1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 static char version
[] __devinitdata
=
20 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
22 static int mtu
[MAX_UNITS
];
23 static int vlan
[MAX_UNITS
];
24 static int jumbo
[MAX_UNITS
];
25 static char *media
[MAX_UNITS
];
26 static int tx_flow
=-1;
27 static int rx_flow
=-1;
28 static int copy_thresh
;
29 static int rx_coalesce
=10; /* Rx frame count each interrupt */
30 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu
, int, NULL
, 0);
38 module_param_array(media
, charp
, NULL
, 0);
39 module_param_array(vlan
, int, NULL
, 0);
40 module_param_array(jumbo
, int, NULL
, 0);
41 module_param(tx_flow
, int, 0);
42 module_param(rx_flow
, int, 0);
43 module_param(copy_thresh
, int, 0);
44 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop
= 50;
56 static const int multicast_filter_limit
= 0x40;
58 static int rio_open (struct net_device
*dev
);
59 static void rio_timer (unsigned long data
);
60 static void rio_tx_timeout (struct net_device
*dev
);
61 static void alloc_list (struct net_device
*dev
);
62 static int start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
63 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
64 static void rio_free_tx (struct net_device
*dev
, int irq
);
65 static void tx_error (struct net_device
*dev
, int tx_status
);
66 static int receive_packet (struct net_device
*dev
);
67 static void rio_error (struct net_device
*dev
, int int_status
);
68 static int change_mtu (struct net_device
*dev
, int new_mtu
);
69 static void set_multicast (struct net_device
*dev
);
70 static struct net_device_stats
*get_stats (struct net_device
*dev
);
71 static int clear_stats (struct net_device
*dev
);
72 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
73 static int rio_close (struct net_device
*dev
);
74 static int find_miiphy (struct net_device
*dev
);
75 static int parse_eeprom (struct net_device
*dev
);
76 static int read_eeprom (long ioaddr
, int eep_addr
);
77 static int mii_wait_link (struct net_device
*dev
, int wait
);
78 static int mii_set_media (struct net_device
*dev
);
79 static int mii_get_media (struct net_device
*dev
);
80 static int mii_set_media_pcs (struct net_device
*dev
);
81 static int mii_get_media_pcs (struct net_device
*dev
);
82 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
83 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
86 static const struct ethtool_ops ethtool_ops
;
88 static const struct net_device_ops netdev_ops
= {
90 .ndo_start_xmit
= start_xmit
,
91 .ndo_stop
= rio_close
,
92 .ndo_get_stats
= get_stats
,
93 .ndo_validate_addr
= eth_validate_addr
,
94 .ndo_set_mac_address
= eth_mac_addr
,
95 .ndo_set_multicast_list
= set_multicast
,
96 .ndo_do_ioctl
= rio_ioctl
,
97 .ndo_tx_timeout
= rio_tx_timeout
,
98 .ndo_change_mtu
= change_mtu
,
102 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
104 struct net_device
*dev
;
105 struct netdev_private
*np
;
107 int chip_idx
= ent
->driver_data
;
110 static int version_printed
;
114 if (!version_printed
++)
115 printk ("%s", version
);
117 err
= pci_enable_device (pdev
);
122 err
= pci_request_regions (pdev
, "dl2k");
124 goto err_out_disable
;
126 pci_set_master (pdev
);
127 dev
= alloc_etherdev (sizeof (*np
));
132 SET_NETDEV_DEV(dev
, &pdev
->dev
);
135 ioaddr
= pci_resource_start (pdev
, 1);
136 ioaddr
= (long) ioremap (ioaddr
, RIO_IO_SIZE
);
142 ioaddr
= pci_resource_start (pdev
, 0);
144 dev
->base_addr
= ioaddr
;
146 np
= netdev_priv(dev
);
147 np
->chip_id
= chip_idx
;
149 spin_lock_init (&np
->tx_lock
);
150 spin_lock_init (&np
->rx_lock
);
152 /* Parse manual configuration */
155 if (card_idx
< MAX_UNITS
) {
156 if (media
[card_idx
] != NULL
) {
158 if (strcmp (media
[card_idx
], "auto") == 0 ||
159 strcmp (media
[card_idx
], "autosense") == 0 ||
160 strcmp (media
[card_idx
], "0") == 0 ) {
162 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
163 strcmp (media
[card_idx
], "4") == 0) {
166 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0
167 || strcmp (media
[card_idx
], "3") == 0) {
170 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
171 strcmp (media
[card_idx
], "2") == 0) {
174 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
175 strcmp (media
[card_idx
], "1") == 0) {
178 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
179 strcmp (media
[card_idx
], "6") == 0) {
182 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
183 strcmp (media
[card_idx
], "5") == 0) {
190 if (jumbo
[card_idx
] != 0) {
192 dev
->mtu
= MAX_JUMBO
;
195 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
196 dev
->mtu
= mtu
[card_idx
];
198 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
200 if (rx_coalesce
> 0 && rx_timeout
> 0) {
201 np
->rx_coalesce
= rx_coalesce
;
202 np
->rx_timeout
= rx_timeout
;
205 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
206 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
210 else if (tx_coalesce
> TX_RING_SIZE
-1)
211 tx_coalesce
= TX_RING_SIZE
- 1;
213 dev
->netdev_ops
= &netdev_ops
;
214 dev
->watchdog_timeo
= TX_TIMEOUT
;
215 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
217 dev
->features
= NETIF_F_IP_CSUM
;
219 pci_set_drvdata (pdev
, dev
);
221 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
223 goto err_out_iounmap
;
224 np
->tx_ring
= (struct netdev_desc
*) ring_space
;
225 np
->tx_ring_dma
= ring_dma
;
227 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
229 goto err_out_unmap_tx
;
230 np
->rx_ring
= (struct netdev_desc
*) ring_space
;
231 np
->rx_ring_dma
= ring_dma
;
233 /* Parse eeprom data */
236 /* Find PHY address */
237 err
= find_miiphy (dev
);
239 goto err_out_unmap_rx
;
242 np
->phy_media
= (readw(ioaddr
+ ASICCtrl
) & PhyMedia
) ? 1 : 0;
244 /* Set media and reset PHY */
246 /* default Auto-Negotiation for fiber deivices */
247 if (np
->an_enable
== 2) {
250 mii_set_media_pcs (dev
);
252 /* Auto-Negotiation is mandatory for 1000BASE-T,
253 IEEE 802.3ab Annex 28D page 14 */
254 if (np
->speed
== 1000)
259 err
= register_netdev (dev
);
261 goto err_out_unmap_rx
;
265 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
266 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
268 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
271 printk(KERN_INFO
"rx_coalesce:\t%d packets\n"
272 KERN_INFO
"rx_timeout: \t%d ns\n",
273 np
->rx_coalesce
, np
->rx_timeout
*640);
275 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
279 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
281 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
284 iounmap ((void *) ioaddr
);
291 pci_release_regions (pdev
);
294 pci_disable_device (pdev
);
299 find_miiphy (struct net_device
*dev
)
301 int i
, phy_found
= 0;
302 struct netdev_private
*np
;
304 np
= netdev_priv(dev
);
305 ioaddr
= dev
->base_addr
;
308 for (i
= 31; i
>= 0; i
--) {
309 int mii_status
= mii_read (dev
, i
, 1);
310 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
316 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
323 parse_eeprom (struct net_device
*dev
)
326 long ioaddr
= dev
->base_addr
;
330 PSROM_t psrom
= (PSROM_t
) sromdata
;
331 struct netdev_private
*np
= netdev_priv(dev
);
336 ioaddr
= pci_resource_start (np
->pdev
, 0);
339 for (i
= 0; i
< 128; i
++) {
340 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom (ioaddr
, i
));
343 ioaddr
= dev
->base_addr
;
345 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
347 crc
= ~ether_crc_le (256 - 4, sromdata
);
348 if (psrom
->crc
!= crc
) {
349 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
355 /* Set MAC address */
356 for (i
= 0; i
< 6; i
++)
357 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
359 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
363 /* Parse Software Information Block */
365 psib
= (u8
*) sromdata
;
369 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
370 printk (KERN_ERR
"Cell data error\n");
374 case 0: /* Format version */
376 case 1: /* End of cell */
378 case 2: /* Duplex Polarity */
379 np
->duplex_polarity
= psib
[i
];
380 writeb (readb (ioaddr
+ PhyCtrl
) | psib
[i
],
383 case 3: /* Wake Polarity */
384 np
->wake_polarity
= psib
[i
];
386 case 9: /* Adapter description */
387 j
= (next
- i
> 255) ? 255 : next
- i
;
388 memcpy (np
->name
, &(psib
[i
]), j
);
394 case 8: /* Reversed */
396 default: /* Unknown cell */
406 rio_open (struct net_device
*dev
)
408 struct netdev_private
*np
= netdev_priv(dev
);
409 long ioaddr
= dev
->base_addr
;
413 i
= request_irq (dev
->irq
, &rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
417 /* Reset all logic functions */
418 writew (GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
,
419 ioaddr
+ ASICCtrl
+ 2);
422 /* DebugCtrl bit 4, 5, 9 must set */
423 writel (readl (ioaddr
+ DebugCtrl
) | 0x0230, ioaddr
+ DebugCtrl
);
427 writew (MAX_JUMBO
+14, ioaddr
+ MaxFrameSize
);
431 /* Get station address */
432 for (i
= 0; i
< 6; i
++)
433 writeb (dev
->dev_addr
[i
], ioaddr
+ StationAddr0
+ i
);
437 writel (np
->rx_coalesce
| np
->rx_timeout
<< 16,
438 ioaddr
+ RxDMAIntCtrl
);
440 /* Set RIO to poll every N*320nsec. */
441 writeb (0x20, ioaddr
+ RxDMAPollPeriod
);
442 writeb (0xff, ioaddr
+ TxDMAPollPeriod
);
443 writeb (0x30, ioaddr
+ RxDMABurstThresh
);
444 writeb (0x30, ioaddr
+ RxDMAUrgentThresh
);
445 writel (0x0007ffff, ioaddr
+ RmonStatMask
);
446 /* clear statistics */
451 /* priority field in RxDMAIntCtrl */
452 writel (readl(ioaddr
+ RxDMAIntCtrl
) | 0x7 << 10,
453 ioaddr
+ RxDMAIntCtrl
);
455 writew (np
->vlan
, ioaddr
+ VLANId
);
456 /* Length/Type should be 0x8100 */
457 writel (0x8100 << 16 | np
->vlan
, ioaddr
+ VLANTag
);
458 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
459 VLAN information tagged by TFC' VID, CFI fields. */
460 writel (readl (ioaddr
+ MACCtrl
) | AutoVLANuntagging
,
464 init_timer (&np
->timer
);
465 np
->timer
.expires
= jiffies
+ 1*HZ
;
466 np
->timer
.data
= (unsigned long) dev
;
467 np
->timer
.function
= &rio_timer
;
468 add_timer (&np
->timer
);
471 writel (readl (ioaddr
+ MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
,
475 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
476 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
477 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
478 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
479 writew(macctrl
, ioaddr
+ MACCtrl
);
481 netif_start_queue (dev
);
483 /* Enable default interrupts */
489 rio_timer (unsigned long data
)
491 struct net_device
*dev
= (struct net_device
*)data
;
492 struct netdev_private
*np
= netdev_priv(dev
);
494 int next_tick
= 1*HZ
;
497 spin_lock_irqsave(&np
->rx_lock
, flags
);
498 /* Recover rx ring exhausted error */
499 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
500 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
501 /* Re-allocate skbuffs to fill the descriptor ring */
502 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
504 entry
= np
->old_rx
% RX_RING_SIZE
;
505 /* Dropped packets don't need to re-allocate */
506 if (np
->rx_skbuff
[entry
] == NULL
) {
507 skb
= netdev_alloc_skb (dev
, np
->rx_buf_sz
);
509 np
->rx_ring
[entry
].fraginfo
= 0;
511 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
515 np
->rx_skbuff
[entry
] = skb
;
516 /* 16 byte align the IP header */
517 skb_reserve (skb
, 2);
518 np
->rx_ring
[entry
].fraginfo
=
519 cpu_to_le64 (pci_map_single
520 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
521 PCI_DMA_FROMDEVICE
));
523 np
->rx_ring
[entry
].fraginfo
|=
524 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
525 np
->rx_ring
[entry
].status
= 0;
528 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
529 np
->timer
.expires
= jiffies
+ next_tick
;
530 add_timer(&np
->timer
);
534 rio_tx_timeout (struct net_device
*dev
)
536 long ioaddr
= dev
->base_addr
;
538 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
539 dev
->name
, readl (ioaddr
+ TxStatus
));
542 dev
->trans_start
= jiffies
;
545 /* allocate and initialize Tx and Rx descriptors */
547 alloc_list (struct net_device
*dev
)
549 struct netdev_private
*np
= netdev_priv(dev
);
552 np
->cur_rx
= np
->cur_tx
= 0;
553 np
->old_rx
= np
->old_tx
= 0;
554 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
556 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
557 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
558 np
->tx_skbuff
[i
] = NULL
;
559 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
560 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
561 ((i
+1)%TX_RING_SIZE
) *
562 sizeof (struct netdev_desc
));
565 /* Initialize Rx descriptors */
566 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
567 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
568 ((i
+ 1) % RX_RING_SIZE
) *
569 sizeof (struct netdev_desc
));
570 np
->rx_ring
[i
].status
= 0;
571 np
->rx_ring
[i
].fraginfo
= 0;
572 np
->rx_skbuff
[i
] = NULL
;
575 /* Allocate the rx buffers */
576 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
577 /* Allocated fixed size of skbuff */
578 struct sk_buff
*skb
= netdev_alloc_skb (dev
, np
->rx_buf_sz
);
579 np
->rx_skbuff
[i
] = skb
;
582 "%s: alloc_list: allocate Rx buffer error! ",
586 skb_reserve (skb
, 2); /* 16 byte align the IP header. */
587 /* Rubicon now supports 40 bits of addressing space. */
588 np
->rx_ring
[i
].fraginfo
=
589 cpu_to_le64 ( pci_map_single (
590 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
591 PCI_DMA_FROMDEVICE
));
592 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
596 writel (np
->rx_ring_dma
, dev
->base_addr
+ RFDListPtr0
);
597 writel (0, dev
->base_addr
+ RFDListPtr1
);
603 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
605 struct netdev_private
*np
= netdev_priv(dev
);
606 struct netdev_desc
*txdesc
;
609 u64 tfc_vlan_tag
= 0;
611 if (np
->link_status
== 0) { /* Link Down */
615 ioaddr
= dev
->base_addr
;
616 entry
= np
->cur_tx
% TX_RING_SIZE
;
617 np
->tx_skbuff
[entry
] = skb
;
618 txdesc
= &np
->tx_ring
[entry
];
621 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
623 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
628 tfc_vlan_tag
= VLANTagInsert
|
629 ((u64
)np
->vlan
<< 32) |
630 ((u64
)skb
->priority
<< 45);
632 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
635 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
637 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
638 * Work around: Always use 1 descriptor in 10Mbps mode */
639 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
640 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
643 (1 << FragCountShift
));
645 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
647 (1 << FragCountShift
));
650 writel (readl (ioaddr
+ DMACtrl
) | 0x00001000, ioaddr
+ DMACtrl
);
652 writel(10000, ioaddr
+ CountDown
);
653 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
654 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
655 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
657 } else if (!netif_queue_stopped(dev
)) {
658 netif_stop_queue (dev
);
661 /* The first TFDListPtr */
662 if (readl (dev
->base_addr
+ TFDListPtr0
) == 0) {
663 writel (np
->tx_ring_dma
+ entry
* sizeof (struct netdev_desc
),
664 dev
->base_addr
+ TFDListPtr0
);
665 writel (0, dev
->base_addr
+ TFDListPtr1
);
668 /* NETDEV WATCHDOG timer */
669 dev
->trans_start
= jiffies
;
674 rio_interrupt (int irq
, void *dev_instance
)
676 struct net_device
*dev
= dev_instance
;
677 struct netdev_private
*np
;
680 int cnt
= max_intrloop
;
683 ioaddr
= dev
->base_addr
;
684 np
= netdev_priv(dev
);
686 int_status
= readw (ioaddr
+ IntStatus
);
687 writew (int_status
, ioaddr
+ IntStatus
);
688 int_status
&= DEFAULT_INTR
;
689 if (int_status
== 0 || --cnt
< 0)
692 /* Processing received packets */
693 if (int_status
& RxDMAComplete
)
694 receive_packet (dev
);
695 /* TxDMAComplete interrupt */
696 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
698 tx_status
= readl (ioaddr
+ TxStatus
);
699 if (tx_status
& 0x01)
700 tx_error (dev
, tx_status
);
701 /* Free used tx skbuffs */
702 rio_free_tx (dev
, 1);
705 /* Handle uncommon events */
707 (HostError
| LinkEvent
| UpdateStats
))
708 rio_error (dev
, int_status
);
710 if (np
->cur_tx
!= np
->old_tx
)
711 writel (100, ioaddr
+ CountDown
);
712 return IRQ_RETVAL(handled
);
715 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
717 return le64_to_cpu(desc
->fraginfo
) & DMA_48BIT_MASK
;
721 rio_free_tx (struct net_device
*dev
, int irq
)
723 struct netdev_private
*np
= netdev_priv(dev
);
724 int entry
= np
->old_tx
% TX_RING_SIZE
;
726 unsigned long flag
= 0;
729 spin_lock(&np
->tx_lock
);
731 spin_lock_irqsave(&np
->tx_lock
, flag
);
733 /* Free used tx skbuffs */
734 while (entry
!= np
->cur_tx
) {
737 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
739 skb
= np
->tx_skbuff
[entry
];
740 pci_unmap_single (np
->pdev
,
741 desc_to_dma(&np
->tx_ring
[entry
]),
742 skb
->len
, PCI_DMA_TODEVICE
);
744 dev_kfree_skb_irq (skb
);
748 np
->tx_skbuff
[entry
] = NULL
;
749 entry
= (entry
+ 1) % TX_RING_SIZE
;
753 spin_unlock(&np
->tx_lock
);
755 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
758 /* If the ring is no longer full, clear tx_full and
759 call netif_wake_queue() */
761 if (netif_queue_stopped(dev
) &&
762 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
763 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
764 netif_wake_queue (dev
);
769 tx_error (struct net_device
*dev
, int tx_status
)
771 struct netdev_private
*np
;
772 long ioaddr
= dev
->base_addr
;
776 np
= netdev_priv(dev
);
778 frame_id
= (tx_status
& 0xffff0000);
779 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
780 dev
->name
, tx_status
, frame_id
);
781 np
->stats
.tx_errors
++;
782 /* Ttransmit Underrun */
783 if (tx_status
& 0x10) {
784 np
->stats
.tx_fifo_errors
++;
785 writew (readw (ioaddr
+ TxStartThresh
) + 0x10,
786 ioaddr
+ TxStartThresh
);
787 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
788 writew (TxReset
| DMAReset
| FIFOReset
| NetworkReset
,
789 ioaddr
+ ASICCtrl
+ 2);
790 /* Wait for ResetBusy bit clear */
791 for (i
= 50; i
> 0; i
--) {
792 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
796 rio_free_tx (dev
, 1);
797 /* Reset TFDListPtr */
798 writel (np
->tx_ring_dma
+
799 np
->old_tx
* sizeof (struct netdev_desc
),
800 dev
->base_addr
+ TFDListPtr0
);
801 writel (0, dev
->base_addr
+ TFDListPtr1
);
803 /* Let TxStartThresh stay default value */
806 if (tx_status
& 0x04) {
807 np
->stats
.tx_fifo_errors
++;
808 /* TxReset and clear FIFO */
809 writew (TxReset
| FIFOReset
, ioaddr
+ ASICCtrl
+ 2);
810 /* Wait reset done */
811 for (i
= 50; i
> 0; i
--) {
812 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
816 /* Let TxStartThresh stay default value */
818 /* Maximum Collisions */
820 if (tx_status
& 0x08)
821 np
->stats
.collisions16
++;
823 if (tx_status
& 0x08)
824 np
->stats
.collisions
++;
827 writel (readw (dev
->base_addr
+ MACCtrl
) | TxEnable
, ioaddr
+ MACCtrl
);
831 receive_packet (struct net_device
*dev
)
833 struct netdev_private
*np
= netdev_priv(dev
);
834 int entry
= np
->cur_rx
% RX_RING_SIZE
;
837 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
839 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
843 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
844 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
845 !(desc
->status
& cpu_to_le64(FrameEnd
)))
848 /* Chip omits the CRC. */
849 frame_status
= le64_to_cpu(desc
->status
);
850 pkt_len
= frame_status
& 0xffff;
853 /* Update rx error statistics, drop packet. */
854 if (frame_status
& RFS_Errors
) {
855 np
->stats
.rx_errors
++;
856 if (frame_status
& (RxRuntFrame
| RxLengthError
))
857 np
->stats
.rx_length_errors
++;
858 if (frame_status
& RxFCSError
)
859 np
->stats
.rx_crc_errors
++;
860 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
861 np
->stats
.rx_frame_errors
++;
862 if (frame_status
& RxFIFOOverrun
)
863 np
->stats
.rx_fifo_errors
++;
867 /* Small skbuffs for short packets */
868 if (pkt_len
> copy_thresh
) {
869 pci_unmap_single (np
->pdev
,
873 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
874 np
->rx_skbuff
[entry
] = NULL
;
875 } else if ((skb
= netdev_alloc_skb(dev
, pkt_len
+ 2))) {
876 pci_dma_sync_single_for_cpu(np
->pdev
,
880 /* 16 byte align the IP header */
881 skb_reserve (skb
, 2);
882 skb_copy_to_linear_data (skb
,
883 np
->rx_skbuff
[entry
]->data
,
885 skb_put (skb
, pkt_len
);
886 pci_dma_sync_single_for_device(np
->pdev
,
891 skb
->protocol
= eth_type_trans (skb
, dev
);
893 /* Checksum done by hw, but csum value unavailable. */
894 if (np
->pdev
->pci_rev_id
>= 0x0c &&
895 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
896 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
901 entry
= (entry
+ 1) % RX_RING_SIZE
;
903 spin_lock(&np
->rx_lock
);
905 /* Re-allocate skbuffs to fill the descriptor ring */
907 while (entry
!= np
->cur_rx
) {
909 /* Dropped packets don't need to re-allocate */
910 if (np
->rx_skbuff
[entry
] == NULL
) {
911 skb
= netdev_alloc_skb(dev
, np
->rx_buf_sz
);
913 np
->rx_ring
[entry
].fraginfo
= 0;
915 "%s: receive_packet: "
916 "Unable to re-allocate Rx skbuff.#%d\n",
920 np
->rx_skbuff
[entry
] = skb
;
921 /* 16 byte align the IP header */
922 skb_reserve (skb
, 2);
923 np
->rx_ring
[entry
].fraginfo
=
924 cpu_to_le64 (pci_map_single
925 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
926 PCI_DMA_FROMDEVICE
));
928 np
->rx_ring
[entry
].fraginfo
|=
929 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
930 np
->rx_ring
[entry
].status
= 0;
931 entry
= (entry
+ 1) % RX_RING_SIZE
;
934 spin_unlock(&np
->rx_lock
);
939 rio_error (struct net_device
*dev
, int int_status
)
941 long ioaddr
= dev
->base_addr
;
942 struct netdev_private
*np
= netdev_priv(dev
);
945 /* Link change event */
946 if (int_status
& LinkEvent
) {
947 if (mii_wait_link (dev
, 10) == 0) {
948 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
950 mii_get_media_pcs (dev
);
953 if (np
->speed
== 1000)
954 np
->tx_coalesce
= tx_coalesce
;
958 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
959 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
960 macctrl
|= (np
->tx_flow
) ?
961 TxFlowControlEnable
: 0;
962 macctrl
|= (np
->rx_flow
) ?
963 RxFlowControlEnable
: 0;
964 writew(macctrl
, ioaddr
+ MACCtrl
);
966 netif_carrier_on(dev
);
968 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
970 netif_carrier_off(dev
);
974 /* UpdateStats statistics registers */
975 if (int_status
& UpdateStats
) {
979 /* PCI Error, a catastronphic error related to the bus interface
980 occurs, set GlobalReset and HostReset to reset. */
981 if (int_status
& HostError
) {
982 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
983 dev
->name
, int_status
);
984 writew (GlobalReset
| HostReset
, ioaddr
+ ASICCtrl
+ 2);
989 static struct net_device_stats
*
990 get_stats (struct net_device
*dev
)
992 long ioaddr
= dev
->base_addr
;
993 struct netdev_private
*np
= netdev_priv(dev
);
997 unsigned int stat_reg
;
999 /* All statistics registers need to be acknowledged,
1000 else statistic overflow could cause problems */
1002 np
->stats
.rx_packets
+= readl (ioaddr
+ FramesRcvOk
);
1003 np
->stats
.tx_packets
+= readl (ioaddr
+ FramesXmtOk
);
1004 np
->stats
.rx_bytes
+= readl (ioaddr
+ OctetRcvOk
);
1005 np
->stats
.tx_bytes
+= readl (ioaddr
+ OctetXmtOk
);
1007 np
->stats
.multicast
= readl (ioaddr
+ McstFramesRcvdOk
);
1008 np
->stats
.collisions
+= readl (ioaddr
+ SingleColFrames
)
1009 + readl (ioaddr
+ MultiColFrames
);
1011 /* detailed tx errors */
1012 stat_reg
= readw (ioaddr
+ FramesAbortXSColls
);
1013 np
->stats
.tx_aborted_errors
+= stat_reg
;
1014 np
->stats
.tx_errors
+= stat_reg
;
1016 stat_reg
= readw (ioaddr
+ CarrierSenseErrors
);
1017 np
->stats
.tx_carrier_errors
+= stat_reg
;
1018 np
->stats
.tx_errors
+= stat_reg
;
1020 /* Clear all other statistic register. */
1021 readl (ioaddr
+ McstOctetXmtOk
);
1022 readw (ioaddr
+ BcstFramesXmtdOk
);
1023 readl (ioaddr
+ McstFramesXmtdOk
);
1024 readw (ioaddr
+ BcstFramesRcvdOk
);
1025 readw (ioaddr
+ MacControlFramesRcvd
);
1026 readw (ioaddr
+ FrameTooLongErrors
);
1027 readw (ioaddr
+ InRangeLengthErrors
);
1028 readw (ioaddr
+ FramesCheckSeqErrors
);
1029 readw (ioaddr
+ FramesLostRxErrors
);
1030 readl (ioaddr
+ McstOctetXmtOk
);
1031 readl (ioaddr
+ BcstOctetXmtOk
);
1032 readl (ioaddr
+ McstFramesXmtdOk
);
1033 readl (ioaddr
+ FramesWDeferredXmt
);
1034 readl (ioaddr
+ LateCollisions
);
1035 readw (ioaddr
+ BcstFramesXmtdOk
);
1036 readw (ioaddr
+ MacControlFramesXmtd
);
1037 readw (ioaddr
+ FramesWEXDeferal
);
1040 for (i
= 0x100; i
<= 0x150; i
+= 4)
1043 readw (ioaddr
+ TxJumboFrames
);
1044 readw (ioaddr
+ RxJumboFrames
);
1045 readw (ioaddr
+ TCPCheckSumErrors
);
1046 readw (ioaddr
+ UDPCheckSumErrors
);
1047 readw (ioaddr
+ IPCheckSumErrors
);
1052 clear_stats (struct net_device
*dev
)
1054 long ioaddr
= dev
->base_addr
;
1059 /* All statistics registers need to be acknowledged,
1060 else statistic overflow could cause problems */
1061 readl (ioaddr
+ FramesRcvOk
);
1062 readl (ioaddr
+ FramesXmtOk
);
1063 readl (ioaddr
+ OctetRcvOk
);
1064 readl (ioaddr
+ OctetXmtOk
);
1066 readl (ioaddr
+ McstFramesRcvdOk
);
1067 readl (ioaddr
+ SingleColFrames
);
1068 readl (ioaddr
+ MultiColFrames
);
1069 readl (ioaddr
+ LateCollisions
);
1070 /* detailed rx errors */
1071 readw (ioaddr
+ FrameTooLongErrors
);
1072 readw (ioaddr
+ InRangeLengthErrors
);
1073 readw (ioaddr
+ FramesCheckSeqErrors
);
1074 readw (ioaddr
+ FramesLostRxErrors
);
1076 /* detailed tx errors */
1077 readw (ioaddr
+ FramesAbortXSColls
);
1078 readw (ioaddr
+ CarrierSenseErrors
);
1080 /* Clear all other statistic register. */
1081 readl (ioaddr
+ McstOctetXmtOk
);
1082 readw (ioaddr
+ BcstFramesXmtdOk
);
1083 readl (ioaddr
+ McstFramesXmtdOk
);
1084 readw (ioaddr
+ BcstFramesRcvdOk
);
1085 readw (ioaddr
+ MacControlFramesRcvd
);
1086 readl (ioaddr
+ McstOctetXmtOk
);
1087 readl (ioaddr
+ BcstOctetXmtOk
);
1088 readl (ioaddr
+ McstFramesXmtdOk
);
1089 readl (ioaddr
+ FramesWDeferredXmt
);
1090 readw (ioaddr
+ BcstFramesXmtdOk
);
1091 readw (ioaddr
+ MacControlFramesXmtd
);
1092 readw (ioaddr
+ FramesWEXDeferal
);
1094 for (i
= 0x100; i
<= 0x150; i
+= 4)
1097 readw (ioaddr
+ TxJumboFrames
);
1098 readw (ioaddr
+ RxJumboFrames
);
1099 readw (ioaddr
+ TCPCheckSumErrors
);
1100 readw (ioaddr
+ UDPCheckSumErrors
);
1101 readw (ioaddr
+ IPCheckSumErrors
);
1107 change_mtu (struct net_device
*dev
, int new_mtu
)
1109 struct netdev_private
*np
= netdev_priv(dev
);
1110 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1112 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1122 set_multicast (struct net_device
*dev
)
1124 long ioaddr
= dev
->base_addr
;
1127 struct netdev_private
*np
= netdev_priv(dev
);
1129 hash_table
[0] = hash_table
[1] = 0;
1130 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1131 hash_table
[1] |= 0x02000000;
1132 if (dev
->flags
& IFF_PROMISC
) {
1133 /* Receive all frames promiscuously. */
1134 rx_mode
= ReceiveAllFrames
;
1135 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1136 (dev
->mc_count
> multicast_filter_limit
)) {
1137 /* Receive broadcast and multicast frames */
1138 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1139 } else if (dev
->mc_count
> 0) {
1141 struct dev_mc_list
*mclist
;
1142 /* Receive broadcast frames and multicast frames filtering
1145 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1146 for (i
=0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1147 i
++, mclist
=mclist
->next
)
1150 int crc
= ether_crc_le (ETH_ALEN
, mclist
->dmi_addr
);
1151 /* The inverted high significant 6 bits of CRC are
1152 used as an index to hashtable */
1153 for (bit
= 0; bit
< 6; bit
++)
1154 if (crc
& (1 << (31 - bit
)))
1155 index
|= (1 << bit
);
1156 hash_table
[index
/ 32] |= (1 << (index
% 32));
1159 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1162 /* ReceiveVLANMatch field in ReceiveMode */
1163 rx_mode
|= ReceiveVLANMatch
;
1166 writel (hash_table
[0], ioaddr
+ HashTable0
);
1167 writel (hash_table
[1], ioaddr
+ HashTable1
);
1168 writew (rx_mode
, ioaddr
+ ReceiveMode
);
1171 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1173 struct netdev_private
*np
= netdev_priv(dev
);
1174 strcpy(info
->driver
, "dl2k");
1175 strcpy(info
->version
, DRV_VERSION
);
1176 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1179 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1181 struct netdev_private
*np
= netdev_priv(dev
);
1182 if (np
->phy_media
) {
1184 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1185 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1186 cmd
->port
= PORT_FIBRE
;
1187 cmd
->transceiver
= XCVR_INTERNAL
;
1190 cmd
->supported
= SUPPORTED_10baseT_Half
|
1191 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1192 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1193 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1194 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1195 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1196 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1197 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1198 cmd
->port
= PORT_MII
;
1199 cmd
->transceiver
= XCVR_INTERNAL
;
1201 if ( np
->link_status
) {
1202 cmd
->speed
= np
->speed
;
1203 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1209 cmd
->autoneg
= AUTONEG_ENABLE
;
1211 cmd
->autoneg
= AUTONEG_DISABLE
;
1213 cmd
->phy_address
= np
->phy_addr
;
1217 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1219 struct netdev_private
*np
= netdev_priv(dev
);
1220 netif_carrier_off(dev
);
1221 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1231 if (np
->speed
== 1000) {
1232 cmd
->speed
= SPEED_100
;
1233 cmd
->duplex
= DUPLEX_FULL
;
1234 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1236 switch(cmd
->speed
+ cmd
->duplex
) {
1238 case SPEED_10
+ DUPLEX_HALF
:
1240 np
->full_duplex
= 0;
1243 case SPEED_10
+ DUPLEX_FULL
:
1245 np
->full_duplex
= 1;
1247 case SPEED_100
+ DUPLEX_HALF
:
1249 np
->full_duplex
= 0;
1251 case SPEED_100
+ DUPLEX_FULL
:
1253 np
->full_duplex
= 1;
1255 case SPEED_1000
+ DUPLEX_HALF
:/* not supported */
1256 case SPEED_1000
+ DUPLEX_FULL
:/* not supported */
1265 static u32
rio_get_link(struct net_device
*dev
)
1267 struct netdev_private
*np
= netdev_priv(dev
);
1268 return np
->link_status
;
1271 static const struct ethtool_ops ethtool_ops
= {
1272 .get_drvinfo
= rio_get_drvinfo
,
1273 .get_settings
= rio_get_settings
,
1274 .set_settings
= rio_set_settings
,
1275 .get_link
= rio_get_link
,
1279 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1282 struct netdev_private
*np
= netdev_priv(dev
);
1283 struct mii_data
*miidata
= (struct mii_data
*) &rq
->ifr_ifru
;
1285 struct netdev_desc
*desc
;
1288 phy_addr
= np
->phy_addr
;
1290 case SIOCDEVPRIVATE
:
1293 case SIOCDEVPRIVATE
+ 1:
1294 miidata
->out_value
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1296 case SIOCDEVPRIVATE
+ 2:
1297 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->in_value
);
1299 case SIOCDEVPRIVATE
+ 3:
1301 case SIOCDEVPRIVATE
+ 4:
1303 case SIOCDEVPRIVATE
+ 5:
1304 netif_stop_queue (dev
);
1306 case SIOCDEVPRIVATE
+ 6:
1307 netif_wake_queue (dev
);
1309 case SIOCDEVPRIVATE
+ 7:
1311 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1312 netif_queue_stopped(dev
), np
->cur_tx
, np
->old_tx
, np
->cur_rx
,
1315 case SIOCDEVPRIVATE
+ 8:
1316 printk("TX ring:\n");
1317 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1318 desc
= &np
->tx_ring
[i
];
1320 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1322 (u32
) (np
->tx_ring_dma
+ i
* sizeof (*desc
)),
1323 (u32
)le64_to_cpu(desc
->next_desc
),
1324 (u32
)le64_to_cpu(desc
->status
),
1325 (u32
)(le64_to_cpu(desc
->fraginfo
) >> 32),
1326 (u32
)le64_to_cpu(desc
->fraginfo
));
1338 #define EEP_READ 0x0200
1339 #define EEP_BUSY 0x8000
1340 /* Read the EEPROM word */
1341 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1343 read_eeprom (long ioaddr
, int eep_addr
)
1346 outw (EEP_READ
| (eep_addr
& 0xff), ioaddr
+ EepromCtrl
);
1348 if (!(inw (ioaddr
+ EepromCtrl
) & EEP_BUSY
)) {
1349 return inw (ioaddr
+ EepromData
);
1355 enum phy_ctrl_bits
{
1356 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1360 #define mii_delay() readb(ioaddr)
1362 mii_sendbit (struct net_device
*dev
, u32 data
)
1364 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1365 data
= (data
) ? MII_DATA1
: 0;
1367 data
|= (readb (ioaddr
) & 0xf8) | MII_WRITE
;
1368 writeb (data
, ioaddr
);
1370 writeb (data
| MII_CLK
, ioaddr
);
1375 mii_getbit (struct net_device
*dev
)
1377 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1380 data
= (readb (ioaddr
) & 0xf8) | MII_READ
;
1381 writeb (data
, ioaddr
);
1383 writeb (data
| MII_CLK
, ioaddr
);
1385 return ((readb (ioaddr
) >> 1) & 1);
1389 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1392 for (i
= len
- 1; i
>= 0; i
--) {
1393 mii_sendbit (dev
, data
& (1 << i
));
1398 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1405 mii_send_bits (dev
, 0xffffffff, 32);
1406 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1407 /* ST,OP = 0110'b for read operation */
1408 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1409 mii_send_bits (dev
, cmd
, 14);
1411 if (mii_getbit (dev
))
1414 for (i
= 0; i
< 16; i
++) {
1415 retval
|= mii_getbit (dev
);
1420 return (retval
>> 1) & 0xffff;
1426 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1431 mii_send_bits (dev
, 0xffffffff, 32);
1432 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1433 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1434 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1435 mii_send_bits (dev
, cmd
, 32);
1441 mii_wait_link (struct net_device
*dev
, int wait
)
1445 struct netdev_private
*np
;
1447 np
= netdev_priv(dev
);
1448 phy_addr
= np
->phy_addr
;
1451 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1452 if (bmsr
& MII_BMSR_LINK_STATUS
)
1455 } while (--wait
> 0);
1459 mii_get_media (struct net_device
*dev
)
1466 struct netdev_private
*np
;
1468 np
= netdev_priv(dev
);
1469 phy_addr
= np
->phy_addr
;
1471 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1472 if (np
->an_enable
) {
1473 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1474 /* Auto-Negotiation not completed */
1477 negotiate
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1478 mii_read (dev
, phy_addr
, MII_ANLPAR
);
1479 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1480 mssr
= mii_read (dev
, phy_addr
, MII_MSSR
);
1481 if (mscr
& MII_MSCR_1000BT_FD
&& mssr
& MII_MSSR_LP_1000BT_FD
) {
1483 np
->full_duplex
= 1;
1484 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1485 } else if (mscr
& MII_MSCR_1000BT_HD
&& mssr
& MII_MSSR_LP_1000BT_HD
) {
1487 np
->full_duplex
= 0;
1488 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1489 } else if (negotiate
& MII_ANAR_100BX_FD
) {
1491 np
->full_duplex
= 1;
1492 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1493 } else if (negotiate
& MII_ANAR_100BX_HD
) {
1495 np
->full_duplex
= 0;
1496 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1497 } else if (negotiate
& MII_ANAR_10BT_FD
) {
1499 np
->full_duplex
= 1;
1500 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1501 } else if (negotiate
& MII_ANAR_10BT_HD
) {
1503 np
->full_duplex
= 0;
1504 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1506 if (negotiate
& MII_ANAR_PAUSE
) {
1509 } else if (negotiate
& MII_ANAR_ASYMMETRIC
) {
1513 /* else tx_flow, rx_flow = user select */
1515 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1516 switch (bmcr
& (MII_BMCR_SPEED_100
| MII_BMCR_SPEED_1000
)) {
1517 case MII_BMCR_SPEED_1000
:
1518 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1520 case MII_BMCR_SPEED_100
:
1521 printk (KERN_INFO
"Operating at 100 Mbps, ");
1524 printk (KERN_INFO
"Operating at 10 Mbps, ");
1526 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1527 printk ("Full duplex\n");
1529 printk ("Half duplex\n");
1533 printk(KERN_INFO
"Enable Tx Flow Control\n");
1535 printk(KERN_INFO
"Disable Tx Flow Control\n");
1537 printk(KERN_INFO
"Enable Rx Flow Control\n");
1539 printk(KERN_INFO
"Disable Rx Flow Control\n");
1545 mii_set_media (struct net_device
*dev
)
1552 struct netdev_private
*np
;
1553 np
= netdev_priv(dev
);
1554 phy_addr
= np
->phy_addr
;
1556 /* Does user set speed? */
1557 if (np
->an_enable
) {
1558 /* Advertise capabilities */
1559 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1560 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1561 ~MII_ANAR_100BX_FD
&
1562 ~MII_ANAR_100BX_HD
&
1566 if (bmsr
& MII_BMSR_100BX_FD
)
1567 anar
|= MII_ANAR_100BX_FD
;
1568 if (bmsr
& MII_BMSR_100BX_HD
)
1569 anar
|= MII_ANAR_100BX_HD
;
1570 if (bmsr
& MII_BMSR_100BT4
)
1571 anar
|= MII_ANAR_100BT4
;
1572 if (bmsr
& MII_BMSR_10BT_FD
)
1573 anar
|= MII_ANAR_10BT_FD
;
1574 if (bmsr
& MII_BMSR_10BT_HD
)
1575 anar
|= MII_ANAR_10BT_HD
;
1576 anar
|= MII_ANAR_PAUSE
| MII_ANAR_ASYMMETRIC
;
1577 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1579 /* Enable Auto crossover */
1580 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1581 pscr
|= 3 << 5; /* 11'b */
1582 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1584 /* Soft reset PHY */
1585 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1586 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
| MII_BMCR_RESET
;
1587 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1590 /* Force speed setting */
1591 /* 1) Disable Auto crossover */
1592 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1594 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1597 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1598 bmcr
|= MII_BMCR_RESET
;
1599 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1602 bmcr
= 0x1940; /* must be 0x1940 */
1603 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1604 mdelay (100); /* wait a certain time */
1606 /* 4) Advertise nothing */
1607 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1609 /* 5) Set media and Power Up */
1610 bmcr
= MII_BMCR_POWER_DOWN
;
1611 if (np
->speed
== 100) {
1612 bmcr
|= MII_BMCR_SPEED_100
;
1613 printk (KERN_INFO
"Manual 100 Mbps, ");
1614 } else if (np
->speed
== 10) {
1615 printk (KERN_INFO
"Manual 10 Mbps, ");
1617 if (np
->full_duplex
) {
1618 bmcr
|= MII_BMCR_DUPLEX_MODE
;
1619 printk ("Full duplex\n");
1621 printk ("Half duplex\n");
1624 /* Set 1000BaseT Master/Slave setting */
1625 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1626 mscr
|= MII_MSCR_CFG_ENABLE
;
1627 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1629 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1636 mii_get_media_pcs (struct net_device
*dev
)
1641 struct netdev_private
*np
;
1643 np
= netdev_priv(dev
);
1644 phy_addr
= np
->phy_addr
;
1646 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1647 if (np
->an_enable
) {
1648 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1649 /* Auto-Negotiation not completed */
1652 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1653 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1655 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1656 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1657 np
->full_duplex
= 1;
1659 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1660 np
->full_duplex
= 0;
1662 if (negotiate
& PCS_ANAR_PAUSE
) {
1665 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1669 /* else tx_flow, rx_flow = user select */
1671 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1672 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1673 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1674 printk ("Full duplex\n");
1676 printk ("Half duplex\n");
1680 printk(KERN_INFO
"Enable Tx Flow Control\n");
1682 printk(KERN_INFO
"Disable Tx Flow Control\n");
1684 printk(KERN_INFO
"Enable Rx Flow Control\n");
1686 printk(KERN_INFO
"Disable Rx Flow Control\n");
1692 mii_set_media_pcs (struct net_device
*dev
)
1698 struct netdev_private
*np
;
1699 np
= netdev_priv(dev
);
1700 phy_addr
= np
->phy_addr
;
1702 /* Auto-Negotiation? */
1703 if (np
->an_enable
) {
1704 /* Advertise capabilities */
1705 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1706 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1707 ~PCS_ANAR_HALF_DUPLEX
&
1708 ~PCS_ANAR_FULL_DUPLEX
;
1709 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1710 anar
|= PCS_ANAR_HALF_DUPLEX
;
1711 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1712 anar
|= PCS_ANAR_FULL_DUPLEX
;
1713 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1714 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1716 /* Soft reset PHY */
1717 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1718 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
|
1720 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1723 /* Force speed setting */
1725 bmcr
= MII_BMCR_RESET
;
1726 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1728 if (np
->full_duplex
) {
1729 bmcr
= MII_BMCR_DUPLEX_MODE
;
1730 printk (KERN_INFO
"Manual full duplex\n");
1733 printk (KERN_INFO
"Manual half duplex\n");
1735 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1738 /* Advertise nothing */
1739 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1746 rio_close (struct net_device
*dev
)
1748 long ioaddr
= dev
->base_addr
;
1749 struct netdev_private
*np
= netdev_priv(dev
);
1750 struct sk_buff
*skb
;
1753 netif_stop_queue (dev
);
1755 /* Disable interrupts */
1756 writew (0, ioaddr
+ IntEnable
);
1758 /* Stop Tx and Rx logics */
1759 writel (TxDisable
| RxDisable
| StatsDisable
, ioaddr
+ MACCtrl
);
1761 free_irq (dev
->irq
, dev
);
1762 del_timer_sync (&np
->timer
);
1764 /* Free all the skbuffs in the queue. */
1765 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1766 np
->rx_ring
[i
].status
= 0;
1767 np
->rx_ring
[i
].fraginfo
= 0;
1768 skb
= np
->rx_skbuff
[i
];
1770 pci_unmap_single(np
->pdev
,
1771 desc_to_dma(&np
->rx_ring
[i
]),
1772 skb
->len
, PCI_DMA_FROMDEVICE
);
1773 dev_kfree_skb (skb
);
1774 np
->rx_skbuff
[i
] = NULL
;
1777 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1778 skb
= np
->tx_skbuff
[i
];
1780 pci_unmap_single(np
->pdev
,
1781 desc_to_dma(&np
->tx_ring
[i
]),
1782 skb
->len
, PCI_DMA_TODEVICE
);
1783 dev_kfree_skb (skb
);
1784 np
->tx_skbuff
[i
] = NULL
;
1791 static void __devexit
1792 rio_remove1 (struct pci_dev
*pdev
)
1794 struct net_device
*dev
= pci_get_drvdata (pdev
);
1797 struct netdev_private
*np
= netdev_priv(dev
);
1799 unregister_netdev (dev
);
1800 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1802 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1805 iounmap ((char *) (dev
->base_addr
));
1808 pci_release_regions (pdev
);
1809 pci_disable_device (pdev
);
1811 pci_set_drvdata (pdev
, NULL
);
1814 static struct pci_driver rio_driver
= {
1816 .id_table
= rio_pci_tbl
,
1817 .probe
= rio_probe1
,
1818 .remove
= __devexit_p(rio_remove1
),
1824 return pci_register_driver(&rio_driver
);
1830 pci_unregister_driver (&rio_driver
);
1833 module_init (rio_init
);
1834 module_exit (rio_exit
);
1840 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1842 Read Documentation/networking/dl2k.txt for details.