libata: fix device iteration bugs
[linux-2.6/mini2440.git] / drivers / ata / libata-core.c
blob97df4807a088fb9bca6570d26936389f0f8e3f6d
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
66 #include "libata.h"
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
98 struct workqueue_struct *ata_aux_wq;
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
167 * Iterator helpers. Don't use directly.
169 * LOCKING:
170 * Host lock or EH context.
172 struct ata_link *__ata_port_next_link(struct ata_port *ap,
173 struct ata_link *link, bool dev_only)
175 /* NULL link indicates start of iteration */
176 if (!link) {
177 if (dev_only && sata_pmp_attached(ap))
178 return ap->pmp_link;
179 return &ap->link;
182 /* we just iterated over the host master link, what's next? */
183 if (link == &ap->link) {
184 if (!sata_pmp_attached(ap)) {
185 if (unlikely(ap->slave_link) && !dev_only)
186 return ap->slave_link;
187 return NULL;
189 return ap->pmp_link;
192 /* slave_link excludes PMP */
193 if (unlikely(link == ap->slave_link))
194 return NULL;
196 /* iterate to the next PMP link */
197 if (++link < ap->pmp_link + ap->nr_pmp_links)
198 return link;
199 return NULL;
203 * ata_dev_phys_link - find physical link for a device
204 * @dev: ATA device to look up physical link for
206 * Look up physical link which @dev is attached to. Note that
207 * this is different from @dev->link only when @dev is on slave
208 * link. For all other cases, it's the same as @dev->link.
210 * LOCKING:
211 * Don't care.
213 * RETURNS:
214 * Pointer to the found physical link.
216 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
218 struct ata_port *ap = dev->link->ap;
220 if (!ap->slave_link)
221 return dev->link;
222 if (!dev->devno)
223 return &ap->link;
224 return ap->slave_link;
228 * ata_force_cbl - force cable type according to libata.force
229 * @ap: ATA port of interest
231 * Force cable type according to libata.force and whine about it.
232 * The last entry which has matching port number is used, so it
233 * can be specified as part of device force parameters. For
234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
235 * same effect.
237 * LOCKING:
238 * EH context.
240 void ata_force_cbl(struct ata_port *ap)
242 int i;
244 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
245 const struct ata_force_ent *fe = &ata_force_tbl[i];
247 if (fe->port != -1 && fe->port != ap->print_id)
248 continue;
250 if (fe->param.cbl == ATA_CBL_NONE)
251 continue;
253 ap->cbl = fe->param.cbl;
254 ata_port_printk(ap, KERN_NOTICE,
255 "FORCE: cable set to %s\n", fe->param.name);
256 return;
261 * ata_force_link_limits - force link limits according to libata.force
262 * @link: ATA link of interest
264 * Force link flags and SATA spd limit according to libata.force
265 * and whine about it. When only the port part is specified
266 * (e.g. 1:), the limit applies to all links connected to both
267 * the host link and all fan-out ports connected via PMP. If the
268 * device part is specified as 0 (e.g. 1.00:), it specifies the
269 * first fan-out link not the host link. Device number 15 always
270 * points to the host link whether PMP is attached or not. If the
271 * controller has slave link, device number 16 points to it.
273 * LOCKING:
274 * EH context.
276 static void ata_force_link_limits(struct ata_link *link)
278 bool did_spd = false;
279 int linkno = link->pmp;
280 int i;
282 if (ata_is_host_link(link))
283 linkno += 15;
285 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
286 const struct ata_force_ent *fe = &ata_force_tbl[i];
288 if (fe->port != -1 && fe->port != link->ap->print_id)
289 continue;
291 if (fe->device != -1 && fe->device != linkno)
292 continue;
294 /* only honor the first spd limit */
295 if (!did_spd && fe->param.spd_limit) {
296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
297 ata_link_printk(link, KERN_NOTICE,
298 "FORCE: PHY spd limit set to %s\n",
299 fe->param.name);
300 did_spd = true;
303 /* let lflags stack */
304 if (fe->param.lflags) {
305 link->flags |= fe->param.lflags;
306 ata_link_printk(link, KERN_NOTICE,
307 "FORCE: link flag 0x%x forced -> 0x%x\n",
308 fe->param.lflags, link->flags);
314 * ata_force_xfermask - force xfermask according to libata.force
315 * @dev: ATA device of interest
317 * Force xfer_mask according to libata.force and whine about it.
318 * For consistency with link selection, device number 15 selects
319 * the first device connected to the host link.
321 * LOCKING:
322 * EH context.
324 static void ata_force_xfermask(struct ata_device *dev)
326 int devno = dev->link->pmp + dev->devno;
327 int alt_devno = devno;
328 int i;
330 /* allow n.15/16 for devices attached to host port */
331 if (ata_is_host_link(dev->link))
332 alt_devno += 15;
334 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
335 const struct ata_force_ent *fe = &ata_force_tbl[i];
336 unsigned long pio_mask, mwdma_mask, udma_mask;
338 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
339 continue;
341 if (fe->device != -1 && fe->device != devno &&
342 fe->device != alt_devno)
343 continue;
345 if (!fe->param.xfer_mask)
346 continue;
348 ata_unpack_xfermask(fe->param.xfer_mask,
349 &pio_mask, &mwdma_mask, &udma_mask);
350 if (udma_mask)
351 dev->udma_mask = udma_mask;
352 else if (mwdma_mask) {
353 dev->udma_mask = 0;
354 dev->mwdma_mask = mwdma_mask;
355 } else {
356 dev->udma_mask = 0;
357 dev->mwdma_mask = 0;
358 dev->pio_mask = pio_mask;
361 ata_dev_printk(dev, KERN_NOTICE,
362 "FORCE: xfer_mask set to %s\n", fe->param.name);
363 return;
368 * ata_force_horkage - force horkage according to libata.force
369 * @dev: ATA device of interest
371 * Force horkage according to libata.force and whine about it.
372 * For consistency with link selection, device number 15 selects
373 * the first device connected to the host link.
375 * LOCKING:
376 * EH context.
378 static void ata_force_horkage(struct ata_device *dev)
380 int devno = dev->link->pmp + dev->devno;
381 int alt_devno = devno;
382 int i;
384 /* allow n.15/16 for devices attached to host port */
385 if (ata_is_host_link(dev->link))
386 alt_devno += 15;
388 for (i = 0; i < ata_force_tbl_size; i++) {
389 const struct ata_force_ent *fe = &ata_force_tbl[i];
391 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
392 continue;
394 if (fe->device != -1 && fe->device != devno &&
395 fe->device != alt_devno)
396 continue;
398 if (!(~dev->horkage & fe->param.horkage_on) &&
399 !(dev->horkage & fe->param.horkage_off))
400 continue;
402 dev->horkage |= fe->param.horkage_on;
403 dev->horkage &= ~fe->param.horkage_off;
405 ata_dev_printk(dev, KERN_NOTICE,
406 "FORCE: horkage modified (%s)\n", fe->param.name);
411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
412 * @opcode: SCSI opcode
414 * Determine ATAPI command type from @opcode.
416 * LOCKING:
417 * None.
419 * RETURNS:
420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
422 int atapi_cmd_type(u8 opcode)
424 switch (opcode) {
425 case GPCMD_READ_10:
426 case GPCMD_READ_12:
427 return ATAPI_READ;
429 case GPCMD_WRITE_10:
430 case GPCMD_WRITE_12:
431 case GPCMD_WRITE_AND_VERIFY_10:
432 return ATAPI_WRITE;
434 case GPCMD_READ_CD:
435 case GPCMD_READ_CD_MSF:
436 return ATAPI_READ_CD;
438 case ATA_16:
439 case ATA_12:
440 if (atapi_passthru16)
441 return ATAPI_PASS_THRU;
442 /* fall thru */
443 default:
444 return ATAPI_MISC;
449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
450 * @tf: Taskfile to convert
451 * @pmp: Port multiplier port
452 * @is_cmd: This FIS is for command
453 * @fis: Buffer into which data will output
455 * Converts a standard ATA taskfile to a Serial ATA
456 * FIS structure (Register - Host to Device).
458 * LOCKING:
459 * Inherited from caller.
461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
463 fis[0] = 0x27; /* Register - Host to Device FIS */
464 fis[1] = pmp & 0xf; /* Port multiplier number*/
465 if (is_cmd)
466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
468 fis[2] = tf->command;
469 fis[3] = tf->feature;
471 fis[4] = tf->lbal;
472 fis[5] = tf->lbam;
473 fis[6] = tf->lbah;
474 fis[7] = tf->device;
476 fis[8] = tf->hob_lbal;
477 fis[9] = tf->hob_lbam;
478 fis[10] = tf->hob_lbah;
479 fis[11] = tf->hob_feature;
481 fis[12] = tf->nsect;
482 fis[13] = tf->hob_nsect;
483 fis[14] = 0;
484 fis[15] = tf->ctl;
486 fis[16] = 0;
487 fis[17] = 0;
488 fis[18] = 0;
489 fis[19] = 0;
493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
494 * @fis: Buffer from which data will be input
495 * @tf: Taskfile to output
497 * Converts a serial ATA FIS structure to a standard ATA taskfile.
499 * LOCKING:
500 * Inherited from caller.
503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
505 tf->command = fis[2]; /* status */
506 tf->feature = fis[3]; /* error */
508 tf->lbal = fis[4];
509 tf->lbam = fis[5];
510 tf->lbah = fis[6];
511 tf->device = fis[7];
513 tf->hob_lbal = fis[8];
514 tf->hob_lbam = fis[9];
515 tf->hob_lbah = fis[10];
517 tf->nsect = fis[12];
518 tf->hob_nsect = fis[13];
521 static const u8 ata_rw_cmds[] = {
522 /* pio multi */
523 ATA_CMD_READ_MULTI,
524 ATA_CMD_WRITE_MULTI,
525 ATA_CMD_READ_MULTI_EXT,
526 ATA_CMD_WRITE_MULTI_EXT,
530 ATA_CMD_WRITE_MULTI_FUA_EXT,
531 /* pio */
532 ATA_CMD_PIO_READ,
533 ATA_CMD_PIO_WRITE,
534 ATA_CMD_PIO_READ_EXT,
535 ATA_CMD_PIO_WRITE_EXT,
540 /* dma */
541 ATA_CMD_READ,
542 ATA_CMD_WRITE,
543 ATA_CMD_READ_EXT,
544 ATA_CMD_WRITE_EXT,
548 ATA_CMD_WRITE_FUA_EXT
552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
553 * @tf: command to examine and configure
554 * @dev: device tf belongs to
556 * Examine the device configuration and tf->flags to calculate
557 * the proper read/write commands and protocol to use.
559 * LOCKING:
560 * caller.
562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
564 u8 cmd;
566 int index, fua, lba48, write;
568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
572 if (dev->flags & ATA_DFLAG_PIO) {
573 tf->protocol = ATA_PROT_PIO;
574 index = dev->multi_count ? 0 : 8;
575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
576 /* Unable to use DMA due to host limitation */
577 tf->protocol = ATA_PROT_PIO;
578 index = dev->multi_count ? 0 : 8;
579 } else {
580 tf->protocol = ATA_PROT_DMA;
581 index = 16;
584 cmd = ata_rw_cmds[index + fua + lba48 + write];
585 if (cmd) {
586 tf->command = cmd;
587 return 0;
589 return -1;
593 * ata_tf_read_block - Read block address from ATA taskfile
594 * @tf: ATA taskfile of interest
595 * @dev: ATA device @tf belongs to
597 * LOCKING:
598 * None.
600 * Read block address from @tf. This function can handle all
601 * three address formats - LBA, LBA48 and CHS. tf->protocol and
602 * flags select the address format to use.
604 * RETURNS:
605 * Block address read from @tf.
607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
609 u64 block = 0;
611 if (tf->flags & ATA_TFLAG_LBA) {
612 if (tf->flags & ATA_TFLAG_LBA48) {
613 block |= (u64)tf->hob_lbah << 40;
614 block |= (u64)tf->hob_lbam << 32;
615 block |= tf->hob_lbal << 24;
616 } else
617 block |= (tf->device & 0xf) << 24;
619 block |= tf->lbah << 16;
620 block |= tf->lbam << 8;
621 block |= tf->lbal;
622 } else {
623 u32 cyl, head, sect;
625 cyl = tf->lbam | (tf->lbah << 8);
626 head = tf->device & 0xf;
627 sect = tf->lbal;
629 block = (cyl * dev->heads + head) * dev->sectors + sect;
632 return block;
636 * ata_build_rw_tf - Build ATA taskfile for given read/write request
637 * @tf: Target ATA taskfile
638 * @dev: ATA device @tf belongs to
639 * @block: Block address
640 * @n_block: Number of blocks
641 * @tf_flags: RW/FUA etc...
642 * @tag: tag
644 * LOCKING:
645 * None.
647 * Build ATA taskfile @tf for read/write request described by
648 * @block, @n_block, @tf_flags and @tag on @dev.
650 * RETURNS:
652 * 0 on success, -ERANGE if the request is too large for @dev,
653 * -EINVAL if the request is invalid.
655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
656 u64 block, u32 n_block, unsigned int tf_flags,
657 unsigned int tag)
659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
660 tf->flags |= tf_flags;
662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
663 /* yay, NCQ */
664 if (!lba_48_ok(block, n_block))
665 return -ERANGE;
667 tf->protocol = ATA_PROT_NCQ;
668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
670 if (tf->flags & ATA_TFLAG_WRITE)
671 tf->command = ATA_CMD_FPDMA_WRITE;
672 else
673 tf->command = ATA_CMD_FPDMA_READ;
675 tf->nsect = tag << 3;
676 tf->hob_feature = (n_block >> 8) & 0xff;
677 tf->feature = n_block & 0xff;
679 tf->hob_lbah = (block >> 40) & 0xff;
680 tf->hob_lbam = (block >> 32) & 0xff;
681 tf->hob_lbal = (block >> 24) & 0xff;
682 tf->lbah = (block >> 16) & 0xff;
683 tf->lbam = (block >> 8) & 0xff;
684 tf->lbal = block & 0xff;
686 tf->device = 1 << 6;
687 if (tf->flags & ATA_TFLAG_FUA)
688 tf->device |= 1 << 7;
689 } else if (dev->flags & ATA_DFLAG_LBA) {
690 tf->flags |= ATA_TFLAG_LBA;
692 if (lba_28_ok(block, n_block)) {
693 /* use LBA28 */
694 tf->device |= (block >> 24) & 0xf;
695 } else if (lba_48_ok(block, n_block)) {
696 if (!(dev->flags & ATA_DFLAG_LBA48))
697 return -ERANGE;
699 /* use LBA48 */
700 tf->flags |= ATA_TFLAG_LBA48;
702 tf->hob_nsect = (n_block >> 8) & 0xff;
704 tf->hob_lbah = (block >> 40) & 0xff;
705 tf->hob_lbam = (block >> 32) & 0xff;
706 tf->hob_lbal = (block >> 24) & 0xff;
707 } else
708 /* request too large even for LBA48 */
709 return -ERANGE;
711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
712 return -EINVAL;
714 tf->nsect = n_block & 0xff;
716 tf->lbah = (block >> 16) & 0xff;
717 tf->lbam = (block >> 8) & 0xff;
718 tf->lbal = block & 0xff;
720 tf->device |= ATA_LBA;
721 } else {
722 /* CHS */
723 u32 sect, head, cyl, track;
725 /* The request -may- be too large for CHS addressing. */
726 if (!lba_28_ok(block, n_block))
727 return -ERANGE;
729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
730 return -EINVAL;
732 /* Convert LBA to CHS */
733 track = (u32)block / dev->sectors;
734 cyl = track / dev->heads;
735 head = track % dev->heads;
736 sect = (u32)block % dev->sectors + 1;
738 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
739 (u32)block, track, cyl, head, sect);
741 /* Check whether the converted CHS can fit.
742 Cylinder: 0-65535
743 Head: 0-15
744 Sector: 1-255*/
745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
746 return -ERANGE;
748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
749 tf->lbal = sect;
750 tf->lbam = cyl;
751 tf->lbah = cyl >> 8;
752 tf->device |= head;
755 return 0;
759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
760 * @pio_mask: pio_mask
761 * @mwdma_mask: mwdma_mask
762 * @udma_mask: udma_mask
764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
765 * unsigned int xfer_mask.
767 * LOCKING:
768 * None.
770 * RETURNS:
771 * Packed xfer_mask.
773 unsigned long ata_pack_xfermask(unsigned long pio_mask,
774 unsigned long mwdma_mask,
775 unsigned long udma_mask)
777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
784 * @xfer_mask: xfer_mask to unpack
785 * @pio_mask: resulting pio_mask
786 * @mwdma_mask: resulting mwdma_mask
787 * @udma_mask: resulting udma_mask
789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
790 * Any NULL distination masks will be ignored.
792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
793 unsigned long *mwdma_mask, unsigned long *udma_mask)
795 if (pio_mask)
796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
797 if (mwdma_mask)
798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
799 if (udma_mask)
800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
803 static const struct ata_xfer_ent {
804 int shift, bits;
805 u8 base;
806 } ata_xfer_tbl[] = {
807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
810 { -1, },
814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
815 * @xfer_mask: xfer_mask of interest
817 * Return matching XFER_* value for @xfer_mask. Only the highest
818 * bit of @xfer_mask is considered.
820 * LOCKING:
821 * None.
823 * RETURNS:
824 * Matching XFER_* value, 0xff if no match found.
826 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
828 int highbit = fls(xfer_mask) - 1;
829 const struct ata_xfer_ent *ent;
831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
833 return ent->base + highbit - ent->shift;
834 return 0xff;
838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
839 * @xfer_mode: XFER_* of interest
841 * Return matching xfer_mask for @xfer_mode.
843 * LOCKING:
844 * None.
846 * RETURNS:
847 * Matching xfer_mask, 0 if no match found.
849 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
851 const struct ata_xfer_ent *ent;
853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
856 & ~((1 << ent->shift) - 1);
857 return 0;
861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
862 * @xfer_mode: XFER_* of interest
864 * Return matching xfer_shift for @xfer_mode.
866 * LOCKING:
867 * None.
869 * RETURNS:
870 * Matching xfer_shift, -1 if no match found.
872 int ata_xfer_mode2shift(unsigned long xfer_mode)
874 const struct ata_xfer_ent *ent;
876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
878 return ent->shift;
879 return -1;
883 * ata_mode_string - convert xfer_mask to string
884 * @xfer_mask: mask of bits supported; only highest bit counts.
886 * Determine string which represents the highest speed
887 * (highest bit in @modemask).
889 * LOCKING:
890 * None.
892 * RETURNS:
893 * Constant C string representing highest speed listed in
894 * @mode_mask, or the constant C string "<n/a>".
896 const char *ata_mode_string(unsigned long xfer_mask)
898 static const char * const xfer_mode_str[] = {
899 "PIO0",
900 "PIO1",
901 "PIO2",
902 "PIO3",
903 "PIO4",
904 "PIO5",
905 "PIO6",
906 "MWDMA0",
907 "MWDMA1",
908 "MWDMA2",
909 "MWDMA3",
910 "MWDMA4",
911 "UDMA/16",
912 "UDMA/25",
913 "UDMA/33",
914 "UDMA/44",
915 "UDMA/66",
916 "UDMA/100",
917 "UDMA/133",
918 "UDMA7",
920 int highbit;
922 highbit = fls(xfer_mask) - 1;
923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
924 return xfer_mode_str[highbit];
925 return "<n/a>";
928 static const char *sata_spd_string(unsigned int spd)
930 static const char * const spd_str[] = {
931 "1.5 Gbps",
932 "3.0 Gbps",
935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
936 return "<unknown>";
937 return spd_str[spd - 1];
940 void ata_dev_disable(struct ata_device *dev)
942 if (ata_dev_enabled(dev)) {
943 if (ata_msg_drv(dev->link->ap))
944 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
945 ata_acpi_on_disable(dev);
946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
947 ATA_DNXFER_QUIET);
948 dev->class++;
952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
954 struct ata_link *link = dev->link;
955 struct ata_port *ap = link->ap;
956 u32 scontrol;
957 unsigned int err_mask;
958 int rc;
961 * disallow DIPM for drivers which haven't set
962 * ATA_FLAG_IPM. This is because when DIPM is enabled,
963 * phy ready will be set in the interrupt status on
964 * state changes, which will cause some drivers to
965 * think there are errors - additionally drivers will
966 * need to disable hot plug.
968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
969 ap->pm_policy = NOT_AVAILABLE;
970 return -EINVAL;
974 * For DIPM, we will only enable it for the
975 * min_power setting.
977 * Why? Because Disks are too stupid to know that
978 * If the host rejects a request to go to SLUMBER
979 * they should retry at PARTIAL, and instead it
980 * just would give up. So, for medium_power to
981 * work at all, we need to only allow HIPM.
983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
984 if (rc)
985 return rc;
987 switch (policy) {
988 case MIN_POWER:
989 /* no restrictions on IPM transitions */
990 scontrol &= ~(0x3 << 8);
991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
992 if (rc)
993 return rc;
995 /* enable DIPM */
996 if (dev->flags & ATA_DFLAG_DIPM)
997 err_mask = ata_dev_set_feature(dev,
998 SETFEATURES_SATA_ENABLE, SATA_DIPM);
999 break;
1000 case MEDIUM_POWER:
1001 /* allow IPM to PARTIAL */
1002 scontrol &= ~(0x1 << 8);
1003 scontrol |= (0x2 << 8);
1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1005 if (rc)
1006 return rc;
1009 * we don't have to disable DIPM since IPM flags
1010 * disallow transitions to SLUMBER, which effectively
1011 * disable DIPM if it does not support PARTIAL
1013 break;
1014 case NOT_AVAILABLE:
1015 case MAX_PERFORMANCE:
1016 /* disable all IPM transitions */
1017 scontrol |= (0x3 << 8);
1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1019 if (rc)
1020 return rc;
1023 * we don't have to disable DIPM since IPM flags
1024 * disallow all transitions which effectively
1025 * disable DIPM anyway.
1027 break;
1030 /* FIXME: handle SET FEATURES failure */
1031 (void) err_mask;
1033 return 0;
1037 * ata_dev_enable_pm - enable SATA interface power management
1038 * @dev: device to enable power management
1039 * @policy: the link power management policy
1041 * Enable SATA Interface power management. This will enable
1042 * Device Interface Power Management (DIPM) for min_power
1043 * policy, and then call driver specific callbacks for
1044 * enabling Host Initiated Power management.
1046 * Locking: Caller.
1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1051 int rc = 0;
1052 struct ata_port *ap = dev->link->ap;
1054 /* set HIPM first, then DIPM */
1055 if (ap->ops->enable_pm)
1056 rc = ap->ops->enable_pm(ap, policy);
1057 if (rc)
1058 goto enable_pm_out;
1059 rc = ata_dev_set_dipm(dev, policy);
1061 enable_pm_out:
1062 if (rc)
1063 ap->pm_policy = MAX_PERFORMANCE;
1064 else
1065 ap->pm_policy = policy;
1066 return /* rc */; /* hopefully we can use 'rc' eventually */
1069 #ifdef CONFIG_PM
1071 * ata_dev_disable_pm - disable SATA interface power management
1072 * @dev: device to disable power management
1074 * Disable SATA Interface power management. This will disable
1075 * Device Interface Power Management (DIPM) without changing
1076 * policy, call driver specific callbacks for disabling Host
1077 * Initiated Power management.
1079 * Locking: Caller.
1080 * Returns: void
1082 static void ata_dev_disable_pm(struct ata_device *dev)
1084 struct ata_port *ap = dev->link->ap;
1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1087 if (ap->ops->disable_pm)
1088 ap->ops->disable_pm(ap);
1090 #endif /* CONFIG_PM */
1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1094 ap->pm_policy = policy;
1095 ap->link.eh_info.action |= ATA_EH_LPM;
1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1097 ata_port_schedule_eh(ap);
1100 #ifdef CONFIG_PM
1101 static void ata_lpm_enable(struct ata_host *host)
1103 struct ata_link *link;
1104 struct ata_port *ap;
1105 struct ata_device *dev;
1106 int i;
1108 for (i = 0; i < host->n_ports; i++) {
1109 ap = host->ports[i];
1110 ata_port_for_each_link(link, ap) {
1111 ata_link_for_each_dev(dev, link)
1112 ata_dev_disable_pm(dev);
1117 static void ata_lpm_disable(struct ata_host *host)
1119 int i;
1121 for (i = 0; i < host->n_ports; i++) {
1122 struct ata_port *ap = host->ports[i];
1123 ata_lpm_schedule(ap, ap->pm_policy);
1126 #endif /* CONFIG_PM */
1129 * ata_dev_classify - determine device type based on ATA-spec signature
1130 * @tf: ATA taskfile register set for device to be identified
1132 * Determine from taskfile register contents whether a device is
1133 * ATA or ATAPI, as per "Signature and persistence" section
1134 * of ATA/PI spec (volume 1, sect 5.14).
1136 * LOCKING:
1137 * None.
1139 * RETURNS:
1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1141 * %ATA_DEV_UNKNOWN the event of failure.
1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1145 /* Apple's open source Darwin code hints that some devices only
1146 * put a proper signature into the LBA mid/high registers,
1147 * So, we only check those. It's sufficient for uniqueness.
1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1150 * signatures for ATA and ATAPI devices attached on SerialATA,
1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1152 * spec has never mentioned about using different signatures
1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1154 * Multiplier specification began to use 0x69/0x96 to identify
1155 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1157 * 0x69/0x96 shortly and described them as reserved for
1158 * SerialATA.
1160 * We follow the current spec and consider that 0x69/0x96
1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1163 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1164 DPRINTK("found ATA device by sig\n");
1165 return ATA_DEV_ATA;
1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1169 DPRINTK("found ATAPI device by sig\n");
1170 return ATA_DEV_ATAPI;
1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1174 DPRINTK("found PMP device by sig\n");
1175 return ATA_DEV_PMP;
1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1179 printk(KERN_INFO "ata: SEMB device ignored\n");
1180 return ATA_DEV_SEMB_UNSUP; /* not yet */
1183 DPRINTK("unknown device\n");
1184 return ATA_DEV_UNKNOWN;
1188 * ata_id_string - Convert IDENTIFY DEVICE page into string
1189 * @id: IDENTIFY DEVICE results we will examine
1190 * @s: string into which data is output
1191 * @ofs: offset into identify device page
1192 * @len: length of string to return. must be an even number.
1194 * The strings in the IDENTIFY DEVICE page are broken up into
1195 * 16-bit chunks. Run through the string, and output each
1196 * 8-bit chunk linearly, regardless of platform.
1198 * LOCKING:
1199 * caller.
1202 void ata_id_string(const u16 *id, unsigned char *s,
1203 unsigned int ofs, unsigned int len)
1205 unsigned int c;
1207 BUG_ON(len & 1);
1209 while (len > 0) {
1210 c = id[ofs] >> 8;
1211 *s = c;
1212 s++;
1214 c = id[ofs] & 0xff;
1215 *s = c;
1216 s++;
1218 ofs++;
1219 len -= 2;
1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1225 * @id: IDENTIFY DEVICE results we will examine
1226 * @s: string into which data is output
1227 * @ofs: offset into identify device page
1228 * @len: length of string to return. must be an odd number.
1230 * This function is identical to ata_id_string except that it
1231 * trims trailing spaces and terminates the resulting string with
1232 * null. @len must be actual maximum length (even number) + 1.
1234 * LOCKING:
1235 * caller.
1237 void ata_id_c_string(const u16 *id, unsigned char *s,
1238 unsigned int ofs, unsigned int len)
1240 unsigned char *p;
1242 ata_id_string(id, s, ofs, len - 1);
1244 p = s + strnlen(s, len - 1);
1245 while (p > s && p[-1] == ' ')
1246 p--;
1247 *p = '\0';
1250 static u64 ata_id_n_sectors(const u16 *id)
1252 if (ata_id_has_lba(id)) {
1253 if (ata_id_has_lba48(id))
1254 return ata_id_u64(id, 100);
1255 else
1256 return ata_id_u32(id, 60);
1257 } else {
1258 if (ata_id_current_chs_valid(id))
1259 return ata_id_u32(id, 57);
1260 else
1261 return id[1] * id[3] * id[6];
1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1267 u64 sectors = 0;
1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1271 sectors |= (tf->hob_lbal & 0xff) << 24;
1272 sectors |= (tf->lbah & 0xff) << 16;
1273 sectors |= (tf->lbam & 0xff) << 8;
1274 sectors |= (tf->lbal & 0xff);
1276 return sectors;
1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1281 u64 sectors = 0;
1283 sectors |= (tf->device & 0x0f) << 24;
1284 sectors |= (tf->lbah & 0xff) << 16;
1285 sectors |= (tf->lbam & 0xff) << 8;
1286 sectors |= (tf->lbal & 0xff);
1288 return sectors;
1292 * ata_read_native_max_address - Read native max address
1293 * @dev: target device
1294 * @max_sectors: out parameter for the result native max address
1296 * Perform an LBA48 or LBA28 native size query upon the device in
1297 * question.
1299 * RETURNS:
1300 * 0 on success, -EACCES if command is aborted by the drive.
1301 * -EIO on other errors.
1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1305 unsigned int err_mask;
1306 struct ata_taskfile tf;
1307 int lba48 = ata_id_has_lba48(dev->id);
1309 ata_tf_init(dev, &tf);
1311 /* always clear all address registers */
1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1314 if (lba48) {
1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1316 tf.flags |= ATA_TFLAG_LBA48;
1317 } else
1318 tf.command = ATA_CMD_READ_NATIVE_MAX;
1320 tf.protocol |= ATA_PROT_NODATA;
1321 tf.device |= ATA_LBA;
1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1324 if (err_mask) {
1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1326 "max address (err_mask=0x%x)\n", err_mask);
1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1328 return -EACCES;
1329 return -EIO;
1332 if (lba48)
1333 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1334 else
1335 *max_sectors = ata_tf_to_lba(&tf) + 1;
1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1337 (*max_sectors)--;
1338 return 0;
1342 * ata_set_max_sectors - Set max sectors
1343 * @dev: target device
1344 * @new_sectors: new max sectors value to set for the device
1346 * Set max sectors of @dev to @new_sectors.
1348 * RETURNS:
1349 * 0 on success, -EACCES if command is aborted or denied (due to
1350 * previous non-volatile SET_MAX) by the drive. -EIO on other
1351 * errors.
1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1355 unsigned int err_mask;
1356 struct ata_taskfile tf;
1357 int lba48 = ata_id_has_lba48(dev->id);
1359 new_sectors--;
1361 ata_tf_init(dev, &tf);
1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1365 if (lba48) {
1366 tf.command = ATA_CMD_SET_MAX_EXT;
1367 tf.flags |= ATA_TFLAG_LBA48;
1369 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1370 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1371 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1372 } else {
1373 tf.command = ATA_CMD_SET_MAX;
1375 tf.device |= (new_sectors >> 24) & 0xf;
1378 tf.protocol |= ATA_PROT_NODATA;
1379 tf.device |= ATA_LBA;
1381 tf.lbal = (new_sectors >> 0) & 0xff;
1382 tf.lbam = (new_sectors >> 8) & 0xff;
1383 tf.lbah = (new_sectors >> 16) & 0xff;
1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1386 if (err_mask) {
1387 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1388 "max address (err_mask=0x%x)\n", err_mask);
1389 if (err_mask == AC_ERR_DEV &&
1390 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1391 return -EACCES;
1392 return -EIO;
1395 return 0;
1399 * ata_hpa_resize - Resize a device with an HPA set
1400 * @dev: Device to resize
1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1403 * it if required to the full size of the media. The caller must check
1404 * the drive has the HPA feature set enabled.
1406 * RETURNS:
1407 * 0 on success, -errno on failure.
1409 static int ata_hpa_resize(struct ata_device *dev)
1411 struct ata_eh_context *ehc = &dev->link->eh_context;
1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1413 u64 sectors = ata_id_n_sectors(dev->id);
1414 u64 native_sectors;
1415 int rc;
1417 /* do we need to do it? */
1418 if (dev->class != ATA_DEV_ATA ||
1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1421 return 0;
1423 /* read native max address */
1424 rc = ata_read_native_max_address(dev, &native_sectors);
1425 if (rc) {
1426 /* If device aborted the command or HPA isn't going to
1427 * be unlocked, skip HPA resizing.
1429 if (rc == -EACCES || !ata_ignore_hpa) {
1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1431 "broken, skipping HPA handling\n");
1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1434 /* we can continue if device aborted the command */
1435 if (rc == -EACCES)
1436 rc = 0;
1439 return rc;
1442 /* nothing to do? */
1443 if (native_sectors <= sectors || !ata_ignore_hpa) {
1444 if (!print_info || native_sectors == sectors)
1445 return 0;
1447 if (native_sectors > sectors)
1448 ata_dev_printk(dev, KERN_INFO,
1449 "HPA detected: current %llu, native %llu\n",
1450 (unsigned long long)sectors,
1451 (unsigned long long)native_sectors);
1452 else if (native_sectors < sectors)
1453 ata_dev_printk(dev, KERN_WARNING,
1454 "native sectors (%llu) is smaller than "
1455 "sectors (%llu)\n",
1456 (unsigned long long)native_sectors,
1457 (unsigned long long)sectors);
1458 return 0;
1461 /* let's unlock HPA */
1462 rc = ata_set_max_sectors(dev, native_sectors);
1463 if (rc == -EACCES) {
1464 /* if device aborted the command, skip HPA resizing */
1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1466 "(%llu -> %llu), skipping HPA handling\n",
1467 (unsigned long long)sectors,
1468 (unsigned long long)native_sectors);
1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1470 return 0;
1471 } else if (rc)
1472 return rc;
1474 /* re-read IDENTIFY data */
1475 rc = ata_dev_reread_id(dev, 0);
1476 if (rc) {
1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1478 "data after HPA resizing\n");
1479 return rc;
1482 if (print_info) {
1483 u64 new_sectors = ata_id_n_sectors(dev->id);
1484 ata_dev_printk(dev, KERN_INFO,
1485 "HPA unlocked: %llu -> %llu, native %llu\n",
1486 (unsigned long long)sectors,
1487 (unsigned long long)new_sectors,
1488 (unsigned long long)native_sectors);
1491 return 0;
1495 * ata_dump_id - IDENTIFY DEVICE info debugging output
1496 * @id: IDENTIFY DEVICE page to dump
1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1499 * page.
1501 * LOCKING:
1502 * caller.
1505 static inline void ata_dump_id(const u16 *id)
1507 DPRINTK("49==0x%04x "
1508 "53==0x%04x "
1509 "63==0x%04x "
1510 "64==0x%04x "
1511 "75==0x%04x \n",
1512 id[49],
1513 id[53],
1514 id[63],
1515 id[64],
1516 id[75]);
1517 DPRINTK("80==0x%04x "
1518 "81==0x%04x "
1519 "82==0x%04x "
1520 "83==0x%04x "
1521 "84==0x%04x \n",
1522 id[80],
1523 id[81],
1524 id[82],
1525 id[83],
1526 id[84]);
1527 DPRINTK("88==0x%04x "
1528 "93==0x%04x\n",
1529 id[88],
1530 id[93]);
1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1535 * @id: IDENTIFY data to compute xfer mask from
1537 * Compute the xfermask for this device. This is not as trivial
1538 * as it seems if we must consider early devices correctly.
1540 * FIXME: pre IDE drive timing (do we care ?).
1542 * LOCKING:
1543 * None.
1545 * RETURNS:
1546 * Computed xfermask
1548 unsigned long ata_id_xfermask(const u16 *id)
1550 unsigned long pio_mask, mwdma_mask, udma_mask;
1552 /* Usual case. Word 53 indicates word 64 is valid */
1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1555 pio_mask <<= 3;
1556 pio_mask |= 0x7;
1557 } else {
1558 /* If word 64 isn't valid then Word 51 high byte holds
1559 * the PIO timing number for the maximum. Turn it into
1560 * a mask.
1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1563 if (mode < 5) /* Valid PIO range */
1564 pio_mask = (2 << mode) - 1;
1565 else
1566 pio_mask = 1;
1568 /* But wait.. there's more. Design your standards by
1569 * committee and you too can get a free iordy field to
1570 * process. However its the speeds not the modes that
1571 * are supported... Note drivers using the timing API
1572 * will get this right anyway
1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1578 if (ata_id_is_cfa(id)) {
1580 * Process compact flash extended modes
1582 int pio = id[163] & 0x7;
1583 int dma = (id[163] >> 3) & 7;
1585 if (pio)
1586 pio_mask |= (1 << 5);
1587 if (pio > 1)
1588 pio_mask |= (1 << 6);
1589 if (dma)
1590 mwdma_mask |= (1 << 3);
1591 if (dma > 1)
1592 mwdma_mask |= (1 << 4);
1595 udma_mask = 0;
1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1603 * ata_pio_queue_task - Queue port_task
1604 * @ap: The ata_port to queue port_task for
1605 * @fn: workqueue function to be scheduled
1606 * @data: data for @fn to use
1607 * @delay: delay time in msecs for workqueue function
1609 * Schedule @fn(@data) for execution after @delay jiffies using
1610 * port_task. There is one port_task per port and it's the
1611 * user(low level driver)'s responsibility to make sure that only
1612 * one task is active at any given time.
1614 * libata core layer takes care of synchronization between
1615 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1616 * synchronization.
1618 * LOCKING:
1619 * Inherited from caller.
1621 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1623 ap->port_task_data = data;
1625 /* may fail if ata_port_flush_task() in progress */
1626 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1630 * ata_port_flush_task - Flush port_task
1631 * @ap: The ata_port to flush port_task for
1633 * After this function completes, port_task is guranteed not to
1634 * be running or scheduled.
1636 * LOCKING:
1637 * Kernel thread context (may sleep)
1639 void ata_port_flush_task(struct ata_port *ap)
1641 DPRINTK("ENTER\n");
1643 cancel_rearming_delayed_work(&ap->port_task);
1645 if (ata_msg_ctl(ap))
1646 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1649 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1651 struct completion *waiting = qc->private_data;
1653 complete(waiting);
1657 * ata_exec_internal_sg - execute libata internal command
1658 * @dev: Device to which the command is sent
1659 * @tf: Taskfile registers for the command and the result
1660 * @cdb: CDB for packet command
1661 * @dma_dir: Data tranfer direction of the command
1662 * @sgl: sg list for the data buffer of the command
1663 * @n_elem: Number of sg entries
1664 * @timeout: Timeout in msecs (0 for default)
1666 * Executes libata internal command with timeout. @tf contains
1667 * command on entry and result on return. Timeout and error
1668 * conditions are reported via return value. No recovery action
1669 * is taken after a command times out. It's caller's duty to
1670 * clean up after timeout.
1672 * LOCKING:
1673 * None. Should be called with kernel context, might sleep.
1675 * RETURNS:
1676 * Zero on success, AC_ERR_* mask on failure
1678 unsigned ata_exec_internal_sg(struct ata_device *dev,
1679 struct ata_taskfile *tf, const u8 *cdb,
1680 int dma_dir, struct scatterlist *sgl,
1681 unsigned int n_elem, unsigned long timeout)
1683 struct ata_link *link = dev->link;
1684 struct ata_port *ap = link->ap;
1685 u8 command = tf->command;
1686 int auto_timeout = 0;
1687 struct ata_queued_cmd *qc;
1688 unsigned int tag, preempted_tag;
1689 u32 preempted_sactive, preempted_qc_active;
1690 int preempted_nr_active_links;
1691 DECLARE_COMPLETION_ONSTACK(wait);
1692 unsigned long flags;
1693 unsigned int err_mask;
1694 int rc;
1696 spin_lock_irqsave(ap->lock, flags);
1698 /* no internal command while frozen */
1699 if (ap->pflags & ATA_PFLAG_FROZEN) {
1700 spin_unlock_irqrestore(ap->lock, flags);
1701 return AC_ERR_SYSTEM;
1704 /* initialize internal qc */
1706 /* XXX: Tag 0 is used for drivers with legacy EH as some
1707 * drivers choke if any other tag is given. This breaks
1708 * ata_tag_internal() test for those drivers. Don't use new
1709 * EH stuff without converting to it.
1711 if (ap->ops->error_handler)
1712 tag = ATA_TAG_INTERNAL;
1713 else
1714 tag = 0;
1716 qc = __ata_qc_from_tag(ap, tag);
1718 qc->tag = tag;
1719 qc->scsicmd = NULL;
1720 qc->ap = ap;
1721 qc->dev = dev;
1722 ata_qc_reinit(qc);
1724 preempted_tag = link->active_tag;
1725 preempted_sactive = link->sactive;
1726 preempted_qc_active = ap->qc_active;
1727 preempted_nr_active_links = ap->nr_active_links;
1728 link->active_tag = ATA_TAG_POISON;
1729 link->sactive = 0;
1730 ap->qc_active = 0;
1731 ap->nr_active_links = 0;
1733 /* prepare & issue qc */
1734 qc->tf = *tf;
1735 if (cdb)
1736 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1737 qc->flags |= ATA_QCFLAG_RESULT_TF;
1738 qc->dma_dir = dma_dir;
1739 if (dma_dir != DMA_NONE) {
1740 unsigned int i, buflen = 0;
1741 struct scatterlist *sg;
1743 for_each_sg(sgl, sg, n_elem, i)
1744 buflen += sg->length;
1746 ata_sg_init(qc, sgl, n_elem);
1747 qc->nbytes = buflen;
1750 qc->private_data = &wait;
1751 qc->complete_fn = ata_qc_complete_internal;
1753 ata_qc_issue(qc);
1755 spin_unlock_irqrestore(ap->lock, flags);
1757 if (!timeout) {
1758 if (ata_probe_timeout)
1759 timeout = ata_probe_timeout * 1000;
1760 else {
1761 timeout = ata_internal_cmd_timeout(dev, command);
1762 auto_timeout = 1;
1766 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1768 ata_port_flush_task(ap);
1770 if (!rc) {
1771 spin_lock_irqsave(ap->lock, flags);
1773 /* We're racing with irq here. If we lose, the
1774 * following test prevents us from completing the qc
1775 * twice. If we win, the port is frozen and will be
1776 * cleaned up by ->post_internal_cmd().
1778 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1779 qc->err_mask |= AC_ERR_TIMEOUT;
1781 if (ap->ops->error_handler)
1782 ata_port_freeze(ap);
1783 else
1784 ata_qc_complete(qc);
1786 if (ata_msg_warn(ap))
1787 ata_dev_printk(dev, KERN_WARNING,
1788 "qc timeout (cmd 0x%x)\n", command);
1791 spin_unlock_irqrestore(ap->lock, flags);
1794 /* do post_internal_cmd */
1795 if (ap->ops->post_internal_cmd)
1796 ap->ops->post_internal_cmd(qc);
1798 /* perform minimal error analysis */
1799 if (qc->flags & ATA_QCFLAG_FAILED) {
1800 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1801 qc->err_mask |= AC_ERR_DEV;
1803 if (!qc->err_mask)
1804 qc->err_mask |= AC_ERR_OTHER;
1806 if (qc->err_mask & ~AC_ERR_OTHER)
1807 qc->err_mask &= ~AC_ERR_OTHER;
1810 /* finish up */
1811 spin_lock_irqsave(ap->lock, flags);
1813 *tf = qc->result_tf;
1814 err_mask = qc->err_mask;
1816 ata_qc_free(qc);
1817 link->active_tag = preempted_tag;
1818 link->sactive = preempted_sactive;
1819 ap->qc_active = preempted_qc_active;
1820 ap->nr_active_links = preempted_nr_active_links;
1822 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1823 * Until those drivers are fixed, we detect the condition
1824 * here, fail the command with AC_ERR_SYSTEM and reenable the
1825 * port.
1827 * Note that this doesn't change any behavior as internal
1828 * command failure results in disabling the device in the
1829 * higher layer for LLDDs without new reset/EH callbacks.
1831 * Kill the following code as soon as those drivers are fixed.
1833 if (ap->flags & ATA_FLAG_DISABLED) {
1834 err_mask |= AC_ERR_SYSTEM;
1835 ata_port_probe(ap);
1838 spin_unlock_irqrestore(ap->lock, flags);
1840 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1841 ata_internal_cmd_timed_out(dev, command);
1843 return err_mask;
1847 * ata_exec_internal - execute libata internal command
1848 * @dev: Device to which the command is sent
1849 * @tf: Taskfile registers for the command and the result
1850 * @cdb: CDB for packet command
1851 * @dma_dir: Data tranfer direction of the command
1852 * @buf: Data buffer of the command
1853 * @buflen: Length of data buffer
1854 * @timeout: Timeout in msecs (0 for default)
1856 * Wrapper around ata_exec_internal_sg() which takes simple
1857 * buffer instead of sg list.
1859 * LOCKING:
1860 * None. Should be called with kernel context, might sleep.
1862 * RETURNS:
1863 * Zero on success, AC_ERR_* mask on failure
1865 unsigned ata_exec_internal(struct ata_device *dev,
1866 struct ata_taskfile *tf, const u8 *cdb,
1867 int dma_dir, void *buf, unsigned int buflen,
1868 unsigned long timeout)
1870 struct scatterlist *psg = NULL, sg;
1871 unsigned int n_elem = 0;
1873 if (dma_dir != DMA_NONE) {
1874 WARN_ON(!buf);
1875 sg_init_one(&sg, buf, buflen);
1876 psg = &sg;
1877 n_elem++;
1880 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1881 timeout);
1885 * ata_do_simple_cmd - execute simple internal command
1886 * @dev: Device to which the command is sent
1887 * @cmd: Opcode to execute
1889 * Execute a 'simple' command, that only consists of the opcode
1890 * 'cmd' itself, without filling any other registers
1892 * LOCKING:
1893 * Kernel thread context (may sleep).
1895 * RETURNS:
1896 * Zero on success, AC_ERR_* mask on failure
1898 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1900 struct ata_taskfile tf;
1902 ata_tf_init(dev, &tf);
1904 tf.command = cmd;
1905 tf.flags |= ATA_TFLAG_DEVICE;
1906 tf.protocol = ATA_PROT_NODATA;
1908 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1912 * ata_pio_need_iordy - check if iordy needed
1913 * @adev: ATA device
1915 * Check if the current speed of the device requires IORDY. Used
1916 * by various controllers for chip configuration.
1919 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1921 /* Controller doesn't support IORDY. Probably a pointless check
1922 as the caller should know this */
1923 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1924 return 0;
1925 /* PIO3 and higher it is mandatory */
1926 if (adev->pio_mode > XFER_PIO_2)
1927 return 1;
1928 /* We turn it on when possible */
1929 if (ata_id_has_iordy(adev->id))
1930 return 1;
1931 return 0;
1935 * ata_pio_mask_no_iordy - Return the non IORDY mask
1936 * @adev: ATA device
1938 * Compute the highest mode possible if we are not using iordy. Return
1939 * -1 if no iordy mode is available.
1942 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1944 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1945 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1946 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1947 /* Is the speed faster than the drive allows non IORDY ? */
1948 if (pio) {
1949 /* This is cycle times not frequency - watch the logic! */
1950 if (pio > 240) /* PIO2 is 240nS per cycle */
1951 return 3 << ATA_SHIFT_PIO;
1952 return 7 << ATA_SHIFT_PIO;
1955 return 3 << ATA_SHIFT_PIO;
1959 * ata_do_dev_read_id - default ID read method
1960 * @dev: device
1961 * @tf: proposed taskfile
1962 * @id: data buffer
1964 * Issue the identify taskfile and hand back the buffer containing
1965 * identify data. For some RAID controllers and for pre ATA devices
1966 * this function is wrapped or replaced by the driver
1968 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1969 struct ata_taskfile *tf, u16 *id)
1971 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1972 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1976 * ata_dev_read_id - Read ID data from the specified device
1977 * @dev: target device
1978 * @p_class: pointer to class of the target device (may be changed)
1979 * @flags: ATA_READID_* flags
1980 * @id: buffer to read IDENTIFY data into
1982 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1983 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1984 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1985 * for pre-ATA4 drives.
1987 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1988 * now we abort if we hit that case.
1990 * LOCKING:
1991 * Kernel thread context (may sleep)
1993 * RETURNS:
1994 * 0 on success, -errno otherwise.
1996 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1997 unsigned int flags, u16 *id)
1999 struct ata_port *ap = dev->link->ap;
2000 unsigned int class = *p_class;
2001 struct ata_taskfile tf;
2002 unsigned int err_mask = 0;
2003 const char *reason;
2004 int may_fallback = 1, tried_spinup = 0;
2005 int rc;
2007 if (ata_msg_ctl(ap))
2008 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2010 retry:
2011 ata_tf_init(dev, &tf);
2013 switch (class) {
2014 case ATA_DEV_ATA:
2015 tf.command = ATA_CMD_ID_ATA;
2016 break;
2017 case ATA_DEV_ATAPI:
2018 tf.command = ATA_CMD_ID_ATAPI;
2019 break;
2020 default:
2021 rc = -ENODEV;
2022 reason = "unsupported class";
2023 goto err_out;
2026 tf.protocol = ATA_PROT_PIO;
2028 /* Some devices choke if TF registers contain garbage. Make
2029 * sure those are properly initialized.
2031 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2033 /* Device presence detection is unreliable on some
2034 * controllers. Always poll IDENTIFY if available.
2036 tf.flags |= ATA_TFLAG_POLLING;
2038 if (ap->ops->read_id)
2039 err_mask = ap->ops->read_id(dev, &tf, id);
2040 else
2041 err_mask = ata_do_dev_read_id(dev, &tf, id);
2043 if (err_mask) {
2044 if (err_mask & AC_ERR_NODEV_HINT) {
2045 ata_dev_printk(dev, KERN_DEBUG,
2046 "NODEV after polling detection\n");
2047 return -ENOENT;
2050 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2051 /* Device or controller might have reported
2052 * the wrong device class. Give a shot at the
2053 * other IDENTIFY if the current one is
2054 * aborted by the device.
2056 if (may_fallback) {
2057 may_fallback = 0;
2059 if (class == ATA_DEV_ATA)
2060 class = ATA_DEV_ATAPI;
2061 else
2062 class = ATA_DEV_ATA;
2063 goto retry;
2066 /* Control reaches here iff the device aborted
2067 * both flavors of IDENTIFYs which happens
2068 * sometimes with phantom devices.
2070 ata_dev_printk(dev, KERN_DEBUG,
2071 "both IDENTIFYs aborted, assuming NODEV\n");
2072 return -ENOENT;
2075 rc = -EIO;
2076 reason = "I/O error";
2077 goto err_out;
2080 /* Falling back doesn't make sense if ID data was read
2081 * successfully at least once.
2083 may_fallback = 0;
2085 swap_buf_le16(id, ATA_ID_WORDS);
2087 /* sanity check */
2088 rc = -EINVAL;
2089 reason = "device reports invalid type";
2091 if (class == ATA_DEV_ATA) {
2092 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2093 goto err_out;
2094 } else {
2095 if (ata_id_is_ata(id))
2096 goto err_out;
2099 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2100 tried_spinup = 1;
2102 * Drive powered-up in standby mode, and requires a specific
2103 * SET_FEATURES spin-up subcommand before it will accept
2104 * anything other than the original IDENTIFY command.
2106 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2107 if (err_mask && id[2] != 0x738c) {
2108 rc = -EIO;
2109 reason = "SPINUP failed";
2110 goto err_out;
2113 * If the drive initially returned incomplete IDENTIFY info,
2114 * we now must reissue the IDENTIFY command.
2116 if (id[2] == 0x37c8)
2117 goto retry;
2120 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2122 * The exact sequence expected by certain pre-ATA4 drives is:
2123 * SRST RESET
2124 * IDENTIFY (optional in early ATA)
2125 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2126 * anything else..
2127 * Some drives were very specific about that exact sequence.
2129 * Note that ATA4 says lba is mandatory so the second check
2130 * shoud never trigger.
2132 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2133 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2134 if (err_mask) {
2135 rc = -EIO;
2136 reason = "INIT_DEV_PARAMS failed";
2137 goto err_out;
2140 /* current CHS translation info (id[53-58]) might be
2141 * changed. reread the identify device info.
2143 flags &= ~ATA_READID_POSTRESET;
2144 goto retry;
2148 *p_class = class;
2150 return 0;
2152 err_out:
2153 if (ata_msg_warn(ap))
2154 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2155 "(%s, err_mask=0x%x)\n", reason, err_mask);
2156 return rc;
2159 static inline u8 ata_dev_knobble(struct ata_device *dev)
2161 struct ata_port *ap = dev->link->ap;
2162 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2165 static void ata_dev_config_ncq(struct ata_device *dev,
2166 char *desc, size_t desc_sz)
2168 struct ata_port *ap = dev->link->ap;
2169 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2171 if (!ata_id_has_ncq(dev->id)) {
2172 desc[0] = '\0';
2173 return;
2175 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2176 snprintf(desc, desc_sz, "NCQ (not used)");
2177 return;
2179 if (ap->flags & ATA_FLAG_NCQ) {
2180 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2181 dev->flags |= ATA_DFLAG_NCQ;
2184 if (hdepth >= ddepth)
2185 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2186 else
2187 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2191 * ata_dev_configure - Configure the specified ATA/ATAPI device
2192 * @dev: Target device to configure
2194 * Configure @dev according to @dev->id. Generic and low-level
2195 * driver specific fixups are also applied.
2197 * LOCKING:
2198 * Kernel thread context (may sleep)
2200 * RETURNS:
2201 * 0 on success, -errno otherwise
2203 int ata_dev_configure(struct ata_device *dev)
2205 struct ata_port *ap = dev->link->ap;
2206 struct ata_eh_context *ehc = &dev->link->eh_context;
2207 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2208 const u16 *id = dev->id;
2209 unsigned long xfer_mask;
2210 char revbuf[7]; /* XYZ-99\0 */
2211 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2212 char modelbuf[ATA_ID_PROD_LEN+1];
2213 int rc;
2215 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2216 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2217 __func__);
2218 return 0;
2221 if (ata_msg_probe(ap))
2222 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2224 /* set horkage */
2225 dev->horkage |= ata_dev_blacklisted(dev);
2226 ata_force_horkage(dev);
2228 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2229 ata_dev_printk(dev, KERN_INFO,
2230 "unsupported device, disabling\n");
2231 ata_dev_disable(dev);
2232 return 0;
2235 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2236 dev->class == ATA_DEV_ATAPI) {
2237 ata_dev_printk(dev, KERN_WARNING,
2238 "WARNING: ATAPI is %s, device ignored.\n",
2239 atapi_enabled ? "not supported with this driver"
2240 : "disabled");
2241 ata_dev_disable(dev);
2242 return 0;
2245 /* let ACPI work its magic */
2246 rc = ata_acpi_on_devcfg(dev);
2247 if (rc)
2248 return rc;
2250 /* massage HPA, do it early as it might change IDENTIFY data */
2251 rc = ata_hpa_resize(dev);
2252 if (rc)
2253 return rc;
2255 /* print device capabilities */
2256 if (ata_msg_probe(ap))
2257 ata_dev_printk(dev, KERN_DEBUG,
2258 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2259 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2260 __func__,
2261 id[49], id[82], id[83], id[84],
2262 id[85], id[86], id[87], id[88]);
2264 /* initialize to-be-configured parameters */
2265 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2266 dev->max_sectors = 0;
2267 dev->cdb_len = 0;
2268 dev->n_sectors = 0;
2269 dev->cylinders = 0;
2270 dev->heads = 0;
2271 dev->sectors = 0;
2274 * common ATA, ATAPI feature tests
2277 /* find max transfer mode; for printk only */
2278 xfer_mask = ata_id_xfermask(id);
2280 if (ata_msg_probe(ap))
2281 ata_dump_id(id);
2283 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2284 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2285 sizeof(fwrevbuf));
2287 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2288 sizeof(modelbuf));
2290 /* ATA-specific feature tests */
2291 if (dev->class == ATA_DEV_ATA) {
2292 if (ata_id_is_cfa(id)) {
2293 if (id[162] & 1) /* CPRM may make this media unusable */
2294 ata_dev_printk(dev, KERN_WARNING,
2295 "supports DRM functions and may "
2296 "not be fully accessable.\n");
2297 snprintf(revbuf, 7, "CFA");
2298 } else {
2299 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2300 /* Warn the user if the device has TPM extensions */
2301 if (ata_id_has_tpm(id))
2302 ata_dev_printk(dev, KERN_WARNING,
2303 "supports DRM functions and may "
2304 "not be fully accessable.\n");
2307 dev->n_sectors = ata_id_n_sectors(id);
2309 if (dev->id[59] & 0x100)
2310 dev->multi_count = dev->id[59] & 0xff;
2312 if (ata_id_has_lba(id)) {
2313 const char *lba_desc;
2314 char ncq_desc[20];
2316 lba_desc = "LBA";
2317 dev->flags |= ATA_DFLAG_LBA;
2318 if (ata_id_has_lba48(id)) {
2319 dev->flags |= ATA_DFLAG_LBA48;
2320 lba_desc = "LBA48";
2322 if (dev->n_sectors >= (1UL << 28) &&
2323 ata_id_has_flush_ext(id))
2324 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2327 /* config NCQ */
2328 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2330 /* print device info to dmesg */
2331 if (ata_msg_drv(ap) && print_info) {
2332 ata_dev_printk(dev, KERN_INFO,
2333 "%s: %s, %s, max %s\n",
2334 revbuf, modelbuf, fwrevbuf,
2335 ata_mode_string(xfer_mask));
2336 ata_dev_printk(dev, KERN_INFO,
2337 "%Lu sectors, multi %u: %s %s\n",
2338 (unsigned long long)dev->n_sectors,
2339 dev->multi_count, lba_desc, ncq_desc);
2341 } else {
2342 /* CHS */
2344 /* Default translation */
2345 dev->cylinders = id[1];
2346 dev->heads = id[3];
2347 dev->sectors = id[6];
2349 if (ata_id_current_chs_valid(id)) {
2350 /* Current CHS translation is valid. */
2351 dev->cylinders = id[54];
2352 dev->heads = id[55];
2353 dev->sectors = id[56];
2356 /* print device info to dmesg */
2357 if (ata_msg_drv(ap) && print_info) {
2358 ata_dev_printk(dev, KERN_INFO,
2359 "%s: %s, %s, max %s\n",
2360 revbuf, modelbuf, fwrevbuf,
2361 ata_mode_string(xfer_mask));
2362 ata_dev_printk(dev, KERN_INFO,
2363 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2364 (unsigned long long)dev->n_sectors,
2365 dev->multi_count, dev->cylinders,
2366 dev->heads, dev->sectors);
2370 dev->cdb_len = 16;
2373 /* ATAPI-specific feature tests */
2374 else if (dev->class == ATA_DEV_ATAPI) {
2375 const char *cdb_intr_string = "";
2376 const char *atapi_an_string = "";
2377 const char *dma_dir_string = "";
2378 u32 sntf;
2380 rc = atapi_cdb_len(id);
2381 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2382 if (ata_msg_warn(ap))
2383 ata_dev_printk(dev, KERN_WARNING,
2384 "unsupported CDB len\n");
2385 rc = -EINVAL;
2386 goto err_out_nosup;
2388 dev->cdb_len = (unsigned int) rc;
2390 /* Enable ATAPI AN if both the host and device have
2391 * the support. If PMP is attached, SNTF is required
2392 * to enable ATAPI AN to discern between PHY status
2393 * changed notifications and ATAPI ANs.
2395 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2396 (!sata_pmp_attached(ap) ||
2397 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2398 unsigned int err_mask;
2400 /* issue SET feature command to turn this on */
2401 err_mask = ata_dev_set_feature(dev,
2402 SETFEATURES_SATA_ENABLE, SATA_AN);
2403 if (err_mask)
2404 ata_dev_printk(dev, KERN_ERR,
2405 "failed to enable ATAPI AN "
2406 "(err_mask=0x%x)\n", err_mask);
2407 else {
2408 dev->flags |= ATA_DFLAG_AN;
2409 atapi_an_string = ", ATAPI AN";
2413 if (ata_id_cdb_intr(dev->id)) {
2414 dev->flags |= ATA_DFLAG_CDB_INTR;
2415 cdb_intr_string = ", CDB intr";
2418 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2419 dev->flags |= ATA_DFLAG_DMADIR;
2420 dma_dir_string = ", DMADIR";
2423 /* print device info to dmesg */
2424 if (ata_msg_drv(ap) && print_info)
2425 ata_dev_printk(dev, KERN_INFO,
2426 "ATAPI: %s, %s, max %s%s%s%s\n",
2427 modelbuf, fwrevbuf,
2428 ata_mode_string(xfer_mask),
2429 cdb_intr_string, atapi_an_string,
2430 dma_dir_string);
2433 /* determine max_sectors */
2434 dev->max_sectors = ATA_MAX_SECTORS;
2435 if (dev->flags & ATA_DFLAG_LBA48)
2436 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2438 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2439 if (ata_id_has_hipm(dev->id))
2440 dev->flags |= ATA_DFLAG_HIPM;
2441 if (ata_id_has_dipm(dev->id))
2442 dev->flags |= ATA_DFLAG_DIPM;
2445 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2446 200 sectors */
2447 if (ata_dev_knobble(dev)) {
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_printk(dev, KERN_INFO,
2450 "applying bridge limits\n");
2451 dev->udma_mask &= ATA_UDMA5;
2452 dev->max_sectors = ATA_MAX_SECTORS;
2455 if ((dev->class == ATA_DEV_ATAPI) &&
2456 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2457 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2458 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2461 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2462 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2463 dev->max_sectors);
2465 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2466 dev->horkage |= ATA_HORKAGE_IPM;
2468 /* reset link pm_policy for this port to no pm */
2469 ap->pm_policy = MAX_PERFORMANCE;
2472 if (ap->ops->dev_config)
2473 ap->ops->dev_config(dev);
2475 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2476 /* Let the user know. We don't want to disallow opens for
2477 rescue purposes, or in case the vendor is just a blithering
2478 idiot. Do this after the dev_config call as some controllers
2479 with buggy firmware may want to avoid reporting false device
2480 bugs */
2482 if (print_info) {
2483 ata_dev_printk(dev, KERN_WARNING,
2484 "Drive reports diagnostics failure. This may indicate a drive\n");
2485 ata_dev_printk(dev, KERN_WARNING,
2486 "fault or invalid emulation. Contact drive vendor for information.\n");
2490 return 0;
2492 err_out_nosup:
2493 if (ata_msg_probe(ap))
2494 ata_dev_printk(dev, KERN_DEBUG,
2495 "%s: EXIT, err\n", __func__);
2496 return rc;
2500 * ata_cable_40wire - return 40 wire cable type
2501 * @ap: port
2503 * Helper method for drivers which want to hardwire 40 wire cable
2504 * detection.
2507 int ata_cable_40wire(struct ata_port *ap)
2509 return ATA_CBL_PATA40;
2513 * ata_cable_80wire - return 80 wire cable type
2514 * @ap: port
2516 * Helper method for drivers which want to hardwire 80 wire cable
2517 * detection.
2520 int ata_cable_80wire(struct ata_port *ap)
2522 return ATA_CBL_PATA80;
2526 * ata_cable_unknown - return unknown PATA cable.
2527 * @ap: port
2529 * Helper method for drivers which have no PATA cable detection.
2532 int ata_cable_unknown(struct ata_port *ap)
2534 return ATA_CBL_PATA_UNK;
2538 * ata_cable_ignore - return ignored PATA cable.
2539 * @ap: port
2541 * Helper method for drivers which don't use cable type to limit
2542 * transfer mode.
2544 int ata_cable_ignore(struct ata_port *ap)
2546 return ATA_CBL_PATA_IGN;
2550 * ata_cable_sata - return SATA cable type
2551 * @ap: port
2553 * Helper method for drivers which have SATA cables
2556 int ata_cable_sata(struct ata_port *ap)
2558 return ATA_CBL_SATA;
2562 * ata_bus_probe - Reset and probe ATA bus
2563 * @ap: Bus to probe
2565 * Master ATA bus probing function. Initiates a hardware-dependent
2566 * bus reset, then attempts to identify any devices found on
2567 * the bus.
2569 * LOCKING:
2570 * PCI/etc. bus probe sem.
2572 * RETURNS:
2573 * Zero on success, negative errno otherwise.
2576 int ata_bus_probe(struct ata_port *ap)
2578 unsigned int classes[ATA_MAX_DEVICES];
2579 int tries[ATA_MAX_DEVICES];
2580 int rc;
2581 struct ata_device *dev;
2583 ata_port_probe(ap);
2585 ata_link_for_each_dev(dev, &ap->link)
2586 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2588 retry:
2589 ata_link_for_each_dev(dev, &ap->link) {
2590 /* If we issue an SRST then an ATA drive (not ATAPI)
2591 * may change configuration and be in PIO0 timing. If
2592 * we do a hard reset (or are coming from power on)
2593 * this is true for ATA or ATAPI. Until we've set a
2594 * suitable controller mode we should not touch the
2595 * bus as we may be talking too fast.
2597 dev->pio_mode = XFER_PIO_0;
2599 /* If the controller has a pio mode setup function
2600 * then use it to set the chipset to rights. Don't
2601 * touch the DMA setup as that will be dealt with when
2602 * configuring devices.
2604 if (ap->ops->set_piomode)
2605 ap->ops->set_piomode(ap, dev);
2608 /* reset and determine device classes */
2609 ap->ops->phy_reset(ap);
2611 ata_link_for_each_dev(dev, &ap->link) {
2612 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2613 dev->class != ATA_DEV_UNKNOWN)
2614 classes[dev->devno] = dev->class;
2615 else
2616 classes[dev->devno] = ATA_DEV_NONE;
2618 dev->class = ATA_DEV_UNKNOWN;
2621 ata_port_probe(ap);
2623 /* read IDENTIFY page and configure devices. We have to do the identify
2624 specific sequence bass-ackwards so that PDIAG- is released by
2625 the slave device */
2627 ata_link_for_each_dev_reverse(dev, &ap->link) {
2628 if (tries[dev->devno])
2629 dev->class = classes[dev->devno];
2631 if (!ata_dev_enabled(dev))
2632 continue;
2634 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2635 dev->id);
2636 if (rc)
2637 goto fail;
2640 /* Now ask for the cable type as PDIAG- should have been released */
2641 if (ap->ops->cable_detect)
2642 ap->cbl = ap->ops->cable_detect(ap);
2644 /* We may have SATA bridge glue hiding here irrespective of the
2645 reported cable types and sensed types */
2646 ata_link_for_each_dev(dev, &ap->link) {
2647 if (!ata_dev_enabled(dev))
2648 continue;
2649 /* SATA drives indicate we have a bridge. We don't know which
2650 end of the link the bridge is which is a problem */
2651 if (ata_id_is_sata(dev->id))
2652 ap->cbl = ATA_CBL_SATA;
2655 /* After the identify sequence we can now set up the devices. We do
2656 this in the normal order so that the user doesn't get confused */
2658 ata_link_for_each_dev(dev, &ap->link) {
2659 if (!ata_dev_enabled(dev))
2660 continue;
2662 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2663 rc = ata_dev_configure(dev);
2664 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2665 if (rc)
2666 goto fail;
2669 /* configure transfer mode */
2670 rc = ata_set_mode(&ap->link, &dev);
2671 if (rc)
2672 goto fail;
2674 ata_link_for_each_dev(dev, &ap->link)
2675 if (ata_dev_enabled(dev))
2676 return 0;
2678 /* no device present, disable port */
2679 ata_port_disable(ap);
2680 return -ENODEV;
2682 fail:
2683 tries[dev->devno]--;
2685 switch (rc) {
2686 case -EINVAL:
2687 /* eeek, something went very wrong, give up */
2688 tries[dev->devno] = 0;
2689 break;
2691 case -ENODEV:
2692 /* give it just one more chance */
2693 tries[dev->devno] = min(tries[dev->devno], 1);
2694 case -EIO:
2695 if (tries[dev->devno] == 1) {
2696 /* This is the last chance, better to slow
2697 * down than lose it.
2699 sata_down_spd_limit(&ap->link);
2700 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2704 if (!tries[dev->devno])
2705 ata_dev_disable(dev);
2707 goto retry;
2711 * ata_port_probe - Mark port as enabled
2712 * @ap: Port for which we indicate enablement
2714 * Modify @ap data structure such that the system
2715 * thinks that the entire port is enabled.
2717 * LOCKING: host lock, or some other form of
2718 * serialization.
2721 void ata_port_probe(struct ata_port *ap)
2723 ap->flags &= ~ATA_FLAG_DISABLED;
2727 * sata_print_link_status - Print SATA link status
2728 * @link: SATA link to printk link status about
2730 * This function prints link speed and status of a SATA link.
2732 * LOCKING:
2733 * None.
2735 static void sata_print_link_status(struct ata_link *link)
2737 u32 sstatus, scontrol, tmp;
2739 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2740 return;
2741 sata_scr_read(link, SCR_CONTROL, &scontrol);
2743 if (ata_phys_link_online(link)) {
2744 tmp = (sstatus >> 4) & 0xf;
2745 ata_link_printk(link, KERN_INFO,
2746 "SATA link up %s (SStatus %X SControl %X)\n",
2747 sata_spd_string(tmp), sstatus, scontrol);
2748 } else {
2749 ata_link_printk(link, KERN_INFO,
2750 "SATA link down (SStatus %X SControl %X)\n",
2751 sstatus, scontrol);
2756 * ata_dev_pair - return other device on cable
2757 * @adev: device
2759 * Obtain the other device on the same cable, or if none is
2760 * present NULL is returned
2763 struct ata_device *ata_dev_pair(struct ata_device *adev)
2765 struct ata_link *link = adev->link;
2766 struct ata_device *pair = &link->device[1 - adev->devno];
2767 if (!ata_dev_enabled(pair))
2768 return NULL;
2769 return pair;
2773 * ata_port_disable - Disable port.
2774 * @ap: Port to be disabled.
2776 * Modify @ap data structure such that the system
2777 * thinks that the entire port is disabled, and should
2778 * never attempt to probe or communicate with devices
2779 * on this port.
2781 * LOCKING: host lock, or some other form of
2782 * serialization.
2785 void ata_port_disable(struct ata_port *ap)
2787 ap->link.device[0].class = ATA_DEV_NONE;
2788 ap->link.device[1].class = ATA_DEV_NONE;
2789 ap->flags |= ATA_FLAG_DISABLED;
2793 * sata_down_spd_limit - adjust SATA spd limit downward
2794 * @link: Link to adjust SATA spd limit for
2796 * Adjust SATA spd limit of @link downward. Note that this
2797 * function only adjusts the limit. The change must be applied
2798 * using sata_set_spd().
2800 * LOCKING:
2801 * Inherited from caller.
2803 * RETURNS:
2804 * 0 on success, negative errno on failure
2806 int sata_down_spd_limit(struct ata_link *link)
2808 u32 sstatus, spd, mask;
2809 int rc, highbit;
2811 if (!sata_scr_valid(link))
2812 return -EOPNOTSUPP;
2814 /* If SCR can be read, use it to determine the current SPD.
2815 * If not, use cached value in link->sata_spd.
2817 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2818 if (rc == 0)
2819 spd = (sstatus >> 4) & 0xf;
2820 else
2821 spd = link->sata_spd;
2823 mask = link->sata_spd_limit;
2824 if (mask <= 1)
2825 return -EINVAL;
2827 /* unconditionally mask off the highest bit */
2828 highbit = fls(mask) - 1;
2829 mask &= ~(1 << highbit);
2831 /* Mask off all speeds higher than or equal to the current
2832 * one. Force 1.5Gbps if current SPD is not available.
2834 if (spd > 1)
2835 mask &= (1 << (spd - 1)) - 1;
2836 else
2837 mask &= 1;
2839 /* were we already at the bottom? */
2840 if (!mask)
2841 return -EINVAL;
2843 link->sata_spd_limit = mask;
2845 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2846 sata_spd_string(fls(mask)));
2848 return 0;
2851 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2853 struct ata_link *host_link = &link->ap->link;
2854 u32 limit, target, spd;
2856 limit = link->sata_spd_limit;
2858 /* Don't configure downstream link faster than upstream link.
2859 * It doesn't speed up anything and some PMPs choke on such
2860 * configuration.
2862 if (!ata_is_host_link(link) && host_link->sata_spd)
2863 limit &= (1 << host_link->sata_spd) - 1;
2865 if (limit == UINT_MAX)
2866 target = 0;
2867 else
2868 target = fls(limit);
2870 spd = (*scontrol >> 4) & 0xf;
2871 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2873 return spd != target;
2877 * sata_set_spd_needed - is SATA spd configuration needed
2878 * @link: Link in question
2880 * Test whether the spd limit in SControl matches
2881 * @link->sata_spd_limit. This function is used to determine
2882 * whether hardreset is necessary to apply SATA spd
2883 * configuration.
2885 * LOCKING:
2886 * Inherited from caller.
2888 * RETURNS:
2889 * 1 if SATA spd configuration is needed, 0 otherwise.
2891 static int sata_set_spd_needed(struct ata_link *link)
2893 u32 scontrol;
2895 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2896 return 1;
2898 return __sata_set_spd_needed(link, &scontrol);
2902 * sata_set_spd - set SATA spd according to spd limit
2903 * @link: Link to set SATA spd for
2905 * Set SATA spd of @link according to sata_spd_limit.
2907 * LOCKING:
2908 * Inherited from caller.
2910 * RETURNS:
2911 * 0 if spd doesn't need to be changed, 1 if spd has been
2912 * changed. Negative errno if SCR registers are inaccessible.
2914 int sata_set_spd(struct ata_link *link)
2916 u32 scontrol;
2917 int rc;
2919 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2920 return rc;
2922 if (!__sata_set_spd_needed(link, &scontrol))
2923 return 0;
2925 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2926 return rc;
2928 return 1;
2932 * This mode timing computation functionality is ported over from
2933 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2936 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2937 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2938 * for UDMA6, which is currently supported only by Maxtor drives.
2940 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2943 static const struct ata_timing ata_timing[] = {
2944 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2945 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2946 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2947 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2948 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2949 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2950 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2951 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2953 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2954 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2955 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2957 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2958 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2959 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2960 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2961 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2963 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2964 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2965 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2966 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2968 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2969 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2970 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2972 { 0xFF }
2975 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2976 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2978 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2980 q->setup = EZ(t->setup * 1000, T);
2981 q->act8b = EZ(t->act8b * 1000, T);
2982 q->rec8b = EZ(t->rec8b * 1000, T);
2983 q->cyc8b = EZ(t->cyc8b * 1000, T);
2984 q->active = EZ(t->active * 1000, T);
2985 q->recover = EZ(t->recover * 1000, T);
2986 q->cycle = EZ(t->cycle * 1000, T);
2987 q->udma = EZ(t->udma * 1000, UT);
2990 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2991 struct ata_timing *m, unsigned int what)
2993 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2994 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2995 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2996 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2997 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2998 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2999 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3000 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3003 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3005 const struct ata_timing *t = ata_timing;
3007 while (xfer_mode > t->mode)
3008 t++;
3010 if (xfer_mode == t->mode)
3011 return t;
3012 return NULL;
3015 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3016 struct ata_timing *t, int T, int UT)
3018 const struct ata_timing *s;
3019 struct ata_timing p;
3022 * Find the mode.
3025 if (!(s = ata_timing_find_mode(speed)))
3026 return -EINVAL;
3028 memcpy(t, s, sizeof(*s));
3031 * If the drive is an EIDE drive, it can tell us it needs extended
3032 * PIO/MW_DMA cycle timing.
3035 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3036 memset(&p, 0, sizeof(p));
3037 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3038 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3039 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3040 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3041 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3043 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3047 * Convert the timing to bus clock counts.
3050 ata_timing_quantize(t, t, T, UT);
3053 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3054 * S.M.A.R.T * and some other commands. We have to ensure that the
3055 * DMA cycle timing is slower/equal than the fastest PIO timing.
3058 if (speed > XFER_PIO_6) {
3059 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3060 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3064 * Lengthen active & recovery time so that cycle time is correct.
3067 if (t->act8b + t->rec8b < t->cyc8b) {
3068 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3069 t->rec8b = t->cyc8b - t->act8b;
3072 if (t->active + t->recover < t->cycle) {
3073 t->active += (t->cycle - (t->active + t->recover)) / 2;
3074 t->recover = t->cycle - t->active;
3077 /* In a few cases quantisation may produce enough errors to
3078 leave t->cycle too low for the sum of active and recovery
3079 if so we must correct this */
3080 if (t->active + t->recover > t->cycle)
3081 t->cycle = t->active + t->recover;
3083 return 0;
3087 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3088 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3089 * @cycle: cycle duration in ns
3091 * Return matching xfer mode for @cycle. The returned mode is of
3092 * the transfer type specified by @xfer_shift. If @cycle is too
3093 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3094 * than the fastest known mode, the fasted mode is returned.
3096 * LOCKING:
3097 * None.
3099 * RETURNS:
3100 * Matching xfer_mode, 0xff if no match found.
3102 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3104 u8 base_mode = 0xff, last_mode = 0xff;
3105 const struct ata_xfer_ent *ent;
3106 const struct ata_timing *t;
3108 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3109 if (ent->shift == xfer_shift)
3110 base_mode = ent->base;
3112 for (t = ata_timing_find_mode(base_mode);
3113 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3114 unsigned short this_cycle;
3116 switch (xfer_shift) {
3117 case ATA_SHIFT_PIO:
3118 case ATA_SHIFT_MWDMA:
3119 this_cycle = t->cycle;
3120 break;
3121 case ATA_SHIFT_UDMA:
3122 this_cycle = t->udma;
3123 break;
3124 default:
3125 return 0xff;
3128 if (cycle > this_cycle)
3129 break;
3131 last_mode = t->mode;
3134 return last_mode;
3138 * ata_down_xfermask_limit - adjust dev xfer masks downward
3139 * @dev: Device to adjust xfer masks
3140 * @sel: ATA_DNXFER_* selector
3142 * Adjust xfer masks of @dev downward. Note that this function
3143 * does not apply the change. Invoking ata_set_mode() afterwards
3144 * will apply the limit.
3146 * LOCKING:
3147 * Inherited from caller.
3149 * RETURNS:
3150 * 0 on success, negative errno on failure
3152 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3154 char buf[32];
3155 unsigned long orig_mask, xfer_mask;
3156 unsigned long pio_mask, mwdma_mask, udma_mask;
3157 int quiet, highbit;
3159 quiet = !!(sel & ATA_DNXFER_QUIET);
3160 sel &= ~ATA_DNXFER_QUIET;
3162 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3163 dev->mwdma_mask,
3164 dev->udma_mask);
3165 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3167 switch (sel) {
3168 case ATA_DNXFER_PIO:
3169 highbit = fls(pio_mask) - 1;
3170 pio_mask &= ~(1 << highbit);
3171 break;
3173 case ATA_DNXFER_DMA:
3174 if (udma_mask) {
3175 highbit = fls(udma_mask) - 1;
3176 udma_mask &= ~(1 << highbit);
3177 if (!udma_mask)
3178 return -ENOENT;
3179 } else if (mwdma_mask) {
3180 highbit = fls(mwdma_mask) - 1;
3181 mwdma_mask &= ~(1 << highbit);
3182 if (!mwdma_mask)
3183 return -ENOENT;
3185 break;
3187 case ATA_DNXFER_40C:
3188 udma_mask &= ATA_UDMA_MASK_40C;
3189 break;
3191 case ATA_DNXFER_FORCE_PIO0:
3192 pio_mask &= 1;
3193 case ATA_DNXFER_FORCE_PIO:
3194 mwdma_mask = 0;
3195 udma_mask = 0;
3196 break;
3198 default:
3199 BUG();
3202 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3204 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3205 return -ENOENT;
3207 if (!quiet) {
3208 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3209 snprintf(buf, sizeof(buf), "%s:%s",
3210 ata_mode_string(xfer_mask),
3211 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3212 else
3213 snprintf(buf, sizeof(buf), "%s",
3214 ata_mode_string(xfer_mask));
3216 ata_dev_printk(dev, KERN_WARNING,
3217 "limiting speed to %s\n", buf);
3220 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3221 &dev->udma_mask);
3223 return 0;
3226 static int ata_dev_set_mode(struct ata_device *dev)
3228 struct ata_eh_context *ehc = &dev->link->eh_context;
3229 const char *dev_err_whine = "";
3230 int ign_dev_err = 0;
3231 unsigned int err_mask;
3232 int rc;
3234 dev->flags &= ~ATA_DFLAG_PIO;
3235 if (dev->xfer_shift == ATA_SHIFT_PIO)
3236 dev->flags |= ATA_DFLAG_PIO;
3238 err_mask = ata_dev_set_xfermode(dev);
3240 if (err_mask & ~AC_ERR_DEV)
3241 goto fail;
3243 /* revalidate */
3244 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3245 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3246 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3247 if (rc)
3248 return rc;
3250 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3251 /* Old CFA may refuse this command, which is just fine */
3252 if (ata_id_is_cfa(dev->id))
3253 ign_dev_err = 1;
3254 /* Catch several broken garbage emulations plus some pre
3255 ATA devices */
3256 if (ata_id_major_version(dev->id) == 0 &&
3257 dev->pio_mode <= XFER_PIO_2)
3258 ign_dev_err = 1;
3259 /* Some very old devices and some bad newer ones fail
3260 any kind of SET_XFERMODE request but support PIO0-2
3261 timings and no IORDY */
3262 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3263 ign_dev_err = 1;
3265 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3266 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3267 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3268 dev->dma_mode == XFER_MW_DMA_0 &&
3269 (dev->id[63] >> 8) & 1)
3270 ign_dev_err = 1;
3272 /* if the device is actually configured correctly, ignore dev err */
3273 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3274 ign_dev_err = 1;
3276 if (err_mask & AC_ERR_DEV) {
3277 if (!ign_dev_err)
3278 goto fail;
3279 else
3280 dev_err_whine = " (device error ignored)";
3283 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3284 dev->xfer_shift, (int)dev->xfer_mode);
3286 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3287 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3288 dev_err_whine);
3290 return 0;
3292 fail:
3293 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3294 "(err_mask=0x%x)\n", err_mask);
3295 return -EIO;
3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 * @link: link on which timings will be programmed
3301 * @r_failed_dev: out parameter for failed device
3303 * Standard implementation of the function used to tune and set
3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3305 * ata_dev_set_mode() fails, pointer to the failing device is
3306 * returned in @r_failed_dev.
3308 * LOCKING:
3309 * PCI/etc. bus probe sem.
3311 * RETURNS:
3312 * 0 on success, negative errno otherwise
3315 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3317 struct ata_port *ap = link->ap;
3318 struct ata_device *dev;
3319 int rc = 0, used_dma = 0, found = 0;
3321 /* step 1: calculate xfer_mask */
3322 ata_link_for_each_dev(dev, link) {
3323 unsigned long pio_mask, dma_mask;
3324 unsigned int mode_mask;
3326 if (!ata_dev_enabled(dev))
3327 continue;
3329 mode_mask = ATA_DMA_MASK_ATA;
3330 if (dev->class == ATA_DEV_ATAPI)
3331 mode_mask = ATA_DMA_MASK_ATAPI;
3332 else if (ata_id_is_cfa(dev->id))
3333 mode_mask = ATA_DMA_MASK_CFA;
3335 ata_dev_xfermask(dev);
3336 ata_force_xfermask(dev);
3338 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3339 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3341 if (libata_dma_mask & mode_mask)
3342 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3343 else
3344 dma_mask = 0;
3346 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3347 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3349 found = 1;
3350 if (ata_dma_enabled(dev))
3351 used_dma = 1;
3353 if (!found)
3354 goto out;
3356 /* step 2: always set host PIO timings */
3357 ata_link_for_each_dev(dev, link) {
3358 if (!ata_dev_enabled(dev))
3359 continue;
3361 if (dev->pio_mode == 0xff) {
3362 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3363 rc = -EINVAL;
3364 goto out;
3367 dev->xfer_mode = dev->pio_mode;
3368 dev->xfer_shift = ATA_SHIFT_PIO;
3369 if (ap->ops->set_piomode)
3370 ap->ops->set_piomode(ap, dev);
3373 /* step 3: set host DMA timings */
3374 ata_link_for_each_dev(dev, link) {
3375 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3376 continue;
3378 dev->xfer_mode = dev->dma_mode;
3379 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3380 if (ap->ops->set_dmamode)
3381 ap->ops->set_dmamode(ap, dev);
3384 /* step 4: update devices' xfer mode */
3385 ata_link_for_each_dev(dev, link) {
3386 /* don't update suspended devices' xfer mode */
3387 if (!ata_dev_enabled(dev))
3388 continue;
3390 rc = ata_dev_set_mode(dev);
3391 if (rc)
3392 goto out;
3395 /* Record simplex status. If we selected DMA then the other
3396 * host channels are not permitted to do so.
3398 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3399 ap->host->simplex_claimed = ap;
3401 out:
3402 if (rc)
3403 *r_failed_dev = dev;
3404 return rc;
3408 * ata_wait_ready - wait for link to become ready
3409 * @link: link to be waited on
3410 * @deadline: deadline jiffies for the operation
3411 * @check_ready: callback to check link readiness
3413 * Wait for @link to become ready. @check_ready should return
3414 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3415 * link doesn't seem to be occupied, other errno for other error
3416 * conditions.
3418 * Transient -ENODEV conditions are allowed for
3419 * ATA_TMOUT_FF_WAIT.
3421 * LOCKING:
3422 * EH context.
3424 * RETURNS:
3425 * 0 if @linke is ready before @deadline; otherwise, -errno.
3427 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3428 int (*check_ready)(struct ata_link *link))
3430 unsigned long start = jiffies;
3431 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3432 int warned = 0;
3434 /* Slave readiness can't be tested separately from master. On
3435 * M/S emulation configuration, this function should be called
3436 * only on the master and it will handle both master and slave.
3438 WARN_ON(link == link->ap->slave_link);
3440 if (time_after(nodev_deadline, deadline))
3441 nodev_deadline = deadline;
3443 while (1) {
3444 unsigned long now = jiffies;
3445 int ready, tmp;
3447 ready = tmp = check_ready(link);
3448 if (ready > 0)
3449 return 0;
3451 /* -ENODEV could be transient. Ignore -ENODEV if link
3452 * is online. Also, some SATA devices take a long
3453 * time to clear 0xff after reset. For example,
3454 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3455 * GoVault needs even more than that. Wait for
3456 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3458 * Note that some PATA controllers (pata_ali) explode
3459 * if status register is read more than once when
3460 * there's no device attached.
3462 if (ready == -ENODEV) {
3463 if (ata_link_online(link))
3464 ready = 0;
3465 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3466 !ata_link_offline(link) &&
3467 time_before(now, nodev_deadline))
3468 ready = 0;
3471 if (ready)
3472 return ready;
3473 if (time_after(now, deadline))
3474 return -EBUSY;
3476 if (!warned && time_after(now, start + 5 * HZ) &&
3477 (deadline - now > 3 * HZ)) {
3478 ata_link_printk(link, KERN_WARNING,
3479 "link is slow to respond, please be patient "
3480 "(ready=%d)\n", tmp);
3481 warned = 1;
3484 msleep(50);
3489 * ata_wait_after_reset - wait for link to become ready after reset
3490 * @link: link to be waited on
3491 * @deadline: deadline jiffies for the operation
3492 * @check_ready: callback to check link readiness
3494 * Wait for @link to become ready after reset.
3496 * LOCKING:
3497 * EH context.
3499 * RETURNS:
3500 * 0 if @linke is ready before @deadline; otherwise, -errno.
3502 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3503 int (*check_ready)(struct ata_link *link))
3505 msleep(ATA_WAIT_AFTER_RESET);
3507 return ata_wait_ready(link, deadline, check_ready);
3511 * sata_link_debounce - debounce SATA phy status
3512 * @link: ATA link to debounce SATA phy status for
3513 * @params: timing parameters { interval, duratinon, timeout } in msec
3514 * @deadline: deadline jiffies for the operation
3516 * Make sure SStatus of @link reaches stable state, determined by
3517 * holding the same value where DET is not 1 for @duration polled
3518 * every @interval, before @timeout. Timeout constraints the
3519 * beginning of the stable state. Because DET gets stuck at 1 on
3520 * some controllers after hot unplugging, this functions waits
3521 * until timeout then returns 0 if DET is stable at 1.
3523 * @timeout is further limited by @deadline. The sooner of the
3524 * two is used.
3526 * LOCKING:
3527 * Kernel thread context (may sleep)
3529 * RETURNS:
3530 * 0 on success, -errno on failure.
3532 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3533 unsigned long deadline)
3535 unsigned long interval = params[0];
3536 unsigned long duration = params[1];
3537 unsigned long last_jiffies, t;
3538 u32 last, cur;
3539 int rc;
3541 t = ata_deadline(jiffies, params[2]);
3542 if (time_before(t, deadline))
3543 deadline = t;
3545 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3546 return rc;
3547 cur &= 0xf;
3549 last = cur;
3550 last_jiffies = jiffies;
3552 while (1) {
3553 msleep(interval);
3554 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3555 return rc;
3556 cur &= 0xf;
3558 /* DET stable? */
3559 if (cur == last) {
3560 if (cur == 1 && time_before(jiffies, deadline))
3561 continue;
3562 if (time_after(jiffies,
3563 ata_deadline(last_jiffies, duration)))
3564 return 0;
3565 continue;
3568 /* unstable, start over */
3569 last = cur;
3570 last_jiffies = jiffies;
3572 /* Check deadline. If debouncing failed, return
3573 * -EPIPE to tell upper layer to lower link speed.
3575 if (time_after(jiffies, deadline))
3576 return -EPIPE;
3581 * sata_link_resume - resume SATA link
3582 * @link: ATA link to resume SATA
3583 * @params: timing parameters { interval, duratinon, timeout } in msec
3584 * @deadline: deadline jiffies for the operation
3586 * Resume SATA phy @link and debounce it.
3588 * LOCKING:
3589 * Kernel thread context (may sleep)
3591 * RETURNS:
3592 * 0 on success, -errno on failure.
3594 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3595 unsigned long deadline)
3597 u32 scontrol, serror;
3598 int rc;
3600 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3601 return rc;
3603 scontrol = (scontrol & 0x0f0) | 0x300;
3605 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3606 return rc;
3608 /* Some PHYs react badly if SStatus is pounded immediately
3609 * after resuming. Delay 200ms before debouncing.
3611 msleep(200);
3613 if ((rc = sata_link_debounce(link, params, deadline)))
3614 return rc;
3616 /* clear SError, some PHYs require this even for SRST to work */
3617 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3618 rc = sata_scr_write(link, SCR_ERROR, serror);
3620 return rc != -EINVAL ? rc : 0;
3624 * ata_std_prereset - prepare for reset
3625 * @link: ATA link to be reset
3626 * @deadline: deadline jiffies for the operation
3628 * @link is about to be reset. Initialize it. Failure from
3629 * prereset makes libata abort whole reset sequence and give up
3630 * that port, so prereset should be best-effort. It does its
3631 * best to prepare for reset sequence but if things go wrong, it
3632 * should just whine, not fail.
3634 * LOCKING:
3635 * Kernel thread context (may sleep)
3637 * RETURNS:
3638 * 0 on success, -errno otherwise.
3640 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3642 struct ata_port *ap = link->ap;
3643 struct ata_eh_context *ehc = &link->eh_context;
3644 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3645 int rc;
3647 /* if we're about to do hardreset, nothing more to do */
3648 if (ehc->i.action & ATA_EH_HARDRESET)
3649 return 0;
3651 /* if SATA, resume link */
3652 if (ap->flags & ATA_FLAG_SATA) {
3653 rc = sata_link_resume(link, timing, deadline);
3654 /* whine about phy resume failure but proceed */
3655 if (rc && rc != -EOPNOTSUPP)
3656 ata_link_printk(link, KERN_WARNING, "failed to resume "
3657 "link for reset (errno=%d)\n", rc);
3660 /* no point in trying softreset on offline link */
3661 if (ata_phys_link_offline(link))
3662 ehc->i.action &= ~ATA_EH_SOFTRESET;
3664 return 0;
3668 * sata_link_hardreset - reset link via SATA phy reset
3669 * @link: link to reset
3670 * @timing: timing parameters { interval, duratinon, timeout } in msec
3671 * @deadline: deadline jiffies for the operation
3672 * @online: optional out parameter indicating link onlineness
3673 * @check_ready: optional callback to check link readiness
3675 * SATA phy-reset @link using DET bits of SControl register.
3676 * After hardreset, link readiness is waited upon using
3677 * ata_wait_ready() if @check_ready is specified. LLDs are
3678 * allowed to not specify @check_ready and wait itself after this
3679 * function returns. Device classification is LLD's
3680 * responsibility.
3682 * *@online is set to one iff reset succeeded and @link is online
3683 * after reset.
3685 * LOCKING:
3686 * Kernel thread context (may sleep)
3688 * RETURNS:
3689 * 0 on success, -errno otherwise.
3691 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3692 unsigned long deadline,
3693 bool *online, int (*check_ready)(struct ata_link *))
3695 u32 scontrol;
3696 int rc;
3698 DPRINTK("ENTER\n");
3700 if (online)
3701 *online = false;
3703 if (sata_set_spd_needed(link)) {
3704 /* SATA spec says nothing about how to reconfigure
3705 * spd. To be on the safe side, turn off phy during
3706 * reconfiguration. This works for at least ICH7 AHCI
3707 * and Sil3124.
3709 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3710 goto out;
3712 scontrol = (scontrol & 0x0f0) | 0x304;
3714 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3715 goto out;
3717 sata_set_spd(link);
3720 /* issue phy wake/reset */
3721 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3722 goto out;
3724 scontrol = (scontrol & 0x0f0) | 0x301;
3726 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3727 goto out;
3729 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3730 * 10.4.2 says at least 1 ms.
3732 msleep(1);
3734 /* bring link back */
3735 rc = sata_link_resume(link, timing, deadline);
3736 if (rc)
3737 goto out;
3738 /* if link is offline nothing more to do */
3739 if (ata_phys_link_offline(link))
3740 goto out;
3742 /* Link is online. From this point, -ENODEV too is an error. */
3743 if (online)
3744 *online = true;
3746 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3747 /* If PMP is supported, we have to do follow-up SRST.
3748 * Some PMPs don't send D2H Reg FIS after hardreset if
3749 * the first port is empty. Wait only for
3750 * ATA_TMOUT_PMP_SRST_WAIT.
3752 if (check_ready) {
3753 unsigned long pmp_deadline;
3755 pmp_deadline = ata_deadline(jiffies,
3756 ATA_TMOUT_PMP_SRST_WAIT);
3757 if (time_after(pmp_deadline, deadline))
3758 pmp_deadline = deadline;
3759 ata_wait_ready(link, pmp_deadline, check_ready);
3761 rc = -EAGAIN;
3762 goto out;
3765 rc = 0;
3766 if (check_ready)
3767 rc = ata_wait_ready(link, deadline, check_ready);
3768 out:
3769 if (rc && rc != -EAGAIN) {
3770 /* online is set iff link is online && reset succeeded */
3771 if (online)
3772 *online = false;
3773 ata_link_printk(link, KERN_ERR,
3774 "COMRESET failed (errno=%d)\n", rc);
3776 DPRINTK("EXIT, rc=%d\n", rc);
3777 return rc;
3781 * sata_std_hardreset - COMRESET w/o waiting or classification
3782 * @link: link to reset
3783 * @class: resulting class of attached device
3784 * @deadline: deadline jiffies for the operation
3786 * Standard SATA COMRESET w/o waiting or classification.
3788 * LOCKING:
3789 * Kernel thread context (may sleep)
3791 * RETURNS:
3792 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3794 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3795 unsigned long deadline)
3797 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3798 bool online;
3799 int rc;
3801 /* do hardreset */
3802 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3803 return online ? -EAGAIN : rc;
3807 * ata_std_postreset - standard postreset callback
3808 * @link: the target ata_link
3809 * @classes: classes of attached devices
3811 * This function is invoked after a successful reset. Note that
3812 * the device might have been reset more than once using
3813 * different reset methods before postreset is invoked.
3815 * LOCKING:
3816 * Kernel thread context (may sleep)
3818 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3820 u32 serror;
3822 DPRINTK("ENTER\n");
3824 /* reset complete, clear SError */
3825 if (!sata_scr_read(link, SCR_ERROR, &serror))
3826 sata_scr_write(link, SCR_ERROR, serror);
3828 /* print link status */
3829 sata_print_link_status(link);
3831 DPRINTK("EXIT\n");
3835 * ata_dev_same_device - Determine whether new ID matches configured device
3836 * @dev: device to compare against
3837 * @new_class: class of the new device
3838 * @new_id: IDENTIFY page of the new device
3840 * Compare @new_class and @new_id against @dev and determine
3841 * whether @dev is the device indicated by @new_class and
3842 * @new_id.
3844 * LOCKING:
3845 * None.
3847 * RETURNS:
3848 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3850 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3851 const u16 *new_id)
3853 const u16 *old_id = dev->id;
3854 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3855 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3857 if (dev->class != new_class) {
3858 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3859 dev->class, new_class);
3860 return 0;
3863 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3864 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3865 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3866 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3868 if (strcmp(model[0], model[1])) {
3869 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3870 "'%s' != '%s'\n", model[0], model[1]);
3871 return 0;
3874 if (strcmp(serial[0], serial[1])) {
3875 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3876 "'%s' != '%s'\n", serial[0], serial[1]);
3877 return 0;
3880 return 1;
3884 * ata_dev_reread_id - Re-read IDENTIFY data
3885 * @dev: target ATA device
3886 * @readid_flags: read ID flags
3888 * Re-read IDENTIFY page and make sure @dev is still attached to
3889 * the port.
3891 * LOCKING:
3892 * Kernel thread context (may sleep)
3894 * RETURNS:
3895 * 0 on success, negative errno otherwise
3897 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3899 unsigned int class = dev->class;
3900 u16 *id = (void *)dev->link->ap->sector_buf;
3901 int rc;
3903 /* read ID data */
3904 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3905 if (rc)
3906 return rc;
3908 /* is the device still there? */
3909 if (!ata_dev_same_device(dev, class, id))
3910 return -ENODEV;
3912 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3913 return 0;
3917 * ata_dev_revalidate - Revalidate ATA device
3918 * @dev: device to revalidate
3919 * @new_class: new class code
3920 * @readid_flags: read ID flags
3922 * Re-read IDENTIFY page, make sure @dev is still attached to the
3923 * port and reconfigure it according to the new IDENTIFY page.
3925 * LOCKING:
3926 * Kernel thread context (may sleep)
3928 * RETURNS:
3929 * 0 on success, negative errno otherwise
3931 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3932 unsigned int readid_flags)
3934 u64 n_sectors = dev->n_sectors;
3935 int rc;
3937 if (!ata_dev_enabled(dev))
3938 return -ENODEV;
3940 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3941 if (ata_class_enabled(new_class) &&
3942 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3943 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3944 dev->class, new_class);
3945 rc = -ENODEV;
3946 goto fail;
3949 /* re-read ID */
3950 rc = ata_dev_reread_id(dev, readid_flags);
3951 if (rc)
3952 goto fail;
3954 /* configure device according to the new ID */
3955 rc = ata_dev_configure(dev);
3956 if (rc)
3957 goto fail;
3959 /* verify n_sectors hasn't changed */
3960 if (dev->class == ATA_DEV_ATA && n_sectors &&
3961 dev->n_sectors != n_sectors) {
3962 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3963 "%llu != %llu\n",
3964 (unsigned long long)n_sectors,
3965 (unsigned long long)dev->n_sectors);
3967 /* restore original n_sectors */
3968 dev->n_sectors = n_sectors;
3970 rc = -ENODEV;
3971 goto fail;
3974 return 0;
3976 fail:
3977 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3978 return rc;
3981 struct ata_blacklist_entry {
3982 const char *model_num;
3983 const char *model_rev;
3984 unsigned long horkage;
3987 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3988 /* Devices with DMA related problems under Linux */
3989 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3990 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3991 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3992 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3993 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3994 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3995 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3996 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3997 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3998 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3999 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4000 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4001 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4002 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4003 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4004 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4005 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4006 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4007 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4008 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4009 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4010 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4011 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4012 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4013 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4014 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4015 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4016 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4017 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4018 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4019 /* Odd clown on sil3726/4726 PMPs */
4020 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4022 /* Weird ATAPI devices */
4023 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4025 /* Devices we expect to fail diagnostics */
4027 /* Devices where NCQ should be avoided */
4028 /* NCQ is slow */
4029 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4030 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4031 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4032 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4033 /* NCQ is broken */
4034 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4035 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4036 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4037 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4039 /* Blacklist entries taken from Silicon Image 3124/3132
4040 Windows driver .inf file - also several Linux problem reports */
4041 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4042 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4043 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4045 /* devices which puke on READ_NATIVE_MAX */
4046 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4047 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4048 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4049 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4051 /* Devices which report 1 sector over size HPA */
4052 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4053 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4054 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4056 /* Devices which get the IVB wrong */
4057 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4058 /* Maybe we should just blacklist TSSTcorp... */
4059 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4060 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4061 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4062 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4063 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4064 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4066 /* End Marker */
4070 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4072 const char *p;
4073 int len;
4076 * check for trailing wildcard: *\0
4078 p = strchr(patt, wildchar);
4079 if (p && ((*(p + 1)) == 0))
4080 len = p - patt;
4081 else {
4082 len = strlen(name);
4083 if (!len) {
4084 if (!*patt)
4085 return 0;
4086 return -1;
4090 return strncmp(patt, name, len);
4093 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4095 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4096 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4097 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4099 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4100 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4102 while (ad->model_num) {
4103 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4104 if (ad->model_rev == NULL)
4105 return ad->horkage;
4106 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4107 return ad->horkage;
4109 ad++;
4111 return 0;
4114 static int ata_dma_blacklisted(const struct ata_device *dev)
4116 /* We don't support polling DMA.
4117 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4118 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4120 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4121 (dev->flags & ATA_DFLAG_CDB_INTR))
4122 return 1;
4123 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4127 * ata_is_40wire - check drive side detection
4128 * @dev: device
4130 * Perform drive side detection decoding, allowing for device vendors
4131 * who can't follow the documentation.
4134 static int ata_is_40wire(struct ata_device *dev)
4136 if (dev->horkage & ATA_HORKAGE_IVB)
4137 return ata_drive_40wire_relaxed(dev->id);
4138 return ata_drive_40wire(dev->id);
4142 * cable_is_40wire - 40/80/SATA decider
4143 * @ap: port to consider
4145 * This function encapsulates the policy for speed management
4146 * in one place. At the moment we don't cache the result but
4147 * there is a good case for setting ap->cbl to the result when
4148 * we are called with unknown cables (and figuring out if it
4149 * impacts hotplug at all).
4151 * Return 1 if the cable appears to be 40 wire.
4154 static int cable_is_40wire(struct ata_port *ap)
4156 struct ata_link *link;
4157 struct ata_device *dev;
4159 /* If the controller thinks we are 40 wire, we are. */
4160 if (ap->cbl == ATA_CBL_PATA40)
4161 return 1;
4163 /* If the controller thinks we are 80 wire, we are. */
4164 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4165 return 0;
4167 /* If the system is known to be 40 wire short cable (eg
4168 * laptop), then we allow 80 wire modes even if the drive
4169 * isn't sure.
4171 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4172 return 0;
4174 /* If the controller doesn't know, we scan.
4176 * Note: We look for all 40 wire detects at this point. Any
4177 * 80 wire detect is taken to be 80 wire cable because
4178 * - in many setups only the one drive (slave if present) will
4179 * give a valid detect
4180 * - if you have a non detect capable drive you don't want it
4181 * to colour the choice
4183 ata_port_for_each_link(link, ap) {
4184 ata_link_for_each_dev(dev, link) {
4185 if (ata_dev_enabled(dev) && !ata_is_40wire(dev))
4186 return 0;
4189 return 1;
4193 * ata_dev_xfermask - Compute supported xfermask of the given device
4194 * @dev: Device to compute xfermask for
4196 * Compute supported xfermask of @dev and store it in
4197 * dev->*_mask. This function is responsible for applying all
4198 * known limits including host controller limits, device
4199 * blacklist, etc...
4201 * LOCKING:
4202 * None.
4204 static void ata_dev_xfermask(struct ata_device *dev)
4206 struct ata_link *link = dev->link;
4207 struct ata_port *ap = link->ap;
4208 struct ata_host *host = ap->host;
4209 unsigned long xfer_mask;
4211 /* controller modes available */
4212 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4213 ap->mwdma_mask, ap->udma_mask);
4215 /* drive modes available */
4216 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4217 dev->mwdma_mask, dev->udma_mask);
4218 xfer_mask &= ata_id_xfermask(dev->id);
4221 * CFA Advanced TrueIDE timings are not allowed on a shared
4222 * cable
4224 if (ata_dev_pair(dev)) {
4225 /* No PIO5 or PIO6 */
4226 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4227 /* No MWDMA3 or MWDMA 4 */
4228 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4231 if (ata_dma_blacklisted(dev)) {
4232 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4233 ata_dev_printk(dev, KERN_WARNING,
4234 "device is on DMA blacklist, disabling DMA\n");
4237 if ((host->flags & ATA_HOST_SIMPLEX) &&
4238 host->simplex_claimed && host->simplex_claimed != ap) {
4239 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4240 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4241 "other device, disabling DMA\n");
4244 if (ap->flags & ATA_FLAG_NO_IORDY)
4245 xfer_mask &= ata_pio_mask_no_iordy(dev);
4247 if (ap->ops->mode_filter)
4248 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4250 /* Apply cable rule here. Don't apply it early because when
4251 * we handle hot plug the cable type can itself change.
4252 * Check this last so that we know if the transfer rate was
4253 * solely limited by the cable.
4254 * Unknown or 80 wire cables reported host side are checked
4255 * drive side as well. Cases where we know a 40wire cable
4256 * is used safely for 80 are not checked here.
4258 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4259 /* UDMA/44 or higher would be available */
4260 if (cable_is_40wire(ap)) {
4261 ata_dev_printk(dev, KERN_WARNING,
4262 "limited to UDMA/33 due to 40-wire cable\n");
4263 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4266 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4267 &dev->mwdma_mask, &dev->udma_mask);
4271 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4272 * @dev: Device to which command will be sent
4274 * Issue SET FEATURES - XFER MODE command to device @dev
4275 * on port @ap.
4277 * LOCKING:
4278 * PCI/etc. bus probe sem.
4280 * RETURNS:
4281 * 0 on success, AC_ERR_* mask otherwise.
4284 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4286 struct ata_taskfile tf;
4287 unsigned int err_mask;
4289 /* set up set-features taskfile */
4290 DPRINTK("set features - xfer mode\n");
4292 /* Some controllers and ATAPI devices show flaky interrupt
4293 * behavior after setting xfer mode. Use polling instead.
4295 ata_tf_init(dev, &tf);
4296 tf.command = ATA_CMD_SET_FEATURES;
4297 tf.feature = SETFEATURES_XFER;
4298 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4299 tf.protocol = ATA_PROT_NODATA;
4300 /* If we are using IORDY we must send the mode setting command */
4301 if (ata_pio_need_iordy(dev))
4302 tf.nsect = dev->xfer_mode;
4303 /* If the device has IORDY and the controller does not - turn it off */
4304 else if (ata_id_has_iordy(dev->id))
4305 tf.nsect = 0x01;
4306 else /* In the ancient relic department - skip all of this */
4307 return 0;
4309 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4311 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4312 return err_mask;
4315 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4316 * @dev: Device to which command will be sent
4317 * @enable: Whether to enable or disable the feature
4318 * @feature: The sector count represents the feature to set
4320 * Issue SET FEATURES - SATA FEATURES command to device @dev
4321 * on port @ap with sector count
4323 * LOCKING:
4324 * PCI/etc. bus probe sem.
4326 * RETURNS:
4327 * 0 on success, AC_ERR_* mask otherwise.
4329 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4330 u8 feature)
4332 struct ata_taskfile tf;
4333 unsigned int err_mask;
4335 /* set up set-features taskfile */
4336 DPRINTK("set features - SATA features\n");
4338 ata_tf_init(dev, &tf);
4339 tf.command = ATA_CMD_SET_FEATURES;
4340 tf.feature = enable;
4341 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4342 tf.protocol = ATA_PROT_NODATA;
4343 tf.nsect = feature;
4345 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4347 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4348 return err_mask;
4352 * ata_dev_init_params - Issue INIT DEV PARAMS command
4353 * @dev: Device to which command will be sent
4354 * @heads: Number of heads (taskfile parameter)
4355 * @sectors: Number of sectors (taskfile parameter)
4357 * LOCKING:
4358 * Kernel thread context (may sleep)
4360 * RETURNS:
4361 * 0 on success, AC_ERR_* mask otherwise.
4363 static unsigned int ata_dev_init_params(struct ata_device *dev,
4364 u16 heads, u16 sectors)
4366 struct ata_taskfile tf;
4367 unsigned int err_mask;
4369 /* Number of sectors per track 1-255. Number of heads 1-16 */
4370 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4371 return AC_ERR_INVALID;
4373 /* set up init dev params taskfile */
4374 DPRINTK("init dev params \n");
4376 ata_tf_init(dev, &tf);
4377 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4378 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4379 tf.protocol = ATA_PROT_NODATA;
4380 tf.nsect = sectors;
4381 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4383 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4384 /* A clean abort indicates an original or just out of spec drive
4385 and we should continue as we issue the setup based on the
4386 drive reported working geometry */
4387 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4388 err_mask = 0;
4390 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4391 return err_mask;
4395 * ata_sg_clean - Unmap DMA memory associated with command
4396 * @qc: Command containing DMA memory to be released
4398 * Unmap all mapped DMA memory associated with this command.
4400 * LOCKING:
4401 * spin_lock_irqsave(host lock)
4403 void ata_sg_clean(struct ata_queued_cmd *qc)
4405 struct ata_port *ap = qc->ap;
4406 struct scatterlist *sg = qc->sg;
4407 int dir = qc->dma_dir;
4409 WARN_ON(sg == NULL);
4411 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4413 if (qc->n_elem)
4414 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4416 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4417 qc->sg = NULL;
4421 * atapi_check_dma - Check whether ATAPI DMA can be supported
4422 * @qc: Metadata associated with taskfile to check
4424 * Allow low-level driver to filter ATA PACKET commands, returning
4425 * a status indicating whether or not it is OK to use DMA for the
4426 * supplied PACKET command.
4428 * LOCKING:
4429 * spin_lock_irqsave(host lock)
4431 * RETURNS: 0 when ATAPI DMA can be used
4432 * nonzero otherwise
4434 int atapi_check_dma(struct ata_queued_cmd *qc)
4436 struct ata_port *ap = qc->ap;
4438 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4439 * few ATAPI devices choke on such DMA requests.
4441 if (unlikely(qc->nbytes & 15))
4442 return 1;
4444 if (ap->ops->check_atapi_dma)
4445 return ap->ops->check_atapi_dma(qc);
4447 return 0;
4451 * ata_std_qc_defer - Check whether a qc needs to be deferred
4452 * @qc: ATA command in question
4454 * Non-NCQ commands cannot run with any other command, NCQ or
4455 * not. As upper layer only knows the queue depth, we are
4456 * responsible for maintaining exclusion. This function checks
4457 * whether a new command @qc can be issued.
4459 * LOCKING:
4460 * spin_lock_irqsave(host lock)
4462 * RETURNS:
4463 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4465 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4467 struct ata_link *link = qc->dev->link;
4469 if (qc->tf.protocol == ATA_PROT_NCQ) {
4470 if (!ata_tag_valid(link->active_tag))
4471 return 0;
4472 } else {
4473 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4474 return 0;
4477 return ATA_DEFER_LINK;
4480 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4483 * ata_sg_init - Associate command with scatter-gather table.
4484 * @qc: Command to be associated
4485 * @sg: Scatter-gather table.
4486 * @n_elem: Number of elements in s/g table.
4488 * Initialize the data-related elements of queued_cmd @qc
4489 * to point to a scatter-gather table @sg, containing @n_elem
4490 * elements.
4492 * LOCKING:
4493 * spin_lock_irqsave(host lock)
4495 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4496 unsigned int n_elem)
4498 qc->sg = sg;
4499 qc->n_elem = n_elem;
4500 qc->cursg = qc->sg;
4504 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4505 * @qc: Command with scatter-gather table to be mapped.
4507 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4509 * LOCKING:
4510 * spin_lock_irqsave(host lock)
4512 * RETURNS:
4513 * Zero on success, negative on error.
4516 static int ata_sg_setup(struct ata_queued_cmd *qc)
4518 struct ata_port *ap = qc->ap;
4519 unsigned int n_elem;
4521 VPRINTK("ENTER, ata%u\n", ap->print_id);
4523 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4524 if (n_elem < 1)
4525 return -1;
4527 DPRINTK("%d sg elements mapped\n", n_elem);
4529 qc->n_elem = n_elem;
4530 qc->flags |= ATA_QCFLAG_DMAMAP;
4532 return 0;
4536 * swap_buf_le16 - swap halves of 16-bit words in place
4537 * @buf: Buffer to swap
4538 * @buf_words: Number of 16-bit words in buffer.
4540 * Swap halves of 16-bit words if needed to convert from
4541 * little-endian byte order to native cpu byte order, or
4542 * vice-versa.
4544 * LOCKING:
4545 * Inherited from caller.
4547 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4549 #ifdef __BIG_ENDIAN
4550 unsigned int i;
4552 for (i = 0; i < buf_words; i++)
4553 buf[i] = le16_to_cpu(buf[i]);
4554 #endif /* __BIG_ENDIAN */
4558 * ata_qc_new_init - Request an available ATA command, and initialize it
4559 * @dev: Device from whom we request an available command structure
4561 * LOCKING:
4562 * None.
4565 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4567 struct ata_port *ap = dev->link->ap;
4568 struct ata_queued_cmd *qc;
4570 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4571 return NULL;
4573 qc = __ata_qc_from_tag(ap, tag);
4574 if (qc) {
4575 qc->scsicmd = NULL;
4576 qc->ap = ap;
4577 qc->dev = dev;
4578 qc->tag = tag;
4580 ata_qc_reinit(qc);
4583 return qc;
4586 void __ata_qc_complete(struct ata_queued_cmd *qc)
4588 struct ata_port *ap = qc->ap;
4589 struct ata_link *link = qc->dev->link;
4591 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4592 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4594 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4595 ata_sg_clean(qc);
4597 /* command should be marked inactive atomically with qc completion */
4598 if (qc->tf.protocol == ATA_PROT_NCQ) {
4599 link->sactive &= ~(1 << qc->tag);
4600 if (!link->sactive)
4601 ap->nr_active_links--;
4602 } else {
4603 link->active_tag = ATA_TAG_POISON;
4604 ap->nr_active_links--;
4607 /* clear exclusive status */
4608 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4609 ap->excl_link == link))
4610 ap->excl_link = NULL;
4612 /* atapi: mark qc as inactive to prevent the interrupt handler
4613 * from completing the command twice later, before the error handler
4614 * is called. (when rc != 0 and atapi request sense is needed)
4616 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4617 ap->qc_active &= ~(1 << qc->tag);
4619 /* call completion callback */
4620 qc->complete_fn(qc);
4623 static void fill_result_tf(struct ata_queued_cmd *qc)
4625 struct ata_port *ap = qc->ap;
4627 qc->result_tf.flags = qc->tf.flags;
4628 ap->ops->qc_fill_rtf(qc);
4631 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4633 struct ata_device *dev = qc->dev;
4635 if (ata_tag_internal(qc->tag))
4636 return;
4638 if (ata_is_nodata(qc->tf.protocol))
4639 return;
4641 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4642 return;
4644 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4648 * ata_qc_complete - Complete an active ATA command
4649 * @qc: Command to complete
4650 * @err_mask: ATA Status register contents
4652 * Indicate to the mid and upper layers that an ATA
4653 * command has completed, with either an ok or not-ok status.
4655 * LOCKING:
4656 * spin_lock_irqsave(host lock)
4658 void ata_qc_complete(struct ata_queued_cmd *qc)
4660 struct ata_port *ap = qc->ap;
4662 /* XXX: New EH and old EH use different mechanisms to
4663 * synchronize EH with regular execution path.
4665 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4666 * Normal execution path is responsible for not accessing a
4667 * failed qc. libata core enforces the rule by returning NULL
4668 * from ata_qc_from_tag() for failed qcs.
4670 * Old EH depends on ata_qc_complete() nullifying completion
4671 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4672 * not synchronize with interrupt handler. Only PIO task is
4673 * taken care of.
4675 if (ap->ops->error_handler) {
4676 struct ata_device *dev = qc->dev;
4677 struct ata_eh_info *ehi = &dev->link->eh_info;
4679 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4681 if (unlikely(qc->err_mask))
4682 qc->flags |= ATA_QCFLAG_FAILED;
4684 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4685 if (!ata_tag_internal(qc->tag)) {
4686 /* always fill result TF for failed qc */
4687 fill_result_tf(qc);
4688 ata_qc_schedule_eh(qc);
4689 return;
4693 /* read result TF if requested */
4694 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4695 fill_result_tf(qc);
4697 /* Some commands need post-processing after successful
4698 * completion.
4700 switch (qc->tf.command) {
4701 case ATA_CMD_SET_FEATURES:
4702 if (qc->tf.feature != SETFEATURES_WC_ON &&
4703 qc->tf.feature != SETFEATURES_WC_OFF)
4704 break;
4705 /* fall through */
4706 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4707 case ATA_CMD_SET_MULTI: /* multi_count changed */
4708 /* revalidate device */
4709 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4710 ata_port_schedule_eh(ap);
4711 break;
4713 case ATA_CMD_SLEEP:
4714 dev->flags |= ATA_DFLAG_SLEEPING;
4715 break;
4718 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4719 ata_verify_xfer(qc);
4721 __ata_qc_complete(qc);
4722 } else {
4723 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4724 return;
4726 /* read result TF if failed or requested */
4727 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4728 fill_result_tf(qc);
4730 __ata_qc_complete(qc);
4735 * ata_qc_complete_multiple - Complete multiple qcs successfully
4736 * @ap: port in question
4737 * @qc_active: new qc_active mask
4739 * Complete in-flight commands. This functions is meant to be
4740 * called from low-level driver's interrupt routine to complete
4741 * requests normally. ap->qc_active and @qc_active is compared
4742 * and commands are completed accordingly.
4744 * LOCKING:
4745 * spin_lock_irqsave(host lock)
4747 * RETURNS:
4748 * Number of completed commands on success, -errno otherwise.
4750 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4752 int nr_done = 0;
4753 u32 done_mask;
4754 int i;
4756 done_mask = ap->qc_active ^ qc_active;
4758 if (unlikely(done_mask & qc_active)) {
4759 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4760 "(%08x->%08x)\n", ap->qc_active, qc_active);
4761 return -EINVAL;
4764 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4765 struct ata_queued_cmd *qc;
4767 if (!(done_mask & (1 << i)))
4768 continue;
4770 if ((qc = ata_qc_from_tag(ap, i))) {
4771 ata_qc_complete(qc);
4772 nr_done++;
4776 return nr_done;
4780 * ata_qc_issue - issue taskfile to device
4781 * @qc: command to issue to device
4783 * Prepare an ATA command to submission to device.
4784 * This includes mapping the data into a DMA-able
4785 * area, filling in the S/G table, and finally
4786 * writing the taskfile to hardware, starting the command.
4788 * LOCKING:
4789 * spin_lock_irqsave(host lock)
4791 void ata_qc_issue(struct ata_queued_cmd *qc)
4793 struct ata_port *ap = qc->ap;
4794 struct ata_link *link = qc->dev->link;
4795 u8 prot = qc->tf.protocol;
4797 /* Make sure only one non-NCQ command is outstanding. The
4798 * check is skipped for old EH because it reuses active qc to
4799 * request ATAPI sense.
4801 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4803 if (ata_is_ncq(prot)) {
4804 WARN_ON(link->sactive & (1 << qc->tag));
4806 if (!link->sactive)
4807 ap->nr_active_links++;
4808 link->sactive |= 1 << qc->tag;
4809 } else {
4810 WARN_ON(link->sactive);
4812 ap->nr_active_links++;
4813 link->active_tag = qc->tag;
4816 qc->flags |= ATA_QCFLAG_ACTIVE;
4817 ap->qc_active |= 1 << qc->tag;
4819 /* We guarantee to LLDs that they will have at least one
4820 * non-zero sg if the command is a data command.
4822 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4824 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4825 (ap->flags & ATA_FLAG_PIO_DMA)))
4826 if (ata_sg_setup(qc))
4827 goto sg_err;
4829 /* if device is sleeping, schedule reset and abort the link */
4830 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4831 link->eh_info.action |= ATA_EH_RESET;
4832 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4833 ata_link_abort(link);
4834 return;
4837 ap->ops->qc_prep(qc);
4839 qc->err_mask |= ap->ops->qc_issue(qc);
4840 if (unlikely(qc->err_mask))
4841 goto err;
4842 return;
4844 sg_err:
4845 qc->err_mask |= AC_ERR_SYSTEM;
4846 err:
4847 ata_qc_complete(qc);
4851 * sata_scr_valid - test whether SCRs are accessible
4852 * @link: ATA link to test SCR accessibility for
4854 * Test whether SCRs are accessible for @link.
4856 * LOCKING:
4857 * None.
4859 * RETURNS:
4860 * 1 if SCRs are accessible, 0 otherwise.
4862 int sata_scr_valid(struct ata_link *link)
4864 struct ata_port *ap = link->ap;
4866 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4870 * sata_scr_read - read SCR register of the specified port
4871 * @link: ATA link to read SCR for
4872 * @reg: SCR to read
4873 * @val: Place to store read value
4875 * Read SCR register @reg of @link into *@val. This function is
4876 * guaranteed to succeed if @link is ap->link, the cable type of
4877 * the port is SATA and the port implements ->scr_read.
4879 * LOCKING:
4880 * None if @link is ap->link. Kernel thread context otherwise.
4882 * RETURNS:
4883 * 0 on success, negative errno on failure.
4885 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4887 if (ata_is_host_link(link)) {
4888 if (sata_scr_valid(link))
4889 return link->ap->ops->scr_read(link, reg, val);
4890 return -EOPNOTSUPP;
4893 return sata_pmp_scr_read(link, reg, val);
4897 * sata_scr_write - write SCR register of the specified port
4898 * @link: ATA link to write SCR for
4899 * @reg: SCR to write
4900 * @val: value to write
4902 * Write @val to SCR register @reg of @link. This function is
4903 * guaranteed to succeed if @link is ap->link, the cable type of
4904 * the port is SATA and the port implements ->scr_read.
4906 * LOCKING:
4907 * None if @link is ap->link. Kernel thread context otherwise.
4909 * RETURNS:
4910 * 0 on success, negative errno on failure.
4912 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4914 if (ata_is_host_link(link)) {
4915 if (sata_scr_valid(link))
4916 return link->ap->ops->scr_write(link, reg, val);
4917 return -EOPNOTSUPP;
4920 return sata_pmp_scr_write(link, reg, val);
4924 * sata_scr_write_flush - write SCR register of the specified port and flush
4925 * @link: ATA link to write SCR for
4926 * @reg: SCR to write
4927 * @val: value to write
4929 * This function is identical to sata_scr_write() except that this
4930 * function performs flush after writing to the register.
4932 * LOCKING:
4933 * None if @link is ap->link. Kernel thread context otherwise.
4935 * RETURNS:
4936 * 0 on success, negative errno on failure.
4938 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4940 if (ata_is_host_link(link)) {
4941 int rc;
4943 if (sata_scr_valid(link)) {
4944 rc = link->ap->ops->scr_write(link, reg, val);
4945 if (rc == 0)
4946 rc = link->ap->ops->scr_read(link, reg, &val);
4947 return rc;
4949 return -EOPNOTSUPP;
4952 return sata_pmp_scr_write(link, reg, val);
4956 * ata_phys_link_online - test whether the given link is online
4957 * @link: ATA link to test
4959 * Test whether @link is online. Note that this function returns
4960 * 0 if online status of @link cannot be obtained, so
4961 * ata_link_online(link) != !ata_link_offline(link).
4963 * LOCKING:
4964 * None.
4966 * RETURNS:
4967 * True if the port online status is available and online.
4969 bool ata_phys_link_online(struct ata_link *link)
4971 u32 sstatus;
4973 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4974 (sstatus & 0xf) == 0x3)
4975 return true;
4976 return false;
4980 * ata_phys_link_offline - test whether the given link is offline
4981 * @link: ATA link to test
4983 * Test whether @link is offline. Note that this function
4984 * returns 0 if offline status of @link cannot be obtained, so
4985 * ata_link_online(link) != !ata_link_offline(link).
4987 * LOCKING:
4988 * None.
4990 * RETURNS:
4991 * True if the port offline status is available and offline.
4993 bool ata_phys_link_offline(struct ata_link *link)
4995 u32 sstatus;
4997 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4998 (sstatus & 0xf) != 0x3)
4999 return true;
5000 return false;
5004 * ata_link_online - test whether the given link is online
5005 * @link: ATA link to test
5007 * Test whether @link is online. This is identical to
5008 * ata_phys_link_online() when there's no slave link. When
5009 * there's a slave link, this function should only be called on
5010 * the master link and will return true if any of M/S links is
5011 * online.
5013 * LOCKING:
5014 * None.
5016 * RETURNS:
5017 * True if the port online status is available and online.
5019 bool ata_link_online(struct ata_link *link)
5021 struct ata_link *slave = link->ap->slave_link;
5023 WARN_ON(link == slave); /* shouldn't be called on slave link */
5025 return ata_phys_link_online(link) ||
5026 (slave && ata_phys_link_online(slave));
5030 * ata_link_offline - test whether the given link is offline
5031 * @link: ATA link to test
5033 * Test whether @link is offline. This is identical to
5034 * ata_phys_link_offline() when there's no slave link. When
5035 * there's a slave link, this function should only be called on
5036 * the master link and will return true if both M/S links are
5037 * offline.
5039 * LOCKING:
5040 * None.
5042 * RETURNS:
5043 * True if the port offline status is available and offline.
5045 bool ata_link_offline(struct ata_link *link)
5047 struct ata_link *slave = link->ap->slave_link;
5049 WARN_ON(link == slave); /* shouldn't be called on slave link */
5051 return ata_phys_link_offline(link) &&
5052 (!slave || ata_phys_link_offline(slave));
5055 #ifdef CONFIG_PM
5056 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5057 unsigned int action, unsigned int ehi_flags,
5058 int wait)
5060 unsigned long flags;
5061 int i, rc;
5063 for (i = 0; i < host->n_ports; i++) {
5064 struct ata_port *ap = host->ports[i];
5065 struct ata_link *link;
5067 /* Previous resume operation might still be in
5068 * progress. Wait for PM_PENDING to clear.
5070 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5071 ata_port_wait_eh(ap);
5072 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5075 /* request PM ops to EH */
5076 spin_lock_irqsave(ap->lock, flags);
5078 ap->pm_mesg = mesg;
5079 if (wait) {
5080 rc = 0;
5081 ap->pm_result = &rc;
5084 ap->pflags |= ATA_PFLAG_PM_PENDING;
5085 __ata_port_for_each_link(link, ap) {
5086 link->eh_info.action |= action;
5087 link->eh_info.flags |= ehi_flags;
5090 ata_port_schedule_eh(ap);
5092 spin_unlock_irqrestore(ap->lock, flags);
5094 /* wait and check result */
5095 if (wait) {
5096 ata_port_wait_eh(ap);
5097 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5098 if (rc)
5099 return rc;
5103 return 0;
5107 * ata_host_suspend - suspend host
5108 * @host: host to suspend
5109 * @mesg: PM message
5111 * Suspend @host. Actual operation is performed by EH. This
5112 * function requests EH to perform PM operations and waits for EH
5113 * to finish.
5115 * LOCKING:
5116 * Kernel thread context (may sleep).
5118 * RETURNS:
5119 * 0 on success, -errno on failure.
5121 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5123 int rc;
5126 * disable link pm on all ports before requesting
5127 * any pm activity
5129 ata_lpm_enable(host);
5131 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5132 if (rc == 0)
5133 host->dev->power.power_state = mesg;
5134 return rc;
5138 * ata_host_resume - resume host
5139 * @host: host to resume
5141 * Resume @host. Actual operation is performed by EH. This
5142 * function requests EH to perform PM operations and returns.
5143 * Note that all resume operations are performed parallely.
5145 * LOCKING:
5146 * Kernel thread context (may sleep).
5148 void ata_host_resume(struct ata_host *host)
5150 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5151 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5152 host->dev->power.power_state = PMSG_ON;
5154 /* reenable link pm */
5155 ata_lpm_disable(host);
5157 #endif
5160 * ata_port_start - Set port up for dma.
5161 * @ap: Port to initialize
5163 * Called just after data structures for each port are
5164 * initialized. Allocates space for PRD table.
5166 * May be used as the port_start() entry in ata_port_operations.
5168 * LOCKING:
5169 * Inherited from caller.
5171 int ata_port_start(struct ata_port *ap)
5173 struct device *dev = ap->dev;
5175 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5176 GFP_KERNEL);
5177 if (!ap->prd)
5178 return -ENOMEM;
5180 return 0;
5184 * ata_dev_init - Initialize an ata_device structure
5185 * @dev: Device structure to initialize
5187 * Initialize @dev in preparation for probing.
5189 * LOCKING:
5190 * Inherited from caller.
5192 void ata_dev_init(struct ata_device *dev)
5194 struct ata_link *link = ata_dev_phys_link(dev);
5195 struct ata_port *ap = link->ap;
5196 unsigned long flags;
5198 /* SATA spd limit is bound to the attached device, reset together */
5199 link->sata_spd_limit = link->hw_sata_spd_limit;
5200 link->sata_spd = 0;
5202 /* High bits of dev->flags are used to record warm plug
5203 * requests which occur asynchronously. Synchronize using
5204 * host lock.
5206 spin_lock_irqsave(ap->lock, flags);
5207 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5208 dev->horkage = 0;
5209 spin_unlock_irqrestore(ap->lock, flags);
5211 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5212 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5213 dev->pio_mask = UINT_MAX;
5214 dev->mwdma_mask = UINT_MAX;
5215 dev->udma_mask = UINT_MAX;
5219 * ata_link_init - Initialize an ata_link structure
5220 * @ap: ATA port link is attached to
5221 * @link: Link structure to initialize
5222 * @pmp: Port multiplier port number
5224 * Initialize @link.
5226 * LOCKING:
5227 * Kernel thread context (may sleep)
5229 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5231 int i;
5233 /* clear everything except for devices */
5234 memset(link, 0, offsetof(struct ata_link, device[0]));
5236 link->ap = ap;
5237 link->pmp = pmp;
5238 link->active_tag = ATA_TAG_POISON;
5239 link->hw_sata_spd_limit = UINT_MAX;
5241 /* can't use iterator, ap isn't initialized yet */
5242 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5243 struct ata_device *dev = &link->device[i];
5245 dev->link = link;
5246 dev->devno = dev - link->device;
5247 ata_dev_init(dev);
5252 * sata_link_init_spd - Initialize link->sata_spd_limit
5253 * @link: Link to configure sata_spd_limit for
5255 * Initialize @link->[hw_]sata_spd_limit to the currently
5256 * configured value.
5258 * LOCKING:
5259 * Kernel thread context (may sleep).
5261 * RETURNS:
5262 * 0 on success, -errno on failure.
5264 int sata_link_init_spd(struct ata_link *link)
5266 u8 spd;
5267 int rc;
5269 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5270 if (rc)
5271 return rc;
5273 spd = (link->saved_scontrol >> 4) & 0xf;
5274 if (spd)
5275 link->hw_sata_spd_limit &= (1 << spd) - 1;
5277 ata_force_link_limits(link);
5279 link->sata_spd_limit = link->hw_sata_spd_limit;
5281 return 0;
5285 * ata_port_alloc - allocate and initialize basic ATA port resources
5286 * @host: ATA host this allocated port belongs to
5288 * Allocate and initialize basic ATA port resources.
5290 * RETURNS:
5291 * Allocate ATA port on success, NULL on failure.
5293 * LOCKING:
5294 * Inherited from calling layer (may sleep).
5296 struct ata_port *ata_port_alloc(struct ata_host *host)
5298 struct ata_port *ap;
5300 DPRINTK("ENTER\n");
5302 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5303 if (!ap)
5304 return NULL;
5306 ap->pflags |= ATA_PFLAG_INITIALIZING;
5307 ap->lock = &host->lock;
5308 ap->flags = ATA_FLAG_DISABLED;
5309 ap->print_id = -1;
5310 ap->ctl = ATA_DEVCTL_OBS;
5311 ap->host = host;
5312 ap->dev = host->dev;
5313 ap->last_ctl = 0xFF;
5315 #if defined(ATA_VERBOSE_DEBUG)
5316 /* turn on all debugging levels */
5317 ap->msg_enable = 0x00FF;
5318 #elif defined(ATA_DEBUG)
5319 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5320 #else
5321 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5322 #endif
5324 #ifdef CONFIG_ATA_SFF
5325 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5326 #else
5327 INIT_DELAYED_WORK(&ap->port_task, NULL);
5328 #endif
5329 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5330 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5331 INIT_LIST_HEAD(&ap->eh_done_q);
5332 init_waitqueue_head(&ap->eh_wait_q);
5333 init_completion(&ap->park_req_pending);
5334 init_timer_deferrable(&ap->fastdrain_timer);
5335 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5336 ap->fastdrain_timer.data = (unsigned long)ap;
5338 ap->cbl = ATA_CBL_NONE;
5340 ata_link_init(ap, &ap->link, 0);
5342 #ifdef ATA_IRQ_TRAP
5343 ap->stats.unhandled_irq = 1;
5344 ap->stats.idle_irq = 1;
5345 #endif
5346 return ap;
5349 static void ata_host_release(struct device *gendev, void *res)
5351 struct ata_host *host = dev_get_drvdata(gendev);
5352 int i;
5354 for (i = 0; i < host->n_ports; i++) {
5355 struct ata_port *ap = host->ports[i];
5357 if (!ap)
5358 continue;
5360 if (ap->scsi_host)
5361 scsi_host_put(ap->scsi_host);
5363 kfree(ap->pmp_link);
5364 kfree(ap->slave_link);
5365 kfree(ap);
5366 host->ports[i] = NULL;
5369 dev_set_drvdata(gendev, NULL);
5373 * ata_host_alloc - allocate and init basic ATA host resources
5374 * @dev: generic device this host is associated with
5375 * @max_ports: maximum number of ATA ports associated with this host
5377 * Allocate and initialize basic ATA host resources. LLD calls
5378 * this function to allocate a host, initializes it fully and
5379 * attaches it using ata_host_register().
5381 * @max_ports ports are allocated and host->n_ports is
5382 * initialized to @max_ports. The caller is allowed to decrease
5383 * host->n_ports before calling ata_host_register(). The unused
5384 * ports will be automatically freed on registration.
5386 * RETURNS:
5387 * Allocate ATA host on success, NULL on failure.
5389 * LOCKING:
5390 * Inherited from calling layer (may sleep).
5392 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5394 struct ata_host *host;
5395 size_t sz;
5396 int i;
5398 DPRINTK("ENTER\n");
5400 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5401 return NULL;
5403 /* alloc a container for our list of ATA ports (buses) */
5404 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5405 /* alloc a container for our list of ATA ports (buses) */
5406 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5407 if (!host)
5408 goto err_out;
5410 devres_add(dev, host);
5411 dev_set_drvdata(dev, host);
5413 spin_lock_init(&host->lock);
5414 host->dev = dev;
5415 host->n_ports = max_ports;
5417 /* allocate ports bound to this host */
5418 for (i = 0; i < max_ports; i++) {
5419 struct ata_port *ap;
5421 ap = ata_port_alloc(host);
5422 if (!ap)
5423 goto err_out;
5425 ap->port_no = i;
5426 host->ports[i] = ap;
5429 devres_remove_group(dev, NULL);
5430 return host;
5432 err_out:
5433 devres_release_group(dev, NULL);
5434 return NULL;
5438 * ata_host_alloc_pinfo - alloc host and init with port_info array
5439 * @dev: generic device this host is associated with
5440 * @ppi: array of ATA port_info to initialize host with
5441 * @n_ports: number of ATA ports attached to this host
5443 * Allocate ATA host and initialize with info from @ppi. If NULL
5444 * terminated, @ppi may contain fewer entries than @n_ports. The
5445 * last entry will be used for the remaining ports.
5447 * RETURNS:
5448 * Allocate ATA host on success, NULL on failure.
5450 * LOCKING:
5451 * Inherited from calling layer (may sleep).
5453 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5454 const struct ata_port_info * const * ppi,
5455 int n_ports)
5457 const struct ata_port_info *pi;
5458 struct ata_host *host;
5459 int i, j;
5461 host = ata_host_alloc(dev, n_ports);
5462 if (!host)
5463 return NULL;
5465 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5466 struct ata_port *ap = host->ports[i];
5468 if (ppi[j])
5469 pi = ppi[j++];
5471 ap->pio_mask = pi->pio_mask;
5472 ap->mwdma_mask = pi->mwdma_mask;
5473 ap->udma_mask = pi->udma_mask;
5474 ap->flags |= pi->flags;
5475 ap->link.flags |= pi->link_flags;
5476 ap->ops = pi->port_ops;
5478 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5479 host->ops = pi->port_ops;
5482 return host;
5486 * ata_slave_link_init - initialize slave link
5487 * @ap: port to initialize slave link for
5489 * Create and initialize slave link for @ap. This enables slave
5490 * link handling on the port.
5492 * In libata, a port contains links and a link contains devices.
5493 * There is single host link but if a PMP is attached to it,
5494 * there can be multiple fan-out links. On SATA, there's usually
5495 * a single device connected to a link but PATA and SATA
5496 * controllers emulating TF based interface can have two - master
5497 * and slave.
5499 * However, there are a few controllers which don't fit into this
5500 * abstraction too well - SATA controllers which emulate TF
5501 * interface with both master and slave devices but also have
5502 * separate SCR register sets for each device. These controllers
5503 * need separate links for physical link handling
5504 * (e.g. onlineness, link speed) but should be treated like a
5505 * traditional M/S controller for everything else (e.g. command
5506 * issue, softreset).
5508 * slave_link is libata's way of handling this class of
5509 * controllers without impacting core layer too much. For
5510 * anything other than physical link handling, the default host
5511 * link is used for both master and slave. For physical link
5512 * handling, separate @ap->slave_link is used. All dirty details
5513 * are implemented inside libata core layer. From LLD's POV, the
5514 * only difference is that prereset, hardreset and postreset are
5515 * called once more for the slave link, so the reset sequence
5516 * looks like the following.
5518 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5519 * softreset(M) -> postreset(M) -> postreset(S)
5521 * Note that softreset is called only for the master. Softreset
5522 * resets both M/S by definition, so SRST on master should handle
5523 * both (the standard method will work just fine).
5525 * LOCKING:
5526 * Should be called before host is registered.
5528 * RETURNS:
5529 * 0 on success, -errno on failure.
5531 int ata_slave_link_init(struct ata_port *ap)
5533 struct ata_link *link;
5535 WARN_ON(ap->slave_link);
5536 WARN_ON(ap->flags & ATA_FLAG_PMP);
5538 link = kzalloc(sizeof(*link), GFP_KERNEL);
5539 if (!link)
5540 return -ENOMEM;
5542 ata_link_init(ap, link, 1);
5543 ap->slave_link = link;
5544 return 0;
5547 static void ata_host_stop(struct device *gendev, void *res)
5549 struct ata_host *host = dev_get_drvdata(gendev);
5550 int i;
5552 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5554 for (i = 0; i < host->n_ports; i++) {
5555 struct ata_port *ap = host->ports[i];
5557 if (ap->ops->port_stop)
5558 ap->ops->port_stop(ap);
5561 if (host->ops->host_stop)
5562 host->ops->host_stop(host);
5566 * ata_finalize_port_ops - finalize ata_port_operations
5567 * @ops: ata_port_operations to finalize
5569 * An ata_port_operations can inherit from another ops and that
5570 * ops can again inherit from another. This can go on as many
5571 * times as necessary as long as there is no loop in the
5572 * inheritance chain.
5574 * Ops tables are finalized when the host is started. NULL or
5575 * unspecified entries are inherited from the closet ancestor
5576 * which has the method and the entry is populated with it.
5577 * After finalization, the ops table directly points to all the
5578 * methods and ->inherits is no longer necessary and cleared.
5580 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5582 * LOCKING:
5583 * None.
5585 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5587 static DEFINE_SPINLOCK(lock);
5588 const struct ata_port_operations *cur;
5589 void **begin = (void **)ops;
5590 void **end = (void **)&ops->inherits;
5591 void **pp;
5593 if (!ops || !ops->inherits)
5594 return;
5596 spin_lock(&lock);
5598 for (cur = ops->inherits; cur; cur = cur->inherits) {
5599 void **inherit = (void **)cur;
5601 for (pp = begin; pp < end; pp++, inherit++)
5602 if (!*pp)
5603 *pp = *inherit;
5606 for (pp = begin; pp < end; pp++)
5607 if (IS_ERR(*pp))
5608 *pp = NULL;
5610 ops->inherits = NULL;
5612 spin_unlock(&lock);
5616 * ata_host_start - start and freeze ports of an ATA host
5617 * @host: ATA host to start ports for
5619 * Start and then freeze ports of @host. Started status is
5620 * recorded in host->flags, so this function can be called
5621 * multiple times. Ports are guaranteed to get started only
5622 * once. If host->ops isn't initialized yet, its set to the
5623 * first non-dummy port ops.
5625 * LOCKING:
5626 * Inherited from calling layer (may sleep).
5628 * RETURNS:
5629 * 0 if all ports are started successfully, -errno otherwise.
5631 int ata_host_start(struct ata_host *host)
5633 int have_stop = 0;
5634 void *start_dr = NULL;
5635 int i, rc;
5637 if (host->flags & ATA_HOST_STARTED)
5638 return 0;
5640 ata_finalize_port_ops(host->ops);
5642 for (i = 0; i < host->n_ports; i++) {
5643 struct ata_port *ap = host->ports[i];
5645 ata_finalize_port_ops(ap->ops);
5647 if (!host->ops && !ata_port_is_dummy(ap))
5648 host->ops = ap->ops;
5650 if (ap->ops->port_stop)
5651 have_stop = 1;
5654 if (host->ops->host_stop)
5655 have_stop = 1;
5657 if (have_stop) {
5658 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5659 if (!start_dr)
5660 return -ENOMEM;
5663 for (i = 0; i < host->n_ports; i++) {
5664 struct ata_port *ap = host->ports[i];
5666 if (ap->ops->port_start) {
5667 rc = ap->ops->port_start(ap);
5668 if (rc) {
5669 if (rc != -ENODEV)
5670 dev_printk(KERN_ERR, host->dev,
5671 "failed to start port %d "
5672 "(errno=%d)\n", i, rc);
5673 goto err_out;
5676 ata_eh_freeze_port(ap);
5679 if (start_dr)
5680 devres_add(host->dev, start_dr);
5681 host->flags |= ATA_HOST_STARTED;
5682 return 0;
5684 err_out:
5685 while (--i >= 0) {
5686 struct ata_port *ap = host->ports[i];
5688 if (ap->ops->port_stop)
5689 ap->ops->port_stop(ap);
5691 devres_free(start_dr);
5692 return rc;
5696 * ata_sas_host_init - Initialize a host struct
5697 * @host: host to initialize
5698 * @dev: device host is attached to
5699 * @flags: host flags
5700 * @ops: port_ops
5702 * LOCKING:
5703 * PCI/etc. bus probe sem.
5706 /* KILLME - the only user left is ipr */
5707 void ata_host_init(struct ata_host *host, struct device *dev,
5708 unsigned long flags, struct ata_port_operations *ops)
5710 spin_lock_init(&host->lock);
5711 host->dev = dev;
5712 host->flags = flags;
5713 host->ops = ops;
5717 * ata_host_register - register initialized ATA host
5718 * @host: ATA host to register
5719 * @sht: template for SCSI host
5721 * Register initialized ATA host. @host is allocated using
5722 * ata_host_alloc() and fully initialized by LLD. This function
5723 * starts ports, registers @host with ATA and SCSI layers and
5724 * probe registered devices.
5726 * LOCKING:
5727 * Inherited from calling layer (may sleep).
5729 * RETURNS:
5730 * 0 on success, -errno otherwise.
5732 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5734 int i, rc;
5736 /* host must have been started */
5737 if (!(host->flags & ATA_HOST_STARTED)) {
5738 dev_printk(KERN_ERR, host->dev,
5739 "BUG: trying to register unstarted host\n");
5740 WARN_ON(1);
5741 return -EINVAL;
5744 /* Blow away unused ports. This happens when LLD can't
5745 * determine the exact number of ports to allocate at
5746 * allocation time.
5748 for (i = host->n_ports; host->ports[i]; i++)
5749 kfree(host->ports[i]);
5751 /* give ports names and add SCSI hosts */
5752 for (i = 0; i < host->n_ports; i++)
5753 host->ports[i]->print_id = ata_print_id++;
5755 rc = ata_scsi_add_hosts(host, sht);
5756 if (rc)
5757 return rc;
5759 /* associate with ACPI nodes */
5760 ata_acpi_associate(host);
5762 /* set cable, sata_spd_limit and report */
5763 for (i = 0; i < host->n_ports; i++) {
5764 struct ata_port *ap = host->ports[i];
5765 unsigned long xfer_mask;
5767 /* set SATA cable type if still unset */
5768 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5769 ap->cbl = ATA_CBL_SATA;
5771 /* init sata_spd_limit to the current value */
5772 sata_link_init_spd(&ap->link);
5773 if (ap->slave_link)
5774 sata_link_init_spd(ap->slave_link);
5776 /* print per-port info to dmesg */
5777 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5778 ap->udma_mask);
5780 if (!ata_port_is_dummy(ap)) {
5781 ata_port_printk(ap, KERN_INFO,
5782 "%cATA max %s %s\n",
5783 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5784 ata_mode_string(xfer_mask),
5785 ap->link.eh_info.desc);
5786 ata_ehi_clear_desc(&ap->link.eh_info);
5787 } else
5788 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5791 /* perform each probe synchronously */
5792 DPRINTK("probe begin\n");
5793 for (i = 0; i < host->n_ports; i++) {
5794 struct ata_port *ap = host->ports[i];
5796 /* probe */
5797 if (ap->ops->error_handler) {
5798 struct ata_eh_info *ehi = &ap->link.eh_info;
5799 unsigned long flags;
5801 ata_port_probe(ap);
5803 /* kick EH for boot probing */
5804 spin_lock_irqsave(ap->lock, flags);
5806 ehi->probe_mask |= ATA_ALL_DEVICES;
5807 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5808 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5810 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5811 ap->pflags |= ATA_PFLAG_LOADING;
5812 ata_port_schedule_eh(ap);
5814 spin_unlock_irqrestore(ap->lock, flags);
5816 /* wait for EH to finish */
5817 ata_port_wait_eh(ap);
5818 } else {
5819 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5820 rc = ata_bus_probe(ap);
5821 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5823 if (rc) {
5824 /* FIXME: do something useful here?
5825 * Current libata behavior will
5826 * tear down everything when
5827 * the module is removed
5828 * or the h/w is unplugged.
5834 /* probes are done, now scan each port's disk(s) */
5835 DPRINTK("host probe begin\n");
5836 for (i = 0; i < host->n_ports; i++) {
5837 struct ata_port *ap = host->ports[i];
5839 ata_scsi_scan_host(ap, 1);
5842 return 0;
5846 * ata_host_activate - start host, request IRQ and register it
5847 * @host: target ATA host
5848 * @irq: IRQ to request
5849 * @irq_handler: irq_handler used when requesting IRQ
5850 * @irq_flags: irq_flags used when requesting IRQ
5851 * @sht: scsi_host_template to use when registering the host
5853 * After allocating an ATA host and initializing it, most libata
5854 * LLDs perform three steps to activate the host - start host,
5855 * request IRQ and register it. This helper takes necessasry
5856 * arguments and performs the three steps in one go.
5858 * An invalid IRQ skips the IRQ registration and expects the host to
5859 * have set polling mode on the port. In this case, @irq_handler
5860 * should be NULL.
5862 * LOCKING:
5863 * Inherited from calling layer (may sleep).
5865 * RETURNS:
5866 * 0 on success, -errno otherwise.
5868 int ata_host_activate(struct ata_host *host, int irq,
5869 irq_handler_t irq_handler, unsigned long irq_flags,
5870 struct scsi_host_template *sht)
5872 int i, rc;
5874 rc = ata_host_start(host);
5875 if (rc)
5876 return rc;
5878 /* Special case for polling mode */
5879 if (!irq) {
5880 WARN_ON(irq_handler);
5881 return ata_host_register(host, sht);
5884 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5885 dev_driver_string(host->dev), host);
5886 if (rc)
5887 return rc;
5889 for (i = 0; i < host->n_ports; i++)
5890 ata_port_desc(host->ports[i], "irq %d", irq);
5892 rc = ata_host_register(host, sht);
5893 /* if failed, just free the IRQ and leave ports alone */
5894 if (rc)
5895 devm_free_irq(host->dev, irq, host);
5897 return rc;
5901 * ata_port_detach - Detach ATA port in prepration of device removal
5902 * @ap: ATA port to be detached
5904 * Detach all ATA devices and the associated SCSI devices of @ap;
5905 * then, remove the associated SCSI host. @ap is guaranteed to
5906 * be quiescent on return from this function.
5908 * LOCKING:
5909 * Kernel thread context (may sleep).
5911 static void ata_port_detach(struct ata_port *ap)
5913 unsigned long flags;
5914 struct ata_link *link;
5915 struct ata_device *dev;
5917 if (!ap->ops->error_handler)
5918 goto skip_eh;
5920 /* tell EH we're leaving & flush EH */
5921 spin_lock_irqsave(ap->lock, flags);
5922 ap->pflags |= ATA_PFLAG_UNLOADING;
5923 spin_unlock_irqrestore(ap->lock, flags);
5925 ata_port_wait_eh(ap);
5927 /* EH is now guaranteed to see UNLOADING - EH context belongs
5928 * to us. Restore SControl and disable all existing devices.
5930 __ata_port_for_each_link(link, ap) {
5931 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol);
5932 ata_link_for_each_dev(dev, link)
5933 ata_dev_disable(dev);
5936 /* Final freeze & EH. All in-flight commands are aborted. EH
5937 * will be skipped and retrials will be terminated with bad
5938 * target.
5940 spin_lock_irqsave(ap->lock, flags);
5941 ata_port_freeze(ap); /* won't be thawed */
5942 spin_unlock_irqrestore(ap->lock, flags);
5944 ata_port_wait_eh(ap);
5945 cancel_rearming_delayed_work(&ap->hotplug_task);
5947 skip_eh:
5948 /* remove the associated SCSI host */
5949 scsi_remove_host(ap->scsi_host);
5953 * ata_host_detach - Detach all ports of an ATA host
5954 * @host: Host to detach
5956 * Detach all ports of @host.
5958 * LOCKING:
5959 * Kernel thread context (may sleep).
5961 void ata_host_detach(struct ata_host *host)
5963 int i;
5965 for (i = 0; i < host->n_ports; i++)
5966 ata_port_detach(host->ports[i]);
5968 /* the host is dead now, dissociate ACPI */
5969 ata_acpi_dissociate(host);
5972 #ifdef CONFIG_PCI
5975 * ata_pci_remove_one - PCI layer callback for device removal
5976 * @pdev: PCI device that was removed
5978 * PCI layer indicates to libata via this hook that hot-unplug or
5979 * module unload event has occurred. Detach all ports. Resource
5980 * release is handled via devres.
5982 * LOCKING:
5983 * Inherited from PCI layer (may sleep).
5985 void ata_pci_remove_one(struct pci_dev *pdev)
5987 struct device *dev = &pdev->dev;
5988 struct ata_host *host = dev_get_drvdata(dev);
5990 ata_host_detach(host);
5993 /* move to PCI subsystem */
5994 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5996 unsigned long tmp = 0;
5998 switch (bits->width) {
5999 case 1: {
6000 u8 tmp8 = 0;
6001 pci_read_config_byte(pdev, bits->reg, &tmp8);
6002 tmp = tmp8;
6003 break;
6005 case 2: {
6006 u16 tmp16 = 0;
6007 pci_read_config_word(pdev, bits->reg, &tmp16);
6008 tmp = tmp16;
6009 break;
6011 case 4: {
6012 u32 tmp32 = 0;
6013 pci_read_config_dword(pdev, bits->reg, &tmp32);
6014 tmp = tmp32;
6015 break;
6018 default:
6019 return -EINVAL;
6022 tmp &= bits->mask;
6024 return (tmp == bits->val) ? 1 : 0;
6027 #ifdef CONFIG_PM
6028 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6030 pci_save_state(pdev);
6031 pci_disable_device(pdev);
6033 if (mesg.event & PM_EVENT_SLEEP)
6034 pci_set_power_state(pdev, PCI_D3hot);
6037 int ata_pci_device_do_resume(struct pci_dev *pdev)
6039 int rc;
6041 pci_set_power_state(pdev, PCI_D0);
6042 pci_restore_state(pdev);
6044 rc = pcim_enable_device(pdev);
6045 if (rc) {
6046 dev_printk(KERN_ERR, &pdev->dev,
6047 "failed to enable device after resume (%d)\n", rc);
6048 return rc;
6051 pci_set_master(pdev);
6052 return 0;
6055 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6057 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6058 int rc = 0;
6060 rc = ata_host_suspend(host, mesg);
6061 if (rc)
6062 return rc;
6064 ata_pci_device_do_suspend(pdev, mesg);
6066 return 0;
6069 int ata_pci_device_resume(struct pci_dev *pdev)
6071 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6072 int rc;
6074 rc = ata_pci_device_do_resume(pdev);
6075 if (rc == 0)
6076 ata_host_resume(host);
6077 return rc;
6079 #endif /* CONFIG_PM */
6081 #endif /* CONFIG_PCI */
6083 static int __init ata_parse_force_one(char **cur,
6084 struct ata_force_ent *force_ent,
6085 const char **reason)
6087 /* FIXME: Currently, there's no way to tag init const data and
6088 * using __initdata causes build failure on some versions of
6089 * gcc. Once __initdataconst is implemented, add const to the
6090 * following structure.
6092 static struct ata_force_param force_tbl[] __initdata = {
6093 { "40c", .cbl = ATA_CBL_PATA40 },
6094 { "80c", .cbl = ATA_CBL_PATA80 },
6095 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6096 { "unk", .cbl = ATA_CBL_PATA_UNK },
6097 { "ign", .cbl = ATA_CBL_PATA_IGN },
6098 { "sata", .cbl = ATA_CBL_SATA },
6099 { "1.5Gbps", .spd_limit = 1 },
6100 { "3.0Gbps", .spd_limit = 2 },
6101 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6102 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6103 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6104 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6105 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6106 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6107 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6108 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6109 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6110 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6111 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6112 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6113 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6114 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6115 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6116 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6117 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6118 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6119 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6120 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6121 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6122 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6123 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6124 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6125 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6126 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6127 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6128 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6129 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6130 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6131 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6132 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6133 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6134 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6135 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6136 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6137 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6138 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6139 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6141 char *start = *cur, *p = *cur;
6142 char *id, *val, *endp;
6143 const struct ata_force_param *match_fp = NULL;
6144 int nr_matches = 0, i;
6146 /* find where this param ends and update *cur */
6147 while (*p != '\0' && *p != ',')
6148 p++;
6150 if (*p == '\0')
6151 *cur = p;
6152 else
6153 *cur = p + 1;
6155 *p = '\0';
6157 /* parse */
6158 p = strchr(start, ':');
6159 if (!p) {
6160 val = strstrip(start);
6161 goto parse_val;
6163 *p = '\0';
6165 id = strstrip(start);
6166 val = strstrip(p + 1);
6168 /* parse id */
6169 p = strchr(id, '.');
6170 if (p) {
6171 *p++ = '\0';
6172 force_ent->device = simple_strtoul(p, &endp, 10);
6173 if (p == endp || *endp != '\0') {
6174 *reason = "invalid device";
6175 return -EINVAL;
6179 force_ent->port = simple_strtoul(id, &endp, 10);
6180 if (p == endp || *endp != '\0') {
6181 *reason = "invalid port/link";
6182 return -EINVAL;
6185 parse_val:
6186 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6187 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6188 const struct ata_force_param *fp = &force_tbl[i];
6190 if (strncasecmp(val, fp->name, strlen(val)))
6191 continue;
6193 nr_matches++;
6194 match_fp = fp;
6196 if (strcasecmp(val, fp->name) == 0) {
6197 nr_matches = 1;
6198 break;
6202 if (!nr_matches) {
6203 *reason = "unknown value";
6204 return -EINVAL;
6206 if (nr_matches > 1) {
6207 *reason = "ambigious value";
6208 return -EINVAL;
6211 force_ent->param = *match_fp;
6213 return 0;
6216 static void __init ata_parse_force_param(void)
6218 int idx = 0, size = 1;
6219 int last_port = -1, last_device = -1;
6220 char *p, *cur, *next;
6222 /* calculate maximum number of params and allocate force_tbl */
6223 for (p = ata_force_param_buf; *p; p++)
6224 if (*p == ',')
6225 size++;
6227 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6228 if (!ata_force_tbl) {
6229 printk(KERN_WARNING "ata: failed to extend force table, "
6230 "libata.force ignored\n");
6231 return;
6234 /* parse and populate the table */
6235 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6236 const char *reason = "";
6237 struct ata_force_ent te = { .port = -1, .device = -1 };
6239 next = cur;
6240 if (ata_parse_force_one(&next, &te, &reason)) {
6241 printk(KERN_WARNING "ata: failed to parse force "
6242 "parameter \"%s\" (%s)\n",
6243 cur, reason);
6244 continue;
6247 if (te.port == -1) {
6248 te.port = last_port;
6249 te.device = last_device;
6252 ata_force_tbl[idx++] = te;
6254 last_port = te.port;
6255 last_device = te.device;
6258 ata_force_tbl_size = idx;
6261 static int __init ata_init(void)
6263 ata_parse_force_param();
6265 ata_wq = create_workqueue("ata");
6266 if (!ata_wq)
6267 goto free_force_tbl;
6269 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6270 if (!ata_aux_wq)
6271 goto free_wq;
6273 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6274 return 0;
6276 free_wq:
6277 destroy_workqueue(ata_wq);
6278 free_force_tbl:
6279 kfree(ata_force_tbl);
6280 return -ENOMEM;
6283 static void __exit ata_exit(void)
6285 kfree(ata_force_tbl);
6286 destroy_workqueue(ata_wq);
6287 destroy_workqueue(ata_aux_wq);
6290 subsys_initcall(ata_init);
6291 module_exit(ata_exit);
6293 static unsigned long ratelimit_time;
6294 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6296 int ata_ratelimit(void)
6298 int rc;
6299 unsigned long flags;
6301 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6303 if (time_after(jiffies, ratelimit_time)) {
6304 rc = 1;
6305 ratelimit_time = jiffies + (HZ/5);
6306 } else
6307 rc = 0;
6309 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6311 return rc;
6315 * ata_wait_register - wait until register value changes
6316 * @reg: IO-mapped register
6317 * @mask: Mask to apply to read register value
6318 * @val: Wait condition
6319 * @interval: polling interval in milliseconds
6320 * @timeout: timeout in milliseconds
6322 * Waiting for some bits of register to change is a common
6323 * operation for ATA controllers. This function reads 32bit LE
6324 * IO-mapped register @reg and tests for the following condition.
6326 * (*@reg & mask) != val
6328 * If the condition is met, it returns; otherwise, the process is
6329 * repeated after @interval_msec until timeout.
6331 * LOCKING:
6332 * Kernel thread context (may sleep)
6334 * RETURNS:
6335 * The final register value.
6337 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6338 unsigned long interval, unsigned long timeout)
6340 unsigned long deadline;
6341 u32 tmp;
6343 tmp = ioread32(reg);
6345 /* Calculate timeout _after_ the first read to make sure
6346 * preceding writes reach the controller before starting to
6347 * eat away the timeout.
6349 deadline = ata_deadline(jiffies, timeout);
6351 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6352 msleep(interval);
6353 tmp = ioread32(reg);
6356 return tmp;
6360 * Dummy port_ops
6362 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6364 return AC_ERR_SYSTEM;
6367 static void ata_dummy_error_handler(struct ata_port *ap)
6369 /* truly dummy */
6372 struct ata_port_operations ata_dummy_port_ops = {
6373 .qc_prep = ata_noop_qc_prep,
6374 .qc_issue = ata_dummy_qc_issue,
6375 .error_handler = ata_dummy_error_handler,
6378 const struct ata_port_info ata_dummy_port_info = {
6379 .port_ops = &ata_dummy_port_ops,
6383 * libata is essentially a library of internal helper functions for
6384 * low-level ATA host controller drivers. As such, the API/ABI is
6385 * likely to change as new drivers are added and updated.
6386 * Do not depend on ABI/API stability.
6388 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6389 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6390 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6391 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6392 EXPORT_SYMBOL_GPL(sata_port_ops);
6393 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6394 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6395 EXPORT_SYMBOL_GPL(__ata_port_next_link);
6396 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6397 EXPORT_SYMBOL_GPL(ata_host_init);
6398 EXPORT_SYMBOL_GPL(ata_host_alloc);
6399 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6400 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6401 EXPORT_SYMBOL_GPL(ata_host_start);
6402 EXPORT_SYMBOL_GPL(ata_host_register);
6403 EXPORT_SYMBOL_GPL(ata_host_activate);
6404 EXPORT_SYMBOL_GPL(ata_host_detach);
6405 EXPORT_SYMBOL_GPL(ata_sg_init);
6406 EXPORT_SYMBOL_GPL(ata_qc_complete);
6407 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6408 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6409 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6410 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6411 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6412 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6413 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6414 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6415 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6416 EXPORT_SYMBOL_GPL(ata_mode_string);
6417 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6418 EXPORT_SYMBOL_GPL(ata_port_start);
6419 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6420 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6421 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6422 EXPORT_SYMBOL_GPL(ata_port_probe);
6423 EXPORT_SYMBOL_GPL(ata_dev_disable);
6424 EXPORT_SYMBOL_GPL(sata_set_spd);
6425 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6426 EXPORT_SYMBOL_GPL(sata_link_debounce);
6427 EXPORT_SYMBOL_GPL(sata_link_resume);
6428 EXPORT_SYMBOL_GPL(ata_std_prereset);
6429 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6430 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6431 EXPORT_SYMBOL_GPL(ata_std_postreset);
6432 EXPORT_SYMBOL_GPL(ata_dev_classify);
6433 EXPORT_SYMBOL_GPL(ata_dev_pair);
6434 EXPORT_SYMBOL_GPL(ata_port_disable);
6435 EXPORT_SYMBOL_GPL(ata_ratelimit);
6436 EXPORT_SYMBOL_GPL(ata_wait_register);
6437 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6438 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6439 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6440 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6441 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6442 EXPORT_SYMBOL_GPL(sata_scr_valid);
6443 EXPORT_SYMBOL_GPL(sata_scr_read);
6444 EXPORT_SYMBOL_GPL(sata_scr_write);
6445 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6446 EXPORT_SYMBOL_GPL(ata_link_online);
6447 EXPORT_SYMBOL_GPL(ata_link_offline);
6448 #ifdef CONFIG_PM
6449 EXPORT_SYMBOL_GPL(ata_host_suspend);
6450 EXPORT_SYMBOL_GPL(ata_host_resume);
6451 #endif /* CONFIG_PM */
6452 EXPORT_SYMBOL_GPL(ata_id_string);
6453 EXPORT_SYMBOL_GPL(ata_id_c_string);
6454 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6455 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6457 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6458 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6459 EXPORT_SYMBOL_GPL(ata_timing_compute);
6460 EXPORT_SYMBOL_GPL(ata_timing_merge);
6461 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6463 #ifdef CONFIG_PCI
6464 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6465 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6466 #ifdef CONFIG_PM
6467 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6468 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6469 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6470 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6471 #endif /* CONFIG_PM */
6472 #endif /* CONFIG_PCI */
6474 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6475 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6476 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6477 EXPORT_SYMBOL_GPL(ata_port_desc);
6478 #ifdef CONFIG_PCI
6479 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6480 #endif /* CONFIG_PCI */
6481 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6482 EXPORT_SYMBOL_GPL(ata_link_abort);
6483 EXPORT_SYMBOL_GPL(ata_port_abort);
6484 EXPORT_SYMBOL_GPL(ata_port_freeze);
6485 EXPORT_SYMBOL_GPL(sata_async_notification);
6486 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6487 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6488 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6489 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6490 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6491 EXPORT_SYMBOL_GPL(ata_do_eh);
6492 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6494 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6495 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6496 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6497 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6498 EXPORT_SYMBOL_GPL(ata_cable_sata);