0xffffffff;
265 bh = (regs->regs[42]) >> 32;
266 bl = (regs->regs[42]) & 0xffffffff;
267 ch = (regs->regs[43]) >> 32;
268 cl = (regs->regs[43]) & 0xffffffff;
269 printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
270 ah, al, bh, bl, ch, cl);
272 ah = (regs->regs[44]) >> 32;
273 al = (regs->regs[44]) & 0xffffffff;
274 bh = (regs->regs[45]) >> 32;
275 bl = (regs->regs[45]) & 0xffffffff;
276 ch = (regs->regs[46]) >> 32;
277 cl = (regs->regs[46]) & 0xffffffff;
278 printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
279 ah, al, bh, bl, ch, cl);
281 ah = (regs->regs[47]) >> 32;
282 al = (regs->regs[47]) & 0xffffffff;
283 bh = (regs->regs[48]) >> 32;
284 bl = (regs->regs[48]) & 0xffffffff;
285 ch = (regs->regs[49]) >> 32;
286 cl = (regs->regs[49]) & 0xffffffff;
287 printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
288 ah, al, bh, bl, ch, cl);
290 ah = (regs->regs[50]) >> 32;
291 al = (regs->regs[50]) & 0xffffffff;
292 bh = (regs->regs[51]) >> 32;
293 bl = (regs->regs[51]) & 0xffffffff;
294 ch = (regs->regs[52]) >> 32;
295 cl = (regs->regs[52]) & 0xffffffff;
296 printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
297 ah, al, bh, bl, ch, cl);
299 ah = (regs->regs[53]) >> 32;
300 al = (regs->regs[53]) & 0xffffffff;
301 bh = (regs->regs[54]) >> 32;
302 bl = (regs->regs[54]) & 0xffffffff;
303 ch = (regs->regs[55]) >> 32;
304 cl = (regs->regs[55]) & 0xffffffff;
305 printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
306 ah, al, bh, bl, ch, cl);
308 ah = (regs->regs[56]) >> 32;
309 al = (regs->regs[56]) & 0xffffffff;
310 bh = (regs->regs[57]) >> 32;
311 bl = (regs->regs[57]) & 0xffffffff;
312 ch = (regs->regs[58]) >> 32;
313 cl = (regs->regs[58]) & 0xffffffff;
314 printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
315 ah, al, bh, bl, ch, cl);
317 ah = (regs->regs[59]) >> 32;
318 al = (regs->regs[59]) & 0xffffffff;
319 bh = (regs->regs[60]) >> 32;
320 bl = (regs->regs[60]) & 0xffffffff;
321 ch = (regs->regs[61]) >> 32;
322 cl = (regs->regs[61]) & 0xffffffff;
323 printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
324 ah, al, bh, bl, ch, cl);
326 ah = (regs->regs[62]) >> 32;
327 al = (regs->regs[62]) & 0xffffffff;
328 bh = (regs->tregs[0]) >> 32;
329 bl = (regs->tregs[0]) & 0xffffffff;
330 ch = (regs->tregs[1]) >> 32;
331 cl = (regs->tregs[1]) & 0xffffffff;
332 printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
333 ah, al, bh, bl, ch, cl);
335 ah = (regs->tregs[2]) >> 32;
336 al = (regs->tregs[2]) & 0xffffffff;
337 bh = (regs->tregs[3]) >> 32;
338 bl = (regs->tregs[3]) & 0xffffffff;
339 ch = (regs->tregs[4]) >> 32;
340 cl = (regs->tregs[4]) & 0xffffffff;
341 printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
342 ah, al, bh, bl, ch, cl);
344 ah = (regs->tregs[5]) >> 32;
345 al = (regs->tregs[5]) & 0xffffffff;
346 bh = (regs->tregs[6]) >> 32;
347 bl = (regs->tregs[6]) & 0xffffffff;
348 ch = (regs->tregs[7]) >> 32;
349 cl = (regs->tregs[7]) & 0xffffffff;
350 printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
351 ah, al, bh, bl, ch, cl);
354 * If we're in kernel mode, dump the stack too..
356 if (!user_mode(regs)) {
357 void show_stack(struct task_struct *tsk, unsigned long *sp);
358 unsigned long sp = regs->regs[15] & 0xffffffff;
359 struct task_struct *tsk = get_current();
361 tsk->thread.kregs = regs;
363 show_stack(tsk, (unsigned long *)sp);
367 struct task_struct * alloc_task_struct(void)
369 /* Get task descriptor pages */
370 return (struct task_struct *)
371 __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
374 void free_task_struct(struct task_struct *p)
376 free_pages((unsigned long) p, get_order(THREAD_SIZE));
380 * Create a kernel thread
382 ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
384 do_exit(fn(arg));
388 * This is the mechanism for creating a new kernel thread.
390 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
391 * who haven't done an "execve()") should use this: it will work within
392 * a system call from a "real" process, but the process memory space will
393 * not be freed until both the parent and the child have exited.
395 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
397 struct pt_regs regs;
399 memset(&regs, 0, sizeof(regs));
400 regs.regs[2] = (unsigned long)arg;
401 regs.regs[3] = (unsigned long)fn;
403 regs.pc = (unsigned long)kernel_thread_helper;
404 regs.sr = (1 << 30);
406 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
407 &regs, 0, NULL, NULL);
411 * Free current thread data structures etc..
413 void exit_thread(void)
416 * See arch/sparc/kernel/process.c for the precedent for doing
417 * this -- RPC.
419 * The SH-5 FPU save/restore approach relies on
420 * last_task_used_math pointing to a live task_struct. When
421 * another task tries to use the FPU for the 1st time, the FPUDIS
422 * trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the
423 * existing FPU state to the FP regs field within
424 * last_task_used_math before re-loading the new task's FPU state
425 * (or initialising it if the FPU has been used before). So if
426 * last_task_used_math is stale, and its page has already been
427 * re-allocated for another use, the consequences are rather
428 * grim. Unless we null it here, there is no other path through
429 * which it would get safely nulled.
431 #ifdef CONFIG_SH_FPU
432 if (last_task_used_math == current) {
433 last_task_used_math = NULL;
435 #endif
438 void flush_thread(void)
441 /* Called by fs/exec.c (flush_old_exec) to remove traces of a
442 * previously running executable. */
443 #ifdef CONFIG_SH_FPU
444 if (last_task_used_math == current) {
445 last_task_used_math = NULL;
447 /* Force FPU state to be reinitialised after exec */
448 clear_used_math();
449 #endif
451 /* if we are a kernel thread, about to change to user thread,
452 * update kreg
454 if(current->thread.kregs==&fake_swapper_regs) {
455 current->thread.kregs =
456 ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
457 current->thread.uregs = current->thread.kregs;
461 void release_thread(struct task_struct *dead_task)
463 /* do nothing */
466 /* Fill in the fpu structure for a core dump.. */
467 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
469 #ifdef CONFIG_SH_FPU
470 int fpvalid;
471 struct task_struct *tsk = current;
473 fpvalid = !!tsk_used_math(tsk);
474 if (fpvalid) {
475 if (current == last_task_used_math) {
476 enable_fpu();
477 save_fpu(tsk, regs);
478 disable_fpu();
479 last_task_used_math = 0;
480 regs->sr |= SR_FD;
483 memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
486 return fpvalid;
487 #else
488 return 0; /* Task didn't use the fpu at all. */
489 #endif
492 asmlinkage void ret_from_fork(void);
494 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
495 unsigned long unused,
496 struct task_struct *p, struct pt_regs *regs)
498 struct pt_regs *childregs;
499 unsigned long long se; /* Sign extension */
501 #ifdef CONFIG_SH_FPU
502 if(last_task_used_math == current) {
503 enable_fpu();
504 save_fpu(current, regs);
505 disable_fpu();
506 last_task_used_math = NULL;
507 regs->sr |= SR_FD;
509 #endif
510 /* Copy from sh version */
511 childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
513 *childregs = *regs;
515 if (user_mode(regs)) {
516 childregs->regs[15] = usp;
517 p->thread.uregs = childregs;
518 } else {
519 childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
522 childregs->regs[9] = 0; /* Set return value for child */
523 childregs->sr |= SR_FD; /* Invalidate FPU flag */
525 p->thread.sp = (unsigned long) childregs;
526 p->thread.pc = (unsigned long) ret_from_fork;
529 * Sign extend the edited stack.
530 * Note that thread.pc and thread.pc will stay
531 * 32-bit wide and context switch must take care
532 * of NEFF sign extension.
535 se = childregs->regs[15];
536 se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
537 childregs->regs[15] = se;
539 return 0;
542 asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
543 unsigned long r4, unsigned long r5,
544 unsigned long r6, unsigned long r7,
545 struct pt_regs *pregs)
547 return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
550 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
551 unsigned long r4, unsigned long r5,
552 unsigned long r6, unsigned long r7,
553 struct pt_regs *pregs)
555 if (!newsp)
556 newsp = pregs->regs[15];
557 return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
561 * This is trivial, and on the face of it looks like it
562 * could equally well be done in user mode.
564 * Not so, for quite unobvious reasons - register pressure.
565 * In user mode vfork() cannot have a stack frame, and if
566 * done by calling the "clone()" system call directly, you
567 * do not have enough call-clobbered registers to hold all
568 * the information you need.
570 asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
571 unsigned long r4, unsigned long r5,
572 unsigned long r6, unsigned long r7,
573 struct pt_regs *pregs)
575 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
579 * sys_execve() executes a new program.
581 asmlinkage int sys_execve(char *ufilename, char **uargv,
582 char **uenvp, unsigned long r5,
583 unsigned long r6, unsigned long r7,
584 struct pt_regs *pregs)
586 int error;
587 char *filename;
589 lock_kernel();
590 filename = getname((char __user *)ufilename);
591 error = PTR_ERR(filename);
592 if (IS_ERR(filename))
593 goto out;
595 error = do_execve(filename,
596 (char __user * __user *)uargv,
597 (char __user * __user *)uenvp,
598 pregs);
599 if (error == 0) {
600 task_lock(current);
601 current->ptrace &= ~PT_DTRACE;
602 task_unlock(current);
604 putname(filename);
605 out:
606 unlock_kernel();
607 return error;
611 * These bracket the sleeping functions..
613 extern void interruptible_sleep_on(wait_queue_head_t *q);
615 #define mid_sched ((unsigned long) interruptible_sleep_on)
617 #ifdef CONFIG_FRAME_POINTER
618 static int in_sh64_switch_to(unsigned long pc)
620 extern char __sh64_switch_to_end;
621 /* For a sleeping task, the PC is somewhere in the middle of the function,
622 so we don't have to worry about masking the LSB off */
623 return (pc >= (unsigned long) sh64_switch_to) &&
624 (pc < (unsigned long) &__sh64_switch_to_end);
626 #endif
628 unsigned long get_wchan(struct task_struct *p)
630 unsigned long pc;
632 if (!p || p == current || p->state == TASK_RUNNING)
633 return 0;
636 * The same comment as on the Alpha applies here, too ...
638 pc = thread_saved_pc(p);
640 #ifdef CONFIG_FRAME_POINTER
641 if (in_sh64_switch_to(pc)) {
642 unsigned long schedule_fp;
643 unsigned long sh64_switch_to_fp;
644 unsigned long schedule_caller_pc;
646 sh64_switch_to_fp = (long) p->thread.sp;
647 /* r14 is saved at offset 4 in the sh64_switch_to frame */
648 schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
650 /* and the caller of 'schedule' is (currently!) saved at offset 24
651 in the frame of schedule (from disasm) */
652 schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
653 return schedule_caller_pc;
655 #endif
656 return pc;
659 /* Provide a /proc/asids file that lists out the
660 ASIDs currently associated with the processes. (If the DM.PC register is
661 examined through the debug link, this shows ASID + PC. To make use of this,
662 the PID->ASID relationship needs to be known. This is primarily for
663 debugging.)
666 #if defined(CONFIG_SH64_PROC_ASIDS)
667 static int
668 asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
670 int len=0;
671 struct task_struct *p;
672 read_lock(&tasklist_lock);
673 for_each_process(p) {
674 int pid = p->pid;
676 if (!pid)
677 continue;
678 if (p->mm)
679 len += sprintf(buf+len, "%5d : %02lx\n", pid,
680 asid_cache(smp_processor_id()));
681 else
682 len += sprintf(buf+len, "%5d : (none)\n", pid);
684 read_unlock(&tasklist_lock);
685 *eof = 1;
686 return len;
689 static int __init register_proc_asids(void)
691 create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
692 return 0;
694 __initcall(register_proc_asids);
695 #endif