KVM: VMX: Provide support for user space injected NMIs
[linux-2.6/mini2440.git] / arch / x86 / kvm / vmx.c
blobf16a62c79267cc3cc8e6943049428102d6184708
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
32 #include <asm/io.h>
33 #include <asm/desc.h>
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 static int bypass_guest_pf = 1;
41 module_param(bypass_guest_pf, bool, 0);
43 static int enable_vpid = 1;
44 module_param(enable_vpid, bool, 0);
46 static int flexpriority_enabled = 1;
47 module_param(flexpriority_enabled, bool, 0);
49 static int enable_ept = 1;
50 module_param(enable_ept, bool, 0);
52 static int emulate_invalid_guest_state = 0;
53 module_param(emulate_invalid_guest_state, bool, 0);
55 struct vmcs {
56 u32 revision_id;
57 u32 abort;
58 char data[0];
61 struct vcpu_vmx {
62 struct kvm_vcpu vcpu;
63 struct list_head local_vcpus_link;
64 unsigned long host_rsp;
65 int launched;
66 u8 fail;
67 u32 idt_vectoring_info;
68 struct kvm_msr_entry *guest_msrs;
69 struct kvm_msr_entry *host_msrs;
70 int nmsrs;
71 int save_nmsrs;
72 int msr_offset_efer;
73 #ifdef CONFIG_X86_64
74 int msr_offset_kernel_gs_base;
75 #endif
76 struct vmcs *vmcs;
77 struct {
78 int loaded;
79 u16 fs_sel, gs_sel, ldt_sel;
80 int gs_ldt_reload_needed;
81 int fs_reload_needed;
82 int guest_efer_loaded;
83 } host_state;
84 struct {
85 struct {
86 bool pending;
87 u8 vector;
88 unsigned rip;
89 } irq;
90 } rmode;
91 int vpid;
92 bool emulation_required;
95 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
97 return container_of(vcpu, struct vcpu_vmx, vcpu);
100 static int init_rmode(struct kvm *kvm);
101 static u64 construct_eptp(unsigned long root_hpa);
103 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
104 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
105 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
107 static struct page *vmx_io_bitmap_a;
108 static struct page *vmx_io_bitmap_b;
109 static struct page *vmx_msr_bitmap;
111 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
112 static DEFINE_SPINLOCK(vmx_vpid_lock);
114 static struct vmcs_config {
115 int size;
116 int order;
117 u32 revision_id;
118 u32 pin_based_exec_ctrl;
119 u32 cpu_based_exec_ctrl;
120 u32 cpu_based_2nd_exec_ctrl;
121 u32 vmexit_ctrl;
122 u32 vmentry_ctrl;
123 } vmcs_config;
125 struct vmx_capability {
126 u32 ept;
127 u32 vpid;
128 } vmx_capability;
130 #define VMX_SEGMENT_FIELD(seg) \
131 [VCPU_SREG_##seg] = { \
132 .selector = GUEST_##seg##_SELECTOR, \
133 .base = GUEST_##seg##_BASE, \
134 .limit = GUEST_##seg##_LIMIT, \
135 .ar_bytes = GUEST_##seg##_AR_BYTES, \
138 static struct kvm_vmx_segment_field {
139 unsigned selector;
140 unsigned base;
141 unsigned limit;
142 unsigned ar_bytes;
143 } kvm_vmx_segment_fields[] = {
144 VMX_SEGMENT_FIELD(CS),
145 VMX_SEGMENT_FIELD(DS),
146 VMX_SEGMENT_FIELD(ES),
147 VMX_SEGMENT_FIELD(FS),
148 VMX_SEGMENT_FIELD(GS),
149 VMX_SEGMENT_FIELD(SS),
150 VMX_SEGMENT_FIELD(TR),
151 VMX_SEGMENT_FIELD(LDTR),
155 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
156 * away by decrementing the array size.
158 static const u32 vmx_msr_index[] = {
159 #ifdef CONFIG_X86_64
160 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
161 #endif
162 MSR_EFER, MSR_K6_STAR,
164 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
166 static void load_msrs(struct kvm_msr_entry *e, int n)
168 int i;
170 for (i = 0; i < n; ++i)
171 wrmsrl(e[i].index, e[i].data);
174 static void save_msrs(struct kvm_msr_entry *e, int n)
176 int i;
178 for (i = 0; i < n; ++i)
179 rdmsrl(e[i].index, e[i].data);
182 static inline int is_page_fault(u32 intr_info)
184 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
185 INTR_INFO_VALID_MASK)) ==
186 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
189 static inline int is_no_device(u32 intr_info)
191 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
192 INTR_INFO_VALID_MASK)) ==
193 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
196 static inline int is_invalid_opcode(u32 intr_info)
198 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
199 INTR_INFO_VALID_MASK)) ==
200 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
203 static inline int is_external_interrupt(u32 intr_info)
205 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
206 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
209 static inline int cpu_has_vmx_msr_bitmap(void)
211 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
214 static inline int cpu_has_vmx_tpr_shadow(void)
216 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
219 static inline int vm_need_tpr_shadow(struct kvm *kvm)
221 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
224 static inline int cpu_has_secondary_exec_ctrls(void)
226 return (vmcs_config.cpu_based_exec_ctrl &
227 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
230 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
232 return flexpriority_enabled
233 && (vmcs_config.cpu_based_2nd_exec_ctrl &
234 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
237 static inline int cpu_has_vmx_invept_individual_addr(void)
239 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
242 static inline int cpu_has_vmx_invept_context(void)
244 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
247 static inline int cpu_has_vmx_invept_global(void)
249 return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
252 static inline int cpu_has_vmx_ept(void)
254 return (vmcs_config.cpu_based_2nd_exec_ctrl &
255 SECONDARY_EXEC_ENABLE_EPT);
258 static inline int vm_need_ept(void)
260 return (cpu_has_vmx_ept() && enable_ept);
263 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
265 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
266 (irqchip_in_kernel(kvm)));
269 static inline int cpu_has_vmx_vpid(void)
271 return (vmcs_config.cpu_based_2nd_exec_ctrl &
272 SECONDARY_EXEC_ENABLE_VPID);
275 static inline int cpu_has_virtual_nmis(void)
277 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
280 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
282 int i;
284 for (i = 0; i < vmx->nmsrs; ++i)
285 if (vmx->guest_msrs[i].index == msr)
286 return i;
287 return -1;
290 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
292 struct {
293 u64 vpid : 16;
294 u64 rsvd : 48;
295 u64 gva;
296 } operand = { vpid, 0, gva };
298 asm volatile (__ex(ASM_VMX_INVVPID)
299 /* CF==1 or ZF==1 --> rc = -1 */
300 "; ja 1f ; ud2 ; 1:"
301 : : "a"(&operand), "c"(ext) : "cc", "memory");
304 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
306 struct {
307 u64 eptp, gpa;
308 } operand = {eptp, gpa};
310 asm volatile (__ex(ASM_VMX_INVEPT)
311 /* CF==1 or ZF==1 --> rc = -1 */
312 "; ja 1f ; ud2 ; 1:\n"
313 : : "a" (&operand), "c" (ext) : "cc", "memory");
316 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
318 int i;
320 i = __find_msr_index(vmx, msr);
321 if (i >= 0)
322 return &vmx->guest_msrs[i];
323 return NULL;
326 static void vmcs_clear(struct vmcs *vmcs)
328 u64 phys_addr = __pa(vmcs);
329 u8 error;
331 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
332 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
333 : "cc", "memory");
334 if (error)
335 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
336 vmcs, phys_addr);
339 static void __vcpu_clear(void *arg)
341 struct vcpu_vmx *vmx = arg;
342 int cpu = raw_smp_processor_id();
344 if (vmx->vcpu.cpu == cpu)
345 vmcs_clear(vmx->vmcs);
346 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
347 per_cpu(current_vmcs, cpu) = NULL;
348 rdtscll(vmx->vcpu.arch.host_tsc);
349 list_del(&vmx->local_vcpus_link);
350 vmx->vcpu.cpu = -1;
351 vmx->launched = 0;
354 static void vcpu_clear(struct vcpu_vmx *vmx)
356 if (vmx->vcpu.cpu == -1)
357 return;
358 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
361 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
363 if (vmx->vpid == 0)
364 return;
366 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
369 static inline void ept_sync_global(void)
371 if (cpu_has_vmx_invept_global())
372 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
375 static inline void ept_sync_context(u64 eptp)
377 if (vm_need_ept()) {
378 if (cpu_has_vmx_invept_context())
379 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
380 else
381 ept_sync_global();
385 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
387 if (vm_need_ept()) {
388 if (cpu_has_vmx_invept_individual_addr())
389 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
390 eptp, gpa);
391 else
392 ept_sync_context(eptp);
396 static unsigned long vmcs_readl(unsigned long field)
398 unsigned long value;
400 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
401 : "=a"(value) : "d"(field) : "cc");
402 return value;
405 static u16 vmcs_read16(unsigned long field)
407 return vmcs_readl(field);
410 static u32 vmcs_read32(unsigned long field)
412 return vmcs_readl(field);
415 static u64 vmcs_read64(unsigned long field)
417 #ifdef CONFIG_X86_64
418 return vmcs_readl(field);
419 #else
420 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
421 #endif
424 static noinline void vmwrite_error(unsigned long field, unsigned long value)
426 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
427 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
428 dump_stack();
431 static void vmcs_writel(unsigned long field, unsigned long value)
433 u8 error;
435 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
436 : "=q"(error) : "a"(value), "d"(field) : "cc");
437 if (unlikely(error))
438 vmwrite_error(field, value);
441 static void vmcs_write16(unsigned long field, u16 value)
443 vmcs_writel(field, value);
446 static void vmcs_write32(unsigned long field, u32 value)
448 vmcs_writel(field, value);
451 static void vmcs_write64(unsigned long field, u64 value)
453 vmcs_writel(field, value);
454 #ifndef CONFIG_X86_64
455 asm volatile ("");
456 vmcs_writel(field+1, value >> 32);
457 #endif
460 static void vmcs_clear_bits(unsigned long field, u32 mask)
462 vmcs_writel(field, vmcs_readl(field) & ~mask);
465 static void vmcs_set_bits(unsigned long field, u32 mask)
467 vmcs_writel(field, vmcs_readl(field) | mask);
470 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
472 u32 eb;
474 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
475 if (!vcpu->fpu_active)
476 eb |= 1u << NM_VECTOR;
477 if (vcpu->guest_debug.enabled)
478 eb |= 1u << DB_VECTOR;
479 if (vcpu->arch.rmode.active)
480 eb = ~0;
481 if (vm_need_ept())
482 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
483 vmcs_write32(EXCEPTION_BITMAP, eb);
486 static void reload_tss(void)
489 * VT restores TR but not its size. Useless.
491 struct descriptor_table gdt;
492 struct desc_struct *descs;
494 kvm_get_gdt(&gdt);
495 descs = (void *)gdt.base;
496 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
497 load_TR_desc();
500 static void load_transition_efer(struct vcpu_vmx *vmx)
502 int efer_offset = vmx->msr_offset_efer;
503 u64 host_efer = vmx->host_msrs[efer_offset].data;
504 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
505 u64 ignore_bits;
507 if (efer_offset < 0)
508 return;
510 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
511 * outside long mode
513 ignore_bits = EFER_NX | EFER_SCE;
514 #ifdef CONFIG_X86_64
515 ignore_bits |= EFER_LMA | EFER_LME;
516 /* SCE is meaningful only in long mode on Intel */
517 if (guest_efer & EFER_LMA)
518 ignore_bits &= ~(u64)EFER_SCE;
519 #endif
520 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
521 return;
523 vmx->host_state.guest_efer_loaded = 1;
524 guest_efer &= ~ignore_bits;
525 guest_efer |= host_efer & ignore_bits;
526 wrmsrl(MSR_EFER, guest_efer);
527 vmx->vcpu.stat.efer_reload++;
530 static void reload_host_efer(struct vcpu_vmx *vmx)
532 if (vmx->host_state.guest_efer_loaded) {
533 vmx->host_state.guest_efer_loaded = 0;
534 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
538 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
540 struct vcpu_vmx *vmx = to_vmx(vcpu);
542 if (vmx->host_state.loaded)
543 return;
545 vmx->host_state.loaded = 1;
547 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
548 * allow segment selectors with cpl > 0 or ti == 1.
550 vmx->host_state.ldt_sel = kvm_read_ldt();
551 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
552 vmx->host_state.fs_sel = kvm_read_fs();
553 if (!(vmx->host_state.fs_sel & 7)) {
554 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
555 vmx->host_state.fs_reload_needed = 0;
556 } else {
557 vmcs_write16(HOST_FS_SELECTOR, 0);
558 vmx->host_state.fs_reload_needed = 1;
560 vmx->host_state.gs_sel = kvm_read_gs();
561 if (!(vmx->host_state.gs_sel & 7))
562 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
563 else {
564 vmcs_write16(HOST_GS_SELECTOR, 0);
565 vmx->host_state.gs_ldt_reload_needed = 1;
568 #ifdef CONFIG_X86_64
569 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
570 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
571 #else
572 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
573 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
574 #endif
576 #ifdef CONFIG_X86_64
577 if (is_long_mode(&vmx->vcpu))
578 save_msrs(vmx->host_msrs +
579 vmx->msr_offset_kernel_gs_base, 1);
581 #endif
582 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
583 load_transition_efer(vmx);
586 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
588 unsigned long flags;
590 if (!vmx->host_state.loaded)
591 return;
593 ++vmx->vcpu.stat.host_state_reload;
594 vmx->host_state.loaded = 0;
595 if (vmx->host_state.fs_reload_needed)
596 kvm_load_fs(vmx->host_state.fs_sel);
597 if (vmx->host_state.gs_ldt_reload_needed) {
598 kvm_load_ldt(vmx->host_state.ldt_sel);
600 * If we have to reload gs, we must take care to
601 * preserve our gs base.
603 local_irq_save(flags);
604 kvm_load_gs(vmx->host_state.gs_sel);
605 #ifdef CONFIG_X86_64
606 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
607 #endif
608 local_irq_restore(flags);
610 reload_tss();
611 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
612 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
613 reload_host_efer(vmx);
616 static void vmx_load_host_state(struct vcpu_vmx *vmx)
618 preempt_disable();
619 __vmx_load_host_state(vmx);
620 preempt_enable();
624 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
625 * vcpu mutex is already taken.
627 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
629 struct vcpu_vmx *vmx = to_vmx(vcpu);
630 u64 phys_addr = __pa(vmx->vmcs);
631 u64 tsc_this, delta, new_offset;
633 if (vcpu->cpu != cpu) {
634 vcpu_clear(vmx);
635 kvm_migrate_timers(vcpu);
636 vpid_sync_vcpu_all(vmx);
637 local_irq_disable();
638 list_add(&vmx->local_vcpus_link,
639 &per_cpu(vcpus_on_cpu, cpu));
640 local_irq_enable();
643 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
644 u8 error;
646 per_cpu(current_vmcs, cpu) = vmx->vmcs;
647 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
648 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
649 : "cc");
650 if (error)
651 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
652 vmx->vmcs, phys_addr);
655 if (vcpu->cpu != cpu) {
656 struct descriptor_table dt;
657 unsigned long sysenter_esp;
659 vcpu->cpu = cpu;
661 * Linux uses per-cpu TSS and GDT, so set these when switching
662 * processors.
664 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
665 kvm_get_gdt(&dt);
666 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
668 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
669 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
672 * Make sure the time stamp counter is monotonous.
674 rdtscll(tsc_this);
675 if (tsc_this < vcpu->arch.host_tsc) {
676 delta = vcpu->arch.host_tsc - tsc_this;
677 new_offset = vmcs_read64(TSC_OFFSET) + delta;
678 vmcs_write64(TSC_OFFSET, new_offset);
683 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
685 __vmx_load_host_state(to_vmx(vcpu));
688 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
690 if (vcpu->fpu_active)
691 return;
692 vcpu->fpu_active = 1;
693 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
694 if (vcpu->arch.cr0 & X86_CR0_TS)
695 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
696 update_exception_bitmap(vcpu);
699 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
701 if (!vcpu->fpu_active)
702 return;
703 vcpu->fpu_active = 0;
704 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
705 update_exception_bitmap(vcpu);
708 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
710 return vmcs_readl(GUEST_RFLAGS);
713 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
715 if (vcpu->arch.rmode.active)
716 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
717 vmcs_writel(GUEST_RFLAGS, rflags);
720 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
722 unsigned long rip;
723 u32 interruptibility;
725 rip = kvm_rip_read(vcpu);
726 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
727 kvm_rip_write(vcpu, rip);
730 * We emulated an instruction, so temporary interrupt blocking
731 * should be removed, if set.
733 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
734 if (interruptibility & 3)
735 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
736 interruptibility & ~3);
737 vcpu->arch.interrupt_window_open = 1;
740 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
741 bool has_error_code, u32 error_code)
743 struct vcpu_vmx *vmx = to_vmx(vcpu);
745 if (has_error_code)
746 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
748 if (vcpu->arch.rmode.active) {
749 vmx->rmode.irq.pending = true;
750 vmx->rmode.irq.vector = nr;
751 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
752 if (nr == BP_VECTOR)
753 vmx->rmode.irq.rip++;
754 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
755 nr | INTR_TYPE_SOFT_INTR
756 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
757 | INTR_INFO_VALID_MASK);
758 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
759 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
760 return;
763 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
764 nr | INTR_TYPE_EXCEPTION
765 | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
766 | INTR_INFO_VALID_MASK);
769 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
771 return false;
775 * Swap MSR entry in host/guest MSR entry array.
777 #ifdef CONFIG_X86_64
778 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
780 struct kvm_msr_entry tmp;
782 tmp = vmx->guest_msrs[to];
783 vmx->guest_msrs[to] = vmx->guest_msrs[from];
784 vmx->guest_msrs[from] = tmp;
785 tmp = vmx->host_msrs[to];
786 vmx->host_msrs[to] = vmx->host_msrs[from];
787 vmx->host_msrs[from] = tmp;
789 #endif
792 * Set up the vmcs to automatically save and restore system
793 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
794 * mode, as fiddling with msrs is very expensive.
796 static void setup_msrs(struct vcpu_vmx *vmx)
798 int save_nmsrs;
800 vmx_load_host_state(vmx);
801 save_nmsrs = 0;
802 #ifdef CONFIG_X86_64
803 if (is_long_mode(&vmx->vcpu)) {
804 int index;
806 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
807 if (index >= 0)
808 move_msr_up(vmx, index, save_nmsrs++);
809 index = __find_msr_index(vmx, MSR_LSTAR);
810 if (index >= 0)
811 move_msr_up(vmx, index, save_nmsrs++);
812 index = __find_msr_index(vmx, MSR_CSTAR);
813 if (index >= 0)
814 move_msr_up(vmx, index, save_nmsrs++);
815 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
816 if (index >= 0)
817 move_msr_up(vmx, index, save_nmsrs++);
819 * MSR_K6_STAR is only needed on long mode guests, and only
820 * if efer.sce is enabled.
822 index = __find_msr_index(vmx, MSR_K6_STAR);
823 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
824 move_msr_up(vmx, index, save_nmsrs++);
826 #endif
827 vmx->save_nmsrs = save_nmsrs;
829 #ifdef CONFIG_X86_64
830 vmx->msr_offset_kernel_gs_base =
831 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
832 #endif
833 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
837 * reads and returns guest's timestamp counter "register"
838 * guest_tsc = host_tsc + tsc_offset -- 21.3
840 static u64 guest_read_tsc(void)
842 u64 host_tsc, tsc_offset;
844 rdtscll(host_tsc);
845 tsc_offset = vmcs_read64(TSC_OFFSET);
846 return host_tsc + tsc_offset;
850 * writes 'guest_tsc' into guest's timestamp counter "register"
851 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
853 static void guest_write_tsc(u64 guest_tsc)
855 u64 host_tsc;
857 rdtscll(host_tsc);
858 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
862 * Reads an msr value (of 'msr_index') into 'pdata'.
863 * Returns 0 on success, non-0 otherwise.
864 * Assumes vcpu_load() was already called.
866 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
868 u64 data;
869 struct kvm_msr_entry *msr;
871 if (!pdata) {
872 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
873 return -EINVAL;
876 switch (msr_index) {
877 #ifdef CONFIG_X86_64
878 case MSR_FS_BASE:
879 data = vmcs_readl(GUEST_FS_BASE);
880 break;
881 case MSR_GS_BASE:
882 data = vmcs_readl(GUEST_GS_BASE);
883 break;
884 case MSR_EFER:
885 return kvm_get_msr_common(vcpu, msr_index, pdata);
886 #endif
887 case MSR_IA32_TIME_STAMP_COUNTER:
888 data = guest_read_tsc();
889 break;
890 case MSR_IA32_SYSENTER_CS:
891 data = vmcs_read32(GUEST_SYSENTER_CS);
892 break;
893 case MSR_IA32_SYSENTER_EIP:
894 data = vmcs_readl(GUEST_SYSENTER_EIP);
895 break;
896 case MSR_IA32_SYSENTER_ESP:
897 data = vmcs_readl(GUEST_SYSENTER_ESP);
898 break;
899 default:
900 msr = find_msr_entry(to_vmx(vcpu), msr_index);
901 if (msr) {
902 data = msr->data;
903 break;
905 return kvm_get_msr_common(vcpu, msr_index, pdata);
908 *pdata = data;
909 return 0;
913 * Writes msr value into into the appropriate "register".
914 * Returns 0 on success, non-0 otherwise.
915 * Assumes vcpu_load() was already called.
917 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
919 struct vcpu_vmx *vmx = to_vmx(vcpu);
920 struct kvm_msr_entry *msr;
921 int ret = 0;
923 switch (msr_index) {
924 #ifdef CONFIG_X86_64
925 case MSR_EFER:
926 vmx_load_host_state(vmx);
927 ret = kvm_set_msr_common(vcpu, msr_index, data);
928 break;
929 case MSR_FS_BASE:
930 vmcs_writel(GUEST_FS_BASE, data);
931 break;
932 case MSR_GS_BASE:
933 vmcs_writel(GUEST_GS_BASE, data);
934 break;
935 #endif
936 case MSR_IA32_SYSENTER_CS:
937 vmcs_write32(GUEST_SYSENTER_CS, data);
938 break;
939 case MSR_IA32_SYSENTER_EIP:
940 vmcs_writel(GUEST_SYSENTER_EIP, data);
941 break;
942 case MSR_IA32_SYSENTER_ESP:
943 vmcs_writel(GUEST_SYSENTER_ESP, data);
944 break;
945 case MSR_IA32_TIME_STAMP_COUNTER:
946 guest_write_tsc(data);
947 break;
948 case MSR_P6_PERFCTR0:
949 case MSR_P6_PERFCTR1:
950 case MSR_P6_EVNTSEL0:
951 case MSR_P6_EVNTSEL1:
953 * Just discard all writes to the performance counters; this
954 * should keep both older linux and windows 64-bit guests
955 * happy
957 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
959 break;
960 default:
961 vmx_load_host_state(vmx);
962 msr = find_msr_entry(vmx, msr_index);
963 if (msr) {
964 msr->data = data;
965 break;
967 ret = kvm_set_msr_common(vcpu, msr_index, data);
970 return ret;
973 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
975 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
976 switch (reg) {
977 case VCPU_REGS_RSP:
978 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
979 break;
980 case VCPU_REGS_RIP:
981 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
982 break;
983 default:
984 break;
988 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
990 unsigned long dr7 = 0x400;
991 int old_singlestep;
993 old_singlestep = vcpu->guest_debug.singlestep;
995 vcpu->guest_debug.enabled = dbg->enabled;
996 if (vcpu->guest_debug.enabled) {
997 int i;
999 dr7 |= 0x200; /* exact */
1000 for (i = 0; i < 4; ++i) {
1001 if (!dbg->breakpoints[i].enabled)
1002 continue;
1003 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
1004 dr7 |= 2 << (i*2); /* global enable */
1005 dr7 |= 0 << (i*4+16); /* execution breakpoint */
1008 vcpu->guest_debug.singlestep = dbg->singlestep;
1009 } else
1010 vcpu->guest_debug.singlestep = 0;
1012 if (old_singlestep && !vcpu->guest_debug.singlestep) {
1013 unsigned long flags;
1015 flags = vmcs_readl(GUEST_RFLAGS);
1016 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1017 vmcs_writel(GUEST_RFLAGS, flags);
1020 update_exception_bitmap(vcpu);
1021 vmcs_writel(GUEST_DR7, dr7);
1023 return 0;
1026 static int vmx_get_irq(struct kvm_vcpu *vcpu)
1028 if (!vcpu->arch.interrupt.pending)
1029 return -1;
1030 return vcpu->arch.interrupt.nr;
1033 static __init int cpu_has_kvm_support(void)
1035 unsigned long ecx = cpuid_ecx(1);
1036 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1039 static __init int vmx_disabled_by_bios(void)
1041 u64 msr;
1043 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1044 return (msr & (FEATURE_CONTROL_LOCKED |
1045 FEATURE_CONTROL_VMXON_ENABLED))
1046 == FEATURE_CONTROL_LOCKED;
1047 /* locked but not enabled */
1050 static void hardware_enable(void *garbage)
1052 int cpu = raw_smp_processor_id();
1053 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1054 u64 old;
1056 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1057 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1058 if ((old & (FEATURE_CONTROL_LOCKED |
1059 FEATURE_CONTROL_VMXON_ENABLED))
1060 != (FEATURE_CONTROL_LOCKED |
1061 FEATURE_CONTROL_VMXON_ENABLED))
1062 /* enable and lock */
1063 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1064 FEATURE_CONTROL_LOCKED |
1065 FEATURE_CONTROL_VMXON_ENABLED);
1066 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1067 asm volatile (ASM_VMX_VMXON_RAX
1068 : : "a"(&phys_addr), "m"(phys_addr)
1069 : "memory", "cc");
1072 static void vmclear_local_vcpus(void)
1074 int cpu = raw_smp_processor_id();
1075 struct vcpu_vmx *vmx, *n;
1077 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1078 local_vcpus_link)
1079 __vcpu_clear(vmx);
1082 static void hardware_disable(void *garbage)
1084 vmclear_local_vcpus();
1085 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1086 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1089 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1090 u32 msr, u32 *result)
1092 u32 vmx_msr_low, vmx_msr_high;
1093 u32 ctl = ctl_min | ctl_opt;
1095 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1097 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1098 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1100 /* Ensure minimum (required) set of control bits are supported. */
1101 if (ctl_min & ~ctl)
1102 return -EIO;
1104 *result = ctl;
1105 return 0;
1108 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1110 u32 vmx_msr_low, vmx_msr_high;
1111 u32 min, opt, min2, opt2;
1112 u32 _pin_based_exec_control = 0;
1113 u32 _cpu_based_exec_control = 0;
1114 u32 _cpu_based_2nd_exec_control = 0;
1115 u32 _vmexit_control = 0;
1116 u32 _vmentry_control = 0;
1118 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1119 opt = PIN_BASED_VIRTUAL_NMIS;
1120 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1121 &_pin_based_exec_control) < 0)
1122 return -EIO;
1124 min = CPU_BASED_HLT_EXITING |
1125 #ifdef CONFIG_X86_64
1126 CPU_BASED_CR8_LOAD_EXITING |
1127 CPU_BASED_CR8_STORE_EXITING |
1128 #endif
1129 CPU_BASED_CR3_LOAD_EXITING |
1130 CPU_BASED_CR3_STORE_EXITING |
1131 CPU_BASED_USE_IO_BITMAPS |
1132 CPU_BASED_MOV_DR_EXITING |
1133 CPU_BASED_USE_TSC_OFFSETING |
1134 CPU_BASED_INVLPG_EXITING;
1135 opt = CPU_BASED_TPR_SHADOW |
1136 CPU_BASED_USE_MSR_BITMAPS |
1137 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1138 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1139 &_cpu_based_exec_control) < 0)
1140 return -EIO;
1141 #ifdef CONFIG_X86_64
1142 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1143 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1144 ~CPU_BASED_CR8_STORE_EXITING;
1145 #endif
1146 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1147 min2 = 0;
1148 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1149 SECONDARY_EXEC_WBINVD_EXITING |
1150 SECONDARY_EXEC_ENABLE_VPID |
1151 SECONDARY_EXEC_ENABLE_EPT;
1152 if (adjust_vmx_controls(min2, opt2,
1153 MSR_IA32_VMX_PROCBASED_CTLS2,
1154 &_cpu_based_2nd_exec_control) < 0)
1155 return -EIO;
1157 #ifndef CONFIG_X86_64
1158 if (!(_cpu_based_2nd_exec_control &
1159 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1160 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1161 #endif
1162 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1163 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1164 enabled */
1165 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1166 CPU_BASED_CR3_STORE_EXITING |
1167 CPU_BASED_INVLPG_EXITING);
1168 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1169 &_cpu_based_exec_control) < 0)
1170 return -EIO;
1171 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1172 vmx_capability.ept, vmx_capability.vpid);
1175 min = 0;
1176 #ifdef CONFIG_X86_64
1177 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1178 #endif
1179 opt = 0;
1180 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1181 &_vmexit_control) < 0)
1182 return -EIO;
1184 min = opt = 0;
1185 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1186 &_vmentry_control) < 0)
1187 return -EIO;
1189 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1191 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1192 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1193 return -EIO;
1195 #ifdef CONFIG_X86_64
1196 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1197 if (vmx_msr_high & (1u<<16))
1198 return -EIO;
1199 #endif
1201 /* Require Write-Back (WB) memory type for VMCS accesses. */
1202 if (((vmx_msr_high >> 18) & 15) != 6)
1203 return -EIO;
1205 vmcs_conf->size = vmx_msr_high & 0x1fff;
1206 vmcs_conf->order = get_order(vmcs_config.size);
1207 vmcs_conf->revision_id = vmx_msr_low;
1209 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1210 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1211 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1212 vmcs_conf->vmexit_ctrl = _vmexit_control;
1213 vmcs_conf->vmentry_ctrl = _vmentry_control;
1215 return 0;
1218 static struct vmcs *alloc_vmcs_cpu(int cpu)
1220 int node = cpu_to_node(cpu);
1221 struct page *pages;
1222 struct vmcs *vmcs;
1224 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1225 if (!pages)
1226 return NULL;
1227 vmcs = page_address(pages);
1228 memset(vmcs, 0, vmcs_config.size);
1229 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1230 return vmcs;
1233 static struct vmcs *alloc_vmcs(void)
1235 return alloc_vmcs_cpu(raw_smp_processor_id());
1238 static void free_vmcs(struct vmcs *vmcs)
1240 free_pages((unsigned long)vmcs, vmcs_config.order);
1243 static void free_kvm_area(void)
1245 int cpu;
1247 for_each_online_cpu(cpu)
1248 free_vmcs(per_cpu(vmxarea, cpu));
1251 static __init int alloc_kvm_area(void)
1253 int cpu;
1255 for_each_online_cpu(cpu) {
1256 struct vmcs *vmcs;
1258 vmcs = alloc_vmcs_cpu(cpu);
1259 if (!vmcs) {
1260 free_kvm_area();
1261 return -ENOMEM;
1264 per_cpu(vmxarea, cpu) = vmcs;
1266 return 0;
1269 static __init int hardware_setup(void)
1271 if (setup_vmcs_config(&vmcs_config) < 0)
1272 return -EIO;
1274 if (boot_cpu_has(X86_FEATURE_NX))
1275 kvm_enable_efer_bits(EFER_NX);
1277 return alloc_kvm_area();
1280 static __exit void hardware_unsetup(void)
1282 free_kvm_area();
1285 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1287 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1289 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1290 vmcs_write16(sf->selector, save->selector);
1291 vmcs_writel(sf->base, save->base);
1292 vmcs_write32(sf->limit, save->limit);
1293 vmcs_write32(sf->ar_bytes, save->ar);
1294 } else {
1295 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1296 << AR_DPL_SHIFT;
1297 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1301 static void enter_pmode(struct kvm_vcpu *vcpu)
1303 unsigned long flags;
1304 struct vcpu_vmx *vmx = to_vmx(vcpu);
1306 vmx->emulation_required = 1;
1307 vcpu->arch.rmode.active = 0;
1309 vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1310 vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1311 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1313 flags = vmcs_readl(GUEST_RFLAGS);
1314 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1315 flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1316 vmcs_writel(GUEST_RFLAGS, flags);
1318 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1319 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1321 update_exception_bitmap(vcpu);
1323 if (emulate_invalid_guest_state)
1324 return;
1326 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1327 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1328 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1329 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1331 vmcs_write16(GUEST_SS_SELECTOR, 0);
1332 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1334 vmcs_write16(GUEST_CS_SELECTOR,
1335 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1336 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1339 static gva_t rmode_tss_base(struct kvm *kvm)
1341 if (!kvm->arch.tss_addr) {
1342 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1343 kvm->memslots[0].npages - 3;
1344 return base_gfn << PAGE_SHIFT;
1346 return kvm->arch.tss_addr;
1349 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1351 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1353 save->selector = vmcs_read16(sf->selector);
1354 save->base = vmcs_readl(sf->base);
1355 save->limit = vmcs_read32(sf->limit);
1356 save->ar = vmcs_read32(sf->ar_bytes);
1357 vmcs_write16(sf->selector, save->base >> 4);
1358 vmcs_write32(sf->base, save->base & 0xfffff);
1359 vmcs_write32(sf->limit, 0xffff);
1360 vmcs_write32(sf->ar_bytes, 0xf3);
1363 static void enter_rmode(struct kvm_vcpu *vcpu)
1365 unsigned long flags;
1366 struct vcpu_vmx *vmx = to_vmx(vcpu);
1368 vmx->emulation_required = 1;
1369 vcpu->arch.rmode.active = 1;
1371 vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1372 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1374 vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1375 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1377 vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1378 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1380 flags = vmcs_readl(GUEST_RFLAGS);
1381 vcpu->arch.rmode.save_iopl
1382 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1384 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1386 vmcs_writel(GUEST_RFLAGS, flags);
1387 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1388 update_exception_bitmap(vcpu);
1390 if (emulate_invalid_guest_state)
1391 goto continue_rmode;
1393 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1394 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1395 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1397 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1398 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1399 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1400 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1401 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1403 fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1404 fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1405 fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1406 fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1408 continue_rmode:
1409 kvm_mmu_reset_context(vcpu);
1410 init_rmode(vcpu->kvm);
1413 #ifdef CONFIG_X86_64
1415 static void enter_lmode(struct kvm_vcpu *vcpu)
1417 u32 guest_tr_ar;
1419 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1420 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1421 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1422 __func__);
1423 vmcs_write32(GUEST_TR_AR_BYTES,
1424 (guest_tr_ar & ~AR_TYPE_MASK)
1425 | AR_TYPE_BUSY_64_TSS);
1428 vcpu->arch.shadow_efer |= EFER_LMA;
1430 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1431 vmcs_write32(VM_ENTRY_CONTROLS,
1432 vmcs_read32(VM_ENTRY_CONTROLS)
1433 | VM_ENTRY_IA32E_MODE);
1436 static void exit_lmode(struct kvm_vcpu *vcpu)
1438 vcpu->arch.shadow_efer &= ~EFER_LMA;
1440 vmcs_write32(VM_ENTRY_CONTROLS,
1441 vmcs_read32(VM_ENTRY_CONTROLS)
1442 & ~VM_ENTRY_IA32E_MODE);
1445 #endif
1447 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1449 vpid_sync_vcpu_all(to_vmx(vcpu));
1450 if (vm_need_ept())
1451 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1454 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1456 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1457 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1460 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1462 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1463 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1464 printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1465 return;
1467 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1468 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1469 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1470 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1474 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1476 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1477 unsigned long cr0,
1478 struct kvm_vcpu *vcpu)
1480 if (!(cr0 & X86_CR0_PG)) {
1481 /* From paging/starting to nonpaging */
1482 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1483 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1484 (CPU_BASED_CR3_LOAD_EXITING |
1485 CPU_BASED_CR3_STORE_EXITING));
1486 vcpu->arch.cr0 = cr0;
1487 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1488 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1489 *hw_cr0 &= ~X86_CR0_WP;
1490 } else if (!is_paging(vcpu)) {
1491 /* From nonpaging to paging */
1492 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1493 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1494 ~(CPU_BASED_CR3_LOAD_EXITING |
1495 CPU_BASED_CR3_STORE_EXITING));
1496 vcpu->arch.cr0 = cr0;
1497 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1498 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1499 *hw_cr0 &= ~X86_CR0_WP;
1503 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1504 struct kvm_vcpu *vcpu)
1506 if (!is_paging(vcpu)) {
1507 *hw_cr4 &= ~X86_CR4_PAE;
1508 *hw_cr4 |= X86_CR4_PSE;
1509 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1510 *hw_cr4 &= ~X86_CR4_PAE;
1513 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1515 unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1516 KVM_VM_CR0_ALWAYS_ON;
1518 vmx_fpu_deactivate(vcpu);
1520 if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1521 enter_pmode(vcpu);
1523 if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1524 enter_rmode(vcpu);
1526 #ifdef CONFIG_X86_64
1527 if (vcpu->arch.shadow_efer & EFER_LME) {
1528 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1529 enter_lmode(vcpu);
1530 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1531 exit_lmode(vcpu);
1533 #endif
1535 if (vm_need_ept())
1536 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1538 vmcs_writel(CR0_READ_SHADOW, cr0);
1539 vmcs_writel(GUEST_CR0, hw_cr0);
1540 vcpu->arch.cr0 = cr0;
1542 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1543 vmx_fpu_activate(vcpu);
1546 static u64 construct_eptp(unsigned long root_hpa)
1548 u64 eptp;
1550 /* TODO write the value reading from MSR */
1551 eptp = VMX_EPT_DEFAULT_MT |
1552 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1553 eptp |= (root_hpa & PAGE_MASK);
1555 return eptp;
1558 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1560 unsigned long guest_cr3;
1561 u64 eptp;
1563 guest_cr3 = cr3;
1564 if (vm_need_ept()) {
1565 eptp = construct_eptp(cr3);
1566 vmcs_write64(EPT_POINTER, eptp);
1567 ept_sync_context(eptp);
1568 ept_load_pdptrs(vcpu);
1569 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1570 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1573 vmx_flush_tlb(vcpu);
1574 vmcs_writel(GUEST_CR3, guest_cr3);
1575 if (vcpu->arch.cr0 & X86_CR0_PE)
1576 vmx_fpu_deactivate(vcpu);
1579 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1581 unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1582 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1584 vcpu->arch.cr4 = cr4;
1585 if (vm_need_ept())
1586 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1588 vmcs_writel(CR4_READ_SHADOW, cr4);
1589 vmcs_writel(GUEST_CR4, hw_cr4);
1592 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1594 struct vcpu_vmx *vmx = to_vmx(vcpu);
1595 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1597 vcpu->arch.shadow_efer = efer;
1598 if (!msr)
1599 return;
1600 if (efer & EFER_LMA) {
1601 vmcs_write32(VM_ENTRY_CONTROLS,
1602 vmcs_read32(VM_ENTRY_CONTROLS) |
1603 VM_ENTRY_IA32E_MODE);
1604 msr->data = efer;
1606 } else {
1607 vmcs_write32(VM_ENTRY_CONTROLS,
1608 vmcs_read32(VM_ENTRY_CONTROLS) &
1609 ~VM_ENTRY_IA32E_MODE);
1611 msr->data = efer & ~EFER_LME;
1613 setup_msrs(vmx);
1616 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1618 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1620 return vmcs_readl(sf->base);
1623 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1624 struct kvm_segment *var, int seg)
1626 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1627 u32 ar;
1629 var->base = vmcs_readl(sf->base);
1630 var->limit = vmcs_read32(sf->limit);
1631 var->selector = vmcs_read16(sf->selector);
1632 ar = vmcs_read32(sf->ar_bytes);
1633 if (ar & AR_UNUSABLE_MASK)
1634 ar = 0;
1635 var->type = ar & 15;
1636 var->s = (ar >> 4) & 1;
1637 var->dpl = (ar >> 5) & 3;
1638 var->present = (ar >> 7) & 1;
1639 var->avl = (ar >> 12) & 1;
1640 var->l = (ar >> 13) & 1;
1641 var->db = (ar >> 14) & 1;
1642 var->g = (ar >> 15) & 1;
1643 var->unusable = (ar >> 16) & 1;
1646 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1648 struct kvm_segment kvm_seg;
1650 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1651 return 0;
1653 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1654 return 3;
1656 vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1657 return kvm_seg.selector & 3;
1660 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1662 u32 ar;
1664 if (var->unusable)
1665 ar = 1 << 16;
1666 else {
1667 ar = var->type & 15;
1668 ar |= (var->s & 1) << 4;
1669 ar |= (var->dpl & 3) << 5;
1670 ar |= (var->present & 1) << 7;
1671 ar |= (var->avl & 1) << 12;
1672 ar |= (var->l & 1) << 13;
1673 ar |= (var->db & 1) << 14;
1674 ar |= (var->g & 1) << 15;
1676 if (ar == 0) /* a 0 value means unusable */
1677 ar = AR_UNUSABLE_MASK;
1679 return ar;
1682 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1683 struct kvm_segment *var, int seg)
1685 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1686 u32 ar;
1688 if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1689 vcpu->arch.rmode.tr.selector = var->selector;
1690 vcpu->arch.rmode.tr.base = var->base;
1691 vcpu->arch.rmode.tr.limit = var->limit;
1692 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1693 return;
1695 vmcs_writel(sf->base, var->base);
1696 vmcs_write32(sf->limit, var->limit);
1697 vmcs_write16(sf->selector, var->selector);
1698 if (vcpu->arch.rmode.active && var->s) {
1700 * Hack real-mode segments into vm86 compatibility.
1702 if (var->base == 0xffff0000 && var->selector == 0xf000)
1703 vmcs_writel(sf->base, 0xf0000);
1704 ar = 0xf3;
1705 } else
1706 ar = vmx_segment_access_rights(var);
1707 vmcs_write32(sf->ar_bytes, ar);
1710 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1712 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1714 *db = (ar >> 14) & 1;
1715 *l = (ar >> 13) & 1;
1718 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1720 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1721 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1724 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1726 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1727 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1730 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1732 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1733 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1736 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1738 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1739 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1742 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1744 struct kvm_segment var;
1745 u32 ar;
1747 vmx_get_segment(vcpu, &var, seg);
1748 ar = vmx_segment_access_rights(&var);
1750 if (var.base != (var.selector << 4))
1751 return false;
1752 if (var.limit != 0xffff)
1753 return false;
1754 if (ar != 0xf3)
1755 return false;
1757 return true;
1760 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1762 struct kvm_segment cs;
1763 unsigned int cs_rpl;
1765 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1766 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1768 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1769 return false;
1770 if (!cs.s)
1771 return false;
1772 if (!(~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK))) {
1773 if (cs.dpl > cs_rpl)
1774 return false;
1775 } else if (cs.type & AR_TYPE_CODE_MASK) {
1776 if (cs.dpl != cs_rpl)
1777 return false;
1779 if (!cs.present)
1780 return false;
1782 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1783 return true;
1786 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1788 struct kvm_segment ss;
1789 unsigned int ss_rpl;
1791 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1792 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1794 if ((ss.type != 3) || (ss.type != 7))
1795 return false;
1796 if (!ss.s)
1797 return false;
1798 if (ss.dpl != ss_rpl) /* DPL != RPL */
1799 return false;
1800 if (!ss.present)
1801 return false;
1803 return true;
1806 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1808 struct kvm_segment var;
1809 unsigned int rpl;
1811 vmx_get_segment(vcpu, &var, seg);
1812 rpl = var.selector & SELECTOR_RPL_MASK;
1814 if (!var.s)
1815 return false;
1816 if (!var.present)
1817 return false;
1818 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1819 if (var.dpl < rpl) /* DPL < RPL */
1820 return false;
1823 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1824 * rights flags
1826 return true;
1829 static bool tr_valid(struct kvm_vcpu *vcpu)
1831 struct kvm_segment tr;
1833 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1835 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1836 return false;
1837 if ((tr.type != 3) || (tr.type != 11)) /* TODO: Check if guest is in IA32e mode */
1838 return false;
1839 if (!tr.present)
1840 return false;
1842 return true;
1845 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1847 struct kvm_segment ldtr;
1849 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1851 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1852 return false;
1853 if (ldtr.type != 2)
1854 return false;
1855 if (!ldtr.present)
1856 return false;
1858 return true;
1861 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
1863 struct kvm_segment cs, ss;
1865 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1866 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1868 return ((cs.selector & SELECTOR_RPL_MASK) ==
1869 (ss.selector & SELECTOR_RPL_MASK));
1873 * Check if guest state is valid. Returns true if valid, false if
1874 * not.
1875 * We assume that registers are always usable
1877 static bool guest_state_valid(struct kvm_vcpu *vcpu)
1879 /* real mode guest state checks */
1880 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
1881 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
1882 return false;
1883 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
1884 return false;
1885 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
1886 return false;
1887 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
1888 return false;
1889 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
1890 return false;
1891 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
1892 return false;
1893 } else {
1894 /* protected mode guest state checks */
1895 if (!cs_ss_rpl_check(vcpu))
1896 return false;
1897 if (!code_segment_valid(vcpu))
1898 return false;
1899 if (!stack_segment_valid(vcpu))
1900 return false;
1901 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
1902 return false;
1903 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
1904 return false;
1905 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
1906 return false;
1907 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
1908 return false;
1909 if (!tr_valid(vcpu))
1910 return false;
1911 if (!ldtr_valid(vcpu))
1912 return false;
1914 /* TODO:
1915 * - Add checks on RIP
1916 * - Add checks on RFLAGS
1919 return true;
1922 static int init_rmode_tss(struct kvm *kvm)
1924 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1925 u16 data = 0;
1926 int ret = 0;
1927 int r;
1929 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1930 if (r < 0)
1931 goto out;
1932 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1933 r = kvm_write_guest_page(kvm, fn++, &data,
1934 TSS_IOPB_BASE_OFFSET, sizeof(u16));
1935 if (r < 0)
1936 goto out;
1937 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1938 if (r < 0)
1939 goto out;
1940 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1941 if (r < 0)
1942 goto out;
1943 data = ~0;
1944 r = kvm_write_guest_page(kvm, fn, &data,
1945 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1946 sizeof(u8));
1947 if (r < 0)
1948 goto out;
1950 ret = 1;
1951 out:
1952 return ret;
1955 static int init_rmode_identity_map(struct kvm *kvm)
1957 int i, r, ret;
1958 pfn_t identity_map_pfn;
1959 u32 tmp;
1961 if (!vm_need_ept())
1962 return 1;
1963 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1964 printk(KERN_ERR "EPT: identity-mapping pagetable "
1965 "haven't been allocated!\n");
1966 return 0;
1968 if (likely(kvm->arch.ept_identity_pagetable_done))
1969 return 1;
1970 ret = 0;
1971 identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1972 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1973 if (r < 0)
1974 goto out;
1975 /* Set up identity-mapping pagetable for EPT in real mode */
1976 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1977 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1978 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1979 r = kvm_write_guest_page(kvm, identity_map_pfn,
1980 &tmp, i * sizeof(tmp), sizeof(tmp));
1981 if (r < 0)
1982 goto out;
1984 kvm->arch.ept_identity_pagetable_done = true;
1985 ret = 1;
1986 out:
1987 return ret;
1990 static void seg_setup(int seg)
1992 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1994 vmcs_write16(sf->selector, 0);
1995 vmcs_writel(sf->base, 0);
1996 vmcs_write32(sf->limit, 0xffff);
1997 vmcs_write32(sf->ar_bytes, 0xf3);
2000 static int alloc_apic_access_page(struct kvm *kvm)
2002 struct kvm_userspace_memory_region kvm_userspace_mem;
2003 int r = 0;
2005 down_write(&kvm->slots_lock);
2006 if (kvm->arch.apic_access_page)
2007 goto out;
2008 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2009 kvm_userspace_mem.flags = 0;
2010 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2011 kvm_userspace_mem.memory_size = PAGE_SIZE;
2012 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2013 if (r)
2014 goto out;
2016 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2017 out:
2018 up_write(&kvm->slots_lock);
2019 return r;
2022 static int alloc_identity_pagetable(struct kvm *kvm)
2024 struct kvm_userspace_memory_region kvm_userspace_mem;
2025 int r = 0;
2027 down_write(&kvm->slots_lock);
2028 if (kvm->arch.ept_identity_pagetable)
2029 goto out;
2030 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2031 kvm_userspace_mem.flags = 0;
2032 kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
2033 kvm_userspace_mem.memory_size = PAGE_SIZE;
2034 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2035 if (r)
2036 goto out;
2038 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2039 VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
2040 out:
2041 up_write(&kvm->slots_lock);
2042 return r;
2045 static void allocate_vpid(struct vcpu_vmx *vmx)
2047 int vpid;
2049 vmx->vpid = 0;
2050 if (!enable_vpid || !cpu_has_vmx_vpid())
2051 return;
2052 spin_lock(&vmx_vpid_lock);
2053 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2054 if (vpid < VMX_NR_VPIDS) {
2055 vmx->vpid = vpid;
2056 __set_bit(vpid, vmx_vpid_bitmap);
2058 spin_unlock(&vmx_vpid_lock);
2061 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
2063 void *va;
2065 if (!cpu_has_vmx_msr_bitmap())
2066 return;
2069 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2070 * have the write-low and read-high bitmap offsets the wrong way round.
2071 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2073 va = kmap(msr_bitmap);
2074 if (msr <= 0x1fff) {
2075 __clear_bit(msr, va + 0x000); /* read-low */
2076 __clear_bit(msr, va + 0x800); /* write-low */
2077 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2078 msr &= 0x1fff;
2079 __clear_bit(msr, va + 0x400); /* read-high */
2080 __clear_bit(msr, va + 0xc00); /* write-high */
2082 kunmap(msr_bitmap);
2086 * Sets up the vmcs for emulated real mode.
2088 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2090 u32 host_sysenter_cs;
2091 u32 junk;
2092 unsigned long a;
2093 struct descriptor_table dt;
2094 int i;
2095 unsigned long kvm_vmx_return;
2096 u32 exec_control;
2098 /* I/O */
2099 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
2100 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
2102 if (cpu_has_vmx_msr_bitmap())
2103 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
2105 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2107 /* Control */
2108 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2109 vmcs_config.pin_based_exec_ctrl);
2111 exec_control = vmcs_config.cpu_based_exec_ctrl;
2112 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2113 exec_control &= ~CPU_BASED_TPR_SHADOW;
2114 #ifdef CONFIG_X86_64
2115 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2116 CPU_BASED_CR8_LOAD_EXITING;
2117 #endif
2119 if (!vm_need_ept())
2120 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2121 CPU_BASED_CR3_LOAD_EXITING |
2122 CPU_BASED_INVLPG_EXITING;
2123 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2125 if (cpu_has_secondary_exec_ctrls()) {
2126 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2127 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2128 exec_control &=
2129 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2130 if (vmx->vpid == 0)
2131 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2132 if (!vm_need_ept())
2133 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2134 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2137 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2138 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2139 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2141 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2142 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2143 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2145 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2146 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2147 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2148 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2149 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2150 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2151 #ifdef CONFIG_X86_64
2152 rdmsrl(MSR_FS_BASE, a);
2153 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2154 rdmsrl(MSR_GS_BASE, a);
2155 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2156 #else
2157 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2158 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2159 #endif
2161 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2163 kvm_get_idt(&dt);
2164 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2166 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2167 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2168 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2169 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2170 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2172 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2173 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2174 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2175 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2176 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2177 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2179 for (i = 0; i < NR_VMX_MSR; ++i) {
2180 u32 index = vmx_msr_index[i];
2181 u32 data_low, data_high;
2182 u64 data;
2183 int j = vmx->nmsrs;
2185 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2186 continue;
2187 if (wrmsr_safe(index, data_low, data_high) < 0)
2188 continue;
2189 data = data_low | ((u64)data_high << 32);
2190 vmx->host_msrs[j].index = index;
2191 vmx->host_msrs[j].reserved = 0;
2192 vmx->host_msrs[j].data = data;
2193 vmx->guest_msrs[j] = vmx->host_msrs[j];
2194 ++vmx->nmsrs;
2197 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2199 /* 22.2.1, 20.8.1 */
2200 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2202 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2203 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2206 return 0;
2209 static int init_rmode(struct kvm *kvm)
2211 if (!init_rmode_tss(kvm))
2212 return 0;
2213 if (!init_rmode_identity_map(kvm))
2214 return 0;
2215 return 1;
2218 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2220 struct vcpu_vmx *vmx = to_vmx(vcpu);
2221 u64 msr;
2222 int ret;
2224 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2225 down_read(&vcpu->kvm->slots_lock);
2226 if (!init_rmode(vmx->vcpu.kvm)) {
2227 ret = -ENOMEM;
2228 goto out;
2231 vmx->vcpu.arch.rmode.active = 0;
2233 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2234 kvm_set_cr8(&vmx->vcpu, 0);
2235 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2236 if (vmx->vcpu.vcpu_id == 0)
2237 msr |= MSR_IA32_APICBASE_BSP;
2238 kvm_set_apic_base(&vmx->vcpu, msr);
2240 fx_init(&vmx->vcpu);
2242 seg_setup(VCPU_SREG_CS);
2244 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2245 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2247 if (vmx->vcpu.vcpu_id == 0) {
2248 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2249 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2250 } else {
2251 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2252 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2255 seg_setup(VCPU_SREG_DS);
2256 seg_setup(VCPU_SREG_ES);
2257 seg_setup(VCPU_SREG_FS);
2258 seg_setup(VCPU_SREG_GS);
2259 seg_setup(VCPU_SREG_SS);
2261 vmcs_write16(GUEST_TR_SELECTOR, 0);
2262 vmcs_writel(GUEST_TR_BASE, 0);
2263 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2264 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2266 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2267 vmcs_writel(GUEST_LDTR_BASE, 0);
2268 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2269 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2271 vmcs_write32(GUEST_SYSENTER_CS, 0);
2272 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2273 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2275 vmcs_writel(GUEST_RFLAGS, 0x02);
2276 if (vmx->vcpu.vcpu_id == 0)
2277 kvm_rip_write(vcpu, 0xfff0);
2278 else
2279 kvm_rip_write(vcpu, 0);
2280 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2282 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2283 vmcs_writel(GUEST_DR7, 0x400);
2285 vmcs_writel(GUEST_GDTR_BASE, 0);
2286 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2288 vmcs_writel(GUEST_IDTR_BASE, 0);
2289 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2291 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2292 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2293 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2295 guest_write_tsc(0);
2297 /* Special registers */
2298 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2300 setup_msrs(vmx);
2302 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2304 if (cpu_has_vmx_tpr_shadow()) {
2305 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2306 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2307 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2308 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2309 vmcs_write32(TPR_THRESHOLD, 0);
2312 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2313 vmcs_write64(APIC_ACCESS_ADDR,
2314 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2316 if (vmx->vpid != 0)
2317 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2319 vmx->vcpu.arch.cr0 = 0x60000010;
2320 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2321 vmx_set_cr4(&vmx->vcpu, 0);
2322 vmx_set_efer(&vmx->vcpu, 0);
2323 vmx_fpu_activate(&vmx->vcpu);
2324 update_exception_bitmap(&vmx->vcpu);
2326 vpid_sync_vcpu_all(vmx);
2328 ret = 0;
2330 /* HACK: Don't enable emulation on guest boot/reset */
2331 vmx->emulation_required = 0;
2333 out:
2334 up_read(&vcpu->kvm->slots_lock);
2335 return ret;
2338 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2340 struct vcpu_vmx *vmx = to_vmx(vcpu);
2342 KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2344 ++vcpu->stat.irq_injections;
2345 if (vcpu->arch.rmode.active) {
2346 vmx->rmode.irq.pending = true;
2347 vmx->rmode.irq.vector = irq;
2348 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2349 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2350 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2351 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2352 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2353 return;
2355 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2356 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2359 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2361 struct vcpu_vmx *vmx = to_vmx(vcpu);
2363 ++vcpu->stat.nmi_injections;
2364 if (vcpu->arch.rmode.active) {
2365 vmx->rmode.irq.pending = true;
2366 vmx->rmode.irq.vector = NMI_VECTOR;
2367 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2368 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2369 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2370 INTR_INFO_VALID_MASK);
2371 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2372 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2373 return;
2375 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2376 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2379 static void vmx_update_window_states(struct kvm_vcpu *vcpu)
2381 u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2383 vcpu->arch.nmi_window_open =
2384 !(guest_intr & (GUEST_INTR_STATE_STI |
2385 GUEST_INTR_STATE_MOV_SS |
2386 GUEST_INTR_STATE_NMI));
2388 vcpu->arch.interrupt_window_open =
2389 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2390 !(guest_intr & (GUEST_INTR_STATE_STI |
2391 GUEST_INTR_STATE_MOV_SS)));
2394 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2396 int word_index = __ffs(vcpu->arch.irq_summary);
2397 int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2398 int irq = word_index * BITS_PER_LONG + bit_index;
2400 clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2401 if (!vcpu->arch.irq_pending[word_index])
2402 clear_bit(word_index, &vcpu->arch.irq_summary);
2403 kvm_queue_interrupt(vcpu, irq);
2406 static void enable_irq_window(struct kvm_vcpu *vcpu)
2408 u32 cpu_based_vm_exec_control;
2410 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2411 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2412 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2415 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2417 u32 cpu_based_vm_exec_control;
2419 if (!cpu_has_virtual_nmis())
2420 return;
2422 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2423 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2424 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2427 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2428 struct kvm_run *kvm_run)
2430 vmx_update_window_states(vcpu);
2432 if (cpu_has_virtual_nmis()) {
2433 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
2434 if (vcpu->arch.nmi_window_open) {
2435 vcpu->arch.nmi_pending = false;
2436 vcpu->arch.nmi_injected = true;
2437 } else {
2438 enable_nmi_window(vcpu);
2439 return;
2442 if (vcpu->arch.nmi_injected) {
2443 vmx_inject_nmi(vcpu);
2444 if (vcpu->arch.nmi_pending
2445 || kvm_run->request_nmi_window)
2446 enable_nmi_window(vcpu);
2447 else if (vcpu->arch.irq_summary
2448 || kvm_run->request_interrupt_window)
2449 enable_irq_window(vcpu);
2450 return;
2452 if (!vcpu->arch.nmi_window_open || kvm_run->request_nmi_window)
2453 enable_nmi_window(vcpu);
2456 if (vcpu->arch.interrupt_window_open) {
2457 if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
2458 kvm_do_inject_irq(vcpu);
2460 if (vcpu->arch.interrupt.pending)
2461 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
2463 if (!vcpu->arch.interrupt_window_open &&
2464 (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2465 enable_irq_window(vcpu);
2468 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2470 int ret;
2471 struct kvm_userspace_memory_region tss_mem = {
2472 .slot = 8,
2473 .guest_phys_addr = addr,
2474 .memory_size = PAGE_SIZE * 3,
2475 .flags = 0,
2478 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2479 if (ret)
2480 return ret;
2481 kvm->arch.tss_addr = addr;
2482 return 0;
2485 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2487 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2489 set_debugreg(dbg->bp[0], 0);
2490 set_debugreg(dbg->bp[1], 1);
2491 set_debugreg(dbg->bp[2], 2);
2492 set_debugreg(dbg->bp[3], 3);
2494 if (dbg->singlestep) {
2495 unsigned long flags;
2497 flags = vmcs_readl(GUEST_RFLAGS);
2498 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2499 vmcs_writel(GUEST_RFLAGS, flags);
2503 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2504 int vec, u32 err_code)
2507 * Instruction with address size override prefix opcode 0x67
2508 * Cause the #SS fault with 0 error code in VM86 mode.
2510 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2511 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2512 return 1;
2514 * Forward all other exceptions that are valid in real mode.
2515 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2516 * the required debugging infrastructure rework.
2518 switch (vec) {
2519 case DE_VECTOR:
2520 case DB_VECTOR:
2521 case BP_VECTOR:
2522 case OF_VECTOR:
2523 case BR_VECTOR:
2524 case UD_VECTOR:
2525 case DF_VECTOR:
2526 case SS_VECTOR:
2527 case GP_VECTOR:
2528 case MF_VECTOR:
2529 kvm_queue_exception(vcpu, vec);
2530 return 1;
2532 return 0;
2535 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2537 struct vcpu_vmx *vmx = to_vmx(vcpu);
2538 u32 intr_info, error_code;
2539 unsigned long cr2, rip;
2540 u32 vect_info;
2541 enum emulation_result er;
2543 vect_info = vmx->idt_vectoring_info;
2544 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2546 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2547 !is_page_fault(intr_info))
2548 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2549 "intr info 0x%x\n", __func__, vect_info, intr_info);
2551 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2552 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2553 set_bit(irq, vcpu->arch.irq_pending);
2554 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2557 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2558 return 1; /* already handled by vmx_vcpu_run() */
2560 if (is_no_device(intr_info)) {
2561 vmx_fpu_activate(vcpu);
2562 return 1;
2565 if (is_invalid_opcode(intr_info)) {
2566 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2567 if (er != EMULATE_DONE)
2568 kvm_queue_exception(vcpu, UD_VECTOR);
2569 return 1;
2572 error_code = 0;
2573 rip = kvm_rip_read(vcpu);
2574 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2575 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2576 if (is_page_fault(intr_info)) {
2577 /* EPT won't cause page fault directly */
2578 if (vm_need_ept())
2579 BUG();
2580 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2581 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2582 (u32)((u64)cr2 >> 32), handler);
2583 if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
2584 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2585 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2588 if (vcpu->arch.rmode.active &&
2589 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2590 error_code)) {
2591 if (vcpu->arch.halt_request) {
2592 vcpu->arch.halt_request = 0;
2593 return kvm_emulate_halt(vcpu);
2595 return 1;
2598 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2599 (INTR_TYPE_EXCEPTION | 1)) {
2600 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2601 return 0;
2603 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2604 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2605 kvm_run->ex.error_code = error_code;
2606 return 0;
2609 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2610 struct kvm_run *kvm_run)
2612 ++vcpu->stat.irq_exits;
2613 KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2614 return 1;
2617 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2619 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2620 return 0;
2623 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2625 unsigned long exit_qualification;
2626 int size, down, in, string, rep;
2627 unsigned port;
2629 ++vcpu->stat.io_exits;
2630 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2631 string = (exit_qualification & 16) != 0;
2633 if (string) {
2634 if (emulate_instruction(vcpu,
2635 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2636 return 0;
2637 return 1;
2640 size = (exit_qualification & 7) + 1;
2641 in = (exit_qualification & 8) != 0;
2642 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2643 rep = (exit_qualification & 32) != 0;
2644 port = exit_qualification >> 16;
2646 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2649 static void
2650 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2653 * Patch in the VMCALL instruction:
2655 hypercall[0] = 0x0f;
2656 hypercall[1] = 0x01;
2657 hypercall[2] = 0xc1;
2660 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2662 unsigned long exit_qualification;
2663 int cr;
2664 int reg;
2666 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2667 cr = exit_qualification & 15;
2668 reg = (exit_qualification >> 8) & 15;
2669 switch ((exit_qualification >> 4) & 3) {
2670 case 0: /* mov to cr */
2671 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
2672 (u32)kvm_register_read(vcpu, reg),
2673 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2674 handler);
2675 switch (cr) {
2676 case 0:
2677 kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
2678 skip_emulated_instruction(vcpu);
2679 return 1;
2680 case 3:
2681 kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
2682 skip_emulated_instruction(vcpu);
2683 return 1;
2684 case 4:
2685 kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
2686 skip_emulated_instruction(vcpu);
2687 return 1;
2688 case 8:
2689 kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
2690 skip_emulated_instruction(vcpu);
2691 if (irqchip_in_kernel(vcpu->kvm))
2692 return 1;
2693 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2694 return 0;
2696 break;
2697 case 2: /* clts */
2698 vmx_fpu_deactivate(vcpu);
2699 vcpu->arch.cr0 &= ~X86_CR0_TS;
2700 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2701 vmx_fpu_activate(vcpu);
2702 KVMTRACE_0D(CLTS, vcpu, handler);
2703 skip_emulated_instruction(vcpu);
2704 return 1;
2705 case 1: /*mov from cr*/
2706 switch (cr) {
2707 case 3:
2708 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2709 KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2710 (u32)kvm_register_read(vcpu, reg),
2711 (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
2712 handler);
2713 skip_emulated_instruction(vcpu);
2714 return 1;
2715 case 8:
2716 kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
2717 KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2718 (u32)kvm_register_read(vcpu, reg), handler);
2719 skip_emulated_instruction(vcpu);
2720 return 1;
2722 break;
2723 case 3: /* lmsw */
2724 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2726 skip_emulated_instruction(vcpu);
2727 return 1;
2728 default:
2729 break;
2731 kvm_run->exit_reason = 0;
2732 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2733 (int)(exit_qualification >> 4) & 3, cr);
2734 return 0;
2737 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2739 unsigned long exit_qualification;
2740 unsigned long val;
2741 int dr, reg;
2744 * FIXME: this code assumes the host is debugging the guest.
2745 * need to deal with guest debugging itself too.
2747 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2748 dr = exit_qualification & 7;
2749 reg = (exit_qualification >> 8) & 15;
2750 if (exit_qualification & 16) {
2751 /* mov from dr */
2752 switch (dr) {
2753 case 6:
2754 val = 0xffff0ff0;
2755 break;
2756 case 7:
2757 val = 0x400;
2758 break;
2759 default:
2760 val = 0;
2762 kvm_register_write(vcpu, reg, val);
2763 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2764 } else {
2765 /* mov to dr */
2767 skip_emulated_instruction(vcpu);
2768 return 1;
2771 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2773 kvm_emulate_cpuid(vcpu);
2774 return 1;
2777 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2779 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2780 u64 data;
2782 if (vmx_get_msr(vcpu, ecx, &data)) {
2783 kvm_inject_gp(vcpu, 0);
2784 return 1;
2787 KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2788 handler);
2790 /* FIXME: handling of bits 32:63 of rax, rdx */
2791 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2792 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2793 skip_emulated_instruction(vcpu);
2794 return 1;
2797 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2799 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2800 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2801 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2803 KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2804 handler);
2806 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2807 kvm_inject_gp(vcpu, 0);
2808 return 1;
2811 skip_emulated_instruction(vcpu);
2812 return 1;
2815 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2816 struct kvm_run *kvm_run)
2818 return 1;
2821 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2822 struct kvm_run *kvm_run)
2824 u32 cpu_based_vm_exec_control;
2826 /* clear pending irq */
2827 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2828 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2829 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2831 KVMTRACE_0D(PEND_INTR, vcpu, handler);
2832 ++vcpu->stat.irq_window_exits;
2835 * If the user space waits to inject interrupts, exit as soon as
2836 * possible
2838 if (kvm_run->request_interrupt_window &&
2839 !vcpu->arch.irq_summary) {
2840 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2841 return 0;
2843 return 1;
2846 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2848 skip_emulated_instruction(vcpu);
2849 return kvm_emulate_halt(vcpu);
2852 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2854 skip_emulated_instruction(vcpu);
2855 kvm_emulate_hypercall(vcpu);
2856 return 1;
2859 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2861 u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2863 kvm_mmu_invlpg(vcpu, exit_qualification);
2864 skip_emulated_instruction(vcpu);
2865 return 1;
2868 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2870 skip_emulated_instruction(vcpu);
2871 /* TODO: Add support for VT-d/pass-through device */
2872 return 1;
2875 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2877 u64 exit_qualification;
2878 enum emulation_result er;
2879 unsigned long offset;
2881 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2882 offset = exit_qualification & 0xffful;
2884 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2886 if (er != EMULATE_DONE) {
2887 printk(KERN_ERR
2888 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2889 offset);
2890 return -ENOTSUPP;
2892 return 1;
2895 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2897 struct vcpu_vmx *vmx = to_vmx(vcpu);
2898 unsigned long exit_qualification;
2899 u16 tss_selector;
2900 int reason;
2902 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2904 reason = (u32)exit_qualification >> 30;
2905 if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
2906 (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
2907 (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
2908 == INTR_TYPE_NMI_INTR) {
2909 vcpu->arch.nmi_injected = false;
2910 if (cpu_has_virtual_nmis())
2911 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2912 GUEST_INTR_STATE_NMI);
2914 tss_selector = exit_qualification;
2916 return kvm_task_switch(vcpu, tss_selector, reason);
2919 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2921 u64 exit_qualification;
2922 enum emulation_result er;
2923 gpa_t gpa;
2924 unsigned long hva;
2925 int gla_validity;
2926 int r;
2928 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2930 if (exit_qualification & (1 << 6)) {
2931 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2932 return -ENOTSUPP;
2935 gla_validity = (exit_qualification >> 7) & 0x3;
2936 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2937 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2938 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2939 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2940 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2941 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2942 (long unsigned int)exit_qualification);
2943 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2944 kvm_run->hw.hardware_exit_reason = 0;
2945 return -ENOTSUPP;
2948 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2949 hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2950 if (!kvm_is_error_hva(hva)) {
2951 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2952 if (r < 0) {
2953 printk(KERN_ERR "EPT: Not enough memory!\n");
2954 return -ENOMEM;
2956 return 1;
2957 } else {
2958 /* must be MMIO */
2959 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2961 if (er == EMULATE_FAIL) {
2962 printk(KERN_ERR
2963 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2964 er);
2965 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2966 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2967 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2968 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2969 (long unsigned int)exit_qualification);
2970 return -ENOTSUPP;
2971 } else if (er == EMULATE_DO_MMIO)
2972 return 0;
2974 return 1;
2977 static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2979 u32 cpu_based_vm_exec_control;
2981 /* clear pending NMI */
2982 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2983 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2984 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2985 ++vcpu->stat.nmi_window_exits;
2988 * If the user space waits to inject a NMI, exit as soon as possible
2990 if (kvm_run->request_nmi_window && !vcpu->arch.nmi_pending) {
2991 kvm_run->exit_reason = KVM_EXIT_NMI_WINDOW_OPEN;
2992 return 0;
2995 return 1;
2998 static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
2999 struct kvm_run *kvm_run)
3001 struct vcpu_vmx *vmx = to_vmx(vcpu);
3002 int err;
3004 preempt_enable();
3005 local_irq_enable();
3007 while (!guest_state_valid(vcpu)) {
3008 err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
3010 switch (err) {
3011 case EMULATE_DONE:
3012 break;
3013 case EMULATE_DO_MMIO:
3014 kvm_report_emulation_failure(vcpu, "mmio");
3015 /* TODO: Handle MMIO */
3016 return;
3017 default:
3018 kvm_report_emulation_failure(vcpu, "emulation failure");
3019 return;
3022 if (signal_pending(current))
3023 break;
3024 if (need_resched())
3025 schedule();
3028 local_irq_disable();
3029 preempt_disable();
3031 /* Guest state should be valid now, no more emulation should be needed */
3032 vmx->emulation_required = 0;
3036 * The exit handlers return 1 if the exit was handled fully and guest execution
3037 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3038 * to be done to userspace and return 0.
3040 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
3041 struct kvm_run *kvm_run) = {
3042 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3043 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3044 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3045 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3046 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3047 [EXIT_REASON_CR_ACCESS] = handle_cr,
3048 [EXIT_REASON_DR_ACCESS] = handle_dr,
3049 [EXIT_REASON_CPUID] = handle_cpuid,
3050 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3051 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3052 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3053 [EXIT_REASON_HLT] = handle_halt,
3054 [EXIT_REASON_INVLPG] = handle_invlpg,
3055 [EXIT_REASON_VMCALL] = handle_vmcall,
3056 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3057 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3058 [EXIT_REASON_WBINVD] = handle_wbinvd,
3059 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3060 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3063 static const int kvm_vmx_max_exit_handlers =
3064 ARRAY_SIZE(kvm_vmx_exit_handlers);
3067 * The guest has exited. See if we can fix it or if we need userspace
3068 * assistance.
3070 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3072 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
3073 struct vcpu_vmx *vmx = to_vmx(vcpu);
3074 u32 vectoring_info = vmx->idt_vectoring_info;
3076 KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
3077 (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
3079 /* Access CR3 don't cause VMExit in paging mode, so we need
3080 * to sync with guest real CR3. */
3081 if (vm_need_ept() && is_paging(vcpu)) {
3082 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3083 ept_load_pdptrs(vcpu);
3086 if (unlikely(vmx->fail)) {
3087 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3088 kvm_run->fail_entry.hardware_entry_failure_reason
3089 = vmcs_read32(VM_INSTRUCTION_ERROR);
3090 return 0;
3093 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3094 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3095 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3096 exit_reason != EXIT_REASON_TASK_SWITCH))
3097 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3098 "(0x%x) and exit reason is 0x%x\n",
3099 __func__, vectoring_info, exit_reason);
3100 if (exit_reason < kvm_vmx_max_exit_handlers
3101 && kvm_vmx_exit_handlers[exit_reason])
3102 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
3103 else {
3104 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3105 kvm_run->hw.hardware_exit_reason = exit_reason;
3107 return 0;
3110 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
3112 int max_irr, tpr;
3114 if (!vm_need_tpr_shadow(vcpu->kvm))
3115 return;
3117 if (!kvm_lapic_enabled(vcpu) ||
3118 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
3119 vmcs_write32(TPR_THRESHOLD, 0);
3120 return;
3123 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
3124 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
3127 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3129 u32 exit_intr_info;
3130 u32 idt_vectoring_info;
3131 bool unblock_nmi;
3132 u8 vector;
3133 int type;
3134 bool idtv_info_valid;
3135 u32 error;
3137 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3138 if (cpu_has_virtual_nmis()) {
3139 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3140 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3142 * SDM 3: 25.7.1.2
3143 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3144 * a guest IRET fault.
3146 if (unblock_nmi && vector != DF_VECTOR)
3147 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3148 GUEST_INTR_STATE_NMI);
3151 idt_vectoring_info = vmx->idt_vectoring_info;
3152 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3153 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3154 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3155 if (vmx->vcpu.arch.nmi_injected) {
3157 * SDM 3: 25.7.1.2
3158 * Clear bit "block by NMI" before VM entry if a NMI delivery
3159 * faulted.
3161 if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
3162 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3163 GUEST_INTR_STATE_NMI);
3164 else
3165 vmx->vcpu.arch.nmi_injected = false;
3167 kvm_clear_exception_queue(&vmx->vcpu);
3168 if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
3169 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3170 error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3171 kvm_queue_exception_e(&vmx->vcpu, vector, error);
3172 } else
3173 kvm_queue_exception(&vmx->vcpu, vector);
3174 vmx->idt_vectoring_info = 0;
3176 kvm_clear_interrupt_queue(&vmx->vcpu);
3177 if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
3178 kvm_queue_interrupt(&vmx->vcpu, vector);
3179 vmx->idt_vectoring_info = 0;
3183 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
3185 update_tpr_threshold(vcpu);
3187 vmx_update_window_states(vcpu);
3189 if (cpu_has_virtual_nmis()) {
3190 if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
3191 if (vcpu->arch.interrupt.pending) {
3192 enable_nmi_window(vcpu);
3193 } else if (vcpu->arch.nmi_window_open) {
3194 vcpu->arch.nmi_pending = false;
3195 vcpu->arch.nmi_injected = true;
3196 } else {
3197 enable_nmi_window(vcpu);
3198 return;
3201 if (vcpu->arch.nmi_injected) {
3202 vmx_inject_nmi(vcpu);
3203 if (vcpu->arch.nmi_pending)
3204 enable_nmi_window(vcpu);
3205 else if (kvm_cpu_has_interrupt(vcpu))
3206 enable_irq_window(vcpu);
3207 return;
3210 if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
3211 if (vcpu->arch.interrupt_window_open)
3212 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3213 else
3214 enable_irq_window(vcpu);
3216 if (vcpu->arch.interrupt.pending) {
3217 vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
3218 kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
3223 * Failure to inject an interrupt should give us the information
3224 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3225 * when fetching the interrupt redirection bitmap in the real-mode
3226 * tss, this doesn't happen. So we do it ourselves.
3228 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3230 vmx->rmode.irq.pending = 0;
3231 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3232 return;
3233 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3234 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3235 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3236 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3237 return;
3239 vmx->idt_vectoring_info =
3240 VECTORING_INFO_VALID_MASK
3241 | INTR_TYPE_EXT_INTR
3242 | vmx->rmode.irq.vector;
3245 #ifdef CONFIG_X86_64
3246 #define R "r"
3247 #define Q "q"
3248 #else
3249 #define R "e"
3250 #define Q "l"
3251 #endif
3253 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3255 struct vcpu_vmx *vmx = to_vmx(vcpu);
3256 u32 intr_info;
3258 /* Handle invalid guest state instead of entering VMX */
3259 if (vmx->emulation_required && emulate_invalid_guest_state) {
3260 handle_invalid_guest_state(vcpu, kvm_run);
3261 return;
3264 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3265 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3266 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3267 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3270 * Loading guest fpu may have cleared host cr0.ts
3272 vmcs_writel(HOST_CR0, read_cr0());
3274 asm(
3275 /* Store host registers */
3276 "push %%"R"dx; push %%"R"bp;"
3277 "push %%"R"cx \n\t"
3278 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3279 "je 1f \n\t"
3280 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3281 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3282 "1: \n\t"
3283 /* Check if vmlaunch of vmresume is needed */
3284 "cmpl $0, %c[launched](%0) \n\t"
3285 /* Load guest registers. Don't clobber flags. */
3286 "mov %c[cr2](%0), %%"R"ax \n\t"
3287 "mov %%"R"ax, %%cr2 \n\t"
3288 "mov %c[rax](%0), %%"R"ax \n\t"
3289 "mov %c[rbx](%0), %%"R"bx \n\t"
3290 "mov %c[rdx](%0), %%"R"dx \n\t"
3291 "mov %c[rsi](%0), %%"R"si \n\t"
3292 "mov %c[rdi](%0), %%"R"di \n\t"
3293 "mov %c[rbp](%0), %%"R"bp \n\t"
3294 #ifdef CONFIG_X86_64
3295 "mov %c[r8](%0), %%r8 \n\t"
3296 "mov %c[r9](%0), %%r9 \n\t"
3297 "mov %c[r10](%0), %%r10 \n\t"
3298 "mov %c[r11](%0), %%r11 \n\t"
3299 "mov %c[r12](%0), %%r12 \n\t"
3300 "mov %c[r13](%0), %%r13 \n\t"
3301 "mov %c[r14](%0), %%r14 \n\t"
3302 "mov %c[r15](%0), %%r15 \n\t"
3303 #endif
3304 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3306 /* Enter guest mode */
3307 "jne .Llaunched \n\t"
3308 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3309 "jmp .Lkvm_vmx_return \n\t"
3310 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3311 ".Lkvm_vmx_return: "
3312 /* Save guest registers, load host registers, keep flags */
3313 "xchg %0, (%%"R"sp) \n\t"
3314 "mov %%"R"ax, %c[rax](%0) \n\t"
3315 "mov %%"R"bx, %c[rbx](%0) \n\t"
3316 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3317 "mov %%"R"dx, %c[rdx](%0) \n\t"
3318 "mov %%"R"si, %c[rsi](%0) \n\t"
3319 "mov %%"R"di, %c[rdi](%0) \n\t"
3320 "mov %%"R"bp, %c[rbp](%0) \n\t"
3321 #ifdef CONFIG_X86_64
3322 "mov %%r8, %c[r8](%0) \n\t"
3323 "mov %%r9, %c[r9](%0) \n\t"
3324 "mov %%r10, %c[r10](%0) \n\t"
3325 "mov %%r11, %c[r11](%0) \n\t"
3326 "mov %%r12, %c[r12](%0) \n\t"
3327 "mov %%r13, %c[r13](%0) \n\t"
3328 "mov %%r14, %c[r14](%0) \n\t"
3329 "mov %%r15, %c[r15](%0) \n\t"
3330 #endif
3331 "mov %%cr2, %%"R"ax \n\t"
3332 "mov %%"R"ax, %c[cr2](%0) \n\t"
3334 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3335 "setbe %c[fail](%0) \n\t"
3336 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3337 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3338 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3339 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3340 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3341 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3342 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3343 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3344 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3345 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3346 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3347 #ifdef CONFIG_X86_64
3348 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3349 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3350 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3351 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3352 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3353 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3354 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3355 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3356 #endif
3357 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3358 : "cc", "memory"
3359 , R"bx", R"di", R"si"
3360 #ifdef CONFIG_X86_64
3361 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3362 #endif
3365 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3366 vcpu->arch.regs_dirty = 0;
3368 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3369 if (vmx->rmode.irq.pending)
3370 fixup_rmode_irq(vmx);
3372 vmx_update_window_states(vcpu);
3374 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3375 vmx->launched = 1;
3377 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3379 /* We need to handle NMIs before interrupts are enabled */
3380 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3381 (intr_info & INTR_INFO_VALID_MASK)) {
3382 KVMTRACE_0D(NMI, vcpu, handler);
3383 asm("int $2");
3386 vmx_complete_interrupts(vmx);
3389 #undef R
3390 #undef Q
3392 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3394 struct vcpu_vmx *vmx = to_vmx(vcpu);
3396 if (vmx->vmcs) {
3397 vcpu_clear(vmx);
3398 free_vmcs(vmx->vmcs);
3399 vmx->vmcs = NULL;
3403 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3405 struct vcpu_vmx *vmx = to_vmx(vcpu);
3407 spin_lock(&vmx_vpid_lock);
3408 if (vmx->vpid != 0)
3409 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3410 spin_unlock(&vmx_vpid_lock);
3411 vmx_free_vmcs(vcpu);
3412 kfree(vmx->host_msrs);
3413 kfree(vmx->guest_msrs);
3414 kvm_vcpu_uninit(vcpu);
3415 kmem_cache_free(kvm_vcpu_cache, vmx);
3418 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3420 int err;
3421 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3422 int cpu;
3424 if (!vmx)
3425 return ERR_PTR(-ENOMEM);
3427 allocate_vpid(vmx);
3429 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3430 if (err)
3431 goto free_vcpu;
3433 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3434 if (!vmx->guest_msrs) {
3435 err = -ENOMEM;
3436 goto uninit_vcpu;
3439 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3440 if (!vmx->host_msrs)
3441 goto free_guest_msrs;
3443 vmx->vmcs = alloc_vmcs();
3444 if (!vmx->vmcs)
3445 goto free_msrs;
3447 vmcs_clear(vmx->vmcs);
3449 cpu = get_cpu();
3450 vmx_vcpu_load(&vmx->vcpu, cpu);
3451 err = vmx_vcpu_setup(vmx);
3452 vmx_vcpu_put(&vmx->vcpu);
3453 put_cpu();
3454 if (err)
3455 goto free_vmcs;
3456 if (vm_need_virtualize_apic_accesses(kvm))
3457 if (alloc_apic_access_page(kvm) != 0)
3458 goto free_vmcs;
3460 if (vm_need_ept())
3461 if (alloc_identity_pagetable(kvm) != 0)
3462 goto free_vmcs;
3464 return &vmx->vcpu;
3466 free_vmcs:
3467 free_vmcs(vmx->vmcs);
3468 free_msrs:
3469 kfree(vmx->host_msrs);
3470 free_guest_msrs:
3471 kfree(vmx->guest_msrs);
3472 uninit_vcpu:
3473 kvm_vcpu_uninit(&vmx->vcpu);
3474 free_vcpu:
3475 kmem_cache_free(kvm_vcpu_cache, vmx);
3476 return ERR_PTR(err);
3479 static void __init vmx_check_processor_compat(void *rtn)
3481 struct vmcs_config vmcs_conf;
3483 *(int *)rtn = 0;
3484 if (setup_vmcs_config(&vmcs_conf) < 0)
3485 *(int *)rtn = -EIO;
3486 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3487 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3488 smp_processor_id());
3489 *(int *)rtn = -EIO;
3493 static int get_ept_level(void)
3495 return VMX_EPT_DEFAULT_GAW + 1;
3498 static struct kvm_x86_ops vmx_x86_ops = {
3499 .cpu_has_kvm_support = cpu_has_kvm_support,
3500 .disabled_by_bios = vmx_disabled_by_bios,
3501 .hardware_setup = hardware_setup,
3502 .hardware_unsetup = hardware_unsetup,
3503 .check_processor_compatibility = vmx_check_processor_compat,
3504 .hardware_enable = hardware_enable,
3505 .hardware_disable = hardware_disable,
3506 .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3508 .vcpu_create = vmx_create_vcpu,
3509 .vcpu_free = vmx_free_vcpu,
3510 .vcpu_reset = vmx_vcpu_reset,
3512 .prepare_guest_switch = vmx_save_host_state,
3513 .vcpu_load = vmx_vcpu_load,
3514 .vcpu_put = vmx_vcpu_put,
3516 .set_guest_debug = set_guest_debug,
3517 .guest_debug_pre = kvm_guest_debug_pre,
3518 .get_msr = vmx_get_msr,
3519 .set_msr = vmx_set_msr,
3520 .get_segment_base = vmx_get_segment_base,
3521 .get_segment = vmx_get_segment,
3522 .set_segment = vmx_set_segment,
3523 .get_cpl = vmx_get_cpl,
3524 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3525 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3526 .set_cr0 = vmx_set_cr0,
3527 .set_cr3 = vmx_set_cr3,
3528 .set_cr4 = vmx_set_cr4,
3529 .set_efer = vmx_set_efer,
3530 .get_idt = vmx_get_idt,
3531 .set_idt = vmx_set_idt,
3532 .get_gdt = vmx_get_gdt,
3533 .set_gdt = vmx_set_gdt,
3534 .cache_reg = vmx_cache_reg,
3535 .get_rflags = vmx_get_rflags,
3536 .set_rflags = vmx_set_rflags,
3538 .tlb_flush = vmx_flush_tlb,
3540 .run = vmx_vcpu_run,
3541 .handle_exit = kvm_handle_exit,
3542 .skip_emulated_instruction = skip_emulated_instruction,
3543 .patch_hypercall = vmx_patch_hypercall,
3544 .get_irq = vmx_get_irq,
3545 .set_irq = vmx_inject_irq,
3546 .queue_exception = vmx_queue_exception,
3547 .exception_injected = vmx_exception_injected,
3548 .inject_pending_irq = vmx_intr_assist,
3549 .inject_pending_vectors = do_interrupt_requests,
3551 .set_tss_addr = vmx_set_tss_addr,
3552 .get_tdp_level = get_ept_level,
3555 static int __init vmx_init(void)
3557 void *va;
3558 int r;
3560 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3561 if (!vmx_io_bitmap_a)
3562 return -ENOMEM;
3564 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3565 if (!vmx_io_bitmap_b) {
3566 r = -ENOMEM;
3567 goto out;
3570 vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3571 if (!vmx_msr_bitmap) {
3572 r = -ENOMEM;
3573 goto out1;
3577 * Allow direct access to the PC debug port (it is often used for I/O
3578 * delays, but the vmexits simply slow things down).
3580 va = kmap(vmx_io_bitmap_a);
3581 memset(va, 0xff, PAGE_SIZE);
3582 clear_bit(0x80, va);
3583 kunmap(vmx_io_bitmap_a);
3585 va = kmap(vmx_io_bitmap_b);
3586 memset(va, 0xff, PAGE_SIZE);
3587 kunmap(vmx_io_bitmap_b);
3589 va = kmap(vmx_msr_bitmap);
3590 memset(va, 0xff, PAGE_SIZE);
3591 kunmap(vmx_msr_bitmap);
3593 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3595 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3596 if (r)
3597 goto out2;
3599 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3600 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3601 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3602 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3603 vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3605 if (vm_need_ept()) {
3606 bypass_guest_pf = 0;
3607 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3608 VMX_EPT_WRITABLE_MASK |
3609 VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT |
3610 VMX_EPT_IGMT_BIT);
3611 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3612 VMX_EPT_EXECUTABLE_MASK);
3613 kvm_enable_tdp();
3614 } else
3615 kvm_disable_tdp();
3617 if (bypass_guest_pf)
3618 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3620 ept_sync_global();
3622 return 0;
3624 out2:
3625 __free_page(vmx_msr_bitmap);
3626 out1:
3627 __free_page(vmx_io_bitmap_b);
3628 out:
3629 __free_page(vmx_io_bitmap_a);
3630 return r;
3633 static void __exit vmx_exit(void)
3635 __free_page(vmx_msr_bitmap);
3636 __free_page(vmx_io_bitmap_b);
3637 __free_page(vmx_io_bitmap_a);
3639 kvm_exit();
3642 module_init(vmx_init)
3643 module_exit(vmx_exit)