[PATCH] Documentation: CPU load calculation description
[linux-2.6/mini2440.git] / crypto / xcbc.c
blob53e8ccbf0f5f514d9023431d9e15a47e53ed705e
1 /*
2 * Copyright (C)2006 USAGI/WIDE Project
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author:
19 * Kazunori Miyazawa <miyazawa@linux-ipv6.org>
22 #include <linux/crypto.h>
23 #include <linux/err.h>
24 #include <linux/hardirq.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/slab.h>
29 #include <linux/scatterlist.h>
30 #include "internal.h"
32 static u_int32_t ks[12] = {0x01010101, 0x01010101, 0x01010101, 0x01010101,
33 0x02020202, 0x02020202, 0x02020202, 0x02020202,
34 0x03030303, 0x03030303, 0x03030303, 0x03030303};
36 * +------------------------
37 * | <parent tfm>
38 * +------------------------
39 * | crypto_xcbc_ctx
40 * +------------------------
41 * | odds (block size)
42 * +------------------------
43 * | prev (block size)
44 * +------------------------
45 * | key (block size)
46 * +------------------------
47 * | consts (block size * 3)
48 * +------------------------
50 struct crypto_xcbc_ctx {
51 struct crypto_cipher *child;
52 u8 *odds;
53 u8 *prev;
54 u8 *key;
55 u8 *consts;
56 void (*xor)(u8 *a, const u8 *b, unsigned int bs);
57 unsigned int keylen;
58 unsigned int len;
61 static void xor_128(u8 *a, const u8 *b, unsigned int bs)
63 ((u32 *)a)[0] ^= ((u32 *)b)[0];
64 ((u32 *)a)[1] ^= ((u32 *)b)[1];
65 ((u32 *)a)[2] ^= ((u32 *)b)[2];
66 ((u32 *)a)[3] ^= ((u32 *)b)[3];
69 static int _crypto_xcbc_digest_setkey(struct crypto_hash *parent,
70 struct crypto_xcbc_ctx *ctx)
72 int bs = crypto_hash_blocksize(parent);
73 int err = 0;
74 u8 key1[bs];
76 if ((err = crypto_cipher_setkey(ctx->child, ctx->key, ctx->keylen)))
77 return err;
79 crypto_cipher_encrypt_one(ctx->child, key1, ctx->consts);
81 return crypto_cipher_setkey(ctx->child, key1, bs);
84 static int crypto_xcbc_digest_setkey(struct crypto_hash *parent,
85 const u8 *inkey, unsigned int keylen)
87 struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent);
89 if (keylen != crypto_cipher_blocksize(ctx->child))
90 return -EINVAL;
92 ctx->keylen = keylen;
93 memcpy(ctx->key, inkey, keylen);
94 ctx->consts = (u8*)ks;
96 return _crypto_xcbc_digest_setkey(parent, ctx);
99 static int crypto_xcbc_digest_init(struct hash_desc *pdesc)
101 struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(pdesc->tfm);
102 int bs = crypto_hash_blocksize(pdesc->tfm);
104 ctx->len = 0;
105 memset(ctx->odds, 0, bs);
106 memset(ctx->prev, 0, bs);
108 return 0;
111 static int crypto_xcbc_digest_update2(struct hash_desc *pdesc,
112 struct scatterlist *sg,
113 unsigned int nbytes)
115 struct crypto_hash *parent = pdesc->tfm;
116 struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent);
117 struct crypto_cipher *tfm = ctx->child;
118 int bs = crypto_hash_blocksize(parent);
119 unsigned int i = 0;
121 do {
123 struct page *pg = sg[i].page;
124 unsigned int offset = sg[i].offset;
125 unsigned int slen = sg[i].length;
127 while (slen > 0) {
128 unsigned int len = min(slen, ((unsigned int)(PAGE_SIZE)) - offset);
129 char *p = crypto_kmap(pg, 0) + offset;
131 /* checking the data can fill the block */
132 if ((ctx->len + len) <= bs) {
133 memcpy(ctx->odds + ctx->len, p, len);
134 ctx->len += len;
135 slen -= len;
137 /* checking the rest of the page */
138 if (len + offset >= PAGE_SIZE) {
139 offset = 0;
140 pg++;
141 } else
142 offset += len;
144 crypto_kunmap(p, 0);
145 crypto_yield(pdesc->flags);
146 continue;
149 /* filling odds with new data and encrypting it */
150 memcpy(ctx->odds + ctx->len, p, bs - ctx->len);
151 len -= bs - ctx->len;
152 p += bs - ctx->len;
154 ctx->xor(ctx->prev, ctx->odds, bs);
155 crypto_cipher_encrypt_one(tfm, ctx->prev, ctx->prev);
157 /* clearing the length */
158 ctx->len = 0;
160 /* encrypting the rest of data */
161 while (len > bs) {
162 ctx->xor(ctx->prev, p, bs);
163 crypto_cipher_encrypt_one(tfm, ctx->prev,
164 ctx->prev);
165 p += bs;
166 len -= bs;
169 /* keeping the surplus of blocksize */
170 if (len) {
171 memcpy(ctx->odds, p, len);
172 ctx->len = len;
174 crypto_kunmap(p, 0);
175 crypto_yield(pdesc->flags);
176 slen -= min(slen, ((unsigned int)(PAGE_SIZE)) - offset);
177 offset = 0;
178 pg++;
180 nbytes-=sg[i].length;
181 i++;
182 } while (nbytes>0);
184 return 0;
187 static int crypto_xcbc_digest_update(struct hash_desc *pdesc,
188 struct scatterlist *sg,
189 unsigned int nbytes)
191 if (WARN_ON_ONCE(in_irq()))
192 return -EDEADLK;
193 return crypto_xcbc_digest_update2(pdesc, sg, nbytes);
196 static int crypto_xcbc_digest_final(struct hash_desc *pdesc, u8 *out)
198 struct crypto_hash *parent = pdesc->tfm;
199 struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(parent);
200 struct crypto_cipher *tfm = ctx->child;
201 int bs = crypto_hash_blocksize(parent);
202 int err = 0;
204 if (ctx->len == bs) {
205 u8 key2[bs];
207 if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0)
208 return err;
210 crypto_cipher_encrypt_one(tfm, key2,
211 (u8 *)(ctx->consts + bs));
213 ctx->xor(ctx->prev, ctx->odds, bs);
214 ctx->xor(ctx->prev, key2, bs);
215 _crypto_xcbc_digest_setkey(parent, ctx);
217 crypto_cipher_encrypt_one(tfm, out, ctx->prev);
218 } else {
219 u8 key3[bs];
220 unsigned int rlen;
221 u8 *p = ctx->odds + ctx->len;
222 *p = 0x80;
223 p++;
225 rlen = bs - ctx->len -1;
226 if (rlen)
227 memset(p, 0, rlen);
229 if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0)
230 return err;
232 crypto_cipher_encrypt_one(tfm, key3,
233 (u8 *)(ctx->consts + bs * 2));
235 ctx->xor(ctx->prev, ctx->odds, bs);
236 ctx->xor(ctx->prev, key3, bs);
238 _crypto_xcbc_digest_setkey(parent, ctx);
240 crypto_cipher_encrypt_one(tfm, out, ctx->prev);
243 return 0;
246 static int crypto_xcbc_digest(struct hash_desc *pdesc,
247 struct scatterlist *sg, unsigned int nbytes, u8 *out)
249 if (WARN_ON_ONCE(in_irq()))
250 return -EDEADLK;
252 crypto_xcbc_digest_init(pdesc);
253 crypto_xcbc_digest_update2(pdesc, sg, nbytes);
254 return crypto_xcbc_digest_final(pdesc, out);
257 static int xcbc_init_tfm(struct crypto_tfm *tfm)
259 struct crypto_cipher *cipher;
260 struct crypto_instance *inst = (void *)tfm->__crt_alg;
261 struct crypto_spawn *spawn = crypto_instance_ctx(inst);
262 struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(__crypto_hash_cast(tfm));
263 int bs = crypto_hash_blocksize(__crypto_hash_cast(tfm));
265 cipher = crypto_spawn_cipher(spawn);
266 if (IS_ERR(cipher))
267 return PTR_ERR(cipher);
269 switch(bs) {
270 case 16:
271 ctx->xor = xor_128;
272 break;
273 default:
274 return -EINVAL;
277 ctx->child = cipher;
278 ctx->odds = (u8*)(ctx+1);
279 ctx->prev = ctx->odds + bs;
280 ctx->key = ctx->prev + bs;
282 return 0;
285 static void xcbc_exit_tfm(struct crypto_tfm *tfm)
287 struct crypto_xcbc_ctx *ctx = crypto_hash_ctx_aligned(__crypto_hash_cast(tfm));
288 crypto_free_cipher(ctx->child);
291 static struct crypto_instance *xcbc_alloc(void *param, unsigned int len)
293 struct crypto_instance *inst;
294 struct crypto_alg *alg;
295 alg = crypto_get_attr_alg(param, len, CRYPTO_ALG_TYPE_CIPHER,
296 CRYPTO_ALG_TYPE_HASH_MASK | CRYPTO_ALG_ASYNC);
297 if (IS_ERR(alg))
298 return ERR_PTR(PTR_ERR(alg));
300 switch(alg->cra_blocksize) {
301 case 16:
302 break;
303 default:
304 return ERR_PTR(PTR_ERR(alg));
307 inst = crypto_alloc_instance("xcbc", alg);
308 if (IS_ERR(inst))
309 goto out_put_alg;
311 inst->alg.cra_flags = CRYPTO_ALG_TYPE_HASH;
312 inst->alg.cra_priority = alg->cra_priority;
313 inst->alg.cra_blocksize = alg->cra_blocksize;
314 inst->alg.cra_alignmask = alg->cra_alignmask;
315 inst->alg.cra_type = &crypto_hash_type;
317 inst->alg.cra_hash.digestsize =
318 (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
319 CRYPTO_ALG_TYPE_HASH ? alg->cra_hash.digestsize :
320 alg->cra_blocksize;
321 inst->alg.cra_ctxsize = sizeof(struct crypto_xcbc_ctx) +
322 ALIGN(inst->alg.cra_blocksize * 3, sizeof(void *));
323 inst->alg.cra_init = xcbc_init_tfm;
324 inst->alg.cra_exit = xcbc_exit_tfm;
326 inst->alg.cra_hash.init = crypto_xcbc_digest_init;
327 inst->alg.cra_hash.update = crypto_xcbc_digest_update;
328 inst->alg.cra_hash.final = crypto_xcbc_digest_final;
329 inst->alg.cra_hash.digest = crypto_xcbc_digest;
330 inst->alg.cra_hash.setkey = crypto_xcbc_digest_setkey;
332 out_put_alg:
333 crypto_mod_put(alg);
334 return inst;
337 static void xcbc_free(struct crypto_instance *inst)
339 crypto_drop_spawn(crypto_instance_ctx(inst));
340 kfree(inst);
343 static struct crypto_template crypto_xcbc_tmpl = {
344 .name = "xcbc",
345 .alloc = xcbc_alloc,
346 .free = xcbc_free,
347 .module = THIS_MODULE,
350 static int __init crypto_xcbc_module_init(void)
352 return crypto_register_template(&crypto_xcbc_tmpl);
355 static void __exit crypto_xcbc_module_exit(void)
357 crypto_unregister_template(&crypto_xcbc_tmpl);
360 module_init(crypto_xcbc_module_init);
361 module_exit(crypto_xcbc_module_exit);
363 MODULE_LICENSE("GPL");
364 MODULE_DESCRIPTION("XCBC keyed hash algorithm");