sparc64: Fix Niagara2 perf event handling.
[linux-2.6/mini2440.git] / arch / sparc / kernel / perf_event.c
blob198fb4e79ba2875289a58cae60acb47c3442fb23
1 /* Performance event support for sparc64.
3 * Copyright (C) 2009 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
21 #include <asm/cpudata.h>
22 #include <asm/atomic.h>
23 #include <asm/nmi.h>
24 #include <asm/pcr.h>
26 /* Sparc64 chips have two performance counters, 32-bits each, with
27 * overflow interrupts generated on transition from 0xffffffff to 0.
28 * The counters are accessed in one go using a 64-bit register.
30 * Both counters are controlled using a single control register. The
31 * only way to stop all sampling is to clear all of the context (user,
32 * supervisor, hypervisor) sampling enable bits. But these bits apply
33 * to both counters, thus the two counters can't be enabled/disabled
34 * individually.
36 * The control register has two event fields, one for each of the two
37 * counters. It's thus nearly impossible to have one counter going
38 * while keeping the other one stopped. Therefore it is possible to
39 * get overflow interrupts for counters not currently "in use" and
40 * that condition must be checked in the overflow interrupt handler.
42 * So we use a hack, in that we program inactive counters with the
43 * "sw_count0" and "sw_count1" events. These count how many times
44 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
45 * unusual way to encode a NOP and therefore will not trigger in
46 * normal code.
49 #define MAX_HWEVENTS 2
50 #define MAX_PERIOD ((1UL << 32) - 1)
52 #define PIC_UPPER_INDEX 0
53 #define PIC_LOWER_INDEX 1
55 struct cpu_hw_events {
56 struct perf_event *events[MAX_HWEVENTS];
57 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
58 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
59 u64 pcr;
60 int enabled;
62 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
64 struct perf_event_map {
65 u16 encoding;
66 u8 pic_mask;
67 #define PIC_NONE 0x00
68 #define PIC_UPPER 0x01
69 #define PIC_LOWER 0x02
72 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
74 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
77 static void perf_event_decode(unsigned long val, u16 *enc, u8 *msk)
79 *msk = val & 0xff;
80 *enc = val >> 16;
83 #define C(x) PERF_COUNT_HW_CACHE_##x
85 #define CACHE_OP_UNSUPPORTED 0xfffe
86 #define CACHE_OP_NONSENSE 0xffff
88 typedef struct perf_event_map cache_map_t
89 [PERF_COUNT_HW_CACHE_MAX]
90 [PERF_COUNT_HW_CACHE_OP_MAX]
91 [PERF_COUNT_HW_CACHE_RESULT_MAX];
93 struct sparc_pmu {
94 const struct perf_event_map *(*event_map)(int);
95 const cache_map_t *cache_map;
96 int max_events;
97 int upper_shift;
98 int lower_shift;
99 int event_mask;
100 int hv_bit;
101 int irq_bit;
102 int upper_nop;
103 int lower_nop;
106 static const struct perf_event_map ultra3_perfmon_event_map[] = {
107 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
108 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
109 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
110 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
113 static const struct perf_event_map *ultra3_event_map(int event_id)
115 return &ultra3_perfmon_event_map[event_id];
118 static const cache_map_t ultra3_cache_map = {
119 [C(L1D)] = {
120 [C(OP_READ)] = {
121 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
122 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
124 [C(OP_WRITE)] = {
125 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
126 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
128 [C(OP_PREFETCH)] = {
129 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
130 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
133 [C(L1I)] = {
134 [C(OP_READ)] = {
135 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
136 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
138 [ C(OP_WRITE) ] = {
139 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
140 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
142 [ C(OP_PREFETCH) ] = {
143 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
144 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
147 [C(LL)] = {
148 [C(OP_READ)] = {
149 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
150 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
152 [C(OP_WRITE)] = {
153 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
154 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
156 [C(OP_PREFETCH)] = {
157 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
158 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
161 [C(DTLB)] = {
162 [C(OP_READ)] = {
163 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
164 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
166 [ C(OP_WRITE) ] = {
167 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
168 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
170 [ C(OP_PREFETCH) ] = {
171 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
172 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
175 [C(ITLB)] = {
176 [C(OP_READ)] = {
177 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
178 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
180 [ C(OP_WRITE) ] = {
181 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
182 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
184 [ C(OP_PREFETCH) ] = {
185 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
186 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
189 [C(BPU)] = {
190 [C(OP_READ)] = {
191 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
192 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
194 [ C(OP_WRITE) ] = {
195 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
196 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
198 [ C(OP_PREFETCH) ] = {
199 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
200 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
205 static const struct sparc_pmu ultra3_pmu = {
206 .event_map = ultra3_event_map,
207 .cache_map = &ultra3_cache_map,
208 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
209 .upper_shift = 11,
210 .lower_shift = 4,
211 .event_mask = 0x3f,
212 .upper_nop = 0x1c,
213 .lower_nop = 0x14,
216 /* Niagara1 is very limited. The upper PIC is hard-locked to count
217 * only instructions, so it is free running which creates all kinds of
218 * problems. Some hardware designs make one wonder if the creator
219 * even looked at how this stuff gets used by software.
221 static const struct perf_event_map niagara1_perfmon_event_map[] = {
222 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
223 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
224 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
225 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
228 static const struct perf_event_map *niagara1_event_map(int event_id)
230 return &niagara1_perfmon_event_map[event_id];
233 static const cache_map_t niagara1_cache_map = {
234 [C(L1D)] = {
235 [C(OP_READ)] = {
236 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
237 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
239 [C(OP_WRITE)] = {
240 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
241 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
243 [C(OP_PREFETCH)] = {
244 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
245 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
248 [C(L1I)] = {
249 [C(OP_READ)] = {
250 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
251 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
253 [ C(OP_WRITE) ] = {
254 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
255 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
257 [ C(OP_PREFETCH) ] = {
258 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
259 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
262 [C(LL)] = {
263 [C(OP_READ)] = {
264 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
265 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
267 [C(OP_WRITE)] = {
268 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
269 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
271 [C(OP_PREFETCH)] = {
272 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
273 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
276 [C(DTLB)] = {
277 [C(OP_READ)] = {
278 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
281 [ C(OP_WRITE) ] = {
282 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
283 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
285 [ C(OP_PREFETCH) ] = {
286 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
287 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
290 [C(ITLB)] = {
291 [C(OP_READ)] = {
292 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
293 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
295 [ C(OP_WRITE) ] = {
296 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
297 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
299 [ C(OP_PREFETCH) ] = {
300 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
304 [C(BPU)] = {
305 [C(OP_READ)] = {
306 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
309 [ C(OP_WRITE) ] = {
310 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
311 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
313 [ C(OP_PREFETCH) ] = {
314 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
315 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
320 static const struct sparc_pmu niagara1_pmu = {
321 .event_map = niagara1_event_map,
322 .cache_map = &niagara1_cache_map,
323 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
324 .upper_shift = 0,
325 .lower_shift = 4,
326 .event_mask = 0x7,
327 .upper_nop = 0x0,
328 .lower_nop = 0x0,
331 static const struct perf_event_map niagara2_perfmon_event_map[] = {
332 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
333 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
334 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
335 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
336 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
337 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
340 static const struct perf_event_map *niagara2_event_map(int event_id)
342 return &niagara2_perfmon_event_map[event_id];
345 static const cache_map_t niagara2_cache_map = {
346 [C(L1D)] = {
347 [C(OP_READ)] = {
348 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
349 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
351 [C(OP_WRITE)] = {
352 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
353 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
355 [C(OP_PREFETCH)] = {
356 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
357 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
360 [C(L1I)] = {
361 [C(OP_READ)] = {
362 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
363 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
365 [ C(OP_WRITE) ] = {
366 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
367 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
369 [ C(OP_PREFETCH) ] = {
370 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
371 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
374 [C(LL)] = {
375 [C(OP_READ)] = {
376 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
377 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
379 [C(OP_WRITE)] = {
380 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
381 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
383 [C(OP_PREFETCH)] = {
384 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
385 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
388 [C(DTLB)] = {
389 [C(OP_READ)] = {
390 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
391 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
393 [ C(OP_WRITE) ] = {
394 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
395 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
397 [ C(OP_PREFETCH) ] = {
398 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
399 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
402 [C(ITLB)] = {
403 [C(OP_READ)] = {
404 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
405 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
407 [ C(OP_WRITE) ] = {
408 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
409 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
411 [ C(OP_PREFETCH) ] = {
412 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
413 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
416 [C(BPU)] = {
417 [C(OP_READ)] = {
418 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
419 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
421 [ C(OP_WRITE) ] = {
422 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
423 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
425 [ C(OP_PREFETCH) ] = {
426 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
427 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
432 static const struct sparc_pmu niagara2_pmu = {
433 .event_map = niagara2_event_map,
434 .cache_map = &niagara2_cache_map,
435 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
436 .upper_shift = 19,
437 .lower_shift = 6,
438 .event_mask = 0xfff,
439 .hv_bit = 0x8,
440 .irq_bit = 0x30,
441 .upper_nop = 0x220,
442 .lower_nop = 0x220,
445 static const struct sparc_pmu *sparc_pmu __read_mostly;
447 static u64 event_encoding(u64 event_id, int idx)
449 if (idx == PIC_UPPER_INDEX)
450 event_id <<= sparc_pmu->upper_shift;
451 else
452 event_id <<= sparc_pmu->lower_shift;
453 return event_id;
456 static u64 mask_for_index(int idx)
458 return event_encoding(sparc_pmu->event_mask, idx);
461 static u64 nop_for_index(int idx)
463 return event_encoding(idx == PIC_UPPER_INDEX ?
464 sparc_pmu->upper_nop :
465 sparc_pmu->lower_nop, idx);
468 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
470 u64 val, mask = mask_for_index(idx);
472 val = cpuc->pcr;
473 val &= ~mask;
474 val |= hwc->config;
475 cpuc->pcr = val;
477 pcr_ops->write(cpuc->pcr);
480 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
482 u64 mask = mask_for_index(idx);
483 u64 nop = nop_for_index(idx);
484 u64 val;
486 val = cpuc->pcr;
487 val &= ~mask;
488 val |= nop;
489 cpuc->pcr = val;
491 pcr_ops->write(cpuc->pcr);
494 void hw_perf_enable(void)
496 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
497 u64 val;
498 int i;
500 if (cpuc->enabled)
501 return;
503 cpuc->enabled = 1;
504 barrier();
506 val = cpuc->pcr;
508 for (i = 0; i < MAX_HWEVENTS; i++) {
509 struct perf_event *cp = cpuc->events[i];
510 struct hw_perf_event *hwc;
512 if (!cp)
513 continue;
514 hwc = &cp->hw;
515 val |= hwc->config_base;
518 cpuc->pcr = val;
520 pcr_ops->write(cpuc->pcr);
523 void hw_perf_disable(void)
525 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
526 u64 val;
528 if (!cpuc->enabled)
529 return;
531 cpuc->enabled = 0;
533 val = cpuc->pcr;
534 val &= ~(PCR_UTRACE | PCR_STRACE |
535 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
536 cpuc->pcr = val;
538 pcr_ops->write(cpuc->pcr);
541 static u32 read_pmc(int idx)
543 u64 val;
545 read_pic(val);
546 if (idx == PIC_UPPER_INDEX)
547 val >>= 32;
549 return val & 0xffffffff;
552 static void write_pmc(int idx, u64 val)
554 u64 shift, mask, pic;
556 shift = 0;
557 if (idx == PIC_UPPER_INDEX)
558 shift = 32;
560 mask = ((u64) 0xffffffff) << shift;
561 val <<= shift;
563 read_pic(pic);
564 pic &= ~mask;
565 pic |= val;
566 write_pic(pic);
569 static int sparc_perf_event_set_period(struct perf_event *event,
570 struct hw_perf_event *hwc, int idx)
572 s64 left = atomic64_read(&hwc->period_left);
573 s64 period = hwc->sample_period;
574 int ret = 0;
576 if (unlikely(left <= -period)) {
577 left = period;
578 atomic64_set(&hwc->period_left, left);
579 hwc->last_period = period;
580 ret = 1;
583 if (unlikely(left <= 0)) {
584 left += period;
585 atomic64_set(&hwc->period_left, left);
586 hwc->last_period = period;
587 ret = 1;
589 if (left > MAX_PERIOD)
590 left = MAX_PERIOD;
592 atomic64_set(&hwc->prev_count, (u64)-left);
594 write_pmc(idx, (u64)(-left) & 0xffffffff);
596 perf_event_update_userpage(event);
598 return ret;
601 static int sparc_pmu_enable(struct perf_event *event)
603 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
604 struct hw_perf_event *hwc = &event->hw;
605 int idx = hwc->idx;
607 if (test_and_set_bit(idx, cpuc->used_mask))
608 return -EAGAIN;
610 sparc_pmu_disable_event(cpuc, hwc, idx);
612 cpuc->events[idx] = event;
613 set_bit(idx, cpuc->active_mask);
615 sparc_perf_event_set_period(event, hwc, idx);
616 sparc_pmu_enable_event(cpuc, hwc, idx);
617 perf_event_update_userpage(event);
618 return 0;
621 static u64 sparc_perf_event_update(struct perf_event *event,
622 struct hw_perf_event *hwc, int idx)
624 int shift = 64 - 32;
625 u64 prev_raw_count, new_raw_count;
626 s64 delta;
628 again:
629 prev_raw_count = atomic64_read(&hwc->prev_count);
630 new_raw_count = read_pmc(idx);
632 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
633 new_raw_count) != prev_raw_count)
634 goto again;
636 delta = (new_raw_count << shift) - (prev_raw_count << shift);
637 delta >>= shift;
639 atomic64_add(delta, &event->count);
640 atomic64_sub(delta, &hwc->period_left);
642 return new_raw_count;
645 static void sparc_pmu_disable(struct perf_event *event)
647 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
648 struct hw_perf_event *hwc = &event->hw;
649 int idx = hwc->idx;
651 clear_bit(idx, cpuc->active_mask);
652 sparc_pmu_disable_event(cpuc, hwc, idx);
654 barrier();
656 sparc_perf_event_update(event, hwc, idx);
657 cpuc->events[idx] = NULL;
658 clear_bit(idx, cpuc->used_mask);
660 perf_event_update_userpage(event);
663 static void sparc_pmu_read(struct perf_event *event)
665 struct hw_perf_event *hwc = &event->hw;
667 sparc_perf_event_update(event, hwc, hwc->idx);
670 static void sparc_pmu_unthrottle(struct perf_event *event)
672 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
673 struct hw_perf_event *hwc = &event->hw;
675 sparc_pmu_enable_event(cpuc, hwc, hwc->idx);
678 static atomic_t active_events = ATOMIC_INIT(0);
679 static DEFINE_MUTEX(pmc_grab_mutex);
681 static void perf_stop_nmi_watchdog(void *unused)
683 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
685 stop_nmi_watchdog(NULL);
686 cpuc->pcr = pcr_ops->read();
689 void perf_event_grab_pmc(void)
691 if (atomic_inc_not_zero(&active_events))
692 return;
694 mutex_lock(&pmc_grab_mutex);
695 if (atomic_read(&active_events) == 0) {
696 if (atomic_read(&nmi_active) > 0) {
697 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
698 BUG_ON(atomic_read(&nmi_active) != 0);
700 atomic_inc(&active_events);
702 mutex_unlock(&pmc_grab_mutex);
705 void perf_event_release_pmc(void)
707 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
708 if (atomic_read(&nmi_active) == 0)
709 on_each_cpu(start_nmi_watchdog, NULL, 1);
710 mutex_unlock(&pmc_grab_mutex);
714 static const struct perf_event_map *sparc_map_cache_event(u64 config)
716 unsigned int cache_type, cache_op, cache_result;
717 const struct perf_event_map *pmap;
719 if (!sparc_pmu->cache_map)
720 return ERR_PTR(-ENOENT);
722 cache_type = (config >> 0) & 0xff;
723 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
724 return ERR_PTR(-EINVAL);
726 cache_op = (config >> 8) & 0xff;
727 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
728 return ERR_PTR(-EINVAL);
730 cache_result = (config >> 16) & 0xff;
731 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
732 return ERR_PTR(-EINVAL);
734 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
736 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
737 return ERR_PTR(-ENOENT);
739 if (pmap->encoding == CACHE_OP_NONSENSE)
740 return ERR_PTR(-EINVAL);
742 return pmap;
745 static void hw_perf_event_destroy(struct perf_event *event)
747 perf_event_release_pmc();
750 /* Make sure all events can be scheduled into the hardware at
751 * the same time. This is simplified by the fact that we only
752 * need to support 2 simultaneous HW events.
754 static int sparc_check_constraints(unsigned long *events, int n_ev)
756 if (n_ev <= perf_max_events) {
757 u8 msk1, msk2;
758 u16 dummy;
760 if (n_ev == 1)
761 return 0;
762 BUG_ON(n_ev != 2);
763 perf_event_decode(events[0], &dummy, &msk1);
764 perf_event_decode(events[1], &dummy, &msk2);
766 /* If both events can go on any counter, OK. */
767 if (msk1 == (PIC_UPPER | PIC_LOWER) &&
768 msk2 == (PIC_UPPER | PIC_LOWER))
769 return 0;
771 /* If one event is limited to a specific counter,
772 * and the other can go on both, OK.
774 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
775 msk2 == (PIC_UPPER | PIC_LOWER))
776 return 0;
777 if ((msk2 == PIC_UPPER || msk2 == PIC_LOWER) &&
778 msk1 == (PIC_UPPER | PIC_LOWER))
779 return 0;
781 /* If the events are fixed to different counters, OK. */
782 if ((msk1 == PIC_UPPER && msk2 == PIC_LOWER) ||
783 (msk1 == PIC_LOWER && msk2 == PIC_UPPER))
784 return 0;
786 /* Otherwise, there is a conflict. */
789 return -1;
792 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
794 int eu = 0, ek = 0, eh = 0;
795 struct perf_event *event;
796 int i, n, first;
798 n = n_prev + n_new;
799 if (n <= 1)
800 return 0;
802 first = 1;
803 for (i = 0; i < n; i++) {
804 event = evts[i];
805 if (first) {
806 eu = event->attr.exclude_user;
807 ek = event->attr.exclude_kernel;
808 eh = event->attr.exclude_hv;
809 first = 0;
810 } else if (event->attr.exclude_user != eu ||
811 event->attr.exclude_kernel != ek ||
812 event->attr.exclude_hv != eh) {
813 return -EAGAIN;
817 return 0;
820 static int collect_events(struct perf_event *group, int max_count,
821 struct perf_event *evts[], unsigned long *events)
823 struct perf_event *event;
824 int n = 0;
826 if (!is_software_event(group)) {
827 if (n >= max_count)
828 return -1;
829 evts[n] = group;
830 events[n++] = group->hw.event_base;
832 list_for_each_entry(event, &group->sibling_list, group_entry) {
833 if (!is_software_event(event) &&
834 event->state != PERF_EVENT_STATE_OFF) {
835 if (n >= max_count)
836 return -1;
837 evts[n] = event;
838 events[n++] = event->hw.event_base;
841 return n;
844 static int __hw_perf_event_init(struct perf_event *event)
846 struct perf_event_attr *attr = &event->attr;
847 struct perf_event *evts[MAX_HWEVENTS];
848 struct hw_perf_event *hwc = &event->hw;
849 unsigned long events[MAX_HWEVENTS];
850 const struct perf_event_map *pmap;
851 u64 enc;
852 int n;
854 if (atomic_read(&nmi_active) < 0)
855 return -ENODEV;
857 if (attr->type == PERF_TYPE_HARDWARE) {
858 if (attr->config >= sparc_pmu->max_events)
859 return -EINVAL;
860 pmap = sparc_pmu->event_map(attr->config);
861 } else if (attr->type == PERF_TYPE_HW_CACHE) {
862 pmap = sparc_map_cache_event(attr->config);
863 if (IS_ERR(pmap))
864 return PTR_ERR(pmap);
865 } else
866 return -EOPNOTSUPP;
868 /* We save the enable bits in the config_base. So to
869 * turn off sampling just write 'config', and to enable
870 * things write 'config | config_base'.
872 hwc->config_base = sparc_pmu->irq_bit;
873 if (!attr->exclude_user)
874 hwc->config_base |= PCR_UTRACE;
875 if (!attr->exclude_kernel)
876 hwc->config_base |= PCR_STRACE;
877 if (!attr->exclude_hv)
878 hwc->config_base |= sparc_pmu->hv_bit;
880 hwc->event_base = perf_event_encode(pmap);
882 enc = pmap->encoding;
884 n = 0;
885 if (event->group_leader != event) {
886 n = collect_events(event->group_leader,
887 perf_max_events - 1,
888 evts, events);
889 if (n < 0)
890 return -EINVAL;
892 events[n] = hwc->event_base;
893 evts[n] = event;
895 if (check_excludes(evts, n, 1))
896 return -EINVAL;
898 if (sparc_check_constraints(events, n + 1))
899 return -EINVAL;
901 /* Try to do all error checking before this point, as unwinding
902 * state after grabbing the PMC is difficult.
904 perf_event_grab_pmc();
905 event->destroy = hw_perf_event_destroy;
907 if (!hwc->sample_period) {
908 hwc->sample_period = MAX_PERIOD;
909 hwc->last_period = hwc->sample_period;
910 atomic64_set(&hwc->period_left, hwc->sample_period);
913 if (pmap->pic_mask & PIC_UPPER) {
914 hwc->idx = PIC_UPPER_INDEX;
915 enc <<= sparc_pmu->upper_shift;
916 } else {
917 hwc->idx = PIC_LOWER_INDEX;
918 enc <<= sparc_pmu->lower_shift;
921 hwc->config |= enc;
922 return 0;
925 static const struct pmu pmu = {
926 .enable = sparc_pmu_enable,
927 .disable = sparc_pmu_disable,
928 .read = sparc_pmu_read,
929 .unthrottle = sparc_pmu_unthrottle,
932 const struct pmu *hw_perf_event_init(struct perf_event *event)
934 int err = __hw_perf_event_init(event);
936 if (err)
937 return ERR_PTR(err);
938 return &pmu;
941 void perf_event_print_debug(void)
943 unsigned long flags;
944 u64 pcr, pic;
945 int cpu;
947 if (!sparc_pmu)
948 return;
950 local_irq_save(flags);
952 cpu = smp_processor_id();
954 pcr = pcr_ops->read();
955 read_pic(pic);
957 pr_info("\n");
958 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
959 cpu, pcr, pic);
961 local_irq_restore(flags);
964 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
965 unsigned long cmd, void *__args)
967 struct die_args *args = __args;
968 struct perf_sample_data data;
969 struct cpu_hw_events *cpuc;
970 struct pt_regs *regs;
971 int idx;
973 if (!atomic_read(&active_events))
974 return NOTIFY_DONE;
976 switch (cmd) {
977 case DIE_NMI:
978 break;
980 default:
981 return NOTIFY_DONE;
984 regs = args->regs;
986 data.addr = 0;
988 cpuc = &__get_cpu_var(cpu_hw_events);
990 /* If the PMU has the TOE IRQ enable bits, we need to do a
991 * dummy write to the %pcr to clear the overflow bits and thus
992 * the interrupt.
994 * Do this before we peek at the counters to determine
995 * overflow so we don't lose any events.
997 if (sparc_pmu->irq_bit)
998 pcr_ops->write(cpuc->pcr);
1000 for (idx = 0; idx < MAX_HWEVENTS; idx++) {
1001 struct perf_event *event = cpuc->events[idx];
1002 struct hw_perf_event *hwc;
1003 u64 val;
1005 if (!test_bit(idx, cpuc->active_mask))
1006 continue;
1007 hwc = &event->hw;
1008 val = sparc_perf_event_update(event, hwc, idx);
1009 if (val & (1ULL << 31))
1010 continue;
1012 data.period = event->hw.last_period;
1013 if (!sparc_perf_event_set_period(event, hwc, idx))
1014 continue;
1016 if (perf_event_overflow(event, 1, &data, regs))
1017 sparc_pmu_disable_event(cpuc, hwc, idx);
1020 return NOTIFY_STOP;
1023 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1024 .notifier_call = perf_event_nmi_handler,
1027 static bool __init supported_pmu(void)
1029 if (!strcmp(sparc_pmu_type, "ultra3") ||
1030 !strcmp(sparc_pmu_type, "ultra3+") ||
1031 !strcmp(sparc_pmu_type, "ultra3i") ||
1032 !strcmp(sparc_pmu_type, "ultra4+")) {
1033 sparc_pmu = &ultra3_pmu;
1034 return true;
1036 if (!strcmp(sparc_pmu_type, "niagara")) {
1037 sparc_pmu = &niagara1_pmu;
1038 return true;
1040 if (!strcmp(sparc_pmu_type, "niagara2")) {
1041 sparc_pmu = &niagara2_pmu;
1042 return true;
1044 return false;
1047 void __init init_hw_perf_events(void)
1049 pr_info("Performance events: ");
1051 if (!supported_pmu()) {
1052 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1053 return;
1056 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1058 /* All sparc64 PMUs currently have 2 events. But this simple
1059 * driver only supports one active event at a time.
1061 perf_max_events = 1;
1063 register_die_notifier(&perf_event_nmi_notifier);