Slab API: remove useless ctor parameter and reorder parameters
[linux-2.6/mini2440.git] / arch / powerpc / mm / mem.c
blob81eb96ec13b2de917bb8d12666aeed587f4b8838
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/lmb.h>
46 #include <asm/sections.h>
47 #include <asm/vdso.h>
49 #include "mmu_decl.h"
51 #ifndef CPU_FTR_COHERENT_ICACHE
52 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
53 #define CPU_FTR_NOEXECUTE 0
54 #endif
56 int init_bootmem_done;
57 int mem_init_done;
58 unsigned long memory_limit;
60 int page_is_ram(unsigned long pfn)
62 unsigned long paddr = (pfn << PAGE_SHIFT);
64 #ifndef CONFIG_PPC64 /* XXX for now */
65 return paddr < __pa(high_memory);
66 #else
67 int i;
68 for (i=0; i < lmb.memory.cnt; i++) {
69 unsigned long base;
71 base = lmb.memory.region[i].base;
73 if ((paddr >= base) &&
74 (paddr < (base + lmb.memory.region[i].size))) {
75 return 1;
79 return 0;
80 #endif
83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
84 unsigned long size, pgprot_t vma_prot)
86 if (ppc_md.phys_mem_access_prot)
87 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
89 if (!page_is_ram(pfn))
90 vma_prot = __pgprot(pgprot_val(vma_prot)
91 | _PAGE_GUARDED | _PAGE_NO_CACHE);
92 return vma_prot;
94 EXPORT_SYMBOL(phys_mem_access_prot);
96 #ifdef CONFIG_MEMORY_HOTPLUG
98 void online_page(struct page *page)
100 ClearPageReserved(page);
101 init_page_count(page);
102 __free_page(page);
103 totalram_pages++;
104 num_physpages++;
107 #ifdef CONFIG_NUMA
108 int memory_add_physaddr_to_nid(u64 start)
110 return hot_add_scn_to_nid(start);
112 #endif
114 int __devinit arch_add_memory(int nid, u64 start, u64 size)
116 struct pglist_data *pgdata;
117 struct zone *zone;
118 unsigned long start_pfn = start >> PAGE_SHIFT;
119 unsigned long nr_pages = size >> PAGE_SHIFT;
121 pgdata = NODE_DATA(nid);
123 start = (unsigned long)__va(start);
124 create_section_mapping(start, start + size);
126 /* this should work for most non-highmem platforms */
127 zone = pgdata->node_zones;
129 return __add_pages(zone, start_pfn, nr_pages);
132 #endif /* CONFIG_MEMORY_HOTPLUG */
134 void show_mem(void)
136 unsigned long total = 0, reserved = 0;
137 unsigned long shared = 0, cached = 0;
138 unsigned long highmem = 0;
139 struct page *page;
140 pg_data_t *pgdat;
141 unsigned long i;
143 printk("Mem-info:\n");
144 show_free_areas();
145 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
146 for_each_online_pgdat(pgdat) {
147 unsigned long flags;
148 pgdat_resize_lock(pgdat, &flags);
149 for (i = 0; i < pgdat->node_spanned_pages; i++) {
150 if (!pfn_valid(pgdat->node_start_pfn + i))
151 continue;
152 page = pgdat_page_nr(pgdat, i);
153 total++;
154 if (PageHighMem(page))
155 highmem++;
156 if (PageReserved(page))
157 reserved++;
158 else if (PageSwapCache(page))
159 cached++;
160 else if (page_count(page))
161 shared += page_count(page) - 1;
163 pgdat_resize_unlock(pgdat, &flags);
165 printk("%ld pages of RAM\n", total);
166 #ifdef CONFIG_HIGHMEM
167 printk("%ld pages of HIGHMEM\n", highmem);
168 #endif
169 printk("%ld reserved pages\n", reserved);
170 printk("%ld pages shared\n", shared);
171 printk("%ld pages swap cached\n", cached);
175 * Initialize the bootmem system and give it all the memory we
176 * have available. If we are using highmem, we only put the
177 * lowmem into the bootmem system.
179 #ifndef CONFIG_NEED_MULTIPLE_NODES
180 void __init do_init_bootmem(void)
182 unsigned long i;
183 unsigned long start, bootmap_pages;
184 unsigned long total_pages;
185 int boot_mapsize;
187 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
188 #ifdef CONFIG_HIGHMEM
189 total_pages = total_lowmem >> PAGE_SHIFT;
190 #endif
193 * Find an area to use for the bootmem bitmap. Calculate the size of
194 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
195 * Add 1 additional page in case the address isn't page-aligned.
197 bootmap_pages = bootmem_bootmap_pages(total_pages);
199 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
201 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
203 /* Add active regions with valid PFNs */
204 for (i = 0; i < lmb.memory.cnt; i++) {
205 unsigned long start_pfn, end_pfn;
206 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
207 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
208 add_active_range(0, start_pfn, end_pfn);
211 /* Add all physical memory to the bootmem map, mark each area
212 * present.
214 #ifdef CONFIG_HIGHMEM
215 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
216 #else
217 free_bootmem_with_active_regions(0, max_pfn);
218 #endif
220 /* reserve the sections we're already using */
221 for (i = 0; i < lmb.reserved.cnt; i++)
222 reserve_bootmem(lmb.reserved.region[i].base,
223 lmb_size_bytes(&lmb.reserved, i));
225 /* XXX need to clip this if using highmem? */
226 sparse_memory_present_with_active_regions(0);
228 init_bootmem_done = 1;
231 /* mark pages that don't exist as nosave */
232 static int __init mark_nonram_nosave(void)
234 unsigned long lmb_next_region_start_pfn,
235 lmb_region_max_pfn;
236 int i;
238 for (i = 0; i < lmb.memory.cnt - 1; i++) {
239 lmb_region_max_pfn =
240 (lmb.memory.region[i].base >> PAGE_SHIFT) +
241 (lmb.memory.region[i].size >> PAGE_SHIFT);
242 lmb_next_region_start_pfn =
243 lmb.memory.region[i+1].base >> PAGE_SHIFT;
245 if (lmb_region_max_pfn < lmb_next_region_start_pfn)
246 register_nosave_region(lmb_region_max_pfn,
247 lmb_next_region_start_pfn);
250 return 0;
254 * paging_init() sets up the page tables - in fact we've already done this.
256 void __init paging_init(void)
258 unsigned long total_ram = lmb_phys_mem_size();
259 unsigned long top_of_ram = lmb_end_of_DRAM();
260 unsigned long max_zone_pfns[MAX_NR_ZONES];
262 #ifdef CONFIG_HIGHMEM
263 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
264 pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
265 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
266 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
267 kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
268 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
269 KMAP_FIX_BEGIN);
270 kmap_prot = PAGE_KERNEL;
271 #endif /* CONFIG_HIGHMEM */
273 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
274 top_of_ram, total_ram);
275 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
276 (top_of_ram - total_ram) >> 20);
277 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
278 #ifdef CONFIG_HIGHMEM
279 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
280 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
281 #else
282 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
283 #endif
284 free_area_init_nodes(max_zone_pfns);
286 mark_nonram_nosave();
288 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
290 void __init mem_init(void)
292 #ifdef CONFIG_NEED_MULTIPLE_NODES
293 int nid;
294 #endif
295 pg_data_t *pgdat;
296 unsigned long i;
297 struct page *page;
298 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
300 num_physpages = lmb.memory.size >> PAGE_SHIFT;
301 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
303 #ifdef CONFIG_NEED_MULTIPLE_NODES
304 for_each_online_node(nid) {
305 if (NODE_DATA(nid)->node_spanned_pages != 0) {
306 printk("freeing bootmem node %d\n", nid);
307 totalram_pages +=
308 free_all_bootmem_node(NODE_DATA(nid));
311 #else
312 max_mapnr = max_pfn;
313 totalram_pages += free_all_bootmem();
314 #endif
315 for_each_online_pgdat(pgdat) {
316 for (i = 0; i < pgdat->node_spanned_pages; i++) {
317 if (!pfn_valid(pgdat->node_start_pfn + i))
318 continue;
319 page = pgdat_page_nr(pgdat, i);
320 if (PageReserved(page))
321 reservedpages++;
325 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
326 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
327 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
328 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
330 #ifdef CONFIG_HIGHMEM
332 unsigned long pfn, highmem_mapnr;
334 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
335 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
336 struct page *page = pfn_to_page(pfn);
338 ClearPageReserved(page);
339 init_page_count(page);
340 __free_page(page);
341 totalhigh_pages++;
343 totalram_pages += totalhigh_pages;
344 printk(KERN_DEBUG "High memory: %luk\n",
345 totalhigh_pages << (PAGE_SHIFT-10));
347 #endif /* CONFIG_HIGHMEM */
349 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
350 "%luk reserved, %luk data, %luk bss, %luk init)\n",
351 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
352 num_physpages << (PAGE_SHIFT-10),
353 codesize >> 10,
354 reservedpages << (PAGE_SHIFT-10),
355 datasize >> 10,
356 bsssize >> 10,
357 initsize >> 10);
359 mem_init_done = 1;
363 * This is called when a page has been modified by the kernel.
364 * It just marks the page as not i-cache clean. We do the i-cache
365 * flush later when the page is given to a user process, if necessary.
367 void flush_dcache_page(struct page *page)
369 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
370 return;
371 /* avoid an atomic op if possible */
372 if (test_bit(PG_arch_1, &page->flags))
373 clear_bit(PG_arch_1, &page->flags);
375 EXPORT_SYMBOL(flush_dcache_page);
377 void flush_dcache_icache_page(struct page *page)
379 #ifdef CONFIG_BOOKE
380 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
381 __flush_dcache_icache(start);
382 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
383 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
384 /* On 8xx there is no need to kmap since highmem is not supported */
385 __flush_dcache_icache(page_address(page));
386 #else
387 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
388 #endif
391 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
393 clear_page(page);
396 * We shouldnt have to do this, but some versions of glibc
397 * require it (ld.so assumes zero filled pages are icache clean)
398 * - Anton
400 flush_dcache_page(pg);
402 EXPORT_SYMBOL(clear_user_page);
404 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
405 struct page *pg)
407 copy_page(vto, vfrom);
410 * We should be able to use the following optimisation, however
411 * there are two problems.
412 * Firstly a bug in some versions of binutils meant PLT sections
413 * were not marked executable.
414 * Secondly the first word in the GOT section is blrl, used
415 * to establish the GOT address. Until recently the GOT was
416 * not marked executable.
417 * - Anton
419 #if 0
420 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
421 return;
422 #endif
424 flush_dcache_page(pg);
427 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
428 unsigned long addr, int len)
430 unsigned long maddr;
432 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
433 flush_icache_range(maddr, maddr + len);
434 kunmap(page);
436 EXPORT_SYMBOL(flush_icache_user_range);
439 * This is called at the end of handling a user page fault, when the
440 * fault has been handled by updating a PTE in the linux page tables.
441 * We use it to preload an HPTE into the hash table corresponding to
442 * the updated linux PTE.
444 * This must always be called with the pte lock held.
446 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
447 pte_t pte)
449 #ifdef CONFIG_PPC_STD_MMU
450 unsigned long access = 0, trap;
451 #endif
452 unsigned long pfn = pte_pfn(pte);
454 /* handle i-cache coherency */
455 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
456 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
457 pfn_valid(pfn)) {
458 struct page *page = pfn_to_page(pfn);
459 #ifdef CONFIG_8xx
460 /* On 8xx, cache control instructions (particularly
461 * "dcbst" from flush_dcache_icache) fault as write
462 * operation if there is an unpopulated TLB entry
463 * for the address in question. To workaround that,
464 * we invalidate the TLB here, thus avoiding dcbst
465 * misbehaviour.
467 _tlbie(address);
468 #endif
469 if (!PageReserved(page)
470 && !test_bit(PG_arch_1, &page->flags)) {
471 if (vma->vm_mm == current->active_mm) {
472 __flush_dcache_icache((void *) address);
473 } else
474 flush_dcache_icache_page(page);
475 set_bit(PG_arch_1, &page->flags);
479 #ifdef CONFIG_PPC_STD_MMU
480 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
481 if (!pte_young(pte) || address >= TASK_SIZE)
482 return;
484 /* We try to figure out if we are coming from an instruction
485 * access fault and pass that down to __hash_page so we avoid
486 * double-faulting on execution of fresh text. We have to test
487 * for regs NULL since init will get here first thing at boot
489 * We also avoid filling the hash if not coming from a fault
491 if (current->thread.regs == NULL)
492 return;
493 trap = TRAP(current->thread.regs);
494 if (trap == 0x400)
495 access |= _PAGE_EXEC;
496 else if (trap != 0x300)
497 return;
498 hash_preload(vma->vm_mm, address, access, trap);
499 #endif /* CONFIG_PPC_STD_MMU */