Slab API: remove useless ctor parameter and reorder parameters
[linux-2.6/mini2440.git] / arch / powerpc / mm / hugetlbpage.c
blob71efb38d599be75490f61ca929a160ea8f86ab8c
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
27 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
28 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
30 #ifdef CONFIG_PPC_64K_PAGES
31 #define HUGEPTE_INDEX_SIZE (PMD_SHIFT-HPAGE_SHIFT)
32 #else
33 #define HUGEPTE_INDEX_SIZE (PUD_SHIFT-HPAGE_SHIFT)
34 #endif
35 #define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
36 #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << HUGEPTE_INDEX_SIZE)
38 #define HUGEPD_SHIFT (HPAGE_SHIFT + HUGEPTE_INDEX_SIZE)
39 #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
40 #define HUGEPD_MASK (~(HUGEPD_SIZE-1))
42 #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
44 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
45 * will choke on pointers to hugepte tables, which is handy for
46 * catching screwups early. */
47 #define HUGEPD_OK 0x1
49 typedef struct { unsigned long pd; } hugepd_t;
51 #define hugepd_none(hpd) ((hpd).pd == 0)
53 static inline pte_t *hugepd_page(hugepd_t hpd)
55 BUG_ON(!(hpd.pd & HUGEPD_OK));
56 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
59 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
61 unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
62 pte_t *dir = hugepd_page(*hpdp);
64 return dir + idx;
67 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
68 unsigned long address)
70 pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
71 GFP_KERNEL|__GFP_REPEAT);
73 if (! new)
74 return -ENOMEM;
76 spin_lock(&mm->page_table_lock);
77 if (!hugepd_none(*hpdp))
78 kmem_cache_free(huge_pgtable_cache, new);
79 else
80 hpdp->pd = (unsigned long)new | HUGEPD_OK;
81 spin_unlock(&mm->page_table_lock);
82 return 0;
85 /* Modelled after find_linux_pte() */
86 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
88 pgd_t *pg;
89 pud_t *pu;
91 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
93 addr &= HPAGE_MASK;
95 pg = pgd_offset(mm, addr);
96 if (!pgd_none(*pg)) {
97 pu = pud_offset(pg, addr);
98 if (!pud_none(*pu)) {
99 #ifdef CONFIG_PPC_64K_PAGES
100 pmd_t *pm;
101 pm = pmd_offset(pu, addr);
102 if (!pmd_none(*pm))
103 return hugepte_offset((hugepd_t *)pm, addr);
104 #else
105 return hugepte_offset((hugepd_t *)pu, addr);
106 #endif
110 return NULL;
113 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
115 pgd_t *pg;
116 pud_t *pu;
117 hugepd_t *hpdp = NULL;
119 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
121 addr &= HPAGE_MASK;
123 pg = pgd_offset(mm, addr);
124 pu = pud_alloc(mm, pg, addr);
126 if (pu) {
127 #ifdef CONFIG_PPC_64K_PAGES
128 pmd_t *pm;
129 pm = pmd_alloc(mm, pu, addr);
130 if (pm)
131 hpdp = (hugepd_t *)pm;
132 #else
133 hpdp = (hugepd_t *)pu;
134 #endif
137 if (! hpdp)
138 return NULL;
140 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
141 return NULL;
143 return hugepte_offset(hpdp, addr);
146 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
148 return 0;
151 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
153 pte_t *hugepte = hugepd_page(*hpdp);
155 hpdp->pd = 0;
156 tlb->need_flush = 1;
157 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
158 PGF_CACHENUM_MASK));
161 #ifdef CONFIG_PPC_64K_PAGES
162 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
163 unsigned long addr, unsigned long end,
164 unsigned long floor, unsigned long ceiling)
166 pmd_t *pmd;
167 unsigned long next;
168 unsigned long start;
170 start = addr;
171 pmd = pmd_offset(pud, addr);
172 do {
173 next = pmd_addr_end(addr, end);
174 if (pmd_none(*pmd))
175 continue;
176 free_hugepte_range(tlb, (hugepd_t *)pmd);
177 } while (pmd++, addr = next, addr != end);
179 start &= PUD_MASK;
180 if (start < floor)
181 return;
182 if (ceiling) {
183 ceiling &= PUD_MASK;
184 if (!ceiling)
185 return;
187 if (end - 1 > ceiling - 1)
188 return;
190 pmd = pmd_offset(pud, start);
191 pud_clear(pud);
192 pmd_free_tlb(tlb, pmd);
194 #endif
196 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
200 pud_t *pud;
201 unsigned long next;
202 unsigned long start;
204 start = addr;
205 pud = pud_offset(pgd, addr);
206 do {
207 next = pud_addr_end(addr, end);
208 #ifdef CONFIG_PPC_64K_PAGES
209 if (pud_none_or_clear_bad(pud))
210 continue;
211 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
212 #else
213 if (pud_none(*pud))
214 continue;
215 free_hugepte_range(tlb, (hugepd_t *)pud);
216 #endif
217 } while (pud++, addr = next, addr != end);
219 start &= PGDIR_MASK;
220 if (start < floor)
221 return;
222 if (ceiling) {
223 ceiling &= PGDIR_MASK;
224 if (!ceiling)
225 return;
227 if (end - 1 > ceiling - 1)
228 return;
230 pud = pud_offset(pgd, start);
231 pgd_clear(pgd);
232 pud_free_tlb(tlb, pud);
236 * This function frees user-level page tables of a process.
238 * Must be called with pagetable lock held.
240 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
241 unsigned long addr, unsigned long end,
242 unsigned long floor, unsigned long ceiling)
244 pgd_t *pgd;
245 unsigned long next;
246 unsigned long start;
249 * Comments below take from the normal free_pgd_range(). They
250 * apply here too. The tests against HUGEPD_MASK below are
251 * essential, because we *don't* test for this at the bottom
252 * level. Without them we'll attempt to free a hugepte table
253 * when we unmap just part of it, even if there are other
254 * active mappings using it.
256 * The next few lines have given us lots of grief...
258 * Why are we testing HUGEPD* at this top level? Because
259 * often there will be no work to do at all, and we'd prefer
260 * not to go all the way down to the bottom just to discover
261 * that.
263 * Why all these "- 1"s? Because 0 represents both the bottom
264 * of the address space and the top of it (using -1 for the
265 * top wouldn't help much: the masks would do the wrong thing).
266 * The rule is that addr 0 and floor 0 refer to the bottom of
267 * the address space, but end 0 and ceiling 0 refer to the top
268 * Comparisons need to use "end - 1" and "ceiling - 1" (though
269 * that end 0 case should be mythical).
271 * Wherever addr is brought up or ceiling brought down, we
272 * must be careful to reject "the opposite 0" before it
273 * confuses the subsequent tests. But what about where end is
274 * brought down by HUGEPD_SIZE below? no, end can't go down to
275 * 0 there.
277 * Whereas we round start (addr) and ceiling down, by different
278 * masks at different levels, in order to test whether a table
279 * now has no other vmas using it, so can be freed, we don't
280 * bother to round floor or end up - the tests don't need that.
283 addr &= HUGEPD_MASK;
284 if (addr < floor) {
285 addr += HUGEPD_SIZE;
286 if (!addr)
287 return;
289 if (ceiling) {
290 ceiling &= HUGEPD_MASK;
291 if (!ceiling)
292 return;
294 if (end - 1 > ceiling - 1)
295 end -= HUGEPD_SIZE;
296 if (addr > end - 1)
297 return;
299 start = addr;
300 pgd = pgd_offset((*tlb)->mm, addr);
301 do {
302 BUG_ON(get_slice_psize((*tlb)->mm, addr) != mmu_huge_psize);
303 next = pgd_addr_end(addr, end);
304 if (pgd_none_or_clear_bad(pgd))
305 continue;
306 hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
307 } while (pgd++, addr = next, addr != end);
310 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
311 pte_t *ptep, pte_t pte)
313 if (pte_present(*ptep)) {
314 /* We open-code pte_clear because we need to pass the right
315 * argument to hpte_need_flush (huge / !huge). Might not be
316 * necessary anymore if we make hpte_need_flush() get the
317 * page size from the slices
319 pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
321 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
324 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
325 pte_t *ptep)
327 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
328 return __pte(old);
331 struct page *
332 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
334 pte_t *ptep;
335 struct page *page;
337 if (get_slice_psize(mm, address) != mmu_huge_psize)
338 return ERR_PTR(-EINVAL);
340 ptep = huge_pte_offset(mm, address);
341 page = pte_page(*ptep);
342 if (page)
343 page += (address % HPAGE_SIZE) / PAGE_SIZE;
345 return page;
348 int pmd_huge(pmd_t pmd)
350 return 0;
353 struct page *
354 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
355 pmd_t *pmd, int write)
357 BUG();
358 return NULL;
362 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
363 unsigned long len, unsigned long pgoff,
364 unsigned long flags)
366 return slice_get_unmapped_area(addr, len, flags,
367 mmu_huge_psize, 1, 0);
371 * Called by asm hashtable.S for doing lazy icache flush
373 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
374 pte_t pte, int trap)
376 struct page *page;
377 int i;
379 if (!pfn_valid(pte_pfn(pte)))
380 return rflags;
382 page = pte_page(pte);
384 /* page is dirty */
385 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
386 if (trap == 0x400) {
387 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
388 __flush_dcache_icache(page_address(page+i));
389 set_bit(PG_arch_1, &page->flags);
390 } else {
391 rflags |= HPTE_R_N;
394 return rflags;
397 int hash_huge_page(struct mm_struct *mm, unsigned long access,
398 unsigned long ea, unsigned long vsid, int local,
399 unsigned long trap)
401 pte_t *ptep;
402 unsigned long old_pte, new_pte;
403 unsigned long va, rflags, pa;
404 long slot;
405 int err = 1;
406 int ssize = user_segment_size(ea);
408 ptep = huge_pte_offset(mm, ea);
410 /* Search the Linux page table for a match with va */
411 va = hpt_va(ea, vsid, ssize);
414 * If no pte found or not present, send the problem up to
415 * do_page_fault
417 if (unlikely(!ptep || pte_none(*ptep)))
418 goto out;
421 * Check the user's access rights to the page. If access should be
422 * prevented then send the problem up to do_page_fault.
424 if (unlikely(access & ~pte_val(*ptep)))
425 goto out;
427 * At this point, we have a pte (old_pte) which can be used to build
428 * or update an HPTE. There are 2 cases:
430 * 1. There is a valid (present) pte with no associated HPTE (this is
431 * the most common case)
432 * 2. There is a valid (present) pte with an associated HPTE. The
433 * current values of the pp bits in the HPTE prevent access
434 * because we are doing software DIRTY bit management and the
435 * page is currently not DIRTY.
439 do {
440 old_pte = pte_val(*ptep);
441 if (old_pte & _PAGE_BUSY)
442 goto out;
443 new_pte = old_pte | _PAGE_BUSY |
444 _PAGE_ACCESSED | _PAGE_HASHPTE;
445 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
446 old_pte, new_pte));
448 rflags = 0x2 | (!(new_pte & _PAGE_RW));
449 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
450 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
451 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
452 /* No CPU has hugepages but lacks no execute, so we
453 * don't need to worry about that case */
454 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
455 trap);
457 /* Check if pte already has an hpte (case 2) */
458 if (unlikely(old_pte & _PAGE_HASHPTE)) {
459 /* There MIGHT be an HPTE for this pte */
460 unsigned long hash, slot;
462 hash = hpt_hash(va, HPAGE_SHIFT, ssize);
463 if (old_pte & _PAGE_F_SECOND)
464 hash = ~hash;
465 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
466 slot += (old_pte & _PAGE_F_GIX) >> 12;
468 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
469 ssize, local) == -1)
470 old_pte &= ~_PAGE_HPTEFLAGS;
473 if (likely(!(old_pte & _PAGE_HASHPTE))) {
474 unsigned long hash = hpt_hash(va, HPAGE_SHIFT, ssize);
475 unsigned long hpte_group;
477 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
479 repeat:
480 hpte_group = ((hash & htab_hash_mask) *
481 HPTES_PER_GROUP) & ~0x7UL;
483 /* clear HPTE slot informations in new PTE */
484 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
486 /* Add in WIMG bits */
487 /* XXX We should store these in the pte */
488 /* --BenH: I think they are ... */
489 rflags |= _PAGE_COHERENT;
491 /* Insert into the hash table, primary slot */
492 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
493 mmu_huge_psize, ssize);
495 /* Primary is full, try the secondary */
496 if (unlikely(slot == -1)) {
497 hpte_group = ((~hash & htab_hash_mask) *
498 HPTES_PER_GROUP) & ~0x7UL;
499 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
500 HPTE_V_SECONDARY,
501 mmu_huge_psize, ssize);
502 if (slot == -1) {
503 if (mftb() & 0x1)
504 hpte_group = ((hash & htab_hash_mask) *
505 HPTES_PER_GROUP)&~0x7UL;
507 ppc_md.hpte_remove(hpte_group);
508 goto repeat;
512 if (unlikely(slot == -2))
513 panic("hash_huge_page: pte_insert failed\n");
515 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
519 * No need to use ldarx/stdcx here
521 *ptep = __pte(new_pte & ~_PAGE_BUSY);
523 err = 0;
525 out:
526 return err;
529 static void zero_ctor(struct kmem_cache *cache, void *addr)
531 memset(addr, 0, kmem_cache_size(cache));
534 static int __init hugetlbpage_init(void)
536 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
537 return -ENODEV;
539 huge_pgtable_cache = kmem_cache_create("hugepte_cache",
540 HUGEPTE_TABLE_SIZE,
541 HUGEPTE_TABLE_SIZE,
543 zero_ctor);
544 if (! huge_pgtable_cache)
545 panic("hugetlbpage_init(): could not create hugepte cache\n");
547 return 0;
550 module_init(hugetlbpage_init);