2 * Performance counter core code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU counters:
36 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
38 int perf_max_counters __read_mostly
= 1;
39 static int perf_reserved_percpu __read_mostly
;
40 static int perf_overcommit __read_mostly
= 1;
42 static atomic_t nr_counters __read_mostly
;
43 static atomic_t nr_mmap_counters __read_mostly
;
44 static atomic_t nr_comm_counters __read_mostly
;
47 * perf counter paranoia level:
49 * 1 - disallow cpu counters to unpriv
50 * 2 - disallow kernel profiling to unpriv
52 int sysctl_perf_counter_paranoid __read_mostly
;
54 static inline bool perf_paranoid_cpu(void)
56 return sysctl_perf_counter_paranoid
> 0;
59 static inline bool perf_paranoid_kernel(void)
61 return sysctl_perf_counter_paranoid
> 1;
64 int sysctl_perf_counter_mlock __read_mostly
= 512; /* 'free' kb per user */
67 * max perf counter sample rate
69 int sysctl_perf_counter_sample_rate __read_mostly
= 100000;
71 static atomic64_t perf_counter_id
;
74 * Lock for (sysadmin-configurable) counter reservations:
76 static DEFINE_SPINLOCK(perf_resource_lock
);
79 * Architecture provided APIs - weak aliases:
81 extern __weak
const struct pmu
*hw_perf_counter_init(struct perf_counter
*counter
)
86 void __weak
hw_perf_disable(void) { barrier(); }
87 void __weak
hw_perf_enable(void) { barrier(); }
89 void __weak
hw_perf_counter_setup(int cpu
) { barrier(); }
92 hw_perf_group_sched_in(struct perf_counter
*group_leader
,
93 struct perf_cpu_context
*cpuctx
,
94 struct perf_counter_context
*ctx
, int cpu
)
99 void __weak
perf_counter_print_debug(void) { }
101 static DEFINE_PER_CPU(int, disable_count
);
103 void __perf_disable(void)
105 __get_cpu_var(disable_count
)++;
108 bool __perf_enable(void)
110 return !--__get_cpu_var(disable_count
);
113 void perf_disable(void)
119 void perf_enable(void)
125 static void get_ctx(struct perf_counter_context
*ctx
)
127 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
130 static void free_ctx(struct rcu_head
*head
)
132 struct perf_counter_context
*ctx
;
134 ctx
= container_of(head
, struct perf_counter_context
, rcu_head
);
138 static void put_ctx(struct perf_counter_context
*ctx
)
140 if (atomic_dec_and_test(&ctx
->refcount
)) {
142 put_ctx(ctx
->parent_ctx
);
144 put_task_struct(ctx
->task
);
145 call_rcu(&ctx
->rcu_head
, free_ctx
);
150 * Get the perf_counter_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_counter_context
*
155 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
157 struct perf_counter_context
*ctx
;
161 ctx
= rcu_dereference(task
->perf_counter_ctxp
);
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_counter_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 spin_lock_irqsave(&ctx
->lock
, *flags
);
174 if (ctx
!= rcu_dereference(task
->perf_counter_ctxp
)) {
175 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
179 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
180 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
193 static struct perf_counter_context
*perf_pin_task_context(struct task_struct
*task
)
195 struct perf_counter_context
*ctx
;
198 ctx
= perf_lock_task_context(task
, &flags
);
201 spin_unlock_irqrestore(&ctx
->lock
, flags
);
206 static void perf_unpin_context(struct perf_counter_context
*ctx
)
210 spin_lock_irqsave(&ctx
->lock
, flags
);
212 spin_unlock_irqrestore(&ctx
->lock
, flags
);
217 * Add a counter from the lists for its context.
218 * Must be called with ctx->mutex and ctx->lock held.
221 list_add_counter(struct perf_counter
*counter
, struct perf_counter_context
*ctx
)
223 struct perf_counter
*group_leader
= counter
->group_leader
;
226 * Depending on whether it is a standalone or sibling counter,
227 * add it straight to the context's counter list, or to the group
228 * leader's sibling list:
230 if (group_leader
== counter
)
231 list_add_tail(&counter
->list_entry
, &ctx
->counter_list
);
233 list_add_tail(&counter
->list_entry
, &group_leader
->sibling_list
);
234 group_leader
->nr_siblings
++;
237 list_add_rcu(&counter
->event_entry
, &ctx
->event_list
);
239 if (counter
->attr
.inherit_stat
)
244 * Remove a counter from the lists for its context.
245 * Must be called with ctx->mutex and ctx->lock held.
248 list_del_counter(struct perf_counter
*counter
, struct perf_counter_context
*ctx
)
250 struct perf_counter
*sibling
, *tmp
;
252 if (list_empty(&counter
->list_entry
))
255 if (counter
->attr
.inherit_stat
)
258 list_del_init(&counter
->list_entry
);
259 list_del_rcu(&counter
->event_entry
);
261 if (counter
->group_leader
!= counter
)
262 counter
->group_leader
->nr_siblings
--;
265 * If this was a group counter with sibling counters then
266 * upgrade the siblings to singleton counters by adding them
267 * to the context list directly:
269 list_for_each_entry_safe(sibling
, tmp
,
270 &counter
->sibling_list
, list_entry
) {
272 list_move_tail(&sibling
->list_entry
, &ctx
->counter_list
);
273 sibling
->group_leader
= sibling
;
278 counter_sched_out(struct perf_counter
*counter
,
279 struct perf_cpu_context
*cpuctx
,
280 struct perf_counter_context
*ctx
)
282 if (counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
285 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
286 counter
->tstamp_stopped
= ctx
->time
;
287 counter
->pmu
->disable(counter
);
290 if (!is_software_counter(counter
))
291 cpuctx
->active_oncpu
--;
293 if (counter
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
294 cpuctx
->exclusive
= 0;
298 group_sched_out(struct perf_counter
*group_counter
,
299 struct perf_cpu_context
*cpuctx
,
300 struct perf_counter_context
*ctx
)
302 struct perf_counter
*counter
;
304 if (group_counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
307 counter_sched_out(group_counter
, cpuctx
, ctx
);
310 * Schedule out siblings (if any):
312 list_for_each_entry(counter
, &group_counter
->sibling_list
, list_entry
)
313 counter_sched_out(counter
, cpuctx
, ctx
);
315 if (group_counter
->attr
.exclusive
)
316 cpuctx
->exclusive
= 0;
320 * Cross CPU call to remove a performance counter
322 * We disable the counter on the hardware level first. After that we
323 * remove it from the context list.
325 static void __perf_counter_remove_from_context(void *info
)
327 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
328 struct perf_counter
*counter
= info
;
329 struct perf_counter_context
*ctx
= counter
->ctx
;
332 * If this is a task context, we need to check whether it is
333 * the current task context of this cpu. If not it has been
334 * scheduled out before the smp call arrived.
336 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
339 spin_lock(&ctx
->lock
);
341 * Protect the list operation against NMI by disabling the
342 * counters on a global level.
346 counter_sched_out(counter
, cpuctx
, ctx
);
348 list_del_counter(counter
, ctx
);
352 * Allow more per task counters with respect to the
355 cpuctx
->max_pertask
=
356 min(perf_max_counters
- ctx
->nr_counters
,
357 perf_max_counters
- perf_reserved_percpu
);
361 spin_unlock(&ctx
->lock
);
366 * Remove the counter from a task's (or a CPU's) list of counters.
368 * Must be called with ctx->mutex held.
370 * CPU counters are removed with a smp call. For task counters we only
371 * call when the task is on a CPU.
373 * If counter->ctx is a cloned context, callers must make sure that
374 * every task struct that counter->ctx->task could possibly point to
375 * remains valid. This is OK when called from perf_release since
376 * that only calls us on the top-level context, which can't be a clone.
377 * When called from perf_counter_exit_task, it's OK because the
378 * context has been detached from its task.
380 static void perf_counter_remove_from_context(struct perf_counter
*counter
)
382 struct perf_counter_context
*ctx
= counter
->ctx
;
383 struct task_struct
*task
= ctx
->task
;
387 * Per cpu counters are removed via an smp call and
388 * the removal is always sucessful.
390 smp_call_function_single(counter
->cpu
,
391 __perf_counter_remove_from_context
,
397 task_oncpu_function_call(task
, __perf_counter_remove_from_context
,
400 spin_lock_irq(&ctx
->lock
);
402 * If the context is active we need to retry the smp call.
404 if (ctx
->nr_active
&& !list_empty(&counter
->list_entry
)) {
405 spin_unlock_irq(&ctx
->lock
);
410 * The lock prevents that this context is scheduled in so we
411 * can remove the counter safely, if the call above did not
414 if (!list_empty(&counter
->list_entry
)) {
415 list_del_counter(counter
, ctx
);
417 spin_unlock_irq(&ctx
->lock
);
420 static inline u64
perf_clock(void)
422 return cpu_clock(smp_processor_id());
426 * Update the record of the current time in a context.
428 static void update_context_time(struct perf_counter_context
*ctx
)
430 u64 now
= perf_clock();
432 ctx
->time
+= now
- ctx
->timestamp
;
433 ctx
->timestamp
= now
;
437 * Update the total_time_enabled and total_time_running fields for a counter.
439 static void update_counter_times(struct perf_counter
*counter
)
441 struct perf_counter_context
*ctx
= counter
->ctx
;
444 if (counter
->state
< PERF_COUNTER_STATE_INACTIVE
)
447 counter
->total_time_enabled
= ctx
->time
- counter
->tstamp_enabled
;
449 if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
)
450 run_end
= counter
->tstamp_stopped
;
454 counter
->total_time_running
= run_end
- counter
->tstamp_running
;
458 * Update total_time_enabled and total_time_running for all counters in a group.
460 static void update_group_times(struct perf_counter
*leader
)
462 struct perf_counter
*counter
;
464 update_counter_times(leader
);
465 list_for_each_entry(counter
, &leader
->sibling_list
, list_entry
)
466 update_counter_times(counter
);
470 * Cross CPU call to disable a performance counter
472 static void __perf_counter_disable(void *info
)
474 struct perf_counter
*counter
= info
;
475 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
476 struct perf_counter_context
*ctx
= counter
->ctx
;
479 * If this is a per-task counter, need to check whether this
480 * counter's task is the current task on this cpu.
482 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
485 spin_lock(&ctx
->lock
);
488 * If the counter is on, turn it off.
489 * If it is in error state, leave it in error state.
491 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
) {
492 update_context_time(ctx
);
493 update_counter_times(counter
);
494 if (counter
== counter
->group_leader
)
495 group_sched_out(counter
, cpuctx
, ctx
);
497 counter_sched_out(counter
, cpuctx
, ctx
);
498 counter
->state
= PERF_COUNTER_STATE_OFF
;
501 spin_unlock(&ctx
->lock
);
507 * If counter->ctx is a cloned context, callers must make sure that
508 * every task struct that counter->ctx->task could possibly point to
509 * remains valid. This condition is satisifed when called through
510 * perf_counter_for_each_child or perf_counter_for_each because they
511 * hold the top-level counter's child_mutex, so any descendant that
512 * goes to exit will block in sync_child_counter.
513 * When called from perf_pending_counter it's OK because counter->ctx
514 * is the current context on this CPU and preemption is disabled,
515 * hence we can't get into perf_counter_task_sched_out for this context.
517 static void perf_counter_disable(struct perf_counter
*counter
)
519 struct perf_counter_context
*ctx
= counter
->ctx
;
520 struct task_struct
*task
= ctx
->task
;
524 * Disable the counter on the cpu that it's on
526 smp_call_function_single(counter
->cpu
, __perf_counter_disable
,
532 task_oncpu_function_call(task
, __perf_counter_disable
, counter
);
534 spin_lock_irq(&ctx
->lock
);
536 * If the counter is still active, we need to retry the cross-call.
538 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
) {
539 spin_unlock_irq(&ctx
->lock
);
544 * Since we have the lock this context can't be scheduled
545 * in, so we can change the state safely.
547 if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
) {
548 update_counter_times(counter
);
549 counter
->state
= PERF_COUNTER_STATE_OFF
;
552 spin_unlock_irq(&ctx
->lock
);
556 counter_sched_in(struct perf_counter
*counter
,
557 struct perf_cpu_context
*cpuctx
,
558 struct perf_counter_context
*ctx
,
561 if (counter
->state
<= PERF_COUNTER_STATE_OFF
)
564 counter
->state
= PERF_COUNTER_STATE_ACTIVE
;
565 counter
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
567 * The new state must be visible before we turn it on in the hardware:
571 if (counter
->pmu
->enable(counter
)) {
572 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
577 counter
->tstamp_running
+= ctx
->time
- counter
->tstamp_stopped
;
579 if (!is_software_counter(counter
))
580 cpuctx
->active_oncpu
++;
583 if (counter
->attr
.exclusive
)
584 cpuctx
->exclusive
= 1;
590 group_sched_in(struct perf_counter
*group_counter
,
591 struct perf_cpu_context
*cpuctx
,
592 struct perf_counter_context
*ctx
,
595 struct perf_counter
*counter
, *partial_group
;
598 if (group_counter
->state
== PERF_COUNTER_STATE_OFF
)
601 ret
= hw_perf_group_sched_in(group_counter
, cpuctx
, ctx
, cpu
);
603 return ret
< 0 ? ret
: 0;
605 if (counter_sched_in(group_counter
, cpuctx
, ctx
, cpu
))
609 * Schedule in siblings as one group (if any):
611 list_for_each_entry(counter
, &group_counter
->sibling_list
, list_entry
) {
612 if (counter_sched_in(counter
, cpuctx
, ctx
, cpu
)) {
613 partial_group
= counter
;
622 * Groups can be scheduled in as one unit only, so undo any
623 * partial group before returning:
625 list_for_each_entry(counter
, &group_counter
->sibling_list
, list_entry
) {
626 if (counter
== partial_group
)
628 counter_sched_out(counter
, cpuctx
, ctx
);
630 counter_sched_out(group_counter
, cpuctx
, ctx
);
636 * Return 1 for a group consisting entirely of software counters,
637 * 0 if the group contains any hardware counters.
639 static int is_software_only_group(struct perf_counter
*leader
)
641 struct perf_counter
*counter
;
643 if (!is_software_counter(leader
))
646 list_for_each_entry(counter
, &leader
->sibling_list
, list_entry
)
647 if (!is_software_counter(counter
))
654 * Work out whether we can put this counter group on the CPU now.
656 static int group_can_go_on(struct perf_counter
*counter
,
657 struct perf_cpu_context
*cpuctx
,
661 * Groups consisting entirely of software counters can always go on.
663 if (is_software_only_group(counter
))
666 * If an exclusive group is already on, no other hardware
667 * counters can go on.
669 if (cpuctx
->exclusive
)
672 * If this group is exclusive and there are already
673 * counters on the CPU, it can't go on.
675 if (counter
->attr
.exclusive
&& cpuctx
->active_oncpu
)
678 * Otherwise, try to add it if all previous groups were able
684 static void add_counter_to_ctx(struct perf_counter
*counter
,
685 struct perf_counter_context
*ctx
)
687 list_add_counter(counter
, ctx
);
688 counter
->tstamp_enabled
= ctx
->time
;
689 counter
->tstamp_running
= ctx
->time
;
690 counter
->tstamp_stopped
= ctx
->time
;
694 * Cross CPU call to install and enable a performance counter
696 * Must be called with ctx->mutex held
698 static void __perf_install_in_context(void *info
)
700 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
701 struct perf_counter
*counter
= info
;
702 struct perf_counter_context
*ctx
= counter
->ctx
;
703 struct perf_counter
*leader
= counter
->group_leader
;
704 int cpu
= smp_processor_id();
708 * If this is a task context, we need to check whether it is
709 * the current task context of this cpu. If not it has been
710 * scheduled out before the smp call arrived.
711 * Or possibly this is the right context but it isn't
712 * on this cpu because it had no counters.
714 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
715 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
717 cpuctx
->task_ctx
= ctx
;
720 spin_lock(&ctx
->lock
);
722 update_context_time(ctx
);
725 * Protect the list operation against NMI by disabling the
726 * counters on a global level. NOP for non NMI based counters.
730 add_counter_to_ctx(counter
, ctx
);
733 * Don't put the counter on if it is disabled or if
734 * it is in a group and the group isn't on.
736 if (counter
->state
!= PERF_COUNTER_STATE_INACTIVE
||
737 (leader
!= counter
&& leader
->state
!= PERF_COUNTER_STATE_ACTIVE
))
741 * An exclusive counter can't go on if there are already active
742 * hardware counters, and no hardware counter can go on if there
743 * is already an exclusive counter on.
745 if (!group_can_go_on(counter
, cpuctx
, 1))
748 err
= counter_sched_in(counter
, cpuctx
, ctx
, cpu
);
752 * This counter couldn't go on. If it is in a group
753 * then we have to pull the whole group off.
754 * If the counter group is pinned then put it in error state.
756 if (leader
!= counter
)
757 group_sched_out(leader
, cpuctx
, ctx
);
758 if (leader
->attr
.pinned
) {
759 update_group_times(leader
);
760 leader
->state
= PERF_COUNTER_STATE_ERROR
;
764 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
765 cpuctx
->max_pertask
--;
770 spin_unlock(&ctx
->lock
);
774 * Attach a performance counter to a context
776 * First we add the counter to the list with the hardware enable bit
777 * in counter->hw_config cleared.
779 * If the counter is attached to a task which is on a CPU we use a smp
780 * call to enable it in the task context. The task might have been
781 * scheduled away, but we check this in the smp call again.
783 * Must be called with ctx->mutex held.
786 perf_install_in_context(struct perf_counter_context
*ctx
,
787 struct perf_counter
*counter
,
790 struct task_struct
*task
= ctx
->task
;
794 * Per cpu counters are installed via an smp call and
795 * the install is always sucessful.
797 smp_call_function_single(cpu
, __perf_install_in_context
,
803 task_oncpu_function_call(task
, __perf_install_in_context
,
806 spin_lock_irq(&ctx
->lock
);
808 * we need to retry the smp call.
810 if (ctx
->is_active
&& list_empty(&counter
->list_entry
)) {
811 spin_unlock_irq(&ctx
->lock
);
816 * The lock prevents that this context is scheduled in so we
817 * can add the counter safely, if it the call above did not
820 if (list_empty(&counter
->list_entry
))
821 add_counter_to_ctx(counter
, ctx
);
822 spin_unlock_irq(&ctx
->lock
);
826 * Cross CPU call to enable a performance counter
828 static void __perf_counter_enable(void *info
)
830 struct perf_counter
*counter
= info
;
831 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
832 struct perf_counter_context
*ctx
= counter
->ctx
;
833 struct perf_counter
*leader
= counter
->group_leader
;
837 * If this is a per-task counter, need to check whether this
838 * counter's task is the current task on this cpu.
840 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
841 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
843 cpuctx
->task_ctx
= ctx
;
846 spin_lock(&ctx
->lock
);
848 update_context_time(ctx
);
850 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
852 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
853 counter
->tstamp_enabled
= ctx
->time
- counter
->total_time_enabled
;
856 * If the counter is in a group and isn't the group leader,
857 * then don't put it on unless the group is on.
859 if (leader
!= counter
&& leader
->state
!= PERF_COUNTER_STATE_ACTIVE
)
862 if (!group_can_go_on(counter
, cpuctx
, 1)) {
866 if (counter
== leader
)
867 err
= group_sched_in(counter
, cpuctx
, ctx
,
870 err
= counter_sched_in(counter
, cpuctx
, ctx
,
877 * If this counter can't go on and it's part of a
878 * group, then the whole group has to come off.
880 if (leader
!= counter
)
881 group_sched_out(leader
, cpuctx
, ctx
);
882 if (leader
->attr
.pinned
) {
883 update_group_times(leader
);
884 leader
->state
= PERF_COUNTER_STATE_ERROR
;
889 spin_unlock(&ctx
->lock
);
895 * If counter->ctx is a cloned context, callers must make sure that
896 * every task struct that counter->ctx->task could possibly point to
897 * remains valid. This condition is satisfied when called through
898 * perf_counter_for_each_child or perf_counter_for_each as described
899 * for perf_counter_disable.
901 static void perf_counter_enable(struct perf_counter
*counter
)
903 struct perf_counter_context
*ctx
= counter
->ctx
;
904 struct task_struct
*task
= ctx
->task
;
908 * Enable the counter on the cpu that it's on
910 smp_call_function_single(counter
->cpu
, __perf_counter_enable
,
915 spin_lock_irq(&ctx
->lock
);
916 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
920 * If the counter is in error state, clear that first.
921 * That way, if we see the counter in error state below, we
922 * know that it has gone back into error state, as distinct
923 * from the task having been scheduled away before the
924 * cross-call arrived.
926 if (counter
->state
== PERF_COUNTER_STATE_ERROR
)
927 counter
->state
= PERF_COUNTER_STATE_OFF
;
930 spin_unlock_irq(&ctx
->lock
);
931 task_oncpu_function_call(task
, __perf_counter_enable
, counter
);
933 spin_lock_irq(&ctx
->lock
);
936 * If the context is active and the counter is still off,
937 * we need to retry the cross-call.
939 if (ctx
->is_active
&& counter
->state
== PERF_COUNTER_STATE_OFF
)
943 * Since we have the lock this context can't be scheduled
944 * in, so we can change the state safely.
946 if (counter
->state
== PERF_COUNTER_STATE_OFF
) {
947 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
948 counter
->tstamp_enabled
=
949 ctx
->time
- counter
->total_time_enabled
;
952 spin_unlock_irq(&ctx
->lock
);
955 static int perf_counter_refresh(struct perf_counter
*counter
, int refresh
)
958 * not supported on inherited counters
960 if (counter
->attr
.inherit
)
963 atomic_add(refresh
, &counter
->event_limit
);
964 perf_counter_enable(counter
);
969 void __perf_counter_sched_out(struct perf_counter_context
*ctx
,
970 struct perf_cpu_context
*cpuctx
)
972 struct perf_counter
*counter
;
974 spin_lock(&ctx
->lock
);
976 if (likely(!ctx
->nr_counters
))
978 update_context_time(ctx
);
981 if (ctx
->nr_active
) {
982 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
983 if (counter
!= counter
->group_leader
)
984 counter_sched_out(counter
, cpuctx
, ctx
);
986 group_sched_out(counter
, cpuctx
, ctx
);
991 spin_unlock(&ctx
->lock
);
995 * Test whether two contexts are equivalent, i.e. whether they
996 * have both been cloned from the same version of the same context
997 * and they both have the same number of enabled counters.
998 * If the number of enabled counters is the same, then the set
999 * of enabled counters should be the same, because these are both
1000 * inherited contexts, therefore we can't access individual counters
1001 * in them directly with an fd; we can only enable/disable all
1002 * counters via prctl, or enable/disable all counters in a family
1003 * via ioctl, which will have the same effect on both contexts.
1005 static int context_equiv(struct perf_counter_context
*ctx1
,
1006 struct perf_counter_context
*ctx2
)
1008 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1009 && ctx1
->parent_gen
== ctx2
->parent_gen
1010 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1013 static void __perf_counter_read(void *counter
);
1015 static void __perf_counter_sync_stat(struct perf_counter
*counter
,
1016 struct perf_counter
*next_counter
)
1020 if (!counter
->attr
.inherit_stat
)
1024 * Update the counter value, we cannot use perf_counter_read()
1025 * because we're in the middle of a context switch and have IRQs
1026 * disabled, which upsets smp_call_function_single(), however
1027 * we know the counter must be on the current CPU, therefore we
1028 * don't need to use it.
1030 switch (counter
->state
) {
1031 case PERF_COUNTER_STATE_ACTIVE
:
1032 __perf_counter_read(counter
);
1035 case PERF_COUNTER_STATE_INACTIVE
:
1036 update_counter_times(counter
);
1044 * In order to keep per-task stats reliable we need to flip the counter
1045 * values when we flip the contexts.
1047 value
= atomic64_read(&next_counter
->count
);
1048 value
= atomic64_xchg(&counter
->count
, value
);
1049 atomic64_set(&next_counter
->count
, value
);
1051 swap(counter
->total_time_enabled
, next_counter
->total_time_enabled
);
1052 swap(counter
->total_time_running
, next_counter
->total_time_running
);
1055 * Since we swizzled the values, update the user visible data too.
1057 perf_counter_update_userpage(counter
);
1058 perf_counter_update_userpage(next_counter
);
1061 #define list_next_entry(pos, member) \
1062 list_entry(pos->member.next, typeof(*pos), member)
1064 static void perf_counter_sync_stat(struct perf_counter_context
*ctx
,
1065 struct perf_counter_context
*next_ctx
)
1067 struct perf_counter
*counter
, *next_counter
;
1072 counter
= list_first_entry(&ctx
->event_list
,
1073 struct perf_counter
, event_entry
);
1075 next_counter
= list_first_entry(&next_ctx
->event_list
,
1076 struct perf_counter
, event_entry
);
1078 while (&counter
->event_entry
!= &ctx
->event_list
&&
1079 &next_counter
->event_entry
!= &next_ctx
->event_list
) {
1081 __perf_counter_sync_stat(counter
, next_counter
);
1083 counter
= list_next_entry(counter
, event_entry
);
1084 next_counter
= list_next_entry(counter
, event_entry
);
1089 * Called from scheduler to remove the counters of the current task,
1090 * with interrupts disabled.
1092 * We stop each counter and update the counter value in counter->count.
1094 * This does not protect us against NMI, but disable()
1095 * sets the disabled bit in the control field of counter _before_
1096 * accessing the counter control register. If a NMI hits, then it will
1097 * not restart the counter.
1099 void perf_counter_task_sched_out(struct task_struct
*task
,
1100 struct task_struct
*next
, int cpu
)
1102 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1103 struct perf_counter_context
*ctx
= task
->perf_counter_ctxp
;
1104 struct perf_counter_context
*next_ctx
;
1105 struct perf_counter_context
*parent
;
1106 struct pt_regs
*regs
;
1109 regs
= task_pt_regs(task
);
1110 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1112 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1115 update_context_time(ctx
);
1118 parent
= rcu_dereference(ctx
->parent_ctx
);
1119 next_ctx
= next
->perf_counter_ctxp
;
1120 if (parent
&& next_ctx
&&
1121 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1123 * Looks like the two contexts are clones, so we might be
1124 * able to optimize the context switch. We lock both
1125 * contexts and check that they are clones under the
1126 * lock (including re-checking that neither has been
1127 * uncloned in the meantime). It doesn't matter which
1128 * order we take the locks because no other cpu could
1129 * be trying to lock both of these tasks.
1131 spin_lock(&ctx
->lock
);
1132 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1133 if (context_equiv(ctx
, next_ctx
)) {
1135 * XXX do we need a memory barrier of sorts
1136 * wrt to rcu_dereference() of perf_counter_ctxp
1138 task
->perf_counter_ctxp
= next_ctx
;
1139 next
->perf_counter_ctxp
= ctx
;
1141 next_ctx
->task
= task
;
1144 perf_counter_sync_stat(ctx
, next_ctx
);
1146 spin_unlock(&next_ctx
->lock
);
1147 spin_unlock(&ctx
->lock
);
1152 __perf_counter_sched_out(ctx
, cpuctx
);
1153 cpuctx
->task_ctx
= NULL
;
1158 * Called with IRQs disabled
1160 static void __perf_counter_task_sched_out(struct perf_counter_context
*ctx
)
1162 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1164 if (!cpuctx
->task_ctx
)
1167 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1170 __perf_counter_sched_out(ctx
, cpuctx
);
1171 cpuctx
->task_ctx
= NULL
;
1175 * Called with IRQs disabled
1177 static void perf_counter_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1179 __perf_counter_sched_out(&cpuctx
->ctx
, cpuctx
);
1183 __perf_counter_sched_in(struct perf_counter_context
*ctx
,
1184 struct perf_cpu_context
*cpuctx
, int cpu
)
1186 struct perf_counter
*counter
;
1189 spin_lock(&ctx
->lock
);
1191 if (likely(!ctx
->nr_counters
))
1194 ctx
->timestamp
= perf_clock();
1199 * First go through the list and put on any pinned groups
1200 * in order to give them the best chance of going on.
1202 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1203 if (counter
->state
<= PERF_COUNTER_STATE_OFF
||
1204 !counter
->attr
.pinned
)
1206 if (counter
->cpu
!= -1 && counter
->cpu
!= cpu
)
1209 if (counter
!= counter
->group_leader
)
1210 counter_sched_in(counter
, cpuctx
, ctx
, cpu
);
1212 if (group_can_go_on(counter
, cpuctx
, 1))
1213 group_sched_in(counter
, cpuctx
, ctx
, cpu
);
1217 * If this pinned group hasn't been scheduled,
1218 * put it in error state.
1220 if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
) {
1221 update_group_times(counter
);
1222 counter
->state
= PERF_COUNTER_STATE_ERROR
;
1226 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1228 * Ignore counters in OFF or ERROR state, and
1229 * ignore pinned counters since we did them already.
1231 if (counter
->state
<= PERF_COUNTER_STATE_OFF
||
1232 counter
->attr
.pinned
)
1236 * Listen to the 'cpu' scheduling filter constraint
1239 if (counter
->cpu
!= -1 && counter
->cpu
!= cpu
)
1242 if (counter
!= counter
->group_leader
) {
1243 if (counter_sched_in(counter
, cpuctx
, ctx
, cpu
))
1246 if (group_can_go_on(counter
, cpuctx
, can_add_hw
)) {
1247 if (group_sched_in(counter
, cpuctx
, ctx
, cpu
))
1254 spin_unlock(&ctx
->lock
);
1258 * Called from scheduler to add the counters of the current task
1259 * with interrupts disabled.
1261 * We restore the counter value and then enable it.
1263 * This does not protect us against NMI, but enable()
1264 * sets the enabled bit in the control field of counter _before_
1265 * accessing the counter control register. If a NMI hits, then it will
1266 * keep the counter running.
1268 void perf_counter_task_sched_in(struct task_struct
*task
, int cpu
)
1270 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1271 struct perf_counter_context
*ctx
= task
->perf_counter_ctxp
;
1275 if (cpuctx
->task_ctx
== ctx
)
1277 __perf_counter_sched_in(ctx
, cpuctx
, cpu
);
1278 cpuctx
->task_ctx
= ctx
;
1281 static void perf_counter_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1283 struct perf_counter_context
*ctx
= &cpuctx
->ctx
;
1285 __perf_counter_sched_in(ctx
, cpuctx
, cpu
);
1288 #define MAX_INTERRUPTS (~0ULL)
1290 static void perf_log_throttle(struct perf_counter
*counter
, int enable
);
1291 static void perf_log_period(struct perf_counter
*counter
, u64 period
);
1293 static void perf_adjust_period(struct perf_counter
*counter
, u64 events
)
1295 struct hw_perf_counter
*hwc
= &counter
->hw
;
1296 u64 period
, sample_period
;
1299 events
*= hwc
->sample_period
;
1300 period
= div64_u64(events
, counter
->attr
.sample_freq
);
1302 delta
= (s64
)(period
- hwc
->sample_period
);
1303 delta
= (delta
+ 7) / 8; /* low pass filter */
1305 sample_period
= hwc
->sample_period
+ delta
;
1310 perf_log_period(counter
, sample_period
);
1312 hwc
->sample_period
= sample_period
;
1315 static void perf_ctx_adjust_freq(struct perf_counter_context
*ctx
)
1317 struct perf_counter
*counter
;
1318 struct hw_perf_counter
*hwc
;
1319 u64 interrupts
, freq
;
1321 spin_lock(&ctx
->lock
);
1322 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1323 if (counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
1328 interrupts
= hwc
->interrupts
;
1329 hwc
->interrupts
= 0;
1332 * unthrottle counters on the tick
1334 if (interrupts
== MAX_INTERRUPTS
) {
1335 perf_log_throttle(counter
, 1);
1336 counter
->pmu
->unthrottle(counter
);
1337 interrupts
= 2*sysctl_perf_counter_sample_rate
/HZ
;
1340 if (!counter
->attr
.freq
|| !counter
->attr
.sample_freq
)
1344 * if the specified freq < HZ then we need to skip ticks
1346 if (counter
->attr
.sample_freq
< HZ
) {
1347 freq
= counter
->attr
.sample_freq
;
1349 hwc
->freq_count
+= freq
;
1350 hwc
->freq_interrupts
+= interrupts
;
1352 if (hwc
->freq_count
< HZ
)
1355 interrupts
= hwc
->freq_interrupts
;
1356 hwc
->freq_interrupts
= 0;
1357 hwc
->freq_count
-= HZ
;
1361 perf_adjust_period(counter
, freq
* interrupts
);
1364 * In order to avoid being stalled by an (accidental) huge
1365 * sample period, force reset the sample period if we didn't
1366 * get any events in this freq period.
1370 counter
->pmu
->disable(counter
);
1371 atomic64_set(&hwc
->period_left
, 0);
1372 counter
->pmu
->enable(counter
);
1376 spin_unlock(&ctx
->lock
);
1380 * Round-robin a context's counters:
1382 static void rotate_ctx(struct perf_counter_context
*ctx
)
1384 struct perf_counter
*counter
;
1386 if (!ctx
->nr_counters
)
1389 spin_lock(&ctx
->lock
);
1391 * Rotate the first entry last (works just fine for group counters too):
1394 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1395 list_move_tail(&counter
->list_entry
, &ctx
->counter_list
);
1400 spin_unlock(&ctx
->lock
);
1403 void perf_counter_task_tick(struct task_struct
*curr
, int cpu
)
1405 struct perf_cpu_context
*cpuctx
;
1406 struct perf_counter_context
*ctx
;
1408 if (!atomic_read(&nr_counters
))
1411 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1412 ctx
= curr
->perf_counter_ctxp
;
1414 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1416 perf_ctx_adjust_freq(ctx
);
1418 perf_counter_cpu_sched_out(cpuctx
);
1420 __perf_counter_task_sched_out(ctx
);
1422 rotate_ctx(&cpuctx
->ctx
);
1426 perf_counter_cpu_sched_in(cpuctx
, cpu
);
1428 perf_counter_task_sched_in(curr
, cpu
);
1432 * Enable all of a task's counters that have been marked enable-on-exec.
1433 * This expects task == current.
1435 static void perf_counter_enable_on_exec(struct task_struct
*task
)
1437 struct perf_counter_context
*ctx
;
1438 struct perf_counter
*counter
;
1439 unsigned long flags
;
1442 local_irq_save(flags
);
1443 ctx
= task
->perf_counter_ctxp
;
1444 if (!ctx
|| !ctx
->nr_counters
)
1447 __perf_counter_task_sched_out(ctx
);
1449 spin_lock(&ctx
->lock
);
1451 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1452 if (!counter
->attr
.enable_on_exec
)
1454 counter
->attr
.enable_on_exec
= 0;
1455 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
1457 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
1458 counter
->tstamp_enabled
=
1459 ctx
->time
- counter
->total_time_enabled
;
1464 * Unclone this context if we enabled any counter.
1466 if (enabled
&& ctx
->parent_ctx
) {
1467 put_ctx(ctx
->parent_ctx
);
1468 ctx
->parent_ctx
= NULL
;
1471 spin_unlock(&ctx
->lock
);
1473 perf_counter_task_sched_in(task
, smp_processor_id());
1475 local_irq_restore(flags
);
1479 * Cross CPU call to read the hardware counter
1481 static void __perf_counter_read(void *info
)
1483 struct perf_counter
*counter
= info
;
1484 struct perf_counter_context
*ctx
= counter
->ctx
;
1485 unsigned long flags
;
1487 local_irq_save(flags
);
1489 update_context_time(ctx
);
1490 counter
->pmu
->read(counter
);
1491 update_counter_times(counter
);
1492 local_irq_restore(flags
);
1495 static u64
perf_counter_read(struct perf_counter
*counter
)
1498 * If counter is enabled and currently active on a CPU, update the
1499 * value in the counter structure:
1501 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
) {
1502 smp_call_function_single(counter
->oncpu
,
1503 __perf_counter_read
, counter
, 1);
1504 } else if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
) {
1505 update_counter_times(counter
);
1508 return atomic64_read(&counter
->count
);
1512 * Initialize the perf_counter context in a task_struct:
1515 __perf_counter_init_context(struct perf_counter_context
*ctx
,
1516 struct task_struct
*task
)
1518 memset(ctx
, 0, sizeof(*ctx
));
1519 spin_lock_init(&ctx
->lock
);
1520 mutex_init(&ctx
->mutex
);
1521 INIT_LIST_HEAD(&ctx
->counter_list
);
1522 INIT_LIST_HEAD(&ctx
->event_list
);
1523 atomic_set(&ctx
->refcount
, 1);
1527 static struct perf_counter_context
*find_get_context(pid_t pid
, int cpu
)
1529 struct perf_counter_context
*parent_ctx
;
1530 struct perf_counter_context
*ctx
;
1531 struct perf_cpu_context
*cpuctx
;
1532 struct task_struct
*task
;
1533 unsigned long flags
;
1537 * If cpu is not a wildcard then this is a percpu counter:
1540 /* Must be root to operate on a CPU counter: */
1541 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1542 return ERR_PTR(-EACCES
);
1544 if (cpu
< 0 || cpu
> num_possible_cpus())
1545 return ERR_PTR(-EINVAL
);
1548 * We could be clever and allow to attach a counter to an
1549 * offline CPU and activate it when the CPU comes up, but
1552 if (!cpu_isset(cpu
, cpu_online_map
))
1553 return ERR_PTR(-ENODEV
);
1555 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1566 task
= find_task_by_vpid(pid
);
1568 get_task_struct(task
);
1572 return ERR_PTR(-ESRCH
);
1575 * Can't attach counters to a dying task.
1578 if (task
->flags
& PF_EXITING
)
1581 /* Reuse ptrace permission checks for now. */
1583 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1587 ctx
= perf_lock_task_context(task
, &flags
);
1589 parent_ctx
= ctx
->parent_ctx
;
1591 put_ctx(parent_ctx
);
1592 ctx
->parent_ctx
= NULL
; /* no longer a clone */
1594 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1598 ctx
= kmalloc(sizeof(struct perf_counter_context
), GFP_KERNEL
);
1602 __perf_counter_init_context(ctx
, task
);
1604 if (cmpxchg(&task
->perf_counter_ctxp
, NULL
, ctx
)) {
1606 * We raced with some other task; use
1607 * the context they set.
1612 get_task_struct(task
);
1615 put_task_struct(task
);
1619 put_task_struct(task
);
1620 return ERR_PTR(err
);
1623 static void free_counter_rcu(struct rcu_head
*head
)
1625 struct perf_counter
*counter
;
1627 counter
= container_of(head
, struct perf_counter
, rcu_head
);
1629 put_pid_ns(counter
->ns
);
1633 static void perf_pending_sync(struct perf_counter
*counter
);
1635 static void free_counter(struct perf_counter
*counter
)
1637 perf_pending_sync(counter
);
1639 if (!counter
->parent
) {
1640 atomic_dec(&nr_counters
);
1641 if (counter
->attr
.mmap
)
1642 atomic_dec(&nr_mmap_counters
);
1643 if (counter
->attr
.comm
)
1644 atomic_dec(&nr_comm_counters
);
1647 if (counter
->destroy
)
1648 counter
->destroy(counter
);
1650 put_ctx(counter
->ctx
);
1651 call_rcu(&counter
->rcu_head
, free_counter_rcu
);
1655 * Called when the last reference to the file is gone.
1657 static int perf_release(struct inode
*inode
, struct file
*file
)
1659 struct perf_counter
*counter
= file
->private_data
;
1660 struct perf_counter_context
*ctx
= counter
->ctx
;
1662 file
->private_data
= NULL
;
1664 WARN_ON_ONCE(ctx
->parent_ctx
);
1665 mutex_lock(&ctx
->mutex
);
1666 perf_counter_remove_from_context(counter
);
1667 mutex_unlock(&ctx
->mutex
);
1669 mutex_lock(&counter
->owner
->perf_counter_mutex
);
1670 list_del_init(&counter
->owner_entry
);
1671 mutex_unlock(&counter
->owner
->perf_counter_mutex
);
1672 put_task_struct(counter
->owner
);
1674 free_counter(counter
);
1680 * Read the performance counter - simple non blocking version for now
1683 perf_read_hw(struct perf_counter
*counter
, char __user
*buf
, size_t count
)
1689 * Return end-of-file for a read on a counter that is in
1690 * error state (i.e. because it was pinned but it couldn't be
1691 * scheduled on to the CPU at some point).
1693 if (counter
->state
== PERF_COUNTER_STATE_ERROR
)
1696 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
1697 mutex_lock(&counter
->child_mutex
);
1698 values
[0] = perf_counter_read(counter
);
1700 if (counter
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1701 values
[n
++] = counter
->total_time_enabled
+
1702 atomic64_read(&counter
->child_total_time_enabled
);
1703 if (counter
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1704 values
[n
++] = counter
->total_time_running
+
1705 atomic64_read(&counter
->child_total_time_running
);
1706 if (counter
->attr
.read_format
& PERF_FORMAT_ID
)
1707 values
[n
++] = counter
->id
;
1708 mutex_unlock(&counter
->child_mutex
);
1710 if (count
< n
* sizeof(u64
))
1712 count
= n
* sizeof(u64
);
1714 if (copy_to_user(buf
, values
, count
))
1721 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1723 struct perf_counter
*counter
= file
->private_data
;
1725 return perf_read_hw(counter
, buf
, count
);
1728 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1730 struct perf_counter
*counter
= file
->private_data
;
1731 struct perf_mmap_data
*data
;
1732 unsigned int events
= POLL_HUP
;
1735 data
= rcu_dereference(counter
->data
);
1737 events
= atomic_xchg(&data
->poll
, 0);
1740 poll_wait(file
, &counter
->waitq
, wait
);
1745 static void perf_counter_reset(struct perf_counter
*counter
)
1747 (void)perf_counter_read(counter
);
1748 atomic64_set(&counter
->count
, 0);
1749 perf_counter_update_userpage(counter
);
1753 * Holding the top-level counter's child_mutex means that any
1754 * descendant process that has inherited this counter will block
1755 * in sync_child_counter if it goes to exit, thus satisfying the
1756 * task existence requirements of perf_counter_enable/disable.
1758 static void perf_counter_for_each_child(struct perf_counter
*counter
,
1759 void (*func
)(struct perf_counter
*))
1761 struct perf_counter
*child
;
1763 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
1764 mutex_lock(&counter
->child_mutex
);
1766 list_for_each_entry(child
, &counter
->child_list
, child_list
)
1768 mutex_unlock(&counter
->child_mutex
);
1771 static void perf_counter_for_each(struct perf_counter
*counter
,
1772 void (*func
)(struct perf_counter
*))
1774 struct perf_counter_context
*ctx
= counter
->ctx
;
1775 struct perf_counter
*sibling
;
1777 WARN_ON_ONCE(ctx
->parent_ctx
);
1778 mutex_lock(&ctx
->mutex
);
1779 counter
= counter
->group_leader
;
1781 perf_counter_for_each_child(counter
, func
);
1783 list_for_each_entry(sibling
, &counter
->sibling_list
, list_entry
)
1784 perf_counter_for_each_child(counter
, func
);
1785 mutex_unlock(&ctx
->mutex
);
1788 static int perf_counter_period(struct perf_counter
*counter
, u64 __user
*arg
)
1790 struct perf_counter_context
*ctx
= counter
->ctx
;
1795 if (!counter
->attr
.sample_period
)
1798 size
= copy_from_user(&value
, arg
, sizeof(value
));
1799 if (size
!= sizeof(value
))
1805 spin_lock_irq(&ctx
->lock
);
1806 if (counter
->attr
.freq
) {
1807 if (value
> sysctl_perf_counter_sample_rate
) {
1812 counter
->attr
.sample_freq
= value
;
1814 perf_log_period(counter
, value
);
1816 counter
->attr
.sample_period
= value
;
1817 counter
->hw
.sample_period
= value
;
1820 spin_unlock_irq(&ctx
->lock
);
1825 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1827 struct perf_counter
*counter
= file
->private_data
;
1828 void (*func
)(struct perf_counter
*);
1832 case PERF_COUNTER_IOC_ENABLE
:
1833 func
= perf_counter_enable
;
1835 case PERF_COUNTER_IOC_DISABLE
:
1836 func
= perf_counter_disable
;
1838 case PERF_COUNTER_IOC_RESET
:
1839 func
= perf_counter_reset
;
1842 case PERF_COUNTER_IOC_REFRESH
:
1843 return perf_counter_refresh(counter
, arg
);
1845 case PERF_COUNTER_IOC_PERIOD
:
1846 return perf_counter_period(counter
, (u64 __user
*)arg
);
1852 if (flags
& PERF_IOC_FLAG_GROUP
)
1853 perf_counter_for_each(counter
, func
);
1855 perf_counter_for_each_child(counter
, func
);
1860 int perf_counter_task_enable(void)
1862 struct perf_counter
*counter
;
1864 mutex_lock(¤t
->perf_counter_mutex
);
1865 list_for_each_entry(counter
, ¤t
->perf_counter_list
, owner_entry
)
1866 perf_counter_for_each_child(counter
, perf_counter_enable
);
1867 mutex_unlock(¤t
->perf_counter_mutex
);
1872 int perf_counter_task_disable(void)
1874 struct perf_counter
*counter
;
1876 mutex_lock(¤t
->perf_counter_mutex
);
1877 list_for_each_entry(counter
, ¤t
->perf_counter_list
, owner_entry
)
1878 perf_counter_for_each_child(counter
, perf_counter_disable
);
1879 mutex_unlock(¤t
->perf_counter_mutex
);
1884 static int perf_counter_index(struct perf_counter
*counter
)
1886 if (counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
1889 return counter
->hw
.idx
+ 1 - PERF_COUNTER_INDEX_OFFSET
;
1893 * Callers need to ensure there can be no nesting of this function, otherwise
1894 * the seqlock logic goes bad. We can not serialize this because the arch
1895 * code calls this from NMI context.
1897 void perf_counter_update_userpage(struct perf_counter
*counter
)
1899 struct perf_counter_mmap_page
*userpg
;
1900 struct perf_mmap_data
*data
;
1903 data
= rcu_dereference(counter
->data
);
1907 userpg
= data
->user_page
;
1910 * Disable preemption so as to not let the corresponding user-space
1911 * spin too long if we get preempted.
1916 userpg
->index
= perf_counter_index(counter
);
1917 userpg
->offset
= atomic64_read(&counter
->count
);
1918 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
)
1919 userpg
->offset
-= atomic64_read(&counter
->hw
.prev_count
);
1921 userpg
->time_enabled
= counter
->total_time_enabled
+
1922 atomic64_read(&counter
->child_total_time_enabled
);
1924 userpg
->time_running
= counter
->total_time_running
+
1925 atomic64_read(&counter
->child_total_time_running
);
1934 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1936 struct perf_counter
*counter
= vma
->vm_file
->private_data
;
1937 struct perf_mmap_data
*data
;
1938 int ret
= VM_FAULT_SIGBUS
;
1940 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
1941 if (vmf
->pgoff
== 0)
1947 data
= rcu_dereference(counter
->data
);
1951 if (vmf
->pgoff
== 0) {
1952 vmf
->page
= virt_to_page(data
->user_page
);
1954 int nr
= vmf
->pgoff
- 1;
1956 if ((unsigned)nr
> data
->nr_pages
)
1959 if (vmf
->flags
& FAULT_FLAG_WRITE
)
1962 vmf
->page
= virt_to_page(data
->data_pages
[nr
]);
1965 get_page(vmf
->page
);
1966 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
1967 vmf
->page
->index
= vmf
->pgoff
;
1976 static int perf_mmap_data_alloc(struct perf_counter
*counter
, int nr_pages
)
1978 struct perf_mmap_data
*data
;
1982 WARN_ON(atomic_read(&counter
->mmap_count
));
1984 size
= sizeof(struct perf_mmap_data
);
1985 size
+= nr_pages
* sizeof(void *);
1987 data
= kzalloc(size
, GFP_KERNEL
);
1991 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
1992 if (!data
->user_page
)
1993 goto fail_user_page
;
1995 for (i
= 0; i
< nr_pages
; i
++) {
1996 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
1997 if (!data
->data_pages
[i
])
1998 goto fail_data_pages
;
2001 data
->nr_pages
= nr_pages
;
2002 atomic_set(&data
->lock
, -1);
2004 rcu_assign_pointer(counter
->data
, data
);
2009 for (i
--; i
>= 0; i
--)
2010 free_page((unsigned long)data
->data_pages
[i
]);
2012 free_page((unsigned long)data
->user_page
);
2021 static void perf_mmap_free_page(unsigned long addr
)
2023 struct page
*page
= virt_to_page((void *)addr
);
2025 page
->mapping
= NULL
;
2029 static void __perf_mmap_data_free(struct rcu_head
*rcu_head
)
2031 struct perf_mmap_data
*data
;
2034 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2036 perf_mmap_free_page((unsigned long)data
->user_page
);
2037 for (i
= 0; i
< data
->nr_pages
; i
++)
2038 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2043 static void perf_mmap_data_free(struct perf_counter
*counter
)
2045 struct perf_mmap_data
*data
= counter
->data
;
2047 WARN_ON(atomic_read(&counter
->mmap_count
));
2049 rcu_assign_pointer(counter
->data
, NULL
);
2050 call_rcu(&data
->rcu_head
, __perf_mmap_data_free
);
2053 static void perf_mmap_open(struct vm_area_struct
*vma
)
2055 struct perf_counter
*counter
= vma
->vm_file
->private_data
;
2057 atomic_inc(&counter
->mmap_count
);
2060 static void perf_mmap_close(struct vm_area_struct
*vma
)
2062 struct perf_counter
*counter
= vma
->vm_file
->private_data
;
2064 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
2065 if (atomic_dec_and_mutex_lock(&counter
->mmap_count
, &counter
->mmap_mutex
)) {
2066 struct user_struct
*user
= current_user();
2068 atomic_long_sub(counter
->data
->nr_pages
+ 1, &user
->locked_vm
);
2069 vma
->vm_mm
->locked_vm
-= counter
->data
->nr_locked
;
2070 perf_mmap_data_free(counter
);
2071 mutex_unlock(&counter
->mmap_mutex
);
2075 static struct vm_operations_struct perf_mmap_vmops
= {
2076 .open
= perf_mmap_open
,
2077 .close
= perf_mmap_close
,
2078 .fault
= perf_mmap_fault
,
2079 .page_mkwrite
= perf_mmap_fault
,
2082 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2084 struct perf_counter
*counter
= file
->private_data
;
2085 unsigned long user_locked
, user_lock_limit
;
2086 struct user_struct
*user
= current_user();
2087 unsigned long locked
, lock_limit
;
2088 unsigned long vma_size
;
2089 unsigned long nr_pages
;
2090 long user_extra
, extra
;
2093 if (!(vma
->vm_flags
& VM_SHARED
))
2096 vma_size
= vma
->vm_end
- vma
->vm_start
;
2097 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2100 * If we have data pages ensure they're a power-of-two number, so we
2101 * can do bitmasks instead of modulo.
2103 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2106 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2109 if (vma
->vm_pgoff
!= 0)
2112 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
2113 mutex_lock(&counter
->mmap_mutex
);
2114 if (atomic_inc_not_zero(&counter
->mmap_count
)) {
2115 if (nr_pages
!= counter
->data
->nr_pages
)
2120 user_extra
= nr_pages
+ 1;
2121 user_lock_limit
= sysctl_perf_counter_mlock
>> (PAGE_SHIFT
- 10);
2124 * Increase the limit linearly with more CPUs:
2126 user_lock_limit
*= num_online_cpus();
2128 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2131 if (user_locked
> user_lock_limit
)
2132 extra
= user_locked
- user_lock_limit
;
2134 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2135 lock_limit
>>= PAGE_SHIFT
;
2136 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2138 if ((locked
> lock_limit
) && !capable(CAP_IPC_LOCK
)) {
2143 WARN_ON(counter
->data
);
2144 ret
= perf_mmap_data_alloc(counter
, nr_pages
);
2148 atomic_set(&counter
->mmap_count
, 1);
2149 atomic_long_add(user_extra
, &user
->locked_vm
);
2150 vma
->vm_mm
->locked_vm
+= extra
;
2151 counter
->data
->nr_locked
= extra
;
2152 if (vma
->vm_flags
& VM_WRITE
)
2153 counter
->data
->writable
= 1;
2156 mutex_unlock(&counter
->mmap_mutex
);
2158 vma
->vm_flags
|= VM_RESERVED
;
2159 vma
->vm_ops
= &perf_mmap_vmops
;
2164 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2166 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2167 struct perf_counter
*counter
= filp
->private_data
;
2170 mutex_lock(&inode
->i_mutex
);
2171 retval
= fasync_helper(fd
, filp
, on
, &counter
->fasync
);
2172 mutex_unlock(&inode
->i_mutex
);
2180 static const struct file_operations perf_fops
= {
2181 .release
= perf_release
,
2184 .unlocked_ioctl
= perf_ioctl
,
2185 .compat_ioctl
= perf_ioctl
,
2187 .fasync
= perf_fasync
,
2191 * Perf counter wakeup
2193 * If there's data, ensure we set the poll() state and publish everything
2194 * to user-space before waking everybody up.
2197 void perf_counter_wakeup(struct perf_counter
*counter
)
2199 wake_up_all(&counter
->waitq
);
2201 if (counter
->pending_kill
) {
2202 kill_fasync(&counter
->fasync
, SIGIO
, counter
->pending_kill
);
2203 counter
->pending_kill
= 0;
2210 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2212 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2213 * single linked list and use cmpxchg() to add entries lockless.
2216 static void perf_pending_counter(struct perf_pending_entry
*entry
)
2218 struct perf_counter
*counter
= container_of(entry
,
2219 struct perf_counter
, pending
);
2221 if (counter
->pending_disable
) {
2222 counter
->pending_disable
= 0;
2223 perf_counter_disable(counter
);
2226 if (counter
->pending_wakeup
) {
2227 counter
->pending_wakeup
= 0;
2228 perf_counter_wakeup(counter
);
2232 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2234 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2238 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2239 void (*func
)(struct perf_pending_entry
*))
2241 struct perf_pending_entry
**head
;
2243 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2248 head
= &get_cpu_var(perf_pending_head
);
2251 entry
->next
= *head
;
2252 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2254 set_perf_counter_pending();
2256 put_cpu_var(perf_pending_head
);
2259 static int __perf_pending_run(void)
2261 struct perf_pending_entry
*list
;
2264 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2265 while (list
!= PENDING_TAIL
) {
2266 void (*func
)(struct perf_pending_entry
*);
2267 struct perf_pending_entry
*entry
= list
;
2274 * Ensure we observe the unqueue before we issue the wakeup,
2275 * so that we won't be waiting forever.
2276 * -- see perf_not_pending().
2287 static inline int perf_not_pending(struct perf_counter
*counter
)
2290 * If we flush on whatever cpu we run, there is a chance we don't
2294 __perf_pending_run();
2298 * Ensure we see the proper queue state before going to sleep
2299 * so that we do not miss the wakeup. -- see perf_pending_handle()
2302 return counter
->pending
.next
== NULL
;
2305 static void perf_pending_sync(struct perf_counter
*counter
)
2307 wait_event(counter
->waitq
, perf_not_pending(counter
));
2310 void perf_counter_do_pending(void)
2312 __perf_pending_run();
2316 * Callchain support -- arch specific
2319 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2328 struct perf_output_handle
{
2329 struct perf_counter
*counter
;
2330 struct perf_mmap_data
*data
;
2332 unsigned long offset
;
2336 unsigned long flags
;
2339 static bool perf_output_space(struct perf_mmap_data
*data
,
2340 unsigned int offset
, unsigned int head
)
2345 if (!data
->writable
)
2348 mask
= (data
->nr_pages
<< PAGE_SHIFT
) - 1;
2350 * Userspace could choose to issue a mb() before updating the tail
2351 * pointer. So that all reads will be completed before the write is
2354 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2357 offset
= (offset
- tail
) & mask
;
2358 head
= (head
- tail
) & mask
;
2360 if ((int)(head
- offset
) < 0)
2366 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2368 atomic_set(&handle
->data
->poll
, POLL_IN
);
2371 handle
->counter
->pending_wakeup
= 1;
2372 perf_pending_queue(&handle
->counter
->pending
,
2373 perf_pending_counter
);
2375 perf_counter_wakeup(handle
->counter
);
2379 * Curious locking construct.
2381 * We need to ensure a later event doesn't publish a head when a former
2382 * event isn't done writing. However since we need to deal with NMIs we
2383 * cannot fully serialize things.
2385 * What we do is serialize between CPUs so we only have to deal with NMI
2386 * nesting on a single CPU.
2388 * We only publish the head (and generate a wakeup) when the outer-most
2391 static void perf_output_lock(struct perf_output_handle
*handle
)
2393 struct perf_mmap_data
*data
= handle
->data
;
2398 local_irq_save(handle
->flags
);
2399 cpu
= smp_processor_id();
2401 if (in_nmi() && atomic_read(&data
->lock
) == cpu
)
2404 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2410 static void perf_output_unlock(struct perf_output_handle
*handle
)
2412 struct perf_mmap_data
*data
= handle
->data
;
2416 data
->done_head
= data
->head
;
2418 if (!handle
->locked
)
2423 * The xchg implies a full barrier that ensures all writes are done
2424 * before we publish the new head, matched by a rmb() in userspace when
2425 * reading this position.
2427 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2428 data
->user_page
->data_head
= head
;
2431 * NMI can happen here, which means we can miss a done_head update.
2434 cpu
= atomic_xchg(&data
->lock
, -1);
2435 WARN_ON_ONCE(cpu
!= smp_processor_id());
2438 * Therefore we have to validate we did not indeed do so.
2440 if (unlikely(atomic_long_read(&data
->done_head
))) {
2442 * Since we had it locked, we can lock it again.
2444 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2450 if (atomic_xchg(&data
->wakeup
, 0))
2451 perf_output_wakeup(handle
);
2453 local_irq_restore(handle
->flags
);
2456 static void perf_output_copy(struct perf_output_handle
*handle
,
2457 const void *buf
, unsigned int len
)
2459 unsigned int pages_mask
;
2460 unsigned int offset
;
2464 offset
= handle
->offset
;
2465 pages_mask
= handle
->data
->nr_pages
- 1;
2466 pages
= handle
->data
->data_pages
;
2469 unsigned int page_offset
;
2472 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2473 page_offset
= offset
& (PAGE_SIZE
- 1);
2474 size
= min_t(unsigned int, PAGE_SIZE
- page_offset
, len
);
2476 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2483 handle
->offset
= offset
;
2486 * Check we didn't copy past our reservation window, taking the
2487 * possible unsigned int wrap into account.
2489 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2492 #define perf_output_put(handle, x) \
2493 perf_output_copy((handle), &(x), sizeof(x))
2495 static int perf_output_begin(struct perf_output_handle
*handle
,
2496 struct perf_counter
*counter
, unsigned int size
,
2497 int nmi
, int sample
)
2499 struct perf_mmap_data
*data
;
2500 unsigned int offset
, head
;
2503 struct perf_event_header header
;
2509 * For inherited counters we send all the output towards the parent.
2511 if (counter
->parent
)
2512 counter
= counter
->parent
;
2515 data
= rcu_dereference(counter
->data
);
2519 handle
->data
= data
;
2520 handle
->counter
= counter
;
2522 handle
->sample
= sample
;
2524 if (!data
->nr_pages
)
2527 have_lost
= atomic_read(&data
->lost
);
2529 size
+= sizeof(lost_event
);
2531 perf_output_lock(handle
);
2534 offset
= head
= atomic_long_read(&data
->head
);
2536 if (unlikely(!perf_output_space(data
, offset
, head
)))
2538 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2540 handle
->offset
= offset
;
2541 handle
->head
= head
;
2543 if ((offset
>> PAGE_SHIFT
) != (head
>> PAGE_SHIFT
))
2544 atomic_set(&data
->wakeup
, 1);
2547 lost_event
.header
.type
= PERF_EVENT_LOST
;
2548 lost_event
.header
.misc
= 0;
2549 lost_event
.header
.size
= sizeof(lost_event
);
2550 lost_event
.id
= counter
->id
;
2551 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2553 perf_output_put(handle
, lost_event
);
2559 atomic_inc(&data
->lost
);
2560 perf_output_unlock(handle
);
2567 static void perf_output_end(struct perf_output_handle
*handle
)
2569 struct perf_counter
*counter
= handle
->counter
;
2570 struct perf_mmap_data
*data
= handle
->data
;
2572 int wakeup_events
= counter
->attr
.wakeup_events
;
2574 if (handle
->sample
&& wakeup_events
) {
2575 int events
= atomic_inc_return(&data
->events
);
2576 if (events
>= wakeup_events
) {
2577 atomic_sub(wakeup_events
, &data
->events
);
2578 atomic_set(&data
->wakeup
, 1);
2582 perf_output_unlock(handle
);
2586 static u32
perf_counter_pid(struct perf_counter
*counter
, struct task_struct
*p
)
2589 * only top level counters have the pid namespace they were created in
2591 if (counter
->parent
)
2592 counter
= counter
->parent
;
2594 return task_tgid_nr_ns(p
, counter
->ns
);
2597 static u32
perf_counter_tid(struct perf_counter
*counter
, struct task_struct
*p
)
2600 * only top level counters have the pid namespace they were created in
2602 if (counter
->parent
)
2603 counter
= counter
->parent
;
2605 return task_pid_nr_ns(p
, counter
->ns
);
2608 static void perf_counter_output(struct perf_counter
*counter
, int nmi
,
2609 struct perf_sample_data
*data
)
2612 u64 sample_type
= counter
->attr
.sample_type
;
2613 struct perf_output_handle handle
;
2614 struct perf_event_header header
;
2623 struct perf_callchain_entry
*callchain
= NULL
;
2624 int callchain_size
= 0;
2630 header
.type
= PERF_EVENT_SAMPLE
;
2631 header
.size
= sizeof(header
);
2634 header
.misc
|= perf_misc_flags(data
->regs
);
2636 if (sample_type
& PERF_SAMPLE_IP
) {
2637 ip
= perf_instruction_pointer(data
->regs
);
2638 header
.size
+= sizeof(ip
);
2641 if (sample_type
& PERF_SAMPLE_TID
) {
2642 /* namespace issues */
2643 tid_entry
.pid
= perf_counter_pid(counter
, current
);
2644 tid_entry
.tid
= perf_counter_tid(counter
, current
);
2646 header
.size
+= sizeof(tid_entry
);
2649 if (sample_type
& PERF_SAMPLE_TIME
) {
2651 * Maybe do better on x86 and provide cpu_clock_nmi()
2653 time
= sched_clock();
2655 header
.size
+= sizeof(u64
);
2658 if (sample_type
& PERF_SAMPLE_ADDR
)
2659 header
.size
+= sizeof(u64
);
2661 if (sample_type
& PERF_SAMPLE_ID
)
2662 header
.size
+= sizeof(u64
);
2664 if (sample_type
& PERF_SAMPLE_CPU
) {
2665 header
.size
+= sizeof(cpu_entry
);
2667 cpu_entry
.cpu
= raw_smp_processor_id();
2670 if (sample_type
& PERF_SAMPLE_PERIOD
)
2671 header
.size
+= sizeof(u64
);
2673 if (sample_type
& PERF_SAMPLE_GROUP
) {
2674 header
.size
+= sizeof(u64
) +
2675 counter
->nr_siblings
* sizeof(group_entry
);
2678 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
2679 callchain
= perf_callchain(data
->regs
);
2682 callchain_size
= (1 + callchain
->nr
) * sizeof(u64
);
2683 header
.size
+= callchain_size
;
2685 header
.size
+= sizeof(u64
);
2688 ret
= perf_output_begin(&handle
, counter
, header
.size
, nmi
, 1);
2692 perf_output_put(&handle
, header
);
2694 if (sample_type
& PERF_SAMPLE_IP
)
2695 perf_output_put(&handle
, ip
);
2697 if (sample_type
& PERF_SAMPLE_TID
)
2698 perf_output_put(&handle
, tid_entry
);
2700 if (sample_type
& PERF_SAMPLE_TIME
)
2701 perf_output_put(&handle
, time
);
2703 if (sample_type
& PERF_SAMPLE_ADDR
)
2704 perf_output_put(&handle
, data
->addr
);
2706 if (sample_type
& PERF_SAMPLE_ID
)
2707 perf_output_put(&handle
, counter
->id
);
2709 if (sample_type
& PERF_SAMPLE_CPU
)
2710 perf_output_put(&handle
, cpu_entry
);
2712 if (sample_type
& PERF_SAMPLE_PERIOD
)
2713 perf_output_put(&handle
, data
->period
);
2716 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2718 if (sample_type
& PERF_SAMPLE_GROUP
) {
2719 struct perf_counter
*leader
, *sub
;
2720 u64 nr
= counter
->nr_siblings
;
2722 perf_output_put(&handle
, nr
);
2724 leader
= counter
->group_leader
;
2725 list_for_each_entry(sub
, &leader
->sibling_list
, list_entry
) {
2727 sub
->pmu
->read(sub
);
2729 group_entry
.id
= sub
->id
;
2730 group_entry
.counter
= atomic64_read(&sub
->count
);
2732 perf_output_put(&handle
, group_entry
);
2736 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
2738 perf_output_copy(&handle
, callchain
, callchain_size
);
2741 perf_output_put(&handle
, nr
);
2745 perf_output_end(&handle
);
2752 struct perf_read_event
{
2753 struct perf_event_header header
;
2762 perf_counter_read_event(struct perf_counter
*counter
,
2763 struct task_struct
*task
)
2765 struct perf_output_handle handle
;
2766 struct perf_read_event event
= {
2768 .type
= PERF_EVENT_READ
,
2770 .size
= sizeof(event
) - sizeof(event
.format
),
2772 .pid
= perf_counter_pid(counter
, task
),
2773 .tid
= perf_counter_tid(counter
, task
),
2774 .value
= atomic64_read(&counter
->count
),
2778 if (counter
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2779 event
.header
.size
+= sizeof(u64
);
2780 event
.format
[i
++] = counter
->total_time_enabled
;
2783 if (counter
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2784 event
.header
.size
+= sizeof(u64
);
2785 event
.format
[i
++] = counter
->total_time_running
;
2788 if (counter
->attr
.read_format
& PERF_FORMAT_ID
) {
2791 event
.header
.size
+= sizeof(u64
);
2792 if (counter
->parent
)
2793 id
= counter
->parent
->id
;
2797 event
.format
[i
++] = id
;
2800 ret
= perf_output_begin(&handle
, counter
, event
.header
.size
, 0, 0);
2804 perf_output_copy(&handle
, &event
, event
.header
.size
);
2805 perf_output_end(&handle
);
2812 struct perf_fork_event
{
2813 struct task_struct
*task
;
2816 struct perf_event_header header
;
2823 static void perf_counter_fork_output(struct perf_counter
*counter
,
2824 struct perf_fork_event
*fork_event
)
2826 struct perf_output_handle handle
;
2827 int size
= fork_event
->event
.header
.size
;
2828 struct task_struct
*task
= fork_event
->task
;
2829 int ret
= perf_output_begin(&handle
, counter
, size
, 0, 0);
2834 fork_event
->event
.pid
= perf_counter_pid(counter
, task
);
2835 fork_event
->event
.ppid
= perf_counter_pid(counter
, task
->real_parent
);
2837 perf_output_put(&handle
, fork_event
->event
);
2838 perf_output_end(&handle
);
2841 static int perf_counter_fork_match(struct perf_counter
*counter
)
2843 if (counter
->attr
.comm
|| counter
->attr
.mmap
)
2849 static void perf_counter_fork_ctx(struct perf_counter_context
*ctx
,
2850 struct perf_fork_event
*fork_event
)
2852 struct perf_counter
*counter
;
2854 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
2858 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
2859 if (perf_counter_fork_match(counter
))
2860 perf_counter_fork_output(counter
, fork_event
);
2865 static void perf_counter_fork_event(struct perf_fork_event
*fork_event
)
2867 struct perf_cpu_context
*cpuctx
;
2868 struct perf_counter_context
*ctx
;
2870 cpuctx
= &get_cpu_var(perf_cpu_context
);
2871 perf_counter_fork_ctx(&cpuctx
->ctx
, fork_event
);
2872 put_cpu_var(perf_cpu_context
);
2876 * doesn't really matter which of the child contexts the
2877 * events ends up in.
2879 ctx
= rcu_dereference(current
->perf_counter_ctxp
);
2881 perf_counter_fork_ctx(ctx
, fork_event
);
2885 void perf_counter_fork(struct task_struct
*task
)
2887 struct perf_fork_event fork_event
;
2889 if (!atomic_read(&nr_comm_counters
) &&
2890 !atomic_read(&nr_mmap_counters
))
2893 fork_event
= (struct perf_fork_event
){
2897 .type
= PERF_EVENT_FORK
,
2898 .size
= sizeof(fork_event
.event
),
2903 perf_counter_fork_event(&fork_event
);
2910 struct perf_comm_event
{
2911 struct task_struct
*task
;
2916 struct perf_event_header header
;
2923 static void perf_counter_comm_output(struct perf_counter
*counter
,
2924 struct perf_comm_event
*comm_event
)
2926 struct perf_output_handle handle
;
2927 int size
= comm_event
->event
.header
.size
;
2928 int ret
= perf_output_begin(&handle
, counter
, size
, 0, 0);
2933 comm_event
->event
.pid
= perf_counter_pid(counter
, comm_event
->task
);
2934 comm_event
->event
.tid
= perf_counter_tid(counter
, comm_event
->task
);
2936 perf_output_put(&handle
, comm_event
->event
);
2937 perf_output_copy(&handle
, comm_event
->comm
,
2938 comm_event
->comm_size
);
2939 perf_output_end(&handle
);
2942 static int perf_counter_comm_match(struct perf_counter
*counter
)
2944 if (counter
->attr
.comm
)
2950 static void perf_counter_comm_ctx(struct perf_counter_context
*ctx
,
2951 struct perf_comm_event
*comm_event
)
2953 struct perf_counter
*counter
;
2955 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
2959 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
2960 if (perf_counter_comm_match(counter
))
2961 perf_counter_comm_output(counter
, comm_event
);
2966 static void perf_counter_comm_event(struct perf_comm_event
*comm_event
)
2968 struct perf_cpu_context
*cpuctx
;
2969 struct perf_counter_context
*ctx
;
2971 char *comm
= comm_event
->task
->comm
;
2973 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
2975 comm_event
->comm
= comm
;
2976 comm_event
->comm_size
= size
;
2978 comm_event
->event
.header
.size
= sizeof(comm_event
->event
) + size
;
2980 cpuctx
= &get_cpu_var(perf_cpu_context
);
2981 perf_counter_comm_ctx(&cpuctx
->ctx
, comm_event
);
2982 put_cpu_var(perf_cpu_context
);
2986 * doesn't really matter which of the child contexts the
2987 * events ends up in.
2989 ctx
= rcu_dereference(current
->perf_counter_ctxp
);
2991 perf_counter_comm_ctx(ctx
, comm_event
);
2995 void perf_counter_comm(struct task_struct
*task
)
2997 struct perf_comm_event comm_event
;
2999 if (task
->perf_counter_ctxp
)
3000 perf_counter_enable_on_exec(task
);
3002 if (!atomic_read(&nr_comm_counters
))
3005 comm_event
= (struct perf_comm_event
){
3008 .header
= { .type
= PERF_EVENT_COMM
, },
3012 perf_counter_comm_event(&comm_event
);
3019 struct perf_mmap_event
{
3020 struct vm_area_struct
*vma
;
3022 const char *file_name
;
3026 struct perf_event_header header
;
3036 static void perf_counter_mmap_output(struct perf_counter
*counter
,
3037 struct perf_mmap_event
*mmap_event
)
3039 struct perf_output_handle handle
;
3040 int size
= mmap_event
->event
.header
.size
;
3041 int ret
= perf_output_begin(&handle
, counter
, size
, 0, 0);
3046 mmap_event
->event
.pid
= perf_counter_pid(counter
, current
);
3047 mmap_event
->event
.tid
= perf_counter_tid(counter
, current
);
3049 perf_output_put(&handle
, mmap_event
->event
);
3050 perf_output_copy(&handle
, mmap_event
->file_name
,
3051 mmap_event
->file_size
);
3052 perf_output_end(&handle
);
3055 static int perf_counter_mmap_match(struct perf_counter
*counter
,
3056 struct perf_mmap_event
*mmap_event
)
3058 if (counter
->attr
.mmap
)
3064 static void perf_counter_mmap_ctx(struct perf_counter_context
*ctx
,
3065 struct perf_mmap_event
*mmap_event
)
3067 struct perf_counter
*counter
;
3069 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3073 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
3074 if (perf_counter_mmap_match(counter
, mmap_event
))
3075 perf_counter_mmap_output(counter
, mmap_event
);
3080 static void perf_counter_mmap_event(struct perf_mmap_event
*mmap_event
)
3082 struct perf_cpu_context
*cpuctx
;
3083 struct perf_counter_context
*ctx
;
3084 struct vm_area_struct
*vma
= mmap_event
->vma
;
3085 struct file
*file
= vma
->vm_file
;
3092 buf
= kzalloc(PATH_MAX
, GFP_KERNEL
);
3094 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3097 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3099 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3103 name
= arch_vma_name(mmap_event
->vma
);
3108 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3112 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3117 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3119 mmap_event
->file_name
= name
;
3120 mmap_event
->file_size
= size
;
3122 mmap_event
->event
.header
.size
= sizeof(mmap_event
->event
) + size
;
3124 cpuctx
= &get_cpu_var(perf_cpu_context
);
3125 perf_counter_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3126 put_cpu_var(perf_cpu_context
);
3130 * doesn't really matter which of the child contexts the
3131 * events ends up in.
3133 ctx
= rcu_dereference(current
->perf_counter_ctxp
);
3135 perf_counter_mmap_ctx(ctx
, mmap_event
);
3141 void __perf_counter_mmap(struct vm_area_struct
*vma
)
3143 struct perf_mmap_event mmap_event
;
3145 if (!atomic_read(&nr_mmap_counters
))
3148 mmap_event
= (struct perf_mmap_event
){
3151 .header
= { .type
= PERF_EVENT_MMAP
, },
3152 .start
= vma
->vm_start
,
3153 .len
= vma
->vm_end
- vma
->vm_start
,
3154 .pgoff
= vma
->vm_pgoff
,
3158 perf_counter_mmap_event(&mmap_event
);
3162 * Log sample_period changes so that analyzing tools can re-normalize the
3167 struct perf_event_header header
;
3173 static void perf_log_period(struct perf_counter
*counter
, u64 period
)
3175 struct perf_output_handle handle
;
3176 struct freq_event event
;
3179 if (counter
->hw
.sample_period
== period
)
3182 if (counter
->attr
.sample_type
& PERF_SAMPLE_PERIOD
)
3185 event
= (struct freq_event
) {
3187 .type
= PERF_EVENT_PERIOD
,
3189 .size
= sizeof(event
),
3191 .time
= sched_clock(),
3196 ret
= perf_output_begin(&handle
, counter
, sizeof(event
), 1, 0);
3200 perf_output_put(&handle
, event
);
3201 perf_output_end(&handle
);
3205 * IRQ throttle logging
3208 static void perf_log_throttle(struct perf_counter
*counter
, int enable
)
3210 struct perf_output_handle handle
;
3214 struct perf_event_header header
;
3217 } throttle_event
= {
3219 .type
= PERF_EVENT_THROTTLE
+ 1,
3221 .size
= sizeof(throttle_event
),
3223 .time
= sched_clock(),
3227 ret
= perf_output_begin(&handle
, counter
, sizeof(throttle_event
), 1, 0);
3231 perf_output_put(&handle
, throttle_event
);
3232 perf_output_end(&handle
);
3236 * Generic counter overflow handling, sampling.
3239 int perf_counter_overflow(struct perf_counter
*counter
, int nmi
,
3240 struct perf_sample_data
*data
)
3242 int events
= atomic_read(&counter
->event_limit
);
3243 int throttle
= counter
->pmu
->unthrottle
!= NULL
;
3244 struct hw_perf_counter
*hwc
= &counter
->hw
;
3250 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3252 if (HZ
* hwc
->interrupts
>
3253 (u64
)sysctl_perf_counter_sample_rate
) {
3254 hwc
->interrupts
= MAX_INTERRUPTS
;
3255 perf_log_throttle(counter
, 0);
3260 * Keep re-disabling counters even though on the previous
3261 * pass we disabled it - just in case we raced with a
3262 * sched-in and the counter got enabled again:
3268 if (counter
->attr
.freq
) {
3269 u64 now
= sched_clock();
3270 s64 delta
= now
- hwc
->freq_stamp
;
3272 hwc
->freq_stamp
= now
;
3274 if (delta
> 0 && delta
< TICK_NSEC
)
3275 perf_adjust_period(counter
, NSEC_PER_SEC
/ (int)delta
);
3279 * XXX event_limit might not quite work as expected on inherited
3283 counter
->pending_kill
= POLL_IN
;
3284 if (events
&& atomic_dec_and_test(&counter
->event_limit
)) {
3286 counter
->pending_kill
= POLL_HUP
;
3288 counter
->pending_disable
= 1;
3289 perf_pending_queue(&counter
->pending
,
3290 perf_pending_counter
);
3292 perf_counter_disable(counter
);
3295 perf_counter_output(counter
, nmi
, data
);
3300 * Generic software counter infrastructure
3303 static void perf_swcounter_update(struct perf_counter
*counter
)
3305 struct hw_perf_counter
*hwc
= &counter
->hw
;
3310 prev
= atomic64_read(&hwc
->prev_count
);
3311 now
= atomic64_read(&hwc
->count
);
3312 if (atomic64_cmpxchg(&hwc
->prev_count
, prev
, now
) != prev
)
3317 atomic64_add(delta
, &counter
->count
);
3318 atomic64_sub(delta
, &hwc
->period_left
);
3321 static void perf_swcounter_set_period(struct perf_counter
*counter
)
3323 struct hw_perf_counter
*hwc
= &counter
->hw
;
3324 s64 left
= atomic64_read(&hwc
->period_left
);
3325 s64 period
= hwc
->sample_period
;
3327 if (unlikely(left
<= -period
)) {
3329 atomic64_set(&hwc
->period_left
, left
);
3330 hwc
->last_period
= period
;
3333 if (unlikely(left
<= 0)) {
3335 atomic64_add(period
, &hwc
->period_left
);
3336 hwc
->last_period
= period
;
3339 atomic64_set(&hwc
->prev_count
, -left
);
3340 atomic64_set(&hwc
->count
, -left
);
3343 static enum hrtimer_restart
perf_swcounter_hrtimer(struct hrtimer
*hrtimer
)
3345 enum hrtimer_restart ret
= HRTIMER_RESTART
;
3346 struct perf_sample_data data
;
3347 struct perf_counter
*counter
;
3350 counter
= container_of(hrtimer
, struct perf_counter
, hw
.hrtimer
);
3351 counter
->pmu
->read(counter
);
3354 data
.regs
= get_irq_regs();
3356 * In case we exclude kernel IPs or are somehow not in interrupt
3357 * context, provide the next best thing, the user IP.
3359 if ((counter
->attr
.exclude_kernel
|| !data
.regs
) &&
3360 !counter
->attr
.exclude_user
)
3361 data
.regs
= task_pt_regs(current
);
3364 if (perf_counter_overflow(counter
, 0, &data
))
3365 ret
= HRTIMER_NORESTART
;
3368 period
= max_t(u64
, 10000, counter
->hw
.sample_period
);
3369 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
3374 static void perf_swcounter_overflow(struct perf_counter
*counter
,
3375 int nmi
, struct perf_sample_data
*data
)
3377 data
->period
= counter
->hw
.last_period
;
3379 perf_swcounter_update(counter
);
3380 perf_swcounter_set_period(counter
);
3381 if (perf_counter_overflow(counter
, nmi
, data
))
3382 /* soft-disable the counter */
3386 static int perf_swcounter_is_counting(struct perf_counter
*counter
)
3388 struct perf_counter_context
*ctx
;
3389 unsigned long flags
;
3392 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
)
3395 if (counter
->state
!= PERF_COUNTER_STATE_INACTIVE
)
3399 * If the counter is inactive, it could be just because
3400 * its task is scheduled out, or because it's in a group
3401 * which could not go on the PMU. We want to count in
3402 * the first case but not the second. If the context is
3403 * currently active then an inactive software counter must
3404 * be the second case. If it's not currently active then
3405 * we need to know whether the counter was active when the
3406 * context was last active, which we can determine by
3407 * comparing counter->tstamp_stopped with ctx->time.
3409 * We are within an RCU read-side critical section,
3410 * which protects the existence of *ctx.
3413 spin_lock_irqsave(&ctx
->lock
, flags
);
3415 /* Re-check state now we have the lock */
3416 if (counter
->state
< PERF_COUNTER_STATE_INACTIVE
||
3417 counter
->ctx
->is_active
||
3418 counter
->tstamp_stopped
< ctx
->time
)
3420 spin_unlock_irqrestore(&ctx
->lock
, flags
);
3424 static int perf_swcounter_match(struct perf_counter
*counter
,
3425 enum perf_type_id type
,
3426 u32 event
, struct pt_regs
*regs
)
3428 if (!perf_swcounter_is_counting(counter
))
3431 if (counter
->attr
.type
!= type
)
3433 if (counter
->attr
.config
!= event
)
3437 if (counter
->attr
.exclude_user
&& user_mode(regs
))
3440 if (counter
->attr
.exclude_kernel
&& !user_mode(regs
))
3447 static void perf_swcounter_add(struct perf_counter
*counter
, u64 nr
,
3448 int nmi
, struct perf_sample_data
*data
)
3450 int neg
= atomic64_add_negative(nr
, &counter
->hw
.count
);
3452 if (counter
->hw
.sample_period
&& !neg
&& data
->regs
)
3453 perf_swcounter_overflow(counter
, nmi
, data
);
3456 static void perf_swcounter_ctx_event(struct perf_counter_context
*ctx
,
3457 enum perf_type_id type
,
3458 u32 event
, u64 nr
, int nmi
,
3459 struct perf_sample_data
*data
)
3461 struct perf_counter
*counter
;
3463 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3467 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
3468 if (perf_swcounter_match(counter
, type
, event
, data
->regs
))
3469 perf_swcounter_add(counter
, nr
, nmi
, data
);
3474 static int *perf_swcounter_recursion_context(struct perf_cpu_context
*cpuctx
)
3477 return &cpuctx
->recursion
[3];
3480 return &cpuctx
->recursion
[2];
3483 return &cpuctx
->recursion
[1];
3485 return &cpuctx
->recursion
[0];
3488 static void do_perf_swcounter_event(enum perf_type_id type
, u32 event
,
3490 struct perf_sample_data
*data
)
3492 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3493 int *recursion
= perf_swcounter_recursion_context(cpuctx
);
3494 struct perf_counter_context
*ctx
;
3502 perf_swcounter_ctx_event(&cpuctx
->ctx
, type
, event
,
3506 * doesn't really matter which of the child contexts the
3507 * events ends up in.
3509 ctx
= rcu_dereference(current
->perf_counter_ctxp
);
3511 perf_swcounter_ctx_event(ctx
, type
, event
, nr
, nmi
, data
);
3518 put_cpu_var(perf_cpu_context
);
3521 void __perf_swcounter_event(u32 event
, u64 nr
, int nmi
,
3522 struct pt_regs
*regs
, u64 addr
)
3524 struct perf_sample_data data
= {
3529 do_perf_swcounter_event(PERF_TYPE_SOFTWARE
, event
, nr
, nmi
, &data
);
3532 static void perf_swcounter_read(struct perf_counter
*counter
)
3534 perf_swcounter_update(counter
);
3537 static int perf_swcounter_enable(struct perf_counter
*counter
)
3539 perf_swcounter_set_period(counter
);
3543 static void perf_swcounter_disable(struct perf_counter
*counter
)
3545 perf_swcounter_update(counter
);
3548 static const struct pmu perf_ops_generic
= {
3549 .enable
= perf_swcounter_enable
,
3550 .disable
= perf_swcounter_disable
,
3551 .read
= perf_swcounter_read
,
3555 * Software counter: cpu wall time clock
3558 static void cpu_clock_perf_counter_update(struct perf_counter
*counter
)
3560 int cpu
= raw_smp_processor_id();
3564 now
= cpu_clock(cpu
);
3565 prev
= atomic64_read(&counter
->hw
.prev_count
);
3566 atomic64_set(&counter
->hw
.prev_count
, now
);
3567 atomic64_add(now
- prev
, &counter
->count
);
3570 static int cpu_clock_perf_counter_enable(struct perf_counter
*counter
)
3572 struct hw_perf_counter
*hwc
= &counter
->hw
;
3573 int cpu
= raw_smp_processor_id();
3575 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
3576 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3577 hwc
->hrtimer
.function
= perf_swcounter_hrtimer
;
3578 if (hwc
->sample_period
) {
3579 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
3580 __hrtimer_start_range_ns(&hwc
->hrtimer
,
3581 ns_to_ktime(period
), 0,
3582 HRTIMER_MODE_REL
, 0);
3588 static void cpu_clock_perf_counter_disable(struct perf_counter
*counter
)
3590 if (counter
->hw
.sample_period
)
3591 hrtimer_cancel(&counter
->hw
.hrtimer
);
3592 cpu_clock_perf_counter_update(counter
);
3595 static void cpu_clock_perf_counter_read(struct perf_counter
*counter
)
3597 cpu_clock_perf_counter_update(counter
);
3600 static const struct pmu perf_ops_cpu_clock
= {
3601 .enable
= cpu_clock_perf_counter_enable
,
3602 .disable
= cpu_clock_perf_counter_disable
,
3603 .read
= cpu_clock_perf_counter_read
,
3607 * Software counter: task time clock
3610 static void task_clock_perf_counter_update(struct perf_counter
*counter
, u64 now
)
3615 prev
= atomic64_xchg(&counter
->hw
.prev_count
, now
);
3617 atomic64_add(delta
, &counter
->count
);
3620 static int task_clock_perf_counter_enable(struct perf_counter
*counter
)
3622 struct hw_perf_counter
*hwc
= &counter
->hw
;
3625 now
= counter
->ctx
->time
;
3627 atomic64_set(&hwc
->prev_count
, now
);
3628 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3629 hwc
->hrtimer
.function
= perf_swcounter_hrtimer
;
3630 if (hwc
->sample_period
) {
3631 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
3632 __hrtimer_start_range_ns(&hwc
->hrtimer
,
3633 ns_to_ktime(period
), 0,
3634 HRTIMER_MODE_REL
, 0);
3640 static void task_clock_perf_counter_disable(struct perf_counter
*counter
)
3642 if (counter
->hw
.sample_period
)
3643 hrtimer_cancel(&counter
->hw
.hrtimer
);
3644 task_clock_perf_counter_update(counter
, counter
->ctx
->time
);
3648 static void task_clock_perf_counter_read(struct perf_counter
*counter
)
3653 update_context_time(counter
->ctx
);
3654 time
= counter
->ctx
->time
;
3656 u64 now
= perf_clock();
3657 u64 delta
= now
- counter
->ctx
->timestamp
;
3658 time
= counter
->ctx
->time
+ delta
;
3661 task_clock_perf_counter_update(counter
, time
);
3664 static const struct pmu perf_ops_task_clock
= {
3665 .enable
= task_clock_perf_counter_enable
,
3666 .disable
= task_clock_perf_counter_disable
,
3667 .read
= task_clock_perf_counter_read
,
3670 #ifdef CONFIG_EVENT_PROFILE
3671 void perf_tpcounter_event(int event_id
)
3673 struct perf_sample_data data
= {
3674 .regs
= get_irq_regs();
3679 data
.regs
= task_pt_regs(current
);
3681 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT
, event_id
, 1, 1, &data
);
3683 EXPORT_SYMBOL_GPL(perf_tpcounter_event
);
3685 extern int ftrace_profile_enable(int);
3686 extern void ftrace_profile_disable(int);
3688 static void tp_perf_counter_destroy(struct perf_counter
*counter
)
3690 ftrace_profile_disable(perf_event_id(&counter
->attr
));
3693 static const struct pmu
*tp_perf_counter_init(struct perf_counter
*counter
)
3695 int event_id
= perf_event_id(&counter
->attr
);
3698 ret
= ftrace_profile_enable(event_id
);
3702 counter
->destroy
= tp_perf_counter_destroy
;
3704 return &perf_ops_generic
;
3707 static const struct pmu
*tp_perf_counter_init(struct perf_counter
*counter
)
3713 atomic_t perf_swcounter_enabled
[PERF_COUNT_SW_MAX
];
3715 static void sw_perf_counter_destroy(struct perf_counter
*counter
)
3717 u64 event
= counter
->attr
.config
;
3719 WARN_ON(counter
->parent
);
3721 atomic_dec(&perf_swcounter_enabled
[event
]);
3724 static const struct pmu
*sw_perf_counter_init(struct perf_counter
*counter
)
3726 const struct pmu
*pmu
= NULL
;
3727 u64 event
= counter
->attr
.config
;
3730 * Software counters (currently) can't in general distinguish
3731 * between user, kernel and hypervisor events.
3732 * However, context switches and cpu migrations are considered
3733 * to be kernel events, and page faults are never hypervisor
3737 case PERF_COUNT_SW_CPU_CLOCK
:
3738 pmu
= &perf_ops_cpu_clock
;
3741 case PERF_COUNT_SW_TASK_CLOCK
:
3743 * If the user instantiates this as a per-cpu counter,
3744 * use the cpu_clock counter instead.
3746 if (counter
->ctx
->task
)
3747 pmu
= &perf_ops_task_clock
;
3749 pmu
= &perf_ops_cpu_clock
;
3752 case PERF_COUNT_SW_PAGE_FAULTS
:
3753 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
3754 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
3755 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
3756 case PERF_COUNT_SW_CPU_MIGRATIONS
:
3757 if (!counter
->parent
) {
3758 atomic_inc(&perf_swcounter_enabled
[event
]);
3759 counter
->destroy
= sw_perf_counter_destroy
;
3761 pmu
= &perf_ops_generic
;
3769 * Allocate and initialize a counter structure
3771 static struct perf_counter
*
3772 perf_counter_alloc(struct perf_counter_attr
*attr
,
3774 struct perf_counter_context
*ctx
,
3775 struct perf_counter
*group_leader
,
3776 struct perf_counter
*parent_counter
,
3779 const struct pmu
*pmu
;
3780 struct perf_counter
*counter
;
3781 struct hw_perf_counter
*hwc
;
3784 counter
= kzalloc(sizeof(*counter
), gfpflags
);
3786 return ERR_PTR(-ENOMEM
);
3789 * Single counters are their own group leaders, with an
3790 * empty sibling list:
3793 group_leader
= counter
;
3795 mutex_init(&counter
->child_mutex
);
3796 INIT_LIST_HEAD(&counter
->child_list
);
3798 INIT_LIST_HEAD(&counter
->list_entry
);
3799 INIT_LIST_HEAD(&counter
->event_entry
);
3800 INIT_LIST_HEAD(&counter
->sibling_list
);
3801 init_waitqueue_head(&counter
->waitq
);
3803 mutex_init(&counter
->mmap_mutex
);
3806 counter
->attr
= *attr
;
3807 counter
->group_leader
= group_leader
;
3808 counter
->pmu
= NULL
;
3810 counter
->oncpu
= -1;
3812 counter
->parent
= parent_counter
;
3814 counter
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
3815 counter
->id
= atomic64_inc_return(&perf_counter_id
);
3817 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
3820 counter
->state
= PERF_COUNTER_STATE_OFF
;
3825 hwc
->sample_period
= attr
->sample_period
;
3826 if (attr
->freq
&& attr
->sample_freq
)
3827 hwc
->sample_period
= 1;
3829 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
3832 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3834 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_GROUP
))
3837 switch (attr
->type
) {
3839 case PERF_TYPE_HARDWARE
:
3840 case PERF_TYPE_HW_CACHE
:
3841 pmu
= hw_perf_counter_init(counter
);
3844 case PERF_TYPE_SOFTWARE
:
3845 pmu
= sw_perf_counter_init(counter
);
3848 case PERF_TYPE_TRACEPOINT
:
3849 pmu
= tp_perf_counter_init(counter
);
3859 else if (IS_ERR(pmu
))
3864 put_pid_ns(counter
->ns
);
3866 return ERR_PTR(err
);
3871 if (!counter
->parent
) {
3872 atomic_inc(&nr_counters
);
3873 if (counter
->attr
.mmap
)
3874 atomic_inc(&nr_mmap_counters
);
3875 if (counter
->attr
.comm
)
3876 atomic_inc(&nr_comm_counters
);
3882 static int perf_copy_attr(struct perf_counter_attr __user
*uattr
,
3883 struct perf_counter_attr
*attr
)
3888 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
3892 * zero the full structure, so that a short copy will be nice.
3894 memset(attr
, 0, sizeof(*attr
));
3896 ret
= get_user(size
, &uattr
->size
);
3900 if (size
> PAGE_SIZE
) /* silly large */
3903 if (!size
) /* abi compat */
3904 size
= PERF_ATTR_SIZE_VER0
;
3906 if (size
< PERF_ATTR_SIZE_VER0
)
3910 * If we're handed a bigger struct than we know of,
3911 * ensure all the unknown bits are 0.
3913 if (size
> sizeof(*attr
)) {
3915 unsigned long __user
*addr
;
3916 unsigned long __user
*end
;
3918 addr
= PTR_ALIGN((void __user
*)uattr
+ sizeof(*attr
),
3919 sizeof(unsigned long));
3920 end
= PTR_ALIGN((void __user
*)uattr
+ size
,
3921 sizeof(unsigned long));
3923 for (; addr
< end
; addr
+= sizeof(unsigned long)) {
3924 ret
= get_user(val
, addr
);
3932 ret
= copy_from_user(attr
, uattr
, size
);
3937 * If the type exists, the corresponding creation will verify
3940 if (attr
->type
>= PERF_TYPE_MAX
)
3943 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
3946 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
3949 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
3956 put_user(sizeof(*attr
), &uattr
->size
);
3962 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3964 * @attr_uptr: event type attributes for monitoring/sampling
3967 * @group_fd: group leader counter fd
3969 SYSCALL_DEFINE5(perf_counter_open
,
3970 struct perf_counter_attr __user
*, attr_uptr
,
3971 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
3973 struct perf_counter
*counter
, *group_leader
;
3974 struct perf_counter_attr attr
;
3975 struct perf_counter_context
*ctx
;
3976 struct file
*counter_file
= NULL
;
3977 struct file
*group_file
= NULL
;
3978 int fput_needed
= 0;
3979 int fput_needed2
= 0;
3982 /* for future expandability... */
3986 ret
= perf_copy_attr(attr_uptr
, &attr
);
3990 if (!attr
.exclude_kernel
) {
3991 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
3996 if (attr
.sample_freq
> sysctl_perf_counter_sample_rate
)
4001 * Get the target context (task or percpu):
4003 ctx
= find_get_context(pid
, cpu
);
4005 return PTR_ERR(ctx
);
4008 * Look up the group leader (we will attach this counter to it):
4010 group_leader
= NULL
;
4011 if (group_fd
!= -1) {
4013 group_file
= fget_light(group_fd
, &fput_needed
);
4015 goto err_put_context
;
4016 if (group_file
->f_op
!= &perf_fops
)
4017 goto err_put_context
;
4019 group_leader
= group_file
->private_data
;
4021 * Do not allow a recursive hierarchy (this new sibling
4022 * becoming part of another group-sibling):
4024 if (group_leader
->group_leader
!= group_leader
)
4025 goto err_put_context
;
4027 * Do not allow to attach to a group in a different
4028 * task or CPU context:
4030 if (group_leader
->ctx
!= ctx
)
4031 goto err_put_context
;
4033 * Only a group leader can be exclusive or pinned
4035 if (attr
.exclusive
|| attr
.pinned
)
4036 goto err_put_context
;
4039 counter
= perf_counter_alloc(&attr
, cpu
, ctx
, group_leader
,
4041 ret
= PTR_ERR(counter
);
4042 if (IS_ERR(counter
))
4043 goto err_put_context
;
4045 ret
= anon_inode_getfd("[perf_counter]", &perf_fops
, counter
, 0);
4047 goto err_free_put_context
;
4049 counter_file
= fget_light(ret
, &fput_needed2
);
4051 goto err_free_put_context
;
4053 counter
->filp
= counter_file
;
4054 WARN_ON_ONCE(ctx
->parent_ctx
);
4055 mutex_lock(&ctx
->mutex
);
4056 perf_install_in_context(ctx
, counter
, cpu
);
4058 mutex_unlock(&ctx
->mutex
);
4060 counter
->owner
= current
;
4061 get_task_struct(current
);
4062 mutex_lock(¤t
->perf_counter_mutex
);
4063 list_add_tail(&counter
->owner_entry
, ¤t
->perf_counter_list
);
4064 mutex_unlock(¤t
->perf_counter_mutex
);
4066 fput_light(counter_file
, fput_needed2
);
4069 fput_light(group_file
, fput_needed
);
4073 err_free_put_context
:
4083 * inherit a counter from parent task to child task:
4085 static struct perf_counter
*
4086 inherit_counter(struct perf_counter
*parent_counter
,
4087 struct task_struct
*parent
,
4088 struct perf_counter_context
*parent_ctx
,
4089 struct task_struct
*child
,
4090 struct perf_counter
*group_leader
,
4091 struct perf_counter_context
*child_ctx
)
4093 struct perf_counter
*child_counter
;
4096 * Instead of creating recursive hierarchies of counters,
4097 * we link inherited counters back to the original parent,
4098 * which has a filp for sure, which we use as the reference
4101 if (parent_counter
->parent
)
4102 parent_counter
= parent_counter
->parent
;
4104 child_counter
= perf_counter_alloc(&parent_counter
->attr
,
4105 parent_counter
->cpu
, child_ctx
,
4106 group_leader
, parent_counter
,
4108 if (IS_ERR(child_counter
))
4109 return child_counter
;
4113 * Make the child state follow the state of the parent counter,
4114 * not its attr.disabled bit. We hold the parent's mutex,
4115 * so we won't race with perf_counter_{en, dis}able_family.
4117 if (parent_counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
4118 child_counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
4120 child_counter
->state
= PERF_COUNTER_STATE_OFF
;
4122 if (parent_counter
->attr
.freq
)
4123 child_counter
->hw
.sample_period
= parent_counter
->hw
.sample_period
;
4126 * Link it up in the child's context:
4128 add_counter_to_ctx(child_counter
, child_ctx
);
4131 * Get a reference to the parent filp - we will fput it
4132 * when the child counter exits. This is safe to do because
4133 * we are in the parent and we know that the filp still
4134 * exists and has a nonzero count:
4136 atomic_long_inc(&parent_counter
->filp
->f_count
);
4139 * Link this into the parent counter's child list
4141 WARN_ON_ONCE(parent_counter
->ctx
->parent_ctx
);
4142 mutex_lock(&parent_counter
->child_mutex
);
4143 list_add_tail(&child_counter
->child_list
, &parent_counter
->child_list
);
4144 mutex_unlock(&parent_counter
->child_mutex
);
4146 return child_counter
;
4149 static int inherit_group(struct perf_counter
*parent_counter
,
4150 struct task_struct
*parent
,
4151 struct perf_counter_context
*parent_ctx
,
4152 struct task_struct
*child
,
4153 struct perf_counter_context
*child_ctx
)
4155 struct perf_counter
*leader
;
4156 struct perf_counter
*sub
;
4157 struct perf_counter
*child_ctr
;
4159 leader
= inherit_counter(parent_counter
, parent
, parent_ctx
,
4160 child
, NULL
, child_ctx
);
4162 return PTR_ERR(leader
);
4163 list_for_each_entry(sub
, &parent_counter
->sibling_list
, list_entry
) {
4164 child_ctr
= inherit_counter(sub
, parent
, parent_ctx
,
4165 child
, leader
, child_ctx
);
4166 if (IS_ERR(child_ctr
))
4167 return PTR_ERR(child_ctr
);
4172 static void sync_child_counter(struct perf_counter
*child_counter
,
4173 struct task_struct
*child
)
4175 struct perf_counter
*parent_counter
= child_counter
->parent
;
4178 if (child_counter
->attr
.inherit_stat
)
4179 perf_counter_read_event(child_counter
, child
);
4181 child_val
= atomic64_read(&child_counter
->count
);
4184 * Add back the child's count to the parent's count:
4186 atomic64_add(child_val
, &parent_counter
->count
);
4187 atomic64_add(child_counter
->total_time_enabled
,
4188 &parent_counter
->child_total_time_enabled
);
4189 atomic64_add(child_counter
->total_time_running
,
4190 &parent_counter
->child_total_time_running
);
4193 * Remove this counter from the parent's list
4195 WARN_ON_ONCE(parent_counter
->ctx
->parent_ctx
);
4196 mutex_lock(&parent_counter
->child_mutex
);
4197 list_del_init(&child_counter
->child_list
);
4198 mutex_unlock(&parent_counter
->child_mutex
);
4201 * Release the parent counter, if this was the last
4204 fput(parent_counter
->filp
);
4208 __perf_counter_exit_task(struct perf_counter
*child_counter
,
4209 struct perf_counter_context
*child_ctx
,
4210 struct task_struct
*child
)
4212 struct perf_counter
*parent_counter
;
4214 update_counter_times(child_counter
);
4215 perf_counter_remove_from_context(child_counter
);
4217 parent_counter
= child_counter
->parent
;
4219 * It can happen that parent exits first, and has counters
4220 * that are still around due to the child reference. These
4221 * counters need to be zapped - but otherwise linger.
4223 if (parent_counter
) {
4224 sync_child_counter(child_counter
, child
);
4225 free_counter(child_counter
);
4230 * When a child task exits, feed back counter values to parent counters.
4232 void perf_counter_exit_task(struct task_struct
*child
)
4234 struct perf_counter
*child_counter
, *tmp
;
4235 struct perf_counter_context
*child_ctx
;
4236 unsigned long flags
;
4238 if (likely(!child
->perf_counter_ctxp
))
4241 local_irq_save(flags
);
4243 * We can't reschedule here because interrupts are disabled,
4244 * and either child is current or it is a task that can't be
4245 * scheduled, so we are now safe from rescheduling changing
4248 child_ctx
= child
->perf_counter_ctxp
;
4249 __perf_counter_task_sched_out(child_ctx
);
4252 * Take the context lock here so that if find_get_context is
4253 * reading child->perf_counter_ctxp, we wait until it has
4254 * incremented the context's refcount before we do put_ctx below.
4256 spin_lock(&child_ctx
->lock
);
4257 child
->perf_counter_ctxp
= NULL
;
4258 if (child_ctx
->parent_ctx
) {
4260 * This context is a clone; unclone it so it can't get
4261 * swapped to another process while we're removing all
4262 * the counters from it.
4264 put_ctx(child_ctx
->parent_ctx
);
4265 child_ctx
->parent_ctx
= NULL
;
4267 spin_unlock(&child_ctx
->lock
);
4268 local_irq_restore(flags
);
4271 * We can recurse on the same lock type through:
4273 * __perf_counter_exit_task()
4274 * sync_child_counter()
4275 * fput(parent_counter->filp)
4277 * mutex_lock(&ctx->mutex)
4279 * But since its the parent context it won't be the same instance.
4281 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
4284 list_for_each_entry_safe(child_counter
, tmp
, &child_ctx
->counter_list
,
4286 __perf_counter_exit_task(child_counter
, child_ctx
, child
);
4289 * If the last counter was a group counter, it will have appended all
4290 * its siblings to the list, but we obtained 'tmp' before that which
4291 * will still point to the list head terminating the iteration.
4293 if (!list_empty(&child_ctx
->counter_list
))
4296 mutex_unlock(&child_ctx
->mutex
);
4302 * free an unexposed, unused context as created by inheritance by
4303 * init_task below, used by fork() in case of fail.
4305 void perf_counter_free_task(struct task_struct
*task
)
4307 struct perf_counter_context
*ctx
= task
->perf_counter_ctxp
;
4308 struct perf_counter
*counter
, *tmp
;
4313 mutex_lock(&ctx
->mutex
);
4315 list_for_each_entry_safe(counter
, tmp
, &ctx
->counter_list
, list_entry
) {
4316 struct perf_counter
*parent
= counter
->parent
;
4318 if (WARN_ON_ONCE(!parent
))
4321 mutex_lock(&parent
->child_mutex
);
4322 list_del_init(&counter
->child_list
);
4323 mutex_unlock(&parent
->child_mutex
);
4327 list_del_counter(counter
, ctx
);
4328 free_counter(counter
);
4331 if (!list_empty(&ctx
->counter_list
))
4334 mutex_unlock(&ctx
->mutex
);
4340 * Initialize the perf_counter context in task_struct
4342 int perf_counter_init_task(struct task_struct
*child
)
4344 struct perf_counter_context
*child_ctx
, *parent_ctx
;
4345 struct perf_counter_context
*cloned_ctx
;
4346 struct perf_counter
*counter
;
4347 struct task_struct
*parent
= current
;
4348 int inherited_all
= 1;
4351 child
->perf_counter_ctxp
= NULL
;
4353 mutex_init(&child
->perf_counter_mutex
);
4354 INIT_LIST_HEAD(&child
->perf_counter_list
);
4356 if (likely(!parent
->perf_counter_ctxp
))
4360 * This is executed from the parent task context, so inherit
4361 * counters that have been marked for cloning.
4362 * First allocate and initialize a context for the child.
4365 child_ctx
= kmalloc(sizeof(struct perf_counter_context
), GFP_KERNEL
);
4369 __perf_counter_init_context(child_ctx
, child
);
4370 child
->perf_counter_ctxp
= child_ctx
;
4371 get_task_struct(child
);
4374 * If the parent's context is a clone, pin it so it won't get
4377 parent_ctx
= perf_pin_task_context(parent
);
4380 * No need to check if parent_ctx != NULL here; since we saw
4381 * it non-NULL earlier, the only reason for it to become NULL
4382 * is if we exit, and since we're currently in the middle of
4383 * a fork we can't be exiting at the same time.
4387 * Lock the parent list. No need to lock the child - not PID
4388 * hashed yet and not running, so nobody can access it.
4390 mutex_lock(&parent_ctx
->mutex
);
4393 * We dont have to disable NMIs - we are only looking at
4394 * the list, not manipulating it:
4396 list_for_each_entry_rcu(counter
, &parent_ctx
->event_list
, event_entry
) {
4397 if (counter
!= counter
->group_leader
)
4400 if (!counter
->attr
.inherit
) {
4405 ret
= inherit_group(counter
, parent
, parent_ctx
,
4413 if (inherited_all
) {
4415 * Mark the child context as a clone of the parent
4416 * context, or of whatever the parent is a clone of.
4417 * Note that if the parent is a clone, it could get
4418 * uncloned at any point, but that doesn't matter
4419 * because the list of counters and the generation
4420 * count can't have changed since we took the mutex.
4422 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
4424 child_ctx
->parent_ctx
= cloned_ctx
;
4425 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
4427 child_ctx
->parent_ctx
= parent_ctx
;
4428 child_ctx
->parent_gen
= parent_ctx
->generation
;
4430 get_ctx(child_ctx
->parent_ctx
);
4433 mutex_unlock(&parent_ctx
->mutex
);
4435 perf_unpin_context(parent_ctx
);
4440 static void __cpuinit
perf_counter_init_cpu(int cpu
)
4442 struct perf_cpu_context
*cpuctx
;
4444 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4445 __perf_counter_init_context(&cpuctx
->ctx
, NULL
);
4447 spin_lock(&perf_resource_lock
);
4448 cpuctx
->max_pertask
= perf_max_counters
- perf_reserved_percpu
;
4449 spin_unlock(&perf_resource_lock
);
4451 hw_perf_counter_setup(cpu
);
4454 #ifdef CONFIG_HOTPLUG_CPU
4455 static void __perf_counter_exit_cpu(void *info
)
4457 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4458 struct perf_counter_context
*ctx
= &cpuctx
->ctx
;
4459 struct perf_counter
*counter
, *tmp
;
4461 list_for_each_entry_safe(counter
, tmp
, &ctx
->counter_list
, list_entry
)
4462 __perf_counter_remove_from_context(counter
);
4464 static void perf_counter_exit_cpu(int cpu
)
4466 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4467 struct perf_counter_context
*ctx
= &cpuctx
->ctx
;
4469 mutex_lock(&ctx
->mutex
);
4470 smp_call_function_single(cpu
, __perf_counter_exit_cpu
, NULL
, 1);
4471 mutex_unlock(&ctx
->mutex
);
4474 static inline void perf_counter_exit_cpu(int cpu
) { }
4477 static int __cpuinit
4478 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
4480 unsigned int cpu
= (long)hcpu
;
4484 case CPU_UP_PREPARE
:
4485 case CPU_UP_PREPARE_FROZEN
:
4486 perf_counter_init_cpu(cpu
);
4489 case CPU_DOWN_PREPARE
:
4490 case CPU_DOWN_PREPARE_FROZEN
:
4491 perf_counter_exit_cpu(cpu
);
4502 * This has to have a higher priority than migration_notifier in sched.c.
4504 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
4505 .notifier_call
= perf_cpu_notify
,
4509 void __init
perf_counter_init(void)
4511 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
4512 (void *)(long)smp_processor_id());
4513 register_cpu_notifier(&perf_cpu_nb
);
4516 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
4518 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
4522 perf_set_reserve_percpu(struct sysdev_class
*class,
4526 struct perf_cpu_context
*cpuctx
;
4530 err
= strict_strtoul(buf
, 10, &val
);
4533 if (val
> perf_max_counters
)
4536 spin_lock(&perf_resource_lock
);
4537 perf_reserved_percpu
= val
;
4538 for_each_online_cpu(cpu
) {
4539 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4540 spin_lock_irq(&cpuctx
->ctx
.lock
);
4541 mpt
= min(perf_max_counters
- cpuctx
->ctx
.nr_counters
,
4542 perf_max_counters
- perf_reserved_percpu
);
4543 cpuctx
->max_pertask
= mpt
;
4544 spin_unlock_irq(&cpuctx
->ctx
.lock
);
4546 spin_unlock(&perf_resource_lock
);
4551 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
4553 return sprintf(buf
, "%d\n", perf_overcommit
);
4557 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
4562 err
= strict_strtoul(buf
, 10, &val
);
4568 spin_lock(&perf_resource_lock
);
4569 perf_overcommit
= val
;
4570 spin_unlock(&perf_resource_lock
);
4575 static SYSDEV_CLASS_ATTR(
4578 perf_show_reserve_percpu
,
4579 perf_set_reserve_percpu
4582 static SYSDEV_CLASS_ATTR(
4585 perf_show_overcommit
,
4589 static struct attribute
*perfclass_attrs
[] = {
4590 &attr_reserve_percpu
.attr
,
4591 &attr_overcommit
.attr
,
4595 static struct attribute_group perfclass_attr_group
= {
4596 .attrs
= perfclass_attrs
,
4597 .name
= "perf_counters",
4600 static int __init
perf_counter_sysfs_init(void)
4602 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
4603 &perfclass_attr_group
);
4605 device_initcall(perf_counter_sysfs_init
);