x86, cpufreq: remove leftover copymask_copy()
[linux-2.6/mini2440.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
blob8f3c95c7e61f8023b45e290398c19728985f7bd4
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/ftrace.h>
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
41 #include <asm/io.h>
42 #include <asm/msr.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
54 enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
60 #define INTEL_MSR_RANGE (0xffff)
61 #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
63 struct acpi_cpufreq_data {
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
66 unsigned int max_freq;
67 unsigned int resume;
68 unsigned int cpu_feature;
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
73 /* acpi_perf_data is a pointer to percpu data. */
74 static struct acpi_processor_performance *acpi_perf_data;
76 static struct cpufreq_driver acpi_cpufreq_driver;
78 static unsigned int acpi_pstate_strict;
80 static int check_est_cpu(unsigned int cpuid)
82 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
84 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
85 !cpu_has(cpu, X86_FEATURE_EST))
86 return 0;
88 return 1;
91 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
93 struct acpi_processor_performance *perf;
94 int i;
96 perf = data->acpi_data;
98 for (i=0; i<perf->state_count; i++) {
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
102 return 0;
105 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
107 int i;
108 struct acpi_processor_performance *perf;
110 msr &= INTEL_MSR_RANGE;
111 perf = data->acpi_data;
113 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
114 if (msr == perf->states[data->freq_table[i].index].status)
115 return data->freq_table[i].frequency;
117 return data->freq_table[0].frequency;
120 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
122 switch (data->cpu_feature) {
123 case SYSTEM_INTEL_MSR_CAPABLE:
124 return extract_msr(val, data);
125 case SYSTEM_IO_CAPABLE:
126 return extract_io(val, data);
127 default:
128 return 0;
132 struct msr_addr {
133 u32 reg;
136 struct io_addr {
137 u16 port;
138 u8 bit_width;
141 typedef union {
142 struct msr_addr msr;
143 struct io_addr io;
144 } drv_addr_union;
146 struct drv_cmd {
147 unsigned int type;
148 cpumask_var_t mask;
149 drv_addr_union addr;
150 u32 val;
153 static void do_drv_read(struct drv_cmd *cmd)
155 u32 h;
157 switch (cmd->type) {
158 case SYSTEM_INTEL_MSR_CAPABLE:
159 rdmsr(cmd->addr.msr.reg, cmd->val, h);
160 break;
161 case SYSTEM_IO_CAPABLE:
162 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
163 &cmd->val,
164 (u32)cmd->addr.io.bit_width);
165 break;
166 default:
167 break;
171 static void do_drv_write(struct drv_cmd *cmd)
173 u32 lo, hi;
175 switch (cmd->type) {
176 case SYSTEM_INTEL_MSR_CAPABLE:
177 rdmsr(cmd->addr.msr.reg, lo, hi);
178 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179 wrmsr(cmd->addr.msr.reg, lo, hi);
180 break;
181 case SYSTEM_IO_CAPABLE:
182 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183 cmd->val,
184 (u32)cmd->addr.io.bit_width);
185 break;
186 default:
187 break;
191 static void drv_read(struct drv_cmd *cmd)
193 cpumask_t saved_mask = current->cpus_allowed;
194 cmd->val = 0;
196 set_cpus_allowed_ptr(current, cmd->mask);
197 do_drv_read(cmd);
198 set_cpus_allowed_ptr(current, &saved_mask);
201 static void drv_write(struct drv_cmd *cmd)
203 cpumask_t saved_mask = current->cpus_allowed;
204 unsigned int i;
206 for_each_cpu(i, cmd->mask) {
207 set_cpus_allowed_ptr(current, cpumask_of(i));
208 do_drv_write(cmd);
211 set_cpus_allowed_ptr(current, &saved_mask);
212 return;
215 static u32 get_cur_val(const struct cpumask *mask)
217 struct acpi_processor_performance *perf;
218 struct drv_cmd cmd;
220 if (unlikely(cpumask_empty(mask)))
221 return 0;
223 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
224 case SYSTEM_INTEL_MSR_CAPABLE:
225 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
226 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
227 break;
228 case SYSTEM_IO_CAPABLE:
229 cmd.type = SYSTEM_IO_CAPABLE;
230 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
231 cmd.addr.io.port = perf->control_register.address;
232 cmd.addr.io.bit_width = perf->control_register.bit_width;
233 break;
234 default:
235 return 0;
238 drv_read(&cmd);
240 dprintk("get_cur_val = %u\n", cmd.val);
242 return cmd.val;
245 struct perf_cur {
246 union {
247 struct {
248 u32 lo;
249 u32 hi;
250 } split;
251 u64 whole;
252 } aperf_cur, mperf_cur;
256 static long read_measured_perf_ctrs(void *_cur)
258 struct perf_cur *cur = _cur;
260 rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi);
261 rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi);
263 wrmsr(MSR_IA32_APERF, 0, 0);
264 wrmsr(MSR_IA32_MPERF, 0, 0);
266 return 0;
270 * Return the measured active (C0) frequency on this CPU since last call
271 * to this function.
272 * Input: cpu number
273 * Return: Average CPU frequency in terms of max frequency (zero on error)
275 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
276 * over a period of time, while CPU is in C0 state.
277 * IA32_MPERF counts at the rate of max advertised frequency
278 * IA32_APERF counts at the rate of actual CPU frequency
279 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
280 * no meaning should be associated with absolute values of these MSRs.
282 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
283 unsigned int cpu)
285 struct perf_cur cur;
286 unsigned int perf_percent;
287 unsigned int retval;
289 if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur))
290 return 0;
292 #ifdef __i386__
294 * We dont want to do 64 bit divide with 32 bit kernel
295 * Get an approximate value. Return failure in case we cannot get
296 * an approximate value.
298 if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) {
299 int shift_count;
300 u32 h;
302 h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi);
303 shift_count = fls(h);
305 cur.aperf_cur.whole >>= shift_count;
306 cur.mperf_cur.whole >>= shift_count;
309 if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) {
310 int shift_count = 7;
311 cur.aperf_cur.split.lo >>= shift_count;
312 cur.mperf_cur.split.lo >>= shift_count;
315 if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo)
316 perf_percent = (cur.aperf_cur.split.lo * 100) /
317 cur.mperf_cur.split.lo;
318 else
319 perf_percent = 0;
321 #else
322 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) {
323 int shift_count = 7;
324 cur.aperf_cur.whole >>= shift_count;
325 cur.mperf_cur.whole >>= shift_count;
328 if (cur.aperf_cur.whole && cur.mperf_cur.whole)
329 perf_percent = (cur.aperf_cur.whole * 100) /
330 cur.mperf_cur.whole;
331 else
332 perf_percent = 0;
334 #endif
336 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
338 return retval;
341 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
343 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
344 unsigned int freq;
345 unsigned int cached_freq;
347 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
349 if (unlikely(data == NULL ||
350 data->acpi_data == NULL || data->freq_table == NULL)) {
351 return 0;
354 cached_freq = data->freq_table[data->acpi_data->state].frequency;
355 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
356 if (freq != cached_freq) {
358 * The dreaded BIOS frequency change behind our back.
359 * Force set the frequency on next target call.
361 data->resume = 1;
364 dprintk("cur freq = %u\n", freq);
366 return freq;
369 static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
370 struct acpi_cpufreq_data *data)
372 unsigned int cur_freq;
373 unsigned int i;
375 for (i=0; i<100; i++) {
376 cur_freq = extract_freq(get_cur_val(mask), data);
377 if (cur_freq == freq)
378 return 1;
379 udelay(10);
381 return 0;
384 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
385 unsigned int target_freq, unsigned int relation)
387 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
388 struct acpi_processor_performance *perf;
389 struct cpufreq_freqs freqs;
390 struct drv_cmd cmd;
391 unsigned int next_state = 0; /* Index into freq_table */
392 unsigned int next_perf_state = 0; /* Index into perf table */
393 unsigned int i;
394 int result = 0;
395 struct power_trace it;
397 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
399 if (unlikely(data == NULL ||
400 data->acpi_data == NULL || data->freq_table == NULL)) {
401 return -ENODEV;
404 if (unlikely(!alloc_cpumask_var(&cmd.mask, GFP_KERNEL)))
405 return -ENOMEM;
407 perf = data->acpi_data;
408 result = cpufreq_frequency_table_target(policy,
409 data->freq_table,
410 target_freq,
411 relation, &next_state);
412 if (unlikely(result)) {
413 result = -ENODEV;
414 goto out;
417 next_perf_state = data->freq_table[next_state].index;
418 if (perf->state == next_perf_state) {
419 if (unlikely(data->resume)) {
420 dprintk("Called after resume, resetting to P%d\n",
421 next_perf_state);
422 data->resume = 0;
423 } else {
424 dprintk("Already at target state (P%d)\n",
425 next_perf_state);
426 goto out;
430 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
432 switch (data->cpu_feature) {
433 case SYSTEM_INTEL_MSR_CAPABLE:
434 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
435 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
436 cmd.val = (u32) perf->states[next_perf_state].control;
437 break;
438 case SYSTEM_IO_CAPABLE:
439 cmd.type = SYSTEM_IO_CAPABLE;
440 cmd.addr.io.port = perf->control_register.address;
441 cmd.addr.io.bit_width = perf->control_register.bit_width;
442 cmd.val = (u32) perf->states[next_perf_state].control;
443 break;
444 default:
445 result = -ENODEV;
446 goto out;
449 /* cpufreq holds the hotplug lock, so we are safe from here on */
450 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
451 cpumask_and(cmd.mask, cpu_online_mask, policy->cpus);
452 else
453 cpumask_copy(cmd.mask, cpumask_of(policy->cpu));
455 freqs.old = perf->states[perf->state].core_frequency * 1000;
456 freqs.new = data->freq_table[next_state].frequency;
457 for_each_cpu(i, cmd.mask) {
458 freqs.cpu = i;
459 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
462 drv_write(&cmd);
464 if (acpi_pstate_strict) {
465 if (!check_freqs(cmd.mask, freqs.new, data)) {
466 dprintk("acpi_cpufreq_target failed (%d)\n",
467 policy->cpu);
468 result = -EAGAIN;
469 goto out;
473 for_each_cpu(i, cmd.mask) {
474 freqs.cpu = i;
475 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
477 perf->state = next_perf_state;
479 out:
480 free_cpumask_var(cmd.mask);
481 return result;
484 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
486 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
488 dprintk("acpi_cpufreq_verify\n");
490 return cpufreq_frequency_table_verify(policy, data->freq_table);
493 static unsigned long
494 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
496 struct acpi_processor_performance *perf = data->acpi_data;
498 if (cpu_khz) {
499 /* search the closest match to cpu_khz */
500 unsigned int i;
501 unsigned long freq;
502 unsigned long freqn = perf->states[0].core_frequency * 1000;
504 for (i=0; i<(perf->state_count-1); i++) {
505 freq = freqn;
506 freqn = perf->states[i+1].core_frequency * 1000;
507 if ((2 * cpu_khz) > (freqn + freq)) {
508 perf->state = i;
509 return freq;
512 perf->state = perf->state_count-1;
513 return freqn;
514 } else {
515 /* assume CPU is at P0... */
516 perf->state = 0;
517 return perf->states[0].core_frequency * 1000;
521 static void free_acpi_perf_data(void)
523 unsigned int i;
525 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
526 for_each_possible_cpu(i)
527 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
528 ->shared_cpu_map);
529 free_percpu(acpi_perf_data);
533 * acpi_cpufreq_early_init - initialize ACPI P-States library
535 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
536 * in order to determine correct frequency and voltage pairings. We can
537 * do _PDC and _PSD and find out the processor dependency for the
538 * actual init that will happen later...
540 static int __init acpi_cpufreq_early_init(void)
542 unsigned int i;
543 dprintk("acpi_cpufreq_early_init\n");
545 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
546 if (!acpi_perf_data) {
547 dprintk("Memory allocation error for acpi_perf_data.\n");
548 return -ENOMEM;
550 for_each_possible_cpu(i) {
551 if (!alloc_cpumask_var_node(
552 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
553 GFP_KERNEL, cpu_to_node(i))) {
555 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
556 free_acpi_perf_data();
557 return -ENOMEM;
561 /* Do initialization in ACPI core */
562 acpi_processor_preregister_performance(acpi_perf_data);
563 return 0;
566 #ifdef CONFIG_SMP
568 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
569 * or do it in BIOS firmware and won't inform about it to OS. If not
570 * detected, this has a side effect of making CPU run at a different speed
571 * than OS intended it to run at. Detect it and handle it cleanly.
573 static int bios_with_sw_any_bug;
575 static int sw_any_bug_found(const struct dmi_system_id *d)
577 bios_with_sw_any_bug = 1;
578 return 0;
581 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
583 .callback = sw_any_bug_found,
584 .ident = "Supermicro Server X6DLP",
585 .matches = {
586 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
587 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
588 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
593 #endif
595 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
597 unsigned int i;
598 unsigned int valid_states = 0;
599 unsigned int cpu = policy->cpu;
600 struct acpi_cpufreq_data *data;
601 unsigned int result = 0;
602 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
603 struct acpi_processor_performance *perf;
605 dprintk("acpi_cpufreq_cpu_init\n");
607 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
608 if (!data)
609 return -ENOMEM;
611 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
612 per_cpu(drv_data, cpu) = data;
614 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
615 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
617 result = acpi_processor_register_performance(data->acpi_data, cpu);
618 if (result)
619 goto err_free;
621 perf = data->acpi_data;
622 policy->shared_type = perf->shared_type;
625 * Will let policy->cpus know about dependency only when software
626 * coordination is required.
628 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
629 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
630 cpumask_copy(policy->cpus, perf->shared_cpu_map);
632 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
634 #ifdef CONFIG_SMP
635 dmi_check_system(sw_any_bug_dmi_table);
636 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
637 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
638 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
640 #endif
642 /* capability check */
643 if (perf->state_count <= 1) {
644 dprintk("No P-States\n");
645 result = -ENODEV;
646 goto err_unreg;
649 if (perf->control_register.space_id != perf->status_register.space_id) {
650 result = -ENODEV;
651 goto err_unreg;
654 switch (perf->control_register.space_id) {
655 case ACPI_ADR_SPACE_SYSTEM_IO:
656 dprintk("SYSTEM IO addr space\n");
657 data->cpu_feature = SYSTEM_IO_CAPABLE;
658 break;
659 case ACPI_ADR_SPACE_FIXED_HARDWARE:
660 dprintk("HARDWARE addr space\n");
661 if (!check_est_cpu(cpu)) {
662 result = -ENODEV;
663 goto err_unreg;
665 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
666 break;
667 default:
668 dprintk("Unknown addr space %d\n",
669 (u32) (perf->control_register.space_id));
670 result = -ENODEV;
671 goto err_unreg;
674 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
675 (perf->state_count+1), GFP_KERNEL);
676 if (!data->freq_table) {
677 result = -ENOMEM;
678 goto err_unreg;
681 /* detect transition latency */
682 policy->cpuinfo.transition_latency = 0;
683 for (i=0; i<perf->state_count; i++) {
684 if ((perf->states[i].transition_latency * 1000) >
685 policy->cpuinfo.transition_latency)
686 policy->cpuinfo.transition_latency =
687 perf->states[i].transition_latency * 1000;
690 data->max_freq = perf->states[0].core_frequency * 1000;
691 /* table init */
692 for (i=0; i<perf->state_count; i++) {
693 if (i>0 && perf->states[i].core_frequency >=
694 data->freq_table[valid_states-1].frequency / 1000)
695 continue;
697 data->freq_table[valid_states].index = i;
698 data->freq_table[valid_states].frequency =
699 perf->states[i].core_frequency * 1000;
700 valid_states++;
702 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
703 perf->state = 0;
705 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
706 if (result)
707 goto err_freqfree;
709 switch (perf->control_register.space_id) {
710 case ACPI_ADR_SPACE_SYSTEM_IO:
711 /* Current speed is unknown and not detectable by IO port */
712 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
713 break;
714 case ACPI_ADR_SPACE_FIXED_HARDWARE:
715 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
716 policy->cur = get_cur_freq_on_cpu(cpu);
717 break;
718 default:
719 break;
722 /* notify BIOS that we exist */
723 acpi_processor_notify_smm(THIS_MODULE);
725 /* Check for APERF/MPERF support in hardware */
726 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
727 unsigned int ecx;
728 ecx = cpuid_ecx(6);
729 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
730 acpi_cpufreq_driver.getavg = get_measured_perf;
733 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
734 for (i = 0; i < perf->state_count; i++)
735 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
736 (i == perf->state ? '*' : ' '), i,
737 (u32) perf->states[i].core_frequency,
738 (u32) perf->states[i].power,
739 (u32) perf->states[i].transition_latency);
741 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
744 * the first call to ->target() should result in us actually
745 * writing something to the appropriate registers.
747 data->resume = 1;
749 return result;
751 err_freqfree:
752 kfree(data->freq_table);
753 err_unreg:
754 acpi_processor_unregister_performance(perf, cpu);
755 err_free:
756 kfree(data);
757 per_cpu(drv_data, cpu) = NULL;
759 return result;
762 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
764 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
766 dprintk("acpi_cpufreq_cpu_exit\n");
768 if (data) {
769 cpufreq_frequency_table_put_attr(policy->cpu);
770 per_cpu(drv_data, policy->cpu) = NULL;
771 acpi_processor_unregister_performance(data->acpi_data,
772 policy->cpu);
773 kfree(data);
776 return 0;
779 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
781 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
783 dprintk("acpi_cpufreq_resume\n");
785 data->resume = 1;
787 return 0;
790 static struct freq_attr *acpi_cpufreq_attr[] = {
791 &cpufreq_freq_attr_scaling_available_freqs,
792 NULL,
795 static struct cpufreq_driver acpi_cpufreq_driver = {
796 .verify = acpi_cpufreq_verify,
797 .target = acpi_cpufreq_target,
798 .init = acpi_cpufreq_cpu_init,
799 .exit = acpi_cpufreq_cpu_exit,
800 .resume = acpi_cpufreq_resume,
801 .name = "acpi-cpufreq",
802 .owner = THIS_MODULE,
803 .attr = acpi_cpufreq_attr,
806 static int __init acpi_cpufreq_init(void)
808 int ret;
810 if (acpi_disabled)
811 return 0;
813 dprintk("acpi_cpufreq_init\n");
815 ret = acpi_cpufreq_early_init();
816 if (ret)
817 return ret;
819 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
820 if (ret)
821 free_acpi_perf_data();
823 return ret;
826 static void __exit acpi_cpufreq_exit(void)
828 dprintk("acpi_cpufreq_exit\n");
830 cpufreq_unregister_driver(&acpi_cpufreq_driver);
832 free_percpu(acpi_perf_data);
835 module_param(acpi_pstate_strict, uint, 0644);
836 MODULE_PARM_DESC(acpi_pstate_strict,
837 "value 0 or non-zero. non-zero -> strict ACPI checks are "
838 "performed during frequency changes.");
840 late_initcall(acpi_cpufreq_init);
841 module_exit(acpi_cpufreq_exit);
843 MODULE_ALIAS("acpi");