4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the opereation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
34 /* How many pages do we try to swap or page in/out together? */
37 static void put_compound_page(struct page
*page
)
39 page
= (struct page
*)page_private(page
);
40 if (put_page_testzero(page
)) {
41 void (*dtor
)(struct page
*page
);
43 dtor
= (void (*)(struct page
*))page
[1].lru
.next
;
48 void put_page(struct page
*page
)
50 if (unlikely(PageCompound(page
)))
51 put_compound_page(page
);
52 else if (put_page_testzero(page
))
53 __page_cache_release(page
);
55 EXPORT_SYMBOL(put_page
);
58 * Writeback is about to end against a page which has been marked for immediate
59 * reclaim. If it still appears to be reclaimable, move it to the tail of the
60 * inactive list. The page still has PageWriteback set, which will pin it.
62 * We don't expect many pages to come through here, so don't bother batching
65 * To avoid placing the page at the tail of the LRU while PG_writeback is still
66 * set, this function will clear PG_writeback before performing the page
67 * motion. Do that inside the lru lock because once PG_writeback is cleared
68 * we may not touch the page.
70 * Returns zero if it cleared PG_writeback.
72 int rotate_reclaimable_page(struct page
*page
)
86 zone
= page_zone(page
);
87 spin_lock_irqsave(&zone
->lru_lock
, flags
);
88 if (PageLRU(page
) && !PageActive(page
)) {
90 list_add_tail(&page
->lru
, &zone
->inactive_list
);
91 inc_page_state(pgrotated
);
93 if (!test_clear_page_writeback(page
))
95 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
100 * FIXME: speed this up?
102 void fastcall
activate_page(struct page
*page
)
104 struct zone
*zone
= page_zone(page
);
106 spin_lock_irq(&zone
->lru_lock
);
107 if (PageLRU(page
) && !PageActive(page
)) {
108 del_page_from_inactive_list(zone
, page
);
110 add_page_to_active_list(zone
, page
);
111 inc_page_state(pgactivate
);
113 spin_unlock_irq(&zone
->lru_lock
);
117 * Mark a page as having seen activity.
119 * inactive,unreferenced -> inactive,referenced
120 * inactive,referenced -> active,unreferenced
121 * active,unreferenced -> active,referenced
123 void fastcall
mark_page_accessed(struct page
*page
)
125 if (!PageActive(page
) && PageReferenced(page
) && PageLRU(page
)) {
127 ClearPageReferenced(page
);
128 } else if (!PageReferenced(page
)) {
129 SetPageReferenced(page
);
133 EXPORT_SYMBOL(mark_page_accessed
);
136 * lru_cache_add: add a page to the page lists
137 * @page: the page to add
139 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvecs
) = { 0, };
140 static DEFINE_PER_CPU(struct pagevec
, lru_add_active_pvecs
) = { 0, };
142 void fastcall
lru_cache_add(struct page
*page
)
144 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvecs
);
146 page_cache_get(page
);
147 if (!pagevec_add(pvec
, page
))
148 __pagevec_lru_add(pvec
);
149 put_cpu_var(lru_add_pvecs
);
152 void fastcall
lru_cache_add_active(struct page
*page
)
154 struct pagevec
*pvec
= &get_cpu_var(lru_add_active_pvecs
);
156 page_cache_get(page
);
157 if (!pagevec_add(pvec
, page
))
158 __pagevec_lru_add_active(pvec
);
159 put_cpu_var(lru_add_active_pvecs
);
162 static void __lru_add_drain(int cpu
)
164 struct pagevec
*pvec
= &per_cpu(lru_add_pvecs
, cpu
);
166 /* CPU is dead, so no locking needed. */
167 if (pagevec_count(pvec
))
168 __pagevec_lru_add(pvec
);
169 pvec
= &per_cpu(lru_add_active_pvecs
, cpu
);
170 if (pagevec_count(pvec
))
171 __pagevec_lru_add_active(pvec
);
174 void lru_add_drain(void)
176 __lru_add_drain(get_cpu());
181 static void lru_add_drain_per_cpu(void *dummy
)
187 * Returns 0 for success
189 int lru_add_drain_all(void)
191 return schedule_on_each_cpu(lru_add_drain_per_cpu
, NULL
);
197 * Returns 0 for success
199 int lru_add_drain_all(void)
207 * This path almost never happens for VM activity - pages are normally
208 * freed via pagevecs. But it gets used by networking.
210 void fastcall
__page_cache_release(struct page
*page
)
213 struct zone
*zone
= page_zone(page
);
215 spin_lock_irqsave(&zone
->lru_lock
, flags
);
216 if (TestClearPageLRU(page
))
217 del_page_from_lru(zone
, page
);
218 if (page_count(page
) != 0)
220 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
225 EXPORT_SYMBOL(__page_cache_release
);
228 * Batched page_cache_release(). Decrement the reference count on all the
229 * passed pages. If it fell to zero then remove the page from the LRU and
232 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
233 * for the remainder of the operation.
235 * The locking in this function is against shrink_cache(): we recheck the
236 * page count inside the lock to see whether shrink_cache grabbed the page
237 * via the LRU. If it did, give up: shrink_cache will free it.
239 void release_pages(struct page
**pages
, int nr
, int cold
)
242 struct pagevec pages_to_free
;
243 struct zone
*zone
= NULL
;
245 pagevec_init(&pages_to_free
, cold
);
246 for (i
= 0; i
< nr
; i
++) {
247 struct page
*page
= pages
[i
];
248 struct zone
*pagezone
;
250 if (unlikely(PageCompound(page
))) {
252 spin_unlock_irq(&zone
->lru_lock
);
255 put_compound_page(page
);
259 if (!put_page_testzero(page
))
262 pagezone
= page_zone(page
);
263 if (pagezone
!= zone
) {
265 spin_unlock_irq(&zone
->lru_lock
);
267 spin_lock_irq(&zone
->lru_lock
);
269 if (TestClearPageLRU(page
))
270 del_page_from_lru(zone
, page
);
271 if (page_count(page
) == 0) {
272 if (!pagevec_add(&pages_to_free
, page
)) {
273 spin_unlock_irq(&zone
->lru_lock
);
274 __pagevec_free(&pages_to_free
);
275 pagevec_reinit(&pages_to_free
);
276 zone
= NULL
; /* No lock is held */
281 spin_unlock_irq(&zone
->lru_lock
);
283 pagevec_free(&pages_to_free
);
287 * The pages which we're about to release may be in the deferred lru-addition
288 * queues. That would prevent them from really being freed right now. That's
289 * OK from a correctness point of view but is inefficient - those pages may be
290 * cache-warm and we want to give them back to the page allocator ASAP.
292 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
293 * and __pagevec_lru_add_active() call release_pages() directly to avoid
296 void __pagevec_release(struct pagevec
*pvec
)
299 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
300 pagevec_reinit(pvec
);
303 EXPORT_SYMBOL(__pagevec_release
);
306 * pagevec_release() for pages which are known to not be on the LRU
308 * This function reinitialises the caller's pagevec.
310 void __pagevec_release_nonlru(struct pagevec
*pvec
)
313 struct pagevec pages_to_free
;
315 pagevec_init(&pages_to_free
, pvec
->cold
);
316 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
317 struct page
*page
= pvec
->pages
[i
];
319 BUG_ON(PageLRU(page
));
320 if (put_page_testzero(page
))
321 pagevec_add(&pages_to_free
, page
);
323 pagevec_free(&pages_to_free
);
324 pagevec_reinit(pvec
);
328 * Add the passed pages to the LRU, then drop the caller's refcount
329 * on them. Reinitialises the caller's pagevec.
331 void __pagevec_lru_add(struct pagevec
*pvec
)
334 struct zone
*zone
= NULL
;
336 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
337 struct page
*page
= pvec
->pages
[i
];
338 struct zone
*pagezone
= page_zone(page
);
340 if (pagezone
!= zone
) {
342 spin_unlock_irq(&zone
->lru_lock
);
344 spin_lock_irq(&zone
->lru_lock
);
346 if (TestSetPageLRU(page
))
348 add_page_to_inactive_list(zone
, page
);
351 spin_unlock_irq(&zone
->lru_lock
);
352 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
353 pagevec_reinit(pvec
);
356 EXPORT_SYMBOL(__pagevec_lru_add
);
358 void __pagevec_lru_add_active(struct pagevec
*pvec
)
361 struct zone
*zone
= NULL
;
363 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
364 struct page
*page
= pvec
->pages
[i
];
365 struct zone
*pagezone
= page_zone(page
);
367 if (pagezone
!= zone
) {
369 spin_unlock_irq(&zone
->lru_lock
);
371 spin_lock_irq(&zone
->lru_lock
);
373 if (TestSetPageLRU(page
))
375 if (TestSetPageActive(page
))
377 add_page_to_active_list(zone
, page
);
380 spin_unlock_irq(&zone
->lru_lock
);
381 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
382 pagevec_reinit(pvec
);
386 * Try to drop buffers from the pages in a pagevec
388 void pagevec_strip(struct pagevec
*pvec
)
392 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
393 struct page
*page
= pvec
->pages
[i
];
395 if (PagePrivate(page
) && !TestSetPageLocked(page
)) {
396 if (PagePrivate(page
))
397 try_to_release_page(page
, 0);
404 * pagevec_lookup - gang pagecache lookup
405 * @pvec: Where the resulting pages are placed
406 * @mapping: The address_space to search
407 * @start: The starting page index
408 * @nr_pages: The maximum number of pages
410 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
411 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
412 * reference against the pages in @pvec.
414 * The search returns a group of mapping-contiguous pages with ascending
415 * indexes. There may be holes in the indices due to not-present pages.
417 * pagevec_lookup() returns the number of pages which were found.
419 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
420 pgoff_t start
, unsigned nr_pages
)
422 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
423 return pagevec_count(pvec
);
426 EXPORT_SYMBOL(pagevec_lookup
);
428 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
429 pgoff_t
*index
, int tag
, unsigned nr_pages
)
431 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
432 nr_pages
, pvec
->pages
);
433 return pagevec_count(pvec
);
436 EXPORT_SYMBOL(pagevec_lookup_tag
);
440 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
443 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
445 static DEFINE_PER_CPU(long, committed_space
) = 0;
447 void vm_acct_memory(long pages
)
452 local
= &__get_cpu_var(committed_space
);
454 if (*local
> ACCT_THRESHOLD
|| *local
< -ACCT_THRESHOLD
) {
455 atomic_add(*local
, &vm_committed_space
);
461 #ifdef CONFIG_HOTPLUG_CPU
463 /* Drop the CPU's cached committed space back into the central pool. */
464 static int cpu_swap_callback(struct notifier_block
*nfb
,
465 unsigned long action
,
470 committed
= &per_cpu(committed_space
, (long)hcpu
);
471 if (action
== CPU_DEAD
) {
472 atomic_add(*committed
, &vm_committed_space
);
474 __lru_add_drain((long)hcpu
);
478 #endif /* CONFIG_HOTPLUG_CPU */
479 #endif /* CONFIG_SMP */
482 void percpu_counter_mod(struct percpu_counter
*fbc
, long amount
)
488 pcount
= per_cpu_ptr(fbc
->counters
, cpu
);
489 count
= *pcount
+ amount
;
490 if (count
>= FBC_BATCH
|| count
<= -FBC_BATCH
) {
491 spin_lock(&fbc
->lock
);
494 spin_unlock(&fbc
->lock
);
500 EXPORT_SYMBOL(percpu_counter_mod
);
503 * Add up all the per-cpu counts, return the result. This is a more accurate
504 * but much slower version of percpu_counter_read_positive()
506 long percpu_counter_sum(struct percpu_counter
*fbc
)
511 spin_lock(&fbc
->lock
);
514 long *pcount
= per_cpu_ptr(fbc
->counters
, cpu
);
517 spin_unlock(&fbc
->lock
);
518 return ret
< 0 ? 0 : ret
;
520 EXPORT_SYMBOL(percpu_counter_sum
);
524 * Perform any setup for the swap system
526 void __init
swap_setup(void)
528 unsigned long megs
= num_physpages
>> (20 - PAGE_SHIFT
);
530 /* Use a smaller cluster for small-memory machines */
536 * Right now other parts of the system means that we
537 * _really_ don't want to cluster much more
539 hotcpu_notifier(cpu_swap_callback
, 0);