1 /* Low-level parallel port routines for built-in port on SGI IP32
3 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
5 * Based on parport_pc.c by
6 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7 * Andrea Arcangeli, et al.
9 * Thanks to Ilya A. Volynets-Evenbakh for his help.
11 * Copyright (C) 2005, 2006 Arnaud Giersch.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
18 * This program is distributed in the hope that it will be useful, but WITHOUT
19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc., 59
25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 * Basic SPP and PS2 modes are supported.
31 * Support for parallel port IRQ is present.
32 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
34 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with
35 * or without interrupt support.
37 * Hardware ECP mode is not fully implemented (ecp_read_data and
38 * ecp_write_addr are actually missing).
42 * Fully implement ECP mode.
43 * EPP and ECP mode need to be tested. I currently do not own any
44 * peripheral supporting these extended mode, and cannot test them.
45 * If DMA mode works well, decide if support for PIO FIFO modes should be
47 * Use the io{read,write} family functions when they become available in
48 * the linux-mips.org tree. Note: the MIPS specific functions readsb()
49 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
53 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte
56 * FIFO buffer and supports DMA transfers.
58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
60 * Theoretically, we could simply use the parport_pc module. It is however
61 * not so simple. The parport_pc code assumes that the parallel port
62 * registers are port-mapped. On the O2, they are memory-mapped.
63 * Furthermore, each register is replicated on 256 consecutive addresses (as
64 * it is for the built-in serial ports on the same chip).
67 /*--- Some configuration defines ---------------------------------------*/
71 * 1 standard level: pr_debug1 is enabled
72 * 2 parport_ip32_dump_state is enabled
73 * >=3 verbose level: pr_debug is enabled
75 #if !defined(DEBUG_PARPORT_IP32)
76 # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */
79 /*----------------------------------------------------------------------*/
81 /* Setup DEBUG macros. This is done before any includes, just in case we
82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
84 #if DEBUG_PARPORT_IP32 == 1
85 # warning DEBUG_PARPORT_IP32 == 1
86 #elif DEBUG_PARPORT_IP32 == 2
87 # warning DEBUG_PARPORT_IP32 == 2
88 #elif DEBUG_PARPORT_IP32 >= 3
89 # warning DEBUG_PARPORT_IP32 >= 3
91 # define DEBUG /* enable pr_debug() in kernel.h */
95 #include <linux/completion.h>
96 #include <linux/delay.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/err.h>
99 #include <linux/init.h>
100 #include <linux/interrupt.h>
101 #include <linux/jiffies.h>
102 #include <linux/kernel.h>
103 #include <linux/module.h>
104 #include <linux/parport.h>
105 #include <linux/sched.h>
106 #include <linux/spinlock.h>
107 #include <linux/stddef.h>
108 #include <linux/types.h>
110 #include <asm/ip32/ip32_ints.h>
111 #include <asm/ip32/mace.h>
113 /*--- Global variables -------------------------------------------------*/
115 /* Verbose probing on by default for debugging. */
116 #if DEBUG_PARPORT_IP32 >= 1
117 # define DEFAULT_VERBOSE_PROBING 1
119 # define DEFAULT_VERBOSE_PROBING 0
122 /* Default prefix for printk */
123 #define PPIP32 "parport_ip32: "
126 * These are the module parameters:
127 * @features: bit mask of features to enable/disable
128 * (all enabled by default)
129 * @verbose_probing: log chit-chat during initialization
131 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
132 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
133 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
134 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
135 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
136 static unsigned int features
= ~0U;
137 static int verbose_probing
= DEFAULT_VERBOSE_PROBING
;
139 /* We do not support more than one port. */
140 static struct parport
*this_port
= NULL
;
142 /* Timing constants for FIFO modes. */
143 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
144 #define FIFO_POLLING_INTERVAL 50 /* microseconds */
146 /*--- I/O register definitions -----------------------------------------*/
149 * struct parport_ip32_regs - virtual addresses of parallel port registers
150 * @data: Data Register
151 * @dsr: Device Status Register
152 * @dcr: Device Control Register
153 * @eppAddr: EPP Address Register
154 * @eppData0: EPP Data Register 0
155 * @eppData1: EPP Data Register 1
156 * @eppData2: EPP Data Register 2
157 * @eppData3: EPP Data Register 3
158 * @ecpAFifo: ECP Address FIFO
159 * @fifo: General FIFO register. The same address is used for:
160 * - cFifo, the Parallel Port DATA FIFO
161 * - ecpDFifo, the ECP Data FIFO
162 * - tFifo, the ECP Test FIFO
163 * @cnfgA: Configuration Register A
164 * @cnfgB: Configuration Register B
165 * @ecr: Extended Control Register
167 struct parport_ip32_regs
{
171 void __iomem
*eppAddr
;
172 void __iomem
*eppData0
;
173 void __iomem
*eppData1
;
174 void __iomem
*eppData2
;
175 void __iomem
*eppData3
;
176 void __iomem
*ecpAFifo
;
183 /* Device Status Register */
184 #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */
185 #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */
186 #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */
187 #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */
188 #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */
189 #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */
190 /* #define DSR_reserved (1U << 1) */
191 #define DSR_TIMEOUT (1U << 0) /* EPP timeout */
193 /* Device Control Register */
194 /* #define DCR_reserved (1U << 7) | (1U << 6) */
195 #define DCR_DIR (1U << 5) /* direction */
196 #define DCR_IRQ (1U << 4) /* interrupt on nAck */
197 #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */
198 #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */
199 #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */
200 #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */
202 /* ECP Configuration Register A */
203 #define CNFGA_IRQ (1U << 7)
204 #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4))
205 #define CNFGA_ID_SHIFT 4
206 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT)
207 #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT)
208 #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT)
209 /* #define CNFGA_reserved (1U << 3) */
210 #define CNFGA_nBYTEINTRANS (1U << 2)
211 #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0))
213 /* ECP Configuration Register B */
214 #define CNFGB_COMPRESS (1U << 7)
215 #define CNFGB_INTRVAL (1U << 6)
216 #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3))
217 #define CNFGB_IRQ_SHIFT 3
218 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0))
219 #define CNFGB_DMA_SHIFT 0
221 /* Extended Control Register */
222 #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5))
223 #define ECR_MODE_SHIFT 5
224 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT)
225 #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT)
226 #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT)
227 #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT)
228 #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT)
229 /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */
230 #define ECR_MODE_TST (06U << ECR_MODE_SHIFT)
231 #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT)
232 #define ECR_nERRINTR (1U << 4)
233 #define ECR_DMAEN (1U << 3)
234 #define ECR_SERVINTR (1U << 2)
235 #define ECR_F_FULL (1U << 1)
236 #define ECR_F_EMPTY (1U << 0)
238 /*--- Private data -----------------------------------------------------*/
241 * enum parport_ip32_irq_mode - operation mode of interrupt handler
242 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer
243 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally
245 enum parport_ip32_irq_mode
{ PARPORT_IP32_IRQ_FWD
, PARPORT_IP32_IRQ_HERE
};
248 * struct parport_ip32_private - private stuff for &struct parport
249 * @regs: register addresses
250 * @dcr_cache: cached contents of DCR
251 * @dcr_writable: bit mask of writable DCR bits
252 * @pword: number of bytes per PWord
253 * @fifo_depth: number of PWords that FIFO will hold
254 * @readIntrThreshold: minimum number of PWords we can read
255 * if we get an interrupt
256 * @writeIntrThreshold: minimum number of PWords we can write
257 * if we get an interrupt
258 * @irq_mode: operation mode of interrupt handler for this port
259 * @irq_complete: mutex used to wait for an interrupt to occur
261 struct parport_ip32_private
{
262 struct parport_ip32_regs regs
;
263 unsigned int dcr_cache
;
264 unsigned int dcr_writable
;
266 unsigned int fifo_depth
;
267 unsigned int readIntrThreshold
;
268 unsigned int writeIntrThreshold
;
269 enum parport_ip32_irq_mode irq_mode
;
270 struct completion irq_complete
;
273 /*--- Debug code -------------------------------------------------------*/
276 * pr_debug1 - print debug messages
278 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
280 #if DEBUG_PARPORT_IP32 >= 1
281 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__)
282 #else /* DEBUG_PARPORT_IP32 < 1 */
283 # define pr_debug1(...) do { } while (0)
287 * pr_trace, pr_trace1 - trace function calls
288 * @p: pointer to &struct parport
289 * @fmt: printk format string
290 * @...: parameters for format string
292 * Macros used to trace function calls. The given string is formatted after
293 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses
294 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used
297 #define __pr_trace(pr, p, fmt, ...) \
298 pr("%s: %s" fmt "\n", \
299 ({ const struct parport *__p = (p); \
300 __p ? __p->name : "parport_ip32"; }), \
301 __func__ , ##__VA_ARGS__)
302 #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
303 #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
306 * __pr_probe, pr_probe - print message if @verbose_probing is true
307 * @p: pointer to &struct parport
308 * @fmt: printk format string
309 * @...: parameters for format string
311 * For new lines, use pr_probe(). Use __pr_probe() for continued lines.
313 #define __pr_probe(...) \
314 do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
315 #define pr_probe(p, fmt, ...) \
316 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
319 * parport_ip32_dump_state - print register status of parport
320 * @p: pointer to &struct parport
321 * @str: string to add in message
322 * @show_ecp_config: shall we dump ECP configuration registers too?
324 * This function is only here for debugging purpose, and should be used with
325 * care. Reading the parallel port registers may have undesired side effects.
326 * Especially if @show_ecp_config is true, the parallel port is resetted.
327 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
329 #if DEBUG_PARPORT_IP32 >= 2
330 static void parport_ip32_dump_state(struct parport
*p
, char *str
,
331 unsigned int show_ecp_config
)
333 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
336 printk(KERN_DEBUG PPIP32
"%s: state (%s):\n", p
->name
, str
);
338 static const char ecr_modes
[8][4] = {"SPP", "PS2", "PPF",
341 unsigned int ecr
= readb(priv
->regs
.ecr
);
342 printk(KERN_DEBUG PPIP32
" ecr=0x%02x", ecr
);
344 ecr_modes
[(ecr
& ECR_MODE_MASK
) >> ECR_MODE_SHIFT
]);
345 if (ecr
& ECR_nERRINTR
)
346 printk(",nErrIntrEn");
349 if (ecr
& ECR_SERVINTR
)
350 printk(",serviceIntr");
351 if (ecr
& ECR_F_FULL
)
353 if (ecr
& ECR_F_EMPTY
)
357 if (show_ecp_config
) {
358 unsigned int oecr
, cnfgA
, cnfgB
;
359 oecr
= readb(priv
->regs
.ecr
);
360 writeb(ECR_MODE_PS2
, priv
->regs
.ecr
);
361 writeb(ECR_MODE_CFG
, priv
->regs
.ecr
);
362 cnfgA
= readb(priv
->regs
.cnfgA
);
363 cnfgB
= readb(priv
->regs
.cnfgB
);
364 writeb(ECR_MODE_PS2
, priv
->regs
.ecr
);
365 writeb(oecr
, priv
->regs
.ecr
);
366 printk(KERN_DEBUG PPIP32
" cnfgA=0x%02x", cnfgA
);
367 printk(" ISA-%s", (cnfgA
& CNFGA_IRQ
) ? "Level" : "Pulses");
368 switch (cnfgA
& CNFGA_ID_MASK
) {
379 printk(",unknown ID");
382 if (!(cnfgA
& CNFGA_nBYTEINTRANS
))
383 printk(",ByteInTrans");
384 if ((cnfgA
& CNFGA_ID_MASK
) != CNFGA_ID_8
)
385 printk(",%d byte%s left", cnfgA
& CNFGA_PWORDLEFT
,
386 ((cnfgA
& CNFGA_PWORDLEFT
) > 1) ? "s" : "");
388 printk(KERN_DEBUG PPIP32
" cnfgB=0x%02x", cnfgB
);
389 printk(" irq=%u,dma=%u",
390 (cnfgB
& CNFGB_IRQ_MASK
) >> CNFGB_IRQ_SHIFT
,
391 (cnfgB
& CNFGB_DMA_MASK
) >> CNFGB_DMA_SHIFT
);
392 printk(",intrValue=%d", !!(cnfgB
& CNFGB_INTRVAL
));
393 if (cnfgB
& CNFGB_COMPRESS
)
397 for (i
= 0; i
< 2; i
++) {
398 unsigned int dcr
= i
? priv
->dcr_cache
: readb(priv
->regs
.dcr
);
399 printk(KERN_DEBUG PPIP32
" dcr(%s)=0x%02x",
400 i
? "soft" : "hard", dcr
);
401 printk(" %s", (dcr
& DCR_DIR
) ? "rev" : "fwd");
404 if (!(dcr
& DCR_SELECT
))
405 printk(",nSelectIn");
408 if (!(dcr
& DCR_AUTOFD
))
410 if (!(dcr
& DCR_STROBE
))
414 #define sep (f++ ? ',' : ' ')
417 unsigned int dsr
= readb(priv
->regs
.dsr
);
418 printk(KERN_DEBUG PPIP32
" dsr=0x%02x", dsr
);
419 if (!(dsr
& DSR_nBUSY
))
420 printk("%cBusy", sep
);
422 printk("%cnAck", sep
);
423 if (dsr
& DSR_PERROR
)
424 printk("%cPError", sep
);
425 if (dsr
& DSR_SELECT
)
426 printk("%cSelect", sep
);
427 if (dsr
& DSR_nFAULT
)
428 printk("%cnFault", sep
);
429 if (!(dsr
& DSR_nPRINT
))
430 printk("%c(Print)", sep
);
431 if (dsr
& DSR_TIMEOUT
)
432 printk("%cTimeout", sep
);
437 #else /* DEBUG_PARPORT_IP32 < 2 */
438 #define parport_ip32_dump_state(...) do { } while (0)
442 * CHECK_EXTRA_BITS - track and log extra bits
443 * @p: pointer to &struct parport
444 * @b: byte to inspect
445 * @m: bit mask of authorized bits
447 * This is used to track and log extra bits that should not be there in
448 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only
449 * defined if %DEBUG_PARPORT_IP32 >= 1.
451 #if DEBUG_PARPORT_IP32 >= 1
452 #define CHECK_EXTRA_BITS(p, b, m) \
454 unsigned int __b = (b), __m = (m); \
456 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \
458 (p)->name, __func__, #b, __b, __m); \
460 #else /* DEBUG_PARPORT_IP32 < 1 */
461 #define CHECK_EXTRA_BITS(...) do { } while (0)
464 /*--- IP32 parallel port DMA operations --------------------------------*/
467 * struct parport_ip32_dma_data - private data needed for DMA operation
468 * @dir: DMA direction (from or to device)
469 * @buf: buffer physical address
470 * @len: buffer length
471 * @next: address of next bytes to DMA transfer
472 * @left: number of bytes remaining
473 * @ctx: next context to write (0: context_a; 1: context_b)
474 * @irq_on: are the DMA IRQs currently enabled?
475 * @lock: spinlock to protect access to the structure
477 struct parport_ip32_dma_data
{
478 enum dma_data_direction dir
;
487 static struct parport_ip32_dma_data parport_ip32_dma
;
490 * parport_ip32_dma_setup_context - setup next DMA context
491 * @limit: maximum data size for the context
493 * The alignment constraints must be verified in caller function, and the
494 * parameter @limit must be set accordingly.
496 static void parport_ip32_dma_setup_context(unsigned int limit
)
500 spin_lock_irqsave(&parport_ip32_dma
.lock
, flags
);
501 if (parport_ip32_dma
.left
> 0) {
502 /* Note: ctxreg is "volatile" here only because
503 * mace->perif.ctrl.parport.context_a and context_b are
505 volatile u64 __iomem
*ctxreg
= (parport_ip32_dma
.ctx
== 0) ?
506 &mace
->perif
.ctrl
.parport
.context_a
:
507 &mace
->perif
.ctrl
.parport
.context_b
;
510 if (parport_ip32_dma
.left
<= limit
) {
511 count
= parport_ip32_dma
.left
;
512 ctxval
= MACEPAR_CONTEXT_LASTFLAG
;
519 "(%u): 0x%04x:0x%04x, %u -> %u%s",
521 (unsigned int)parport_ip32_dma
.buf
,
522 (unsigned int)parport_ip32_dma
.next
,
524 parport_ip32_dma
.ctx
, ctxval
? "*" : "");
526 ctxval
|= parport_ip32_dma
.next
&
527 MACEPAR_CONTEXT_BASEADDR_MASK
;
528 ctxval
|= ((count
- 1) << MACEPAR_CONTEXT_DATALEN_SHIFT
) &
529 MACEPAR_CONTEXT_DATALEN_MASK
;
530 writeq(ctxval
, ctxreg
);
531 parport_ip32_dma
.next
+= count
;
532 parport_ip32_dma
.left
-= count
;
533 parport_ip32_dma
.ctx
^= 1U;
535 /* If there is nothing more to send, disable IRQs to avoid to
536 * face an IRQ storm which can lock the machine. Disable them
538 if (parport_ip32_dma
.left
== 0 && parport_ip32_dma
.irq_on
) {
539 pr_debug(PPIP32
"IRQ off (ctx)\n");
540 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ
);
541 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ
);
542 parport_ip32_dma
.irq_on
= 0;
544 spin_unlock_irqrestore(&parport_ip32_dma
.lock
, flags
);
548 * parport_ip32_dma_interrupt - DMA interrupt handler
549 * @irq: interrupt number
552 static irqreturn_t
parport_ip32_dma_interrupt(int irq
, void *dev_id
)
554 if (parport_ip32_dma
.left
)
555 pr_trace(NULL
, "(%d): ctx=%d", irq
, parport_ip32_dma
.ctx
);
556 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND
);
560 #if DEBUG_PARPORT_IP32
561 static irqreturn_t
parport_ip32_merr_interrupt(int irq
, void *dev_id
)
563 pr_trace1(NULL
, "(%d)", irq
);
569 * parport_ip32_dma_start - begins a DMA transfer
570 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
571 * @addr: pointer to data buffer
572 * @count: buffer size
574 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
575 * correctly balanced.
577 static int parport_ip32_dma_start(enum dma_data_direction dir
,
578 void *addr
, size_t count
)
583 pr_trace(NULL
, "(%d, %lu)", dir
, (unsigned long)count
);
585 /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must
586 * be 64 bytes aligned. */
587 BUG_ON(dir
!= DMA_TO_DEVICE
);
589 /* Reset DMA controller */
590 ctrl
= MACEPAR_CTLSTAT_RESET
;
591 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
593 /* DMA IRQs should normally be enabled */
594 if (!parport_ip32_dma
.irq_on
) {
596 enable_irq(MACEISA_PAR_CTXA_IRQ
);
597 enable_irq(MACEISA_PAR_CTXB_IRQ
);
598 parport_ip32_dma
.irq_on
= 1;
601 /* Prepare DMA pointers */
602 parport_ip32_dma
.dir
= dir
;
603 parport_ip32_dma
.buf
= dma_map_single(NULL
, addr
, count
, dir
);
604 parport_ip32_dma
.len
= count
;
605 parport_ip32_dma
.next
= parport_ip32_dma
.buf
;
606 parport_ip32_dma
.left
= parport_ip32_dma
.len
;
607 parport_ip32_dma
.ctx
= 0;
609 /* Setup DMA direction and first two contexts */
610 ctrl
= (dir
== DMA_TO_DEVICE
) ? 0 : MACEPAR_CTLSTAT_DIRECTION
;
611 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
612 /* Single transfer should not cross a 4K page boundary */
613 limit
= MACEPAR_CONTEXT_DATA_BOUND
-
614 (parport_ip32_dma
.next
& (MACEPAR_CONTEXT_DATA_BOUND
- 1));
615 parport_ip32_dma_setup_context(limit
);
616 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND
);
618 /* Real start of DMA transfer */
619 ctrl
|= MACEPAR_CTLSTAT_ENABLE
;
620 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
626 * parport_ip32_dma_stop - ends a running DMA transfer
628 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
629 * correctly balanced.
631 static void parport_ip32_dma_stop(void)
637 size_t res
[2]; /* {[0] = res_a, [1] = res_b} */
639 pr_trace(NULL
, "()");
642 spin_lock_irq(&parport_ip32_dma
.lock
);
643 if (parport_ip32_dma
.irq_on
) {
644 pr_debug(PPIP32
"IRQ off (stop)\n");
645 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ
);
646 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ
);
647 parport_ip32_dma
.irq_on
= 0;
649 spin_unlock_irq(&parport_ip32_dma
.lock
);
650 /* Force IRQ synchronization, even if the IRQs were disabled
652 synchronize_irq(MACEISA_PAR_CTXA_IRQ
);
653 synchronize_irq(MACEISA_PAR_CTXB_IRQ
);
655 /* Stop DMA transfer */
656 ctrl
= readq(&mace
->perif
.ctrl
.parport
.cntlstat
);
657 ctrl
&= ~MACEPAR_CTLSTAT_ENABLE
;
658 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
660 /* Adjust residue (parport_ip32_dma.left) */
661 ctx_a
= readq(&mace
->perif
.ctrl
.parport
.context_a
);
662 ctx_b
= readq(&mace
->perif
.ctrl
.parport
.context_b
);
663 ctrl
= readq(&mace
->perif
.ctrl
.parport
.cntlstat
);
664 diag
= readq(&mace
->perif
.ctrl
.parport
.diagnostic
);
665 res
[0] = (ctrl
& MACEPAR_CTLSTAT_CTXA_VALID
) ?
666 1 + ((ctx_a
& MACEPAR_CONTEXT_DATALEN_MASK
) >>
667 MACEPAR_CONTEXT_DATALEN_SHIFT
) :
669 res
[1] = (ctrl
& MACEPAR_CTLSTAT_CTXB_VALID
) ?
670 1 + ((ctx_b
& MACEPAR_CONTEXT_DATALEN_MASK
) >>
671 MACEPAR_CONTEXT_DATALEN_SHIFT
) :
673 if (diag
& MACEPAR_DIAG_DMACTIVE
)
674 res
[(diag
& MACEPAR_DIAG_CTXINUSE
) != 0] =
675 1 + ((diag
& MACEPAR_DIAG_CTRMASK
) >>
676 MACEPAR_DIAG_CTRSHIFT
);
677 parport_ip32_dma
.left
+= res
[0] + res
[1];
679 /* Reset DMA controller, and re-enable IRQs */
680 ctrl
= MACEPAR_CTLSTAT_RESET
;
681 writeq(ctrl
, &mace
->perif
.ctrl
.parport
.cntlstat
);
682 pr_debug(PPIP32
"IRQ on (stop)\n");
683 enable_irq(MACEISA_PAR_CTXA_IRQ
);
684 enable_irq(MACEISA_PAR_CTXB_IRQ
);
685 parport_ip32_dma
.irq_on
= 1;
687 dma_unmap_single(NULL
, parport_ip32_dma
.buf
, parport_ip32_dma
.len
,
688 parport_ip32_dma
.dir
);
692 * parport_ip32_dma_get_residue - get residue from last DMA transfer
694 * Returns the number of bytes remaining from last DMA transfer.
696 static inline size_t parport_ip32_dma_get_residue(void)
698 return parport_ip32_dma
.left
;
702 * parport_ip32_dma_register - initialize DMA engine
704 * Returns zero for success.
706 static int parport_ip32_dma_register(void)
710 spin_lock_init(&parport_ip32_dma
.lock
);
711 parport_ip32_dma
.irq_on
= 1;
713 /* Reset DMA controller */
714 writeq(MACEPAR_CTLSTAT_RESET
, &mace
->perif
.ctrl
.parport
.cntlstat
);
717 err
= request_irq(MACEISA_PAR_CTXA_IRQ
, parport_ip32_dma_interrupt
,
718 0, "parport_ip32", NULL
);
721 err
= request_irq(MACEISA_PAR_CTXB_IRQ
, parport_ip32_dma_interrupt
,
722 0, "parport_ip32", NULL
);
725 #if DEBUG_PARPORT_IP32
726 /* FIXME - what is this IRQ for? */
727 err
= request_irq(MACEISA_PAR_MERR_IRQ
, parport_ip32_merr_interrupt
,
728 0, "parport_ip32", NULL
);
734 #if DEBUG_PARPORT_IP32
736 free_irq(MACEISA_PAR_CTXB_IRQ
, NULL
);
739 free_irq(MACEISA_PAR_CTXA_IRQ
, NULL
);
745 * parport_ip32_dma_unregister - release and free resources for DMA engine
747 static void parport_ip32_dma_unregister(void)
749 #if DEBUG_PARPORT_IP32
750 free_irq(MACEISA_PAR_MERR_IRQ
, NULL
);
752 free_irq(MACEISA_PAR_CTXB_IRQ
, NULL
);
753 free_irq(MACEISA_PAR_CTXA_IRQ
, NULL
);
756 /*--- Interrupt handlers and associates --------------------------------*/
759 * parport_ip32_wakeup - wakes up code waiting for an interrupt
760 * @p: pointer to &struct parport
762 static inline void parport_ip32_wakeup(struct parport
*p
)
764 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
765 complete(&priv
->irq_complete
);
769 * parport_ip32_interrupt - interrupt handler
770 * @irq: interrupt number
771 * @dev_id: pointer to &struct parport
773 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
774 * %PARPORT_IP32_IRQ_FWD.
776 static irqreturn_t
parport_ip32_interrupt(int irq
, void *dev_id
)
778 struct parport
* const p
= dev_id
;
779 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
780 enum parport_ip32_irq_mode irq_mode
= priv
->irq_mode
;
783 case PARPORT_IP32_IRQ_FWD
:
784 return parport_irq_handler(irq
, dev_id
);
786 case PARPORT_IP32_IRQ_HERE
:
787 parport_ip32_wakeup(p
);
794 /*--- Some utility function to manipulate ECR register -----------------*/
797 * parport_ip32_read_econtrol - read contents of the ECR register
798 * @p: pointer to &struct parport
800 static inline unsigned int parport_ip32_read_econtrol(struct parport
*p
)
802 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
803 return readb(priv
->regs
.ecr
);
807 * parport_ip32_write_econtrol - write new contents to the ECR register
808 * @p: pointer to &struct parport
809 * @c: new value to write
811 static inline void parport_ip32_write_econtrol(struct parport
*p
,
814 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
815 writeb(c
, priv
->regs
.ecr
);
819 * parport_ip32_frob_econtrol - change bits from the ECR register
820 * @p: pointer to &struct parport
821 * @mask: bit mask of bits to change
822 * @val: new value for changed bits
824 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
825 * in @val, and write the result to the ECR.
827 static inline void parport_ip32_frob_econtrol(struct parport
*p
,
832 c
= (parport_ip32_read_econtrol(p
) & ~mask
) ^ val
;
833 parport_ip32_write_econtrol(p
, c
);
837 * parport_ip32_set_mode - change mode of ECP port
838 * @p: pointer to &struct parport
839 * @mode: new mode to write in ECR
841 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
842 * mode @mode. Go through PS2 mode if needed.
844 static void parport_ip32_set_mode(struct parport
*p
, unsigned int mode
)
848 mode
&= ECR_MODE_MASK
;
849 omode
= parport_ip32_read_econtrol(p
) & ECR_MODE_MASK
;
851 if (!(mode
== ECR_MODE_SPP
|| mode
== ECR_MODE_PS2
852 || omode
== ECR_MODE_SPP
|| omode
== ECR_MODE_PS2
)) {
853 /* We have to go through PS2 mode */
854 unsigned int ecr
= ECR_MODE_PS2
| ECR_nERRINTR
| ECR_SERVINTR
;
855 parport_ip32_write_econtrol(p
, ecr
);
857 parport_ip32_write_econtrol(p
, mode
| ECR_nERRINTR
| ECR_SERVINTR
);
860 /*--- Basic functions needed for parport -------------------------------*/
863 * parport_ip32_read_data - return current contents of the DATA register
864 * @p: pointer to &struct parport
866 static inline unsigned char parport_ip32_read_data(struct parport
*p
)
868 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
869 return readb(priv
->regs
.data
);
873 * parport_ip32_write_data - set new contents for the DATA register
874 * @p: pointer to &struct parport
875 * @d: new value to write
877 static inline void parport_ip32_write_data(struct parport
*p
, unsigned char d
)
879 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
880 writeb(d
, priv
->regs
.data
);
884 * parport_ip32_read_status - return current contents of the DSR register
885 * @p: pointer to &struct parport
887 static inline unsigned char parport_ip32_read_status(struct parport
*p
)
889 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
890 return readb(priv
->regs
.dsr
);
894 * __parport_ip32_read_control - return cached contents of the DCR register
895 * @p: pointer to &struct parport
897 static inline unsigned int __parport_ip32_read_control(struct parport
*p
)
899 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
900 return priv
->dcr_cache
; /* use soft copy */
904 * __parport_ip32_write_control - set new contents for the DCR register
905 * @p: pointer to &struct parport
906 * @c: new value to write
908 static inline void __parport_ip32_write_control(struct parport
*p
,
911 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
912 CHECK_EXTRA_BITS(p
, c
, priv
->dcr_writable
);
913 c
&= priv
->dcr_writable
; /* only writable bits */
914 writeb(c
, priv
->regs
.dcr
);
915 priv
->dcr_cache
= c
; /* update soft copy */
919 * __parport_ip32_frob_control - change bits from the DCR register
920 * @p: pointer to &struct parport
921 * @mask: bit mask of bits to change
922 * @val: new value for changed bits
924 * This is equivalent to read from the DCR, mask out the bits in @mask,
925 * exclusive-or with the bits in @val, and write the result to the DCR.
926 * Actually, the cached contents of the DCR is used.
928 static inline void __parport_ip32_frob_control(struct parport
*p
,
933 c
= (__parport_ip32_read_control(p
) & ~mask
) ^ val
;
934 __parport_ip32_write_control(p
, c
);
938 * parport_ip32_read_control - return cached contents of the DCR register
939 * @p: pointer to &struct parport
941 * The return value is masked so as to only return the value of %DCR_STROBE,
942 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
944 static inline unsigned char parport_ip32_read_control(struct parport
*p
)
946 const unsigned int rm
=
947 DCR_STROBE
| DCR_AUTOFD
| DCR_nINIT
| DCR_SELECT
;
948 return __parport_ip32_read_control(p
) & rm
;
952 * parport_ip32_write_control - set new contents for the DCR register
953 * @p: pointer to &struct parport
954 * @c: new value to write
956 * The value is masked so as to only change the value of %DCR_STROBE,
957 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
959 static inline void parport_ip32_write_control(struct parport
*p
,
962 const unsigned int wm
=
963 DCR_STROBE
| DCR_AUTOFD
| DCR_nINIT
| DCR_SELECT
;
964 CHECK_EXTRA_BITS(p
, c
, wm
);
965 __parport_ip32_frob_control(p
, wm
, c
& wm
);
969 * parport_ip32_frob_control - change bits from the DCR register
970 * @p: pointer to &struct parport
971 * @mask: bit mask of bits to change
972 * @val: new value for changed bits
974 * This differs from __parport_ip32_frob_control() in that it only allows to
975 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
977 static inline unsigned char parport_ip32_frob_control(struct parport
*p
,
981 const unsigned int wm
=
982 DCR_STROBE
| DCR_AUTOFD
| DCR_nINIT
| DCR_SELECT
;
983 CHECK_EXTRA_BITS(p
, mask
, wm
);
984 CHECK_EXTRA_BITS(p
, val
, wm
);
985 __parport_ip32_frob_control(p
, mask
& wm
, val
& wm
);
986 return parport_ip32_read_control(p
);
990 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
991 * @p: pointer to &struct parport
993 static inline void parport_ip32_disable_irq(struct parport
*p
)
995 __parport_ip32_frob_control(p
, DCR_IRQ
, 0);
999 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
1000 * @p: pointer to &struct parport
1002 static inline void parport_ip32_enable_irq(struct parport
*p
)
1004 __parport_ip32_frob_control(p
, DCR_IRQ
, DCR_IRQ
);
1008 * parport_ip32_data_forward - enable host-to-peripheral communications
1009 * @p: pointer to &struct parport
1011 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1013 static inline void parport_ip32_data_forward(struct parport
*p
)
1015 __parport_ip32_frob_control(p
, DCR_DIR
, 0);
1019 * parport_ip32_data_reverse - enable peripheral-to-host communications
1020 * @p: pointer to &struct parport
1022 * Place the data bus in a high impedance state, if @p->modes has the
1023 * PARPORT_MODE_TRISTATE bit set.
1025 static inline void parport_ip32_data_reverse(struct parport
*p
)
1027 __parport_ip32_frob_control(p
, DCR_DIR
, DCR_DIR
);
1031 * parport_ip32_init_state - for core parport code
1032 * @dev: pointer to &struct pardevice
1033 * @s: pointer to &struct parport_state to initialize
1035 static void parport_ip32_init_state(struct pardevice
*dev
,
1036 struct parport_state
*s
)
1038 s
->u
.ip32
.dcr
= DCR_SELECT
| DCR_nINIT
;
1039 s
->u
.ip32
.ecr
= ECR_MODE_PS2
| ECR_nERRINTR
| ECR_SERVINTR
;
1043 * parport_ip32_save_state - for core parport code
1044 * @p: pointer to &struct parport
1045 * @s: pointer to &struct parport_state to save state to
1047 static void parport_ip32_save_state(struct parport
*p
,
1048 struct parport_state
*s
)
1050 s
->u
.ip32
.dcr
= __parport_ip32_read_control(p
);
1051 s
->u
.ip32
.ecr
= parport_ip32_read_econtrol(p
);
1055 * parport_ip32_restore_state - for core parport code
1056 * @p: pointer to &struct parport
1057 * @s: pointer to &struct parport_state to restore state from
1059 static void parport_ip32_restore_state(struct parport
*p
,
1060 struct parport_state
*s
)
1062 parport_ip32_set_mode(p
, s
->u
.ip32
.ecr
& ECR_MODE_MASK
);
1063 parport_ip32_write_econtrol(p
, s
->u
.ip32
.ecr
);
1064 __parport_ip32_write_control(p
, s
->u
.ip32
.dcr
);
1067 /*--- EPP mode functions -----------------------------------------------*/
1070 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1071 * @p: pointer to &struct parport
1073 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1075 static unsigned int parport_ip32_clear_epp_timeout(struct parport
*p
)
1077 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1078 unsigned int cleared
;
1080 if (!(parport_ip32_read_status(p
) & DSR_TIMEOUT
))
1084 /* To clear timeout some chips require double read */
1085 parport_ip32_read_status(p
);
1086 r
= parport_ip32_read_status(p
);
1087 /* Some reset by writing 1 */
1088 writeb(r
| DSR_TIMEOUT
, priv
->regs
.dsr
);
1089 /* Others by writing 0 */
1090 writeb(r
& ~DSR_TIMEOUT
, priv
->regs
.dsr
);
1092 r
= parport_ip32_read_status(p
);
1093 cleared
= !(r
& DSR_TIMEOUT
);
1096 pr_trace(p
, "(): %s", cleared
? "cleared" : "failed");
1101 * parport_ip32_epp_read - generic EPP read function
1102 * @eppreg: I/O register to read from
1103 * @p: pointer to &struct parport
1104 * @buf: buffer to store read data
1105 * @len: length of buffer @buf
1106 * @flags: may be PARPORT_EPP_FAST
1108 static size_t parport_ip32_epp_read(void __iomem
*eppreg
,
1109 struct parport
*p
, void *buf
,
1110 size_t len
, int flags
)
1112 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1114 parport_ip32_set_mode(p
, ECR_MODE_EPP
);
1115 parport_ip32_data_reverse(p
);
1116 parport_ip32_write_control(p
, DCR_nINIT
);
1117 if ((flags
& PARPORT_EPP_FAST
) && (len
> 1)) {
1118 readsb(eppreg
, buf
, len
);
1119 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1120 parport_ip32_clear_epp_timeout(p
);
1126 for (got
= 0; got
< len
; got
++) {
1127 *bufp
++ = readb(eppreg
);
1128 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1129 parport_ip32_clear_epp_timeout(p
);
1134 parport_ip32_data_forward(p
);
1135 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1140 * parport_ip32_epp_write - generic EPP write function
1141 * @eppreg: I/O register to write to
1142 * @p: pointer to &struct parport
1143 * @buf: buffer of data to write
1144 * @len: length of buffer @buf
1145 * @flags: may be PARPORT_EPP_FAST
1147 static size_t parport_ip32_epp_write(void __iomem
*eppreg
,
1148 struct parport
*p
, const void *buf
,
1149 size_t len
, int flags
)
1151 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1153 parport_ip32_set_mode(p
, ECR_MODE_EPP
);
1154 parport_ip32_data_forward(p
);
1155 parport_ip32_write_control(p
, DCR_nINIT
);
1156 if ((flags
& PARPORT_EPP_FAST
) && (len
> 1)) {
1157 writesb(eppreg
, buf
, len
);
1158 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1159 parport_ip32_clear_epp_timeout(p
);
1164 const u8
*bufp
= buf
;
1165 for (written
= 0; written
< len
; written
++) {
1166 writeb(*bufp
++, eppreg
);
1167 if (readb(priv
->regs
.dsr
) & DSR_TIMEOUT
) {
1168 parport_ip32_clear_epp_timeout(p
);
1173 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1178 * parport_ip32_epp_read_data - read a block of data in EPP mode
1179 * @p: pointer to &struct parport
1180 * @buf: buffer to store read data
1181 * @len: length of buffer @buf
1182 * @flags: may be PARPORT_EPP_FAST
1184 static size_t parport_ip32_epp_read_data(struct parport
*p
, void *buf
,
1185 size_t len
, int flags
)
1187 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1188 return parport_ip32_epp_read(priv
->regs
.eppData0
, p
, buf
, len
, flags
);
1192 * parport_ip32_epp_write_data - write a block of data in EPP mode
1193 * @p: pointer to &struct parport
1194 * @buf: buffer of data to write
1195 * @len: length of buffer @buf
1196 * @flags: may be PARPORT_EPP_FAST
1198 static size_t parport_ip32_epp_write_data(struct parport
*p
, const void *buf
,
1199 size_t len
, int flags
)
1201 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1202 return parport_ip32_epp_write(priv
->regs
.eppData0
, p
, buf
, len
, flags
);
1206 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1207 * @p: pointer to &struct parport
1208 * @buf: buffer to store read data
1209 * @len: length of buffer @buf
1210 * @flags: may be PARPORT_EPP_FAST
1212 static size_t parport_ip32_epp_read_addr(struct parport
*p
, void *buf
,
1213 size_t len
, int flags
)
1215 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1216 return parport_ip32_epp_read(priv
->regs
.eppAddr
, p
, buf
, len
, flags
);
1220 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1221 * @p: pointer to &struct parport
1222 * @buf: buffer of data to write
1223 * @len: length of buffer @buf
1224 * @flags: may be PARPORT_EPP_FAST
1226 static size_t parport_ip32_epp_write_addr(struct parport
*p
, const void *buf
,
1227 size_t len
, int flags
)
1229 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1230 return parport_ip32_epp_write(priv
->regs
.eppAddr
, p
, buf
, len
, flags
);
1233 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1236 * parport_ip32_fifo_wait_break - check if the waiting function should return
1237 * @p: pointer to &struct parport
1238 * @expire: timeout expiring date, in jiffies
1240 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1241 * immediately or not. The break conditions are:
1242 * - expired timeout;
1243 * - a pending signal;
1244 * - nFault asserted low.
1245 * This function also calls cond_resched().
1247 static unsigned int parport_ip32_fifo_wait_break(struct parport
*p
,
1248 unsigned long expire
)
1251 if (time_after(jiffies
, expire
)) {
1252 pr_debug1(PPIP32
"%s: FIFO write timed out\n", p
->name
);
1255 if (signal_pending(current
)) {
1256 pr_debug1(PPIP32
"%s: Signal pending\n", p
->name
);
1259 if (!(parport_ip32_read_status(p
) & DSR_nFAULT
)) {
1260 pr_debug1(PPIP32
"%s: nFault asserted low\n", p
->name
);
1267 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1268 * @p: pointer to &struct parport
1270 * Returns the number of bytes that can safely be written in the FIFO. A
1271 * return value of zero means that the calling function should terminate as
1274 static unsigned int parport_ip32_fwp_wait_polling(struct parport
*p
)
1276 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1277 struct parport
* const physport
= p
->physport
;
1278 unsigned long expire
;
1282 expire
= jiffies
+ physport
->cad
->timeout
;
1285 if (parport_ip32_fifo_wait_break(p
, expire
))
1288 /* Check FIFO state. We do nothing when the FIFO is nor full,
1289 * nor empty. It appears that the FIFO full bit is not always
1290 * reliable, the FIFO state is sometimes wrongly reported, and
1291 * the chip gets confused if we give it another byte. */
1292 ecr
= parport_ip32_read_econtrol(p
);
1293 if (ecr
& ECR_F_EMPTY
) {
1294 /* FIFO is empty, fill it up */
1295 count
= priv
->fifo_depth
;
1299 /* Wait a moment... */
1300 udelay(FIFO_POLLING_INTERVAL
);
1307 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1308 * @p: pointer to &struct parport
1310 * Returns the number of bytes that can safely be written in the FIFO. A
1311 * return value of zero means that the calling function should terminate as
1314 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport
*p
)
1316 static unsigned int lost_interrupt
= 0;
1317 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1318 struct parport
* const physport
= p
->physport
;
1319 unsigned long nfault_timeout
;
1320 unsigned long expire
;
1324 nfault_timeout
= min((unsigned long)physport
->cad
->timeout
,
1325 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT
));
1326 expire
= jiffies
+ physport
->cad
->timeout
;
1329 if (parport_ip32_fifo_wait_break(p
, expire
))
1332 /* Initialize mutex used to take interrupts into account */
1333 INIT_COMPLETION(priv
->irq_complete
);
1335 /* Enable serviceIntr */
1336 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, 0);
1338 /* Enabling serviceIntr while the FIFO is empty does not
1339 * always generate an interrupt, so check for emptiness
1341 ecr
= parport_ip32_read_econtrol(p
);
1342 if (!(ecr
& ECR_F_EMPTY
)) {
1343 /* FIFO is not empty: wait for an interrupt or a
1344 * timeout to occur */
1345 wait_for_completion_interruptible_timeout(
1346 &priv
->irq_complete
, nfault_timeout
);
1347 ecr
= parport_ip32_read_econtrol(p
);
1348 if ((ecr
& ECR_F_EMPTY
) && !(ecr
& ECR_SERVINTR
)
1349 && !lost_interrupt
) {
1350 printk(KERN_WARNING PPIP32
1351 "%s: lost interrupt in %s\n",
1357 /* Disable serviceIntr */
1358 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, ECR_SERVINTR
);
1360 /* Check FIFO state */
1361 if (ecr
& ECR_F_EMPTY
) {
1362 /* FIFO is empty, fill it up */
1363 count
= priv
->fifo_depth
;
1365 } else if (ecr
& ECR_SERVINTR
) {
1366 /* FIFO is not empty, but we know that can safely push
1367 * writeIntrThreshold bytes into it */
1368 count
= priv
->writeIntrThreshold
;
1371 /* FIFO is not empty, and we did not get any interrupt.
1372 * Either it's time to check for nFault, or a signal is
1373 * pending. This is verified in
1374 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1381 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1382 * @p: pointer to &struct parport
1383 * @buf: buffer of data to write
1384 * @len: length of buffer @buf
1386 * Uses PIO to write the contents of the buffer @buf into the parallel port
1387 * FIFO. Returns the number of bytes that were actually written. It can work
1388 * with or without the help of interrupts. The parallel port must be
1389 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1391 static size_t parport_ip32_fifo_write_block_pio(struct parport
*p
,
1392 const void *buf
, size_t len
)
1394 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1395 const u8
*bufp
= buf
;
1398 priv
->irq_mode
= PARPORT_IP32_IRQ_HERE
;
1403 count
= (p
->irq
== PARPORT_IRQ_NONE
) ?
1404 parport_ip32_fwp_wait_polling(p
) :
1405 parport_ip32_fwp_wait_interrupt(p
);
1407 break; /* Transmission should be stopped */
1411 writeb(*bufp
, priv
->regs
.fifo
);
1414 writesb(priv
->regs
.fifo
, bufp
, count
);
1415 bufp
+= count
, left
-= count
;
1419 priv
->irq_mode
= PARPORT_IP32_IRQ_FWD
;
1425 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1426 * @p: pointer to &struct parport
1427 * @buf: buffer of data to write
1428 * @len: length of buffer @buf
1430 * Uses DMA to write the contents of the buffer @buf into the parallel port
1431 * FIFO. Returns the number of bytes that were actually written. The
1432 * parallel port must be correctly initialized before calling
1433 * parport_ip32_fifo_write_block_dma().
1435 static size_t parport_ip32_fifo_write_block_dma(struct parport
*p
,
1436 const void *buf
, size_t len
)
1438 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1439 struct parport
* const physport
= p
->physport
;
1440 unsigned long nfault_timeout
;
1441 unsigned long expire
;
1445 priv
->irq_mode
= PARPORT_IP32_IRQ_HERE
;
1447 parport_ip32_dma_start(DMA_TO_DEVICE
, (void *)buf
, len
);
1448 INIT_COMPLETION(priv
->irq_complete
);
1449 parport_ip32_frob_econtrol(p
, ECR_DMAEN
| ECR_SERVINTR
, ECR_DMAEN
);
1451 nfault_timeout
= min((unsigned long)physport
->cad
->timeout
,
1452 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT
));
1453 expire
= jiffies
+ physport
->cad
->timeout
;
1455 if (parport_ip32_fifo_wait_break(p
, expire
))
1457 wait_for_completion_interruptible_timeout(&priv
->irq_complete
,
1459 ecr
= parport_ip32_read_econtrol(p
);
1460 if (ecr
& ECR_SERVINTR
)
1461 break; /* DMA transfer just finished */
1463 parport_ip32_dma_stop();
1464 written
= len
- parport_ip32_dma_get_residue();
1466 priv
->irq_mode
= PARPORT_IP32_IRQ_FWD
;
1472 * parport_ip32_fifo_write_block - write a block of data
1473 * @p: pointer to &struct parport
1474 * @buf: buffer of data to write
1475 * @len: length of buffer @buf
1477 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1478 * p FIFO. Returns the number of bytes that were actually written.
1480 static size_t parport_ip32_fifo_write_block(struct parport
*p
,
1481 const void *buf
, size_t len
)
1485 /* FIXME - Maybe some threshold value should be set for @len
1486 * under which we revert to PIO mode? */
1487 written
= (p
->modes
& PARPORT_MODE_DMA
) ?
1488 parport_ip32_fifo_write_block_dma(p
, buf
, len
) :
1489 parport_ip32_fifo_write_block_pio(p
, buf
, len
);
1494 * parport_ip32_drain_fifo - wait for FIFO to empty
1495 * @p: pointer to &struct parport
1496 * @timeout: timeout, in jiffies
1498 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or
1499 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1501 static unsigned int parport_ip32_drain_fifo(struct parport
*p
,
1502 unsigned long timeout
)
1504 unsigned long expire
= jiffies
+ timeout
;
1505 unsigned int polling_interval
;
1506 unsigned int counter
;
1508 /* Busy wait for approx. 200us */
1509 for (counter
= 0; counter
< 40; counter
++) {
1510 if (parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
)
1512 if (time_after(jiffies
, expire
))
1514 if (signal_pending(current
))
1518 /* Poll slowly. Polling interval starts with 1 millisecond, and is
1519 * increased exponentially until 128. */
1520 polling_interval
= 1; /* msecs */
1521 while (!(parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
)) {
1522 if (time_after_eq(jiffies
, expire
))
1524 msleep_interruptible(polling_interval
);
1525 if (signal_pending(current
))
1527 if (polling_interval
< 128)
1528 polling_interval
*= 2;
1531 return !!(parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
);
1535 * parport_ip32_get_fifo_residue - reset FIFO
1536 * @p: pointer to &struct parport
1537 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1539 * This function resets FIFO, and returns the number of bytes remaining in it.
1541 static unsigned int parport_ip32_get_fifo_residue(struct parport
*p
,
1544 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1545 unsigned int residue
;
1548 /* FIXME - We are missing one byte if the printer is off-line. I
1549 * don't know how to detect this. It looks that the full bit is not
1550 * always reliable. For the moment, the problem is avoided in most
1551 * cases by testing for BUSY in parport_ip32_compat_write_data().
1553 if (parport_ip32_read_econtrol(p
) & ECR_F_EMPTY
)
1556 pr_debug1(PPIP32
"%s: FIFO is stuck\n", p
->name
);
1558 /* Stop all transfers.
1560 * Microsoft's document instructs to drive DCR_STROBE to 0,
1561 * but it doesn't work (at least in Compatibility mode, not
1562 * tested in ECP mode). Switching directly to Test mode (as
1563 * in parport_pc) is not an option: it does confuse the port,
1564 * ECP service interrupts are no more working after that. A
1565 * hard reset is then needed to revert to a sane state.
1567 * Let's hope that the FIFO is really stuck and that the
1568 * peripheral doesn't wake up now.
1570 parport_ip32_frob_control(p
, DCR_STROBE
, 0);
1573 for (residue
= priv
->fifo_depth
; residue
> 0; residue
--) {
1574 if (parport_ip32_read_econtrol(p
) & ECR_F_FULL
)
1576 writeb(0x00, priv
->regs
.fifo
);
1580 pr_debug1(PPIP32
"%s: %d PWord%s left in FIFO\n",
1582 (residue
== 1) ? " was" : "s were");
1584 /* Now reset the FIFO */
1585 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1587 /* Host recovery for ECP mode */
1588 if (mode
== ECR_MODE_ECP
) {
1589 parport_ip32_data_reverse(p
);
1590 parport_ip32_frob_control(p
, DCR_nINIT
, 0);
1591 if (parport_wait_peripheral(p
, DSR_PERROR
, 0))
1592 pr_debug1(PPIP32
"%s: PEerror timeout 1 in %s\n",
1594 parport_ip32_frob_control(p
, DCR_STROBE
, DCR_STROBE
);
1595 parport_ip32_frob_control(p
, DCR_nINIT
, DCR_nINIT
);
1596 if (parport_wait_peripheral(p
, DSR_PERROR
, DSR_PERROR
))
1597 pr_debug1(PPIP32
"%s: PEerror timeout 2 in %s\n",
1601 /* Adjust residue if needed */
1602 parport_ip32_set_mode(p
, ECR_MODE_CFG
);
1603 cnfga
= readb(priv
->regs
.cnfgA
);
1604 if (!(cnfga
& CNFGA_nBYTEINTRANS
)) {
1605 pr_debug1(PPIP32
"%s: cnfgA contains 0x%02x\n",
1607 pr_debug1(PPIP32
"%s: Accounting for extra byte\n",
1612 /* Don't care about partial PWords since we do not support
1613 * PWord != 1 byte. */
1615 /* Back to forward PS2 mode. */
1616 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1617 parport_ip32_data_forward(p
);
1623 * parport_ip32_compat_write_data - write a block of data in SPP mode
1624 * @p: pointer to &struct parport
1625 * @buf: buffer of data to write
1626 * @len: length of buffer @buf
1629 static size_t parport_ip32_compat_write_data(struct parport
*p
,
1630 const void *buf
, size_t len
,
1633 static unsigned int ready_before
= 1;
1634 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1635 struct parport
* const physport
= p
->physport
;
1638 /* Special case: a timeout of zero means we cannot call schedule().
1639 * Also if O_NONBLOCK is set then use the default implementation. */
1640 if (physport
->cad
->timeout
<= PARPORT_INACTIVITY_O_NONBLOCK
)
1641 return parport_ieee1284_write_compat(p
, buf
, len
, flags
);
1643 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1644 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1645 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
1646 parport_ip32_data_forward(p
);
1647 parport_ip32_disable_irq(p
);
1648 parport_ip32_set_mode(p
, ECR_MODE_PPF
);
1649 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_DATA
;
1651 /* Wait for peripheral to become ready */
1652 if (parport_wait_peripheral(p
, DSR_nBUSY
| DSR_nFAULT
,
1653 DSR_nBUSY
| DSR_nFAULT
)) {
1654 /* Avoid to flood the logs */
1656 printk(KERN_INFO PPIP32
"%s: not ready in %s\n",
1663 written
= parport_ip32_fifo_write_block(p
, buf
, len
);
1665 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1666 parport_ip32_drain_fifo(p
, physport
->cad
->timeout
* priv
->fifo_depth
);
1668 /* Check for a potential residue */
1669 written
-= parport_ip32_get_fifo_residue(p
, ECR_MODE_PPF
);
1671 /* Then, wait for BUSY to get low. */
1672 if (parport_wait_peripheral(p
, DSR_nBUSY
, DSR_nBUSY
))
1673 printk(KERN_DEBUG PPIP32
"%s: BUSY timeout in %s\n",
1678 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1679 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_IDLE
;
1685 * FIXME - Insert here parport_ip32_ecp_read_data().
1689 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1690 * @p: pointer to &struct parport
1691 * @buf: buffer of data to write
1692 * @len: length of buffer @buf
1695 static size_t parport_ip32_ecp_write_data(struct parport
*p
,
1696 const void *buf
, size_t len
,
1699 static unsigned int ready_before
= 1;
1700 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1701 struct parport
* const physport
= p
->physport
;
1704 /* Special case: a timeout of zero means we cannot call schedule().
1705 * Also if O_NONBLOCK is set then use the default implementation. */
1706 if (physport
->cad
->timeout
<= PARPORT_INACTIVITY_O_NONBLOCK
)
1707 return parport_ieee1284_ecp_write_data(p
, buf
, len
, flags
);
1709 /* Negotiate to forward mode if necessary. */
1710 if (physport
->ieee1284
.phase
!= IEEE1284_PH_FWD_IDLE
) {
1711 /* Event 47: Set nInit high. */
1712 parport_ip32_frob_control(p
, DCR_nINIT
| DCR_AUTOFD
,
1713 DCR_nINIT
| DCR_AUTOFD
);
1715 /* Event 49: PError goes high. */
1716 if (parport_wait_peripheral(p
, DSR_PERROR
, DSR_PERROR
)) {
1717 printk(KERN_DEBUG PPIP32
"%s: PError timeout in %s",
1719 physport
->ieee1284
.phase
= IEEE1284_PH_ECP_DIR_UNKNOWN
;
1724 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1725 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1726 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
1727 parport_ip32_data_forward(p
);
1728 parport_ip32_disable_irq(p
);
1729 parport_ip32_set_mode(p
, ECR_MODE_ECP
);
1730 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_DATA
;
1732 /* Wait for peripheral to become ready */
1733 if (parport_wait_peripheral(p
, DSR_nBUSY
| DSR_nFAULT
,
1734 DSR_nBUSY
| DSR_nFAULT
)) {
1735 /* Avoid to flood the logs */
1737 printk(KERN_INFO PPIP32
"%s: not ready in %s\n",
1744 written
= parport_ip32_fifo_write_block(p
, buf
, len
);
1746 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1747 parport_ip32_drain_fifo(p
, physport
->cad
->timeout
* priv
->fifo_depth
);
1749 /* Check for a potential residue */
1750 written
-= parport_ip32_get_fifo_residue(p
, ECR_MODE_ECP
);
1752 /* Then, wait for BUSY to get low. */
1753 if (parport_wait_peripheral(p
, DSR_nBUSY
, DSR_nBUSY
))
1754 printk(KERN_DEBUG PPIP32
"%s: BUSY timeout in %s\n",
1759 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1760 physport
->ieee1284
.phase
= IEEE1284_PH_FWD_IDLE
;
1766 * FIXME - Insert here parport_ip32_ecp_write_addr().
1769 /*--- Default parport operations ---------------------------------------*/
1771 static __initdata
struct parport_operations parport_ip32_ops
= {
1772 .write_data
= parport_ip32_write_data
,
1773 .read_data
= parport_ip32_read_data
,
1775 .write_control
= parport_ip32_write_control
,
1776 .read_control
= parport_ip32_read_control
,
1777 .frob_control
= parport_ip32_frob_control
,
1779 .read_status
= parport_ip32_read_status
,
1781 .enable_irq
= parport_ip32_enable_irq
,
1782 .disable_irq
= parport_ip32_disable_irq
,
1784 .data_forward
= parport_ip32_data_forward
,
1785 .data_reverse
= parport_ip32_data_reverse
,
1787 .init_state
= parport_ip32_init_state
,
1788 .save_state
= parport_ip32_save_state
,
1789 .restore_state
= parport_ip32_restore_state
,
1791 .epp_write_data
= parport_ieee1284_epp_write_data
,
1792 .epp_read_data
= parport_ieee1284_epp_read_data
,
1793 .epp_write_addr
= parport_ieee1284_epp_write_addr
,
1794 .epp_read_addr
= parport_ieee1284_epp_read_addr
,
1796 .ecp_write_data
= parport_ieee1284_ecp_write_data
,
1797 .ecp_read_data
= parport_ieee1284_ecp_read_data
,
1798 .ecp_write_addr
= parport_ieee1284_ecp_write_addr
,
1800 .compat_write_data
= parport_ieee1284_write_compat
,
1801 .nibble_read_data
= parport_ieee1284_read_nibble
,
1802 .byte_read_data
= parport_ieee1284_read_byte
,
1804 .owner
= THIS_MODULE
,
1807 /*--- Device detection -------------------------------------------------*/
1810 * parport_ip32_ecp_supported - check for an ECP port
1811 * @p: pointer to the &parport structure
1813 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually
1814 * checks if an Extended Control Register seems to be present. On successful
1815 * return, the port is placed in SPP mode.
1817 static __init
unsigned int parport_ip32_ecp_supported(struct parport
*p
)
1819 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1822 ecr
= ECR_MODE_PS2
| ECR_nERRINTR
| ECR_SERVINTR
;
1823 writeb(ecr
, priv
->regs
.ecr
);
1824 if (readb(priv
->regs
.ecr
) != (ecr
| ECR_F_EMPTY
))
1827 pr_probe(p
, "Found working ECR register\n");
1828 parport_ip32_set_mode(p
, ECR_MODE_SPP
);
1829 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
1833 pr_probe(p
, "ECR register not found\n");
1838 * parport_ip32_fifo_supported - check for FIFO parameters
1839 * @p: pointer to the &parport structure
1841 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on
1842 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure.
1843 * On return, the port is placed in SPP mode.
1845 static __init
unsigned int parport_ip32_fifo_supported(struct parport
*p
)
1847 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
1848 unsigned int configa
, configb
;
1852 /* Configuration mode */
1853 parport_ip32_set_mode(p
, ECR_MODE_CFG
);
1854 configa
= readb(priv
->regs
.cnfgA
);
1855 configb
= readb(priv
->regs
.cnfgB
);
1857 /* Find out PWord size */
1858 switch (configa
& CNFGA_ID_MASK
) {
1869 pr_probe(p
, "Unknown implementation ID: 0x%0x\n",
1870 (configa
& CNFGA_ID_MASK
) >> CNFGA_ID_SHIFT
);
1875 pr_probe(p
, "Unsupported PWord size: %u\n", pword
);
1878 priv
->pword
= pword
;
1879 pr_probe(p
, "PWord is %u bits\n", 8 * priv
->pword
);
1881 /* Check for compression support */
1882 writeb(configb
| CNFGB_COMPRESS
, priv
->regs
.cnfgB
);
1883 if (readb(priv
->regs
.cnfgB
) & CNFGB_COMPRESS
)
1884 pr_probe(p
, "Hardware compression detected (unsupported)\n");
1885 writeb(configb
& ~CNFGB_COMPRESS
, priv
->regs
.cnfgB
);
1887 /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1888 parport_ip32_set_mode(p
, ECR_MODE_TST
);
1890 /* FIFO must be empty now */
1891 if (!(readb(priv
->regs
.ecr
) & ECR_F_EMPTY
)) {
1892 pr_probe(p
, "FIFO not reset\n");
1896 /* Find out FIFO depth. */
1897 priv
->fifo_depth
= 0;
1898 for (i
= 0; i
< 1024; i
++) {
1899 if (readb(priv
->regs
.ecr
) & ECR_F_FULL
) {
1901 priv
->fifo_depth
= i
;
1904 writeb((u8
)i
, priv
->regs
.fifo
);
1907 pr_probe(p
, "Can't fill FIFO\n");
1910 if (!priv
->fifo_depth
) {
1911 pr_probe(p
, "Can't get FIFO depth\n");
1914 pr_probe(p
, "FIFO is %u PWords deep\n", priv
->fifo_depth
);
1916 /* Enable interrupts */
1917 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, 0);
1919 /* Find out writeIntrThreshold: number of PWords we know we can write
1920 * if we get an interrupt. */
1921 priv
->writeIntrThreshold
= 0;
1922 for (i
= 0; i
< priv
->fifo_depth
; i
++) {
1923 if (readb(priv
->regs
.fifo
) != (u8
)i
) {
1924 pr_probe(p
, "Invalid data in FIFO\n");
1927 if (!priv
->writeIntrThreshold
1928 && readb(priv
->regs
.ecr
) & ECR_SERVINTR
)
1929 /* writeIntrThreshold reached */
1930 priv
->writeIntrThreshold
= i
+ 1;
1931 if (i
+ 1 < priv
->fifo_depth
1932 && readb(priv
->regs
.ecr
) & ECR_F_EMPTY
) {
1933 /* FIFO empty before the last byte? */
1934 pr_probe(p
, "Data lost in FIFO\n");
1938 if (!priv
->writeIntrThreshold
) {
1939 pr_probe(p
, "Can't get writeIntrThreshold\n");
1942 pr_probe(p
, "writeIntrThreshold is %u\n", priv
->writeIntrThreshold
);
1944 /* FIFO must be empty now */
1945 if (!(readb(priv
->regs
.ecr
) & ECR_F_EMPTY
)) {
1946 pr_probe(p
, "Can't empty FIFO\n");
1951 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1952 /* Set reverse direction (must be in PS2 mode) */
1953 parport_ip32_data_reverse(p
);
1954 /* Test FIFO, no interrupt, no DMA */
1955 parport_ip32_set_mode(p
, ECR_MODE_TST
);
1956 /* Enable interrupts */
1957 parport_ip32_frob_econtrol(p
, ECR_SERVINTR
, 0);
1959 /* Find out readIntrThreshold: number of PWords we can read if we get
1961 priv
->readIntrThreshold
= 0;
1962 for (i
= 0; i
< priv
->fifo_depth
; i
++) {
1963 writeb(0xaa, priv
->regs
.fifo
);
1964 if (readb(priv
->regs
.ecr
) & ECR_SERVINTR
) {
1965 /* readIntrThreshold reached */
1966 priv
->readIntrThreshold
= i
+ 1;
1970 if (!priv
->readIntrThreshold
) {
1971 pr_probe(p
, "Can't get readIntrThreshold\n");
1974 pr_probe(p
, "readIntrThreshold is %u\n", priv
->readIntrThreshold
);
1977 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
1978 parport_ip32_data_forward(p
);
1979 parport_ip32_set_mode(p
, ECR_MODE_SPP
);
1983 priv
->fifo_depth
= 0;
1984 parport_ip32_set_mode(p
, ECR_MODE_SPP
);
1988 /*--- Initialization code ----------------------------------------------*/
1991 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1992 * @regs: pointer to &struct parport_ip32_regs to fill
1993 * @base: base address of standard and EPP registers
1994 * @base_hi: base address of ECP registers
1995 * @regshift: how much to shift register offset by
1997 * Compute register addresses, according to the ISA standard. The addresses
1998 * of the standard and EPP registers are computed from address @base. The
1999 * addresses of the ECP registers are computed from address @base_hi.
2002 parport_ip32_make_isa_registers(struct parport_ip32_regs
*regs
,
2003 void __iomem
*base
, void __iomem
*base_hi
,
2004 unsigned int regshift
)
2006 #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift))
2007 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2008 *regs
= (struct parport_ip32_regs
){
2012 .eppAddr
= r_base(3),
2013 .eppData0
= r_base(4),
2014 .eppData1
= r_base(5),
2015 .eppData2
= r_base(6),
2016 .eppData3
= r_base(7),
2017 .ecpAFifo
= r_base(0),
2018 .fifo
= r_base_hi(0),
2019 .cnfgA
= r_base_hi(0),
2020 .cnfgB
= r_base_hi(1),
2028 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2030 * Returns the new allocated &parport structure. On error, an error code is
2031 * encoded in return value with the ERR_PTR function.
2033 static __init
struct parport
*parport_ip32_probe_port(void)
2035 struct parport_ip32_regs regs
;
2036 struct parport_ip32_private
*priv
= NULL
;
2037 struct parport_operations
*ops
= NULL
;
2038 struct parport
*p
= NULL
;
2041 parport_ip32_make_isa_registers(®s
, &mace
->isa
.parallel
,
2042 &mace
->isa
.ecp1284
, 8 /* regshift */);
2044 ops
= kmalloc(sizeof(struct parport_operations
), GFP_KERNEL
);
2045 priv
= kmalloc(sizeof(struct parport_ip32_private
), GFP_KERNEL
);
2046 p
= parport_register_port(0, PARPORT_IRQ_NONE
, PARPORT_DMA_NONE
, ops
);
2047 if (ops
== NULL
|| priv
== NULL
|| p
== NULL
) {
2051 p
->base
= MACE_BASE
+ offsetof(struct sgi_mace
, isa
.parallel
);
2052 p
->base_hi
= MACE_BASE
+ offsetof(struct sgi_mace
, isa
.ecp1284
);
2053 p
->private_data
= priv
;
2055 *ops
= parport_ip32_ops
;
2056 *priv
= (struct parport_ip32_private
){
2058 .dcr_writable
= DCR_DIR
| DCR_SELECT
| DCR_nINIT
|
2059 DCR_AUTOFD
| DCR_STROBE
,
2060 .irq_mode
= PARPORT_IP32_IRQ_FWD
,
2062 init_completion(&priv
->irq_complete
);
2065 if (!parport_ip32_ecp_supported(p
)) {
2069 parport_ip32_dump_state(p
, "begin init", 0);
2071 /* We found what looks like a working ECR register. Simply assume
2072 * that all modes are correctly supported. Enable basic modes. */
2073 p
->modes
= PARPORT_MODE_PCSPP
| PARPORT_MODE_SAFEININT
;
2074 p
->modes
|= PARPORT_MODE_TRISTATE
;
2076 if (!parport_ip32_fifo_supported(p
)) {
2077 printk(KERN_WARNING PPIP32
2078 "%s: error: FIFO disabled\n", p
->name
);
2079 /* Disable hardware modes depending on a working FIFO. */
2080 features
&= ~PARPORT_IP32_ENABLE_SPP
;
2081 features
&= ~PARPORT_IP32_ENABLE_ECP
;
2082 /* DMA is not needed if FIFO is not supported. */
2083 features
&= ~PARPORT_IP32_ENABLE_DMA
;
2087 if (features
& PARPORT_IP32_ENABLE_IRQ
) {
2088 int irq
= MACEISA_PARALLEL_IRQ
;
2089 if (request_irq(irq
, parport_ip32_interrupt
, 0, p
->name
, p
)) {
2090 printk(KERN_WARNING PPIP32
2091 "%s: error: IRQ disabled\n", p
->name
);
2092 /* DMA cannot work without interrupts. */
2093 features
&= ~PARPORT_IP32_ENABLE_DMA
;
2095 pr_probe(p
, "Interrupt support enabled\n");
2097 priv
->dcr_writable
|= DCR_IRQ
;
2101 /* Allocate DMA resources */
2102 if (features
& PARPORT_IP32_ENABLE_DMA
) {
2103 if (parport_ip32_dma_register())
2104 printk(KERN_WARNING PPIP32
2105 "%s: error: DMA disabled\n", p
->name
);
2107 pr_probe(p
, "DMA support enabled\n");
2108 p
->dma
= 0; /* arbitrary value != PARPORT_DMA_NONE */
2109 p
->modes
|= PARPORT_MODE_DMA
;
2113 if (features
& PARPORT_IP32_ENABLE_SPP
) {
2114 /* Enable compatibility FIFO mode */
2115 p
->ops
->compat_write_data
= parport_ip32_compat_write_data
;
2116 p
->modes
|= PARPORT_MODE_COMPAT
;
2117 pr_probe(p
, "Hardware support for SPP mode enabled\n");
2119 if (features
& PARPORT_IP32_ENABLE_EPP
) {
2120 /* Set up access functions to use EPP hardware. */
2121 p
->ops
->epp_read_data
= parport_ip32_epp_read_data
;
2122 p
->ops
->epp_write_data
= parport_ip32_epp_write_data
;
2123 p
->ops
->epp_read_addr
= parport_ip32_epp_read_addr
;
2124 p
->ops
->epp_write_addr
= parport_ip32_epp_write_addr
;
2125 p
->modes
|= PARPORT_MODE_EPP
;
2126 pr_probe(p
, "Hardware support for EPP mode enabled\n");
2128 if (features
& PARPORT_IP32_ENABLE_ECP
) {
2129 /* Enable ECP FIFO mode */
2130 p
->ops
->ecp_write_data
= parport_ip32_ecp_write_data
;
2131 /* FIXME - not implemented */
2132 /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */
2133 /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2134 p
->modes
|= PARPORT_MODE_ECP
;
2135 pr_probe(p
, "Hardware support for ECP mode enabled\n");
2138 /* Initialize the port with sensible values */
2139 parport_ip32_set_mode(p
, ECR_MODE_PS2
);
2140 parport_ip32_write_control(p
, DCR_SELECT
| DCR_nINIT
);
2141 parport_ip32_data_forward(p
);
2142 parport_ip32_disable_irq(p
);
2143 parport_ip32_write_data(p
, 0x00);
2144 parport_ip32_dump_state(p
, "end init", 0);
2146 /* Print out what we found */
2147 printk(KERN_INFO
"%s: SGI IP32 at 0x%lx (0x%lx)",
2148 p
->name
, p
->base
, p
->base_hi
);
2149 if (p
->irq
!= PARPORT_IRQ_NONE
)
2150 printk(", irq %d", p
->irq
);
2152 #define printmode(x) if (p->modes & PARPORT_MODE_##x) \
2153 printk("%s%s", f++ ? "," : "", #x)
2157 printmode(TRISTATE
);
2166 parport_announce_port(p
);
2171 parport_put_port(p
);
2174 return ERR_PTR(err
);
2178 * parport_ip32_unregister_port - unregister a parallel port
2179 * @p: pointer to the &struct parport
2181 * Unregisters a parallel port and free previously allocated resources
2182 * (memory, IRQ, ...).
2184 static __exit
void parport_ip32_unregister_port(struct parport
*p
)
2186 struct parport_ip32_private
* const priv
= p
->physport
->private_data
;
2187 struct parport_operations
*ops
= p
->ops
;
2189 parport_remove_port(p
);
2190 if (p
->modes
& PARPORT_MODE_DMA
)
2191 parport_ip32_dma_unregister();
2192 if (p
->irq
!= PARPORT_IRQ_NONE
)
2193 free_irq(p
->irq
, p
);
2194 parport_put_port(p
);
2200 * parport_ip32_init - module initialization function
2202 static int __init
parport_ip32_init(void)
2204 pr_info(PPIP32
"SGI IP32 built-in parallel port driver v0.6\n");
2205 pr_debug1(PPIP32
"Compiled on %s, %s\n", __DATE__
, __TIME__
);
2206 this_port
= parport_ip32_probe_port();
2207 return IS_ERR(this_port
) ? PTR_ERR(this_port
) : 0;
2211 * parport_ip32_exit - module termination function
2213 static void __exit
parport_ip32_exit(void)
2215 parport_ip32_unregister_port(this_port
);
2218 /*--- Module stuff -----------------------------------------------------*/
2220 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2221 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2222 MODULE_LICENSE("GPL");
2223 MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */
2225 module_init(parport_ip32_init
);
2226 module_exit(parport_ip32_exit
);
2228 module_param(verbose_probing
, bool, S_IRUGO
);
2229 MODULE_PARM_DESC(verbose_probing
, "Log chit-chat during initialization");
2231 module_param(features
, uint
, S_IRUGO
);
2232 MODULE_PARM_DESC(features
,
2233 "Bit mask of features to enable"
2234 ", bit 0: IRQ support"
2235 ", bit 1: DMA support"
2236 ", bit 2: hardware SPP mode"
2237 ", bit 3: hardware EPP mode"
2238 ", bit 4: hardware ECP mode");
2240 /*--- Inform (X)Emacs about preferred coding style ---------------------*/
2244 * c-file-style: "linux"
2245 * indent-tabs-mode: t
2248 * ispell-local-dictionary: "american"