[PATCH] namespaces: utsname: implement utsname namespaces
[linux-2.6/mini2440.git] / fs / dcache.c
blobfc2faa44f8d185b6be9b8600a4ffb9991d5b980f
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
44 EXPORT_SYMBOL(dcache_lock);
46 static kmem_cache_t *dentry_cache __read_mostly;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 static LIST_HEAD(dentry_unused);
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat = {
68 .age_limit = 45,
71 static void d_callback(struct rcu_head *head)
73 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
75 if (dname_external(dentry))
76 kfree(dentry->d_name.name);
77 kmem_cache_free(dentry_cache, dentry);
81 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
82 * inside dcache_lock.
84 static void d_free(struct dentry *dentry)
86 if (dentry->d_op && dentry->d_op->d_release)
87 dentry->d_op->d_release(dentry);
88 call_rcu(&dentry->d_u.d_rcu, d_callback);
92 * Release the dentry's inode, using the filesystem
93 * d_iput() operation if defined.
94 * Called with dcache_lock and per dentry lock held, drops both.
96 static void dentry_iput(struct dentry * dentry)
98 struct inode *inode = dentry->d_inode;
99 if (inode) {
100 dentry->d_inode = NULL;
101 list_del_init(&dentry->d_alias);
102 spin_unlock(&dentry->d_lock);
103 spin_unlock(&dcache_lock);
104 if (!inode->i_nlink)
105 fsnotify_inoderemove(inode);
106 if (dentry->d_op && dentry->d_op->d_iput)
107 dentry->d_op->d_iput(dentry, inode);
108 else
109 iput(inode);
110 } else {
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
117 * This is dput
119 * This is complicated by the fact that we do not want to put
120 * dentries that are no longer on any hash chain on the unused
121 * list: we'd much rather just get rid of them immediately.
123 * However, that implies that we have to traverse the dentry
124 * tree upwards to the parents which might _also_ now be
125 * scheduled for deletion (it may have been only waiting for
126 * its last child to go away).
128 * This tail recursion is done by hand as we don't want to depend
129 * on the compiler to always get this right (gcc generally doesn't).
130 * Real recursion would eat up our stack space.
134 * dput - release a dentry
135 * @dentry: dentry to release
137 * Release a dentry. This will drop the usage count and if appropriate
138 * call the dentry unlink method as well as removing it from the queues and
139 * releasing its resources. If the parent dentries were scheduled for release
140 * they too may now get deleted.
142 * no dcache lock, please.
145 void dput(struct dentry *dentry)
147 if (!dentry)
148 return;
150 repeat:
151 if (atomic_read(&dentry->d_count) == 1)
152 might_sleep();
153 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
154 return;
156 spin_lock(&dentry->d_lock);
157 if (atomic_read(&dentry->d_count)) {
158 spin_unlock(&dentry->d_lock);
159 spin_unlock(&dcache_lock);
160 return;
164 * AV: ->d_delete() is _NOT_ allowed to block now.
166 if (dentry->d_op && dentry->d_op->d_delete) {
167 if (dentry->d_op->d_delete(dentry))
168 goto unhash_it;
170 /* Unreachable? Get rid of it */
171 if (d_unhashed(dentry))
172 goto kill_it;
173 if (list_empty(&dentry->d_lru)) {
174 dentry->d_flags |= DCACHE_REFERENCED;
175 list_add(&dentry->d_lru, &dentry_unused);
176 dentry_stat.nr_unused++;
178 spin_unlock(&dentry->d_lock);
179 spin_unlock(&dcache_lock);
180 return;
182 unhash_it:
183 __d_drop(dentry);
185 kill_it: {
186 struct dentry *parent;
188 /* If dentry was on d_lru list
189 * delete it from there
191 if (!list_empty(&dentry->d_lru)) {
192 list_del(&dentry->d_lru);
193 dentry_stat.nr_unused--;
195 list_del(&dentry->d_u.d_child);
196 dentry_stat.nr_dentry--; /* For d_free, below */
197 /*drops the locks, at that point nobody can reach this dentry */
198 dentry_iput(dentry);
199 parent = dentry->d_parent;
200 d_free(dentry);
201 if (dentry == parent)
202 return;
203 dentry = parent;
204 goto repeat;
209 * d_invalidate - invalidate a dentry
210 * @dentry: dentry to invalidate
212 * Try to invalidate the dentry if it turns out to be
213 * possible. If there are other dentries that can be
214 * reached through this one we can't delete it and we
215 * return -EBUSY. On success we return 0.
217 * no dcache lock.
220 int d_invalidate(struct dentry * dentry)
223 * If it's already been dropped, return OK.
225 spin_lock(&dcache_lock);
226 if (d_unhashed(dentry)) {
227 spin_unlock(&dcache_lock);
228 return 0;
231 * Check whether to do a partial shrink_dcache
232 * to get rid of unused child entries.
234 if (!list_empty(&dentry->d_subdirs)) {
235 spin_unlock(&dcache_lock);
236 shrink_dcache_parent(dentry);
237 spin_lock(&dcache_lock);
241 * Somebody else still using it?
243 * If it's a directory, we can't drop it
244 * for fear of somebody re-populating it
245 * with children (even though dropping it
246 * would make it unreachable from the root,
247 * we might still populate it if it was a
248 * working directory or similar).
250 spin_lock(&dentry->d_lock);
251 if (atomic_read(&dentry->d_count) > 1) {
252 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
253 spin_unlock(&dentry->d_lock);
254 spin_unlock(&dcache_lock);
255 return -EBUSY;
259 __d_drop(dentry);
260 spin_unlock(&dentry->d_lock);
261 spin_unlock(&dcache_lock);
262 return 0;
265 /* This should be called _only_ with dcache_lock held */
267 static inline struct dentry * __dget_locked(struct dentry *dentry)
269 atomic_inc(&dentry->d_count);
270 if (!list_empty(&dentry->d_lru)) {
271 dentry_stat.nr_unused--;
272 list_del_init(&dentry->d_lru);
274 return dentry;
277 struct dentry * dget_locked(struct dentry *dentry)
279 return __dget_locked(dentry);
283 * d_find_alias - grab a hashed alias of inode
284 * @inode: inode in question
285 * @want_discon: flag, used by d_splice_alias, to request
286 * that only a DISCONNECTED alias be returned.
288 * If inode has a hashed alias, or is a directory and has any alias,
289 * acquire the reference to alias and return it. Otherwise return NULL.
290 * Notice that if inode is a directory there can be only one alias and
291 * it can be unhashed only if it has no children, or if it is the root
292 * of a filesystem.
294 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295 * any other hashed alias over that one unless @want_discon is set,
296 * in which case only return a DCACHE_DISCONNECTED alias.
299 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
301 struct list_head *head, *next, *tmp;
302 struct dentry *alias, *discon_alias=NULL;
304 head = &inode->i_dentry;
305 next = inode->i_dentry.next;
306 while (next != head) {
307 tmp = next;
308 next = tmp->next;
309 prefetch(next);
310 alias = list_entry(tmp, struct dentry, d_alias);
311 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
312 if (alias->d_flags & DCACHE_DISCONNECTED)
313 discon_alias = alias;
314 else if (!want_discon) {
315 __dget_locked(alias);
316 return alias;
320 if (discon_alias)
321 __dget_locked(discon_alias);
322 return discon_alias;
325 struct dentry * d_find_alias(struct inode *inode)
327 struct dentry *de = NULL;
329 if (!list_empty(&inode->i_dentry)) {
330 spin_lock(&dcache_lock);
331 de = __d_find_alias(inode, 0);
332 spin_unlock(&dcache_lock);
334 return de;
338 * Try to kill dentries associated with this inode.
339 * WARNING: you must own a reference to inode.
341 void d_prune_aliases(struct inode *inode)
343 struct dentry *dentry;
344 restart:
345 spin_lock(&dcache_lock);
346 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
347 spin_lock(&dentry->d_lock);
348 if (!atomic_read(&dentry->d_count)) {
349 __dget_locked(dentry);
350 __d_drop(dentry);
351 spin_unlock(&dentry->d_lock);
352 spin_unlock(&dcache_lock);
353 dput(dentry);
354 goto restart;
356 spin_unlock(&dentry->d_lock);
358 spin_unlock(&dcache_lock);
362 * Throw away a dentry - free the inode, dput the parent. This requires that
363 * the LRU list has already been removed.
365 * Called with dcache_lock, drops it and then regains.
366 * Called with dentry->d_lock held, drops it.
368 static void prune_one_dentry(struct dentry * dentry)
370 struct dentry * parent;
372 __d_drop(dentry);
373 list_del(&dentry->d_u.d_child);
374 dentry_stat.nr_dentry--; /* For d_free, below */
375 dentry_iput(dentry);
376 parent = dentry->d_parent;
377 d_free(dentry);
378 if (parent != dentry)
379 dput(parent);
380 spin_lock(&dcache_lock);
384 * prune_dcache - shrink the dcache
385 * @count: number of entries to try and free
386 * @sb: if given, ignore dentries for other superblocks
387 * which are being unmounted.
389 * Shrink the dcache. This is done when we need
390 * more memory, or simply when we need to unmount
391 * something (at which point we need to unuse
392 * all dentries).
394 * This function may fail to free any resources if
395 * all the dentries are in use.
398 static void prune_dcache(int count, struct super_block *sb)
400 spin_lock(&dcache_lock);
401 for (; count ; count--) {
402 struct dentry *dentry;
403 struct list_head *tmp;
404 struct rw_semaphore *s_umount;
406 cond_resched_lock(&dcache_lock);
408 tmp = dentry_unused.prev;
409 if (sb) {
410 /* Try to find a dentry for this sb, but don't try
411 * too hard, if they aren't near the tail they will
412 * be moved down again soon
414 int skip = count;
415 while (skip && tmp != &dentry_unused &&
416 list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
417 skip--;
418 tmp = tmp->prev;
421 if (tmp == &dentry_unused)
422 break;
423 list_del_init(tmp);
424 prefetch(dentry_unused.prev);
425 dentry_stat.nr_unused--;
426 dentry = list_entry(tmp, struct dentry, d_lru);
428 spin_lock(&dentry->d_lock);
430 * We found an inuse dentry which was not removed from
431 * dentry_unused because of laziness during lookup. Do not free
432 * it - just keep it off the dentry_unused list.
434 if (atomic_read(&dentry->d_count)) {
435 spin_unlock(&dentry->d_lock);
436 continue;
438 /* If the dentry was recently referenced, don't free it. */
439 if (dentry->d_flags & DCACHE_REFERENCED) {
440 dentry->d_flags &= ~DCACHE_REFERENCED;
441 list_add(&dentry->d_lru, &dentry_unused);
442 dentry_stat.nr_unused++;
443 spin_unlock(&dentry->d_lock);
444 continue;
447 * If the dentry is not DCACHED_REFERENCED, it is time
448 * to remove it from the dcache, provided the super block is
449 * NULL (which means we are trying to reclaim memory)
450 * or this dentry belongs to the same super block that
451 * we want to shrink.
454 * If this dentry is for "my" filesystem, then I can prune it
455 * without taking the s_umount lock (I already hold it).
457 if (sb && dentry->d_sb == sb) {
458 prune_one_dentry(dentry);
459 continue;
462 * ...otherwise we need to be sure this filesystem isn't being
463 * unmounted, otherwise we could race with
464 * generic_shutdown_super(), and end up holding a reference to
465 * an inode while the filesystem is unmounted.
466 * So we try to get s_umount, and make sure s_root isn't NULL.
467 * (Take a local copy of s_umount to avoid a use-after-free of
468 * `dentry').
470 s_umount = &dentry->d_sb->s_umount;
471 if (down_read_trylock(s_umount)) {
472 if (dentry->d_sb->s_root != NULL) {
473 prune_one_dentry(dentry);
474 up_read(s_umount);
475 continue;
477 up_read(s_umount);
479 spin_unlock(&dentry->d_lock);
480 /* Cannot remove the first dentry, and it isn't appropriate
481 * to move it to the head of the list, so give up, and try
482 * later
484 break;
486 spin_unlock(&dcache_lock);
490 * Shrink the dcache for the specified super block.
491 * This allows us to unmount a device without disturbing
492 * the dcache for the other devices.
494 * This implementation makes just two traversals of the
495 * unused list. On the first pass we move the selected
496 * dentries to the most recent end, and on the second
497 * pass we free them. The second pass must restart after
498 * each dput(), but since the target dentries are all at
499 * the end, it's really just a single traversal.
503 * shrink_dcache_sb - shrink dcache for a superblock
504 * @sb: superblock
506 * Shrink the dcache for the specified super block. This
507 * is used to free the dcache before unmounting a file
508 * system
511 void shrink_dcache_sb(struct super_block * sb)
513 struct list_head *tmp, *next;
514 struct dentry *dentry;
517 * Pass one ... move the dentries for the specified
518 * superblock to the most recent end of the unused list.
520 spin_lock(&dcache_lock);
521 list_for_each_safe(tmp, next, &dentry_unused) {
522 dentry = list_entry(tmp, struct dentry, d_lru);
523 if (dentry->d_sb != sb)
524 continue;
525 list_move(tmp, &dentry_unused);
529 * Pass two ... free the dentries for this superblock.
531 repeat:
532 list_for_each_safe(tmp, next, &dentry_unused) {
533 dentry = list_entry(tmp, struct dentry, d_lru);
534 if (dentry->d_sb != sb)
535 continue;
536 dentry_stat.nr_unused--;
537 list_del_init(tmp);
538 spin_lock(&dentry->d_lock);
539 if (atomic_read(&dentry->d_count)) {
540 spin_unlock(&dentry->d_lock);
541 continue;
543 prune_one_dentry(dentry);
544 cond_resched_lock(&dcache_lock);
545 goto repeat;
547 spin_unlock(&dcache_lock);
551 * Search for at least 1 mount point in the dentry's subdirs.
552 * We descend to the next level whenever the d_subdirs
553 * list is non-empty and continue searching.
557 * have_submounts - check for mounts over a dentry
558 * @parent: dentry to check.
560 * Return true if the parent or its subdirectories contain
561 * a mount point
564 int have_submounts(struct dentry *parent)
566 struct dentry *this_parent = parent;
567 struct list_head *next;
569 spin_lock(&dcache_lock);
570 if (d_mountpoint(parent))
571 goto positive;
572 repeat:
573 next = this_parent->d_subdirs.next;
574 resume:
575 while (next != &this_parent->d_subdirs) {
576 struct list_head *tmp = next;
577 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
578 next = tmp->next;
579 /* Have we found a mount point ? */
580 if (d_mountpoint(dentry))
581 goto positive;
582 if (!list_empty(&dentry->d_subdirs)) {
583 this_parent = dentry;
584 goto repeat;
588 * All done at this level ... ascend and resume the search.
590 if (this_parent != parent) {
591 next = this_parent->d_u.d_child.next;
592 this_parent = this_parent->d_parent;
593 goto resume;
595 spin_unlock(&dcache_lock);
596 return 0; /* No mount points found in tree */
597 positive:
598 spin_unlock(&dcache_lock);
599 return 1;
603 * Search the dentry child list for the specified parent,
604 * and move any unused dentries to the end of the unused
605 * list for prune_dcache(). We descend to the next level
606 * whenever the d_subdirs list is non-empty and continue
607 * searching.
609 * It returns zero iff there are no unused children,
610 * otherwise it returns the number of children moved to
611 * the end of the unused list. This may not be the total
612 * number of unused children, because select_parent can
613 * drop the lock and return early due to latency
614 * constraints.
616 static int select_parent(struct dentry * parent)
618 struct dentry *this_parent = parent;
619 struct list_head *next;
620 int found = 0;
622 spin_lock(&dcache_lock);
623 repeat:
624 next = this_parent->d_subdirs.next;
625 resume:
626 while (next != &this_parent->d_subdirs) {
627 struct list_head *tmp = next;
628 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
629 next = tmp->next;
631 if (!list_empty(&dentry->d_lru)) {
632 dentry_stat.nr_unused--;
633 list_del_init(&dentry->d_lru);
636 * move only zero ref count dentries to the end
637 * of the unused list for prune_dcache
639 if (!atomic_read(&dentry->d_count)) {
640 list_add_tail(&dentry->d_lru, &dentry_unused);
641 dentry_stat.nr_unused++;
642 found++;
646 * We can return to the caller if we have found some (this
647 * ensures forward progress). We'll be coming back to find
648 * the rest.
650 if (found && need_resched())
651 goto out;
654 * Descend a level if the d_subdirs list is non-empty.
656 if (!list_empty(&dentry->d_subdirs)) {
657 this_parent = dentry;
658 goto repeat;
662 * All done at this level ... ascend and resume the search.
664 if (this_parent != parent) {
665 next = this_parent->d_u.d_child.next;
666 this_parent = this_parent->d_parent;
667 goto resume;
669 out:
670 spin_unlock(&dcache_lock);
671 return found;
675 * shrink_dcache_parent - prune dcache
676 * @parent: parent of entries to prune
678 * Prune the dcache to remove unused children of the parent dentry.
681 void shrink_dcache_parent(struct dentry * parent)
683 int found;
685 while ((found = select_parent(parent)) != 0)
686 prune_dcache(found, parent->d_sb);
690 * Scan `nr' dentries and return the number which remain.
692 * We need to avoid reentering the filesystem if the caller is performing a
693 * GFP_NOFS allocation attempt. One example deadlock is:
695 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
696 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
697 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
699 * In this case we return -1 to tell the caller that we baled.
701 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
703 if (nr) {
704 if (!(gfp_mask & __GFP_FS))
705 return -1;
706 prune_dcache(nr, NULL);
708 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
712 * d_alloc - allocate a dcache entry
713 * @parent: parent of entry to allocate
714 * @name: qstr of the name
716 * Allocates a dentry. It returns %NULL if there is insufficient memory
717 * available. On a success the dentry is returned. The name passed in is
718 * copied and the copy passed in may be reused after this call.
721 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
723 struct dentry *dentry;
724 char *dname;
726 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
727 if (!dentry)
728 return NULL;
730 if (name->len > DNAME_INLINE_LEN-1) {
731 dname = kmalloc(name->len + 1, GFP_KERNEL);
732 if (!dname) {
733 kmem_cache_free(dentry_cache, dentry);
734 return NULL;
736 } else {
737 dname = dentry->d_iname;
739 dentry->d_name.name = dname;
741 dentry->d_name.len = name->len;
742 dentry->d_name.hash = name->hash;
743 memcpy(dname, name->name, name->len);
744 dname[name->len] = 0;
746 atomic_set(&dentry->d_count, 1);
747 dentry->d_flags = DCACHE_UNHASHED;
748 spin_lock_init(&dentry->d_lock);
749 dentry->d_inode = NULL;
750 dentry->d_parent = NULL;
751 dentry->d_sb = NULL;
752 dentry->d_op = NULL;
753 dentry->d_fsdata = NULL;
754 dentry->d_mounted = 0;
755 #ifdef CONFIG_PROFILING
756 dentry->d_cookie = NULL;
757 #endif
758 INIT_HLIST_NODE(&dentry->d_hash);
759 INIT_LIST_HEAD(&dentry->d_lru);
760 INIT_LIST_HEAD(&dentry->d_subdirs);
761 INIT_LIST_HEAD(&dentry->d_alias);
763 if (parent) {
764 dentry->d_parent = dget(parent);
765 dentry->d_sb = parent->d_sb;
766 } else {
767 INIT_LIST_HEAD(&dentry->d_u.d_child);
770 spin_lock(&dcache_lock);
771 if (parent)
772 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
773 dentry_stat.nr_dentry++;
774 spin_unlock(&dcache_lock);
776 return dentry;
779 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
781 struct qstr q;
783 q.name = name;
784 q.len = strlen(name);
785 q.hash = full_name_hash(q.name, q.len);
786 return d_alloc(parent, &q);
790 * d_instantiate - fill in inode information for a dentry
791 * @entry: dentry to complete
792 * @inode: inode to attach to this dentry
794 * Fill in inode information in the entry.
796 * This turns negative dentries into productive full members
797 * of society.
799 * NOTE! This assumes that the inode count has been incremented
800 * (or otherwise set) by the caller to indicate that it is now
801 * in use by the dcache.
804 void d_instantiate(struct dentry *entry, struct inode * inode)
806 BUG_ON(!list_empty(&entry->d_alias));
807 spin_lock(&dcache_lock);
808 if (inode)
809 list_add(&entry->d_alias, &inode->i_dentry);
810 entry->d_inode = inode;
811 fsnotify_d_instantiate(entry, inode);
812 spin_unlock(&dcache_lock);
813 security_d_instantiate(entry, inode);
817 * d_instantiate_unique - instantiate a non-aliased dentry
818 * @entry: dentry to instantiate
819 * @inode: inode to attach to this dentry
821 * Fill in inode information in the entry. On success, it returns NULL.
822 * If an unhashed alias of "entry" already exists, then we return the
823 * aliased dentry instead and drop one reference to inode.
825 * Note that in order to avoid conflicts with rename() etc, the caller
826 * had better be holding the parent directory semaphore.
828 * This also assumes that the inode count has been incremented
829 * (or otherwise set) by the caller to indicate that it is now
830 * in use by the dcache.
832 static struct dentry *__d_instantiate_unique(struct dentry *entry,
833 struct inode *inode)
835 struct dentry *alias;
836 int len = entry->d_name.len;
837 const char *name = entry->d_name.name;
838 unsigned int hash = entry->d_name.hash;
840 if (!inode) {
841 entry->d_inode = NULL;
842 return NULL;
845 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
846 struct qstr *qstr = &alias->d_name;
848 if (qstr->hash != hash)
849 continue;
850 if (alias->d_parent != entry->d_parent)
851 continue;
852 if (qstr->len != len)
853 continue;
854 if (memcmp(qstr->name, name, len))
855 continue;
856 dget_locked(alias);
857 return alias;
860 list_add(&entry->d_alias, &inode->i_dentry);
861 entry->d_inode = inode;
862 fsnotify_d_instantiate(entry, inode);
863 return NULL;
866 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
868 struct dentry *result;
870 BUG_ON(!list_empty(&entry->d_alias));
872 spin_lock(&dcache_lock);
873 result = __d_instantiate_unique(entry, inode);
874 spin_unlock(&dcache_lock);
876 if (!result) {
877 security_d_instantiate(entry, inode);
878 return NULL;
881 BUG_ON(!d_unhashed(result));
882 iput(inode);
883 return result;
886 EXPORT_SYMBOL(d_instantiate_unique);
889 * d_alloc_root - allocate root dentry
890 * @root_inode: inode to allocate the root for
892 * Allocate a root ("/") dentry for the inode given. The inode is
893 * instantiated and returned. %NULL is returned if there is insufficient
894 * memory or the inode passed is %NULL.
897 struct dentry * d_alloc_root(struct inode * root_inode)
899 struct dentry *res = NULL;
901 if (root_inode) {
902 static const struct qstr name = { .name = "/", .len = 1 };
904 res = d_alloc(NULL, &name);
905 if (res) {
906 res->d_sb = root_inode->i_sb;
907 res->d_parent = res;
908 d_instantiate(res, root_inode);
911 return res;
914 static inline struct hlist_head *d_hash(struct dentry *parent,
915 unsigned long hash)
917 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
918 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
919 return dentry_hashtable + (hash & D_HASHMASK);
923 * d_alloc_anon - allocate an anonymous dentry
924 * @inode: inode to allocate the dentry for
926 * This is similar to d_alloc_root. It is used by filesystems when
927 * creating a dentry for a given inode, often in the process of
928 * mapping a filehandle to a dentry. The returned dentry may be
929 * anonymous, or may have a full name (if the inode was already
930 * in the cache). The file system may need to make further
931 * efforts to connect this dentry into the dcache properly.
933 * When called on a directory inode, we must ensure that
934 * the inode only ever has one dentry. If a dentry is
935 * found, that is returned instead of allocating a new one.
937 * On successful return, the reference to the inode has been transferred
938 * to the dentry. If %NULL is returned (indicating kmalloc failure),
939 * the reference on the inode has not been released.
942 struct dentry * d_alloc_anon(struct inode *inode)
944 static const struct qstr anonstring = { .name = "" };
945 struct dentry *tmp;
946 struct dentry *res;
948 if ((res = d_find_alias(inode))) {
949 iput(inode);
950 return res;
953 tmp = d_alloc(NULL, &anonstring);
954 if (!tmp)
955 return NULL;
957 tmp->d_parent = tmp; /* make sure dput doesn't croak */
959 spin_lock(&dcache_lock);
960 res = __d_find_alias(inode, 0);
961 if (!res) {
962 /* attach a disconnected dentry */
963 res = tmp;
964 tmp = NULL;
965 spin_lock(&res->d_lock);
966 res->d_sb = inode->i_sb;
967 res->d_parent = res;
968 res->d_inode = inode;
969 res->d_flags |= DCACHE_DISCONNECTED;
970 res->d_flags &= ~DCACHE_UNHASHED;
971 list_add(&res->d_alias, &inode->i_dentry);
972 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
973 spin_unlock(&res->d_lock);
975 inode = NULL; /* don't drop reference */
977 spin_unlock(&dcache_lock);
979 if (inode)
980 iput(inode);
981 if (tmp)
982 dput(tmp);
983 return res;
988 * d_splice_alias - splice a disconnected dentry into the tree if one exists
989 * @inode: the inode which may have a disconnected dentry
990 * @dentry: a negative dentry which we want to point to the inode.
992 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
993 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
994 * and return it, else simply d_add the inode to the dentry and return NULL.
996 * This is needed in the lookup routine of any filesystem that is exportable
997 * (via knfsd) so that we can build dcache paths to directories effectively.
999 * If a dentry was found and moved, then it is returned. Otherwise NULL
1000 * is returned. This matches the expected return value of ->lookup.
1003 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1005 struct dentry *new = NULL;
1007 if (inode) {
1008 spin_lock(&dcache_lock);
1009 new = __d_find_alias(inode, 1);
1010 if (new) {
1011 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1012 fsnotify_d_instantiate(new, inode);
1013 spin_unlock(&dcache_lock);
1014 security_d_instantiate(new, inode);
1015 d_rehash(dentry);
1016 d_move(new, dentry);
1017 iput(inode);
1018 } else {
1019 /* d_instantiate takes dcache_lock, so we do it by hand */
1020 list_add(&dentry->d_alias, &inode->i_dentry);
1021 dentry->d_inode = inode;
1022 fsnotify_d_instantiate(dentry, inode);
1023 spin_unlock(&dcache_lock);
1024 security_d_instantiate(dentry, inode);
1025 d_rehash(dentry);
1027 } else
1028 d_add(dentry, inode);
1029 return new;
1034 * d_lookup - search for a dentry
1035 * @parent: parent dentry
1036 * @name: qstr of name we wish to find
1038 * Searches the children of the parent dentry for the name in question. If
1039 * the dentry is found its reference count is incremented and the dentry
1040 * is returned. The caller must use d_put to free the entry when it has
1041 * finished using it. %NULL is returned on failure.
1043 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1044 * Memory barriers are used while updating and doing lockless traversal.
1045 * To avoid races with d_move while rename is happening, d_lock is used.
1047 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1048 * and name pointer in one structure pointed by d_qstr.
1050 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1051 * lookup is going on.
1053 * dentry_unused list is not updated even if lookup finds the required dentry
1054 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1055 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1056 * acquisition.
1058 * d_lookup() is protected against the concurrent renames in some unrelated
1059 * directory using the seqlockt_t rename_lock.
1062 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1064 struct dentry * dentry = NULL;
1065 unsigned long seq;
1067 do {
1068 seq = read_seqbegin(&rename_lock);
1069 dentry = __d_lookup(parent, name);
1070 if (dentry)
1071 break;
1072 } while (read_seqretry(&rename_lock, seq));
1073 return dentry;
1076 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1078 unsigned int len = name->len;
1079 unsigned int hash = name->hash;
1080 const unsigned char *str = name->name;
1081 struct hlist_head *head = d_hash(parent,hash);
1082 struct dentry *found = NULL;
1083 struct hlist_node *node;
1084 struct dentry *dentry;
1086 rcu_read_lock();
1088 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1089 struct qstr *qstr;
1091 if (dentry->d_name.hash != hash)
1092 continue;
1093 if (dentry->d_parent != parent)
1094 continue;
1096 spin_lock(&dentry->d_lock);
1099 * Recheck the dentry after taking the lock - d_move may have
1100 * changed things. Don't bother checking the hash because we're
1101 * about to compare the whole name anyway.
1103 if (dentry->d_parent != parent)
1104 goto next;
1107 * It is safe to compare names since d_move() cannot
1108 * change the qstr (protected by d_lock).
1110 qstr = &dentry->d_name;
1111 if (parent->d_op && parent->d_op->d_compare) {
1112 if (parent->d_op->d_compare(parent, qstr, name))
1113 goto next;
1114 } else {
1115 if (qstr->len != len)
1116 goto next;
1117 if (memcmp(qstr->name, str, len))
1118 goto next;
1121 if (!d_unhashed(dentry)) {
1122 atomic_inc(&dentry->d_count);
1123 found = dentry;
1125 spin_unlock(&dentry->d_lock);
1126 break;
1127 next:
1128 spin_unlock(&dentry->d_lock);
1130 rcu_read_unlock();
1132 return found;
1136 * d_hash_and_lookup - hash the qstr then search for a dentry
1137 * @dir: Directory to search in
1138 * @name: qstr of name we wish to find
1140 * On hash failure or on lookup failure NULL is returned.
1142 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1144 struct dentry *dentry = NULL;
1147 * Check for a fs-specific hash function. Note that we must
1148 * calculate the standard hash first, as the d_op->d_hash()
1149 * routine may choose to leave the hash value unchanged.
1151 name->hash = full_name_hash(name->name, name->len);
1152 if (dir->d_op && dir->d_op->d_hash) {
1153 if (dir->d_op->d_hash(dir, name) < 0)
1154 goto out;
1156 dentry = d_lookup(dir, name);
1157 out:
1158 return dentry;
1162 * d_validate - verify dentry provided from insecure source
1163 * @dentry: The dentry alleged to be valid child of @dparent
1164 * @dparent: The parent dentry (known to be valid)
1165 * @hash: Hash of the dentry
1166 * @len: Length of the name
1168 * An insecure source has sent us a dentry, here we verify it and dget() it.
1169 * This is used by ncpfs in its readdir implementation.
1170 * Zero is returned in the dentry is invalid.
1173 int d_validate(struct dentry *dentry, struct dentry *dparent)
1175 struct hlist_head *base;
1176 struct hlist_node *lhp;
1178 /* Check whether the ptr might be valid at all.. */
1179 if (!kmem_ptr_validate(dentry_cache, dentry))
1180 goto out;
1182 if (dentry->d_parent != dparent)
1183 goto out;
1185 spin_lock(&dcache_lock);
1186 base = d_hash(dparent, dentry->d_name.hash);
1187 hlist_for_each(lhp,base) {
1188 /* hlist_for_each_entry_rcu() not required for d_hash list
1189 * as it is parsed under dcache_lock
1191 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1192 __dget_locked(dentry);
1193 spin_unlock(&dcache_lock);
1194 return 1;
1197 spin_unlock(&dcache_lock);
1198 out:
1199 return 0;
1203 * When a file is deleted, we have two options:
1204 * - turn this dentry into a negative dentry
1205 * - unhash this dentry and free it.
1207 * Usually, we want to just turn this into
1208 * a negative dentry, but if anybody else is
1209 * currently using the dentry or the inode
1210 * we can't do that and we fall back on removing
1211 * it from the hash queues and waiting for
1212 * it to be deleted later when it has no users
1216 * d_delete - delete a dentry
1217 * @dentry: The dentry to delete
1219 * Turn the dentry into a negative dentry if possible, otherwise
1220 * remove it from the hash queues so it can be deleted later
1223 void d_delete(struct dentry * dentry)
1225 int isdir = 0;
1227 * Are we the only user?
1229 spin_lock(&dcache_lock);
1230 spin_lock(&dentry->d_lock);
1231 isdir = S_ISDIR(dentry->d_inode->i_mode);
1232 if (atomic_read(&dentry->d_count) == 1) {
1233 dentry_iput(dentry);
1234 fsnotify_nameremove(dentry, isdir);
1236 /* remove this and other inotify debug checks after 2.6.18 */
1237 dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED;
1238 return;
1241 if (!d_unhashed(dentry))
1242 __d_drop(dentry);
1244 spin_unlock(&dentry->d_lock);
1245 spin_unlock(&dcache_lock);
1247 fsnotify_nameremove(dentry, isdir);
1250 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1253 entry->d_flags &= ~DCACHE_UNHASHED;
1254 hlist_add_head_rcu(&entry->d_hash, list);
1257 static void _d_rehash(struct dentry * entry)
1259 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1263 * d_rehash - add an entry back to the hash
1264 * @entry: dentry to add to the hash
1266 * Adds a dentry to the hash according to its name.
1269 void d_rehash(struct dentry * entry)
1271 spin_lock(&dcache_lock);
1272 spin_lock(&entry->d_lock);
1273 _d_rehash(entry);
1274 spin_unlock(&entry->d_lock);
1275 spin_unlock(&dcache_lock);
1278 #define do_switch(x,y) do { \
1279 __typeof__ (x) __tmp = x; \
1280 x = y; y = __tmp; } while (0)
1283 * When switching names, the actual string doesn't strictly have to
1284 * be preserved in the target - because we're dropping the target
1285 * anyway. As such, we can just do a simple memcpy() to copy over
1286 * the new name before we switch.
1288 * Note that we have to be a lot more careful about getting the hash
1289 * switched - we have to switch the hash value properly even if it
1290 * then no longer matches the actual (corrupted) string of the target.
1291 * The hash value has to match the hash queue that the dentry is on..
1293 static void switch_names(struct dentry *dentry, struct dentry *target)
1295 if (dname_external(target)) {
1296 if (dname_external(dentry)) {
1298 * Both external: swap the pointers
1300 do_switch(target->d_name.name, dentry->d_name.name);
1301 } else {
1303 * dentry:internal, target:external. Steal target's
1304 * storage and make target internal.
1306 dentry->d_name.name = target->d_name.name;
1307 target->d_name.name = target->d_iname;
1309 } else {
1310 if (dname_external(dentry)) {
1312 * dentry:external, target:internal. Give dentry's
1313 * storage to target and make dentry internal
1315 memcpy(dentry->d_iname, target->d_name.name,
1316 target->d_name.len + 1);
1317 target->d_name.name = dentry->d_name.name;
1318 dentry->d_name.name = dentry->d_iname;
1319 } else {
1321 * Both are internal. Just copy target to dentry
1323 memcpy(dentry->d_iname, target->d_name.name,
1324 target->d_name.len + 1);
1330 * We cannibalize "target" when moving dentry on top of it,
1331 * because it's going to be thrown away anyway. We could be more
1332 * polite about it, though.
1334 * This forceful removal will result in ugly /proc output if
1335 * somebody holds a file open that got deleted due to a rename.
1336 * We could be nicer about the deleted file, and let it show
1337 * up under the name it got deleted rather than the name that
1338 * deleted it.
1342 * d_move - move a dentry
1343 * @dentry: entry to move
1344 * @target: new dentry
1346 * Update the dcache to reflect the move of a file name. Negative
1347 * dcache entries should not be moved in this way.
1350 void d_move(struct dentry * dentry, struct dentry * target)
1352 struct hlist_head *list;
1354 if (!dentry->d_inode)
1355 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1357 spin_lock(&dcache_lock);
1358 write_seqlock(&rename_lock);
1360 * XXXX: do we really need to take target->d_lock?
1362 if (target < dentry) {
1363 spin_lock(&target->d_lock);
1364 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1365 } else {
1366 spin_lock(&dentry->d_lock);
1367 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1370 /* Move the dentry to the target hash queue, if on different bucket */
1371 if (dentry->d_flags & DCACHE_UNHASHED)
1372 goto already_unhashed;
1374 hlist_del_rcu(&dentry->d_hash);
1376 already_unhashed:
1377 list = d_hash(target->d_parent, target->d_name.hash);
1378 __d_rehash(dentry, list);
1380 /* Unhash the target: dput() will then get rid of it */
1381 __d_drop(target);
1383 list_del(&dentry->d_u.d_child);
1384 list_del(&target->d_u.d_child);
1386 /* Switch the names.. */
1387 switch_names(dentry, target);
1388 do_switch(dentry->d_name.len, target->d_name.len);
1389 do_switch(dentry->d_name.hash, target->d_name.hash);
1391 /* ... and switch the parents */
1392 if (IS_ROOT(dentry)) {
1393 dentry->d_parent = target->d_parent;
1394 target->d_parent = target;
1395 INIT_LIST_HEAD(&target->d_u.d_child);
1396 } else {
1397 do_switch(dentry->d_parent, target->d_parent);
1399 /* And add them back to the (new) parent lists */
1400 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1403 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1404 spin_unlock(&target->d_lock);
1405 fsnotify_d_move(dentry);
1406 spin_unlock(&dentry->d_lock);
1407 write_sequnlock(&rename_lock);
1408 spin_unlock(&dcache_lock);
1412 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1413 * named dentry in place of the dentry to be replaced.
1415 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1417 struct dentry *dparent, *aparent;
1419 switch_names(dentry, anon);
1420 do_switch(dentry->d_name.len, anon->d_name.len);
1421 do_switch(dentry->d_name.hash, anon->d_name.hash);
1423 dparent = dentry->d_parent;
1424 aparent = anon->d_parent;
1426 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1427 list_del(&dentry->d_u.d_child);
1428 if (!IS_ROOT(dentry))
1429 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1430 else
1431 INIT_LIST_HEAD(&dentry->d_u.d_child);
1433 anon->d_parent = (dparent == dentry) ? anon : dparent;
1434 list_del(&anon->d_u.d_child);
1435 if (!IS_ROOT(anon))
1436 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1437 else
1438 INIT_LIST_HEAD(&anon->d_u.d_child);
1440 anon->d_flags &= ~DCACHE_DISCONNECTED;
1444 * d_materialise_unique - introduce an inode into the tree
1445 * @dentry: candidate dentry
1446 * @inode: inode to bind to the dentry, to which aliases may be attached
1448 * Introduces an dentry into the tree, substituting an extant disconnected
1449 * root directory alias in its place if there is one
1451 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1453 struct dentry *alias, *actual;
1455 BUG_ON(!d_unhashed(dentry));
1457 spin_lock(&dcache_lock);
1459 if (!inode) {
1460 actual = dentry;
1461 dentry->d_inode = NULL;
1462 goto found_lock;
1465 /* See if a disconnected directory already exists as an anonymous root
1466 * that we should splice into the tree instead */
1467 if (S_ISDIR(inode->i_mode) && (alias = __d_find_alias(inode, 1))) {
1468 spin_lock(&alias->d_lock);
1470 /* Is this a mountpoint that we could splice into our tree? */
1471 if (IS_ROOT(alias))
1472 goto connect_mountpoint;
1474 if (alias->d_name.len == dentry->d_name.len &&
1475 alias->d_parent == dentry->d_parent &&
1476 memcmp(alias->d_name.name,
1477 dentry->d_name.name,
1478 dentry->d_name.len) == 0)
1479 goto replace_with_alias;
1481 spin_unlock(&alias->d_lock);
1483 /* Doh! Seem to be aliasing directories for some reason... */
1484 dput(alias);
1487 /* Add a unique reference */
1488 actual = __d_instantiate_unique(dentry, inode);
1489 if (!actual)
1490 actual = dentry;
1491 else if (unlikely(!d_unhashed(actual)))
1492 goto shouldnt_be_hashed;
1494 found_lock:
1495 spin_lock(&actual->d_lock);
1496 found:
1497 _d_rehash(actual);
1498 spin_unlock(&actual->d_lock);
1499 spin_unlock(&dcache_lock);
1501 if (actual == dentry) {
1502 security_d_instantiate(dentry, inode);
1503 return NULL;
1506 iput(inode);
1507 return actual;
1509 /* Convert the anonymous/root alias into an ordinary dentry */
1510 connect_mountpoint:
1511 __d_materialise_dentry(dentry, alias);
1513 /* Replace the candidate dentry with the alias in the tree */
1514 replace_with_alias:
1515 __d_drop(alias);
1516 actual = alias;
1517 goto found;
1519 shouldnt_be_hashed:
1520 spin_unlock(&dcache_lock);
1521 BUG();
1522 goto shouldnt_be_hashed;
1526 * d_path - return the path of a dentry
1527 * @dentry: dentry to report
1528 * @vfsmnt: vfsmnt to which the dentry belongs
1529 * @root: root dentry
1530 * @rootmnt: vfsmnt to which the root dentry belongs
1531 * @buffer: buffer to return value in
1532 * @buflen: buffer length
1534 * Convert a dentry into an ASCII path name. If the entry has been deleted
1535 * the string " (deleted)" is appended. Note that this is ambiguous.
1537 * Returns the buffer or an error code if the path was too long.
1539 * "buflen" should be positive. Caller holds the dcache_lock.
1541 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1542 struct dentry *root, struct vfsmount *rootmnt,
1543 char *buffer, int buflen)
1545 char * end = buffer+buflen;
1546 char * retval;
1547 int namelen;
1549 *--end = '\0';
1550 buflen--;
1551 if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1552 buflen -= 10;
1553 end -= 10;
1554 if (buflen < 0)
1555 goto Elong;
1556 memcpy(end, " (deleted)", 10);
1559 if (buflen < 1)
1560 goto Elong;
1561 /* Get '/' right */
1562 retval = end-1;
1563 *retval = '/';
1565 for (;;) {
1566 struct dentry * parent;
1568 if (dentry == root && vfsmnt == rootmnt)
1569 break;
1570 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1571 /* Global root? */
1572 spin_lock(&vfsmount_lock);
1573 if (vfsmnt->mnt_parent == vfsmnt) {
1574 spin_unlock(&vfsmount_lock);
1575 goto global_root;
1577 dentry = vfsmnt->mnt_mountpoint;
1578 vfsmnt = vfsmnt->mnt_parent;
1579 spin_unlock(&vfsmount_lock);
1580 continue;
1582 parent = dentry->d_parent;
1583 prefetch(parent);
1584 namelen = dentry->d_name.len;
1585 buflen -= namelen + 1;
1586 if (buflen < 0)
1587 goto Elong;
1588 end -= namelen;
1589 memcpy(end, dentry->d_name.name, namelen);
1590 *--end = '/';
1591 retval = end;
1592 dentry = parent;
1595 return retval;
1597 global_root:
1598 namelen = dentry->d_name.len;
1599 buflen -= namelen;
1600 if (buflen < 0)
1601 goto Elong;
1602 retval -= namelen-1; /* hit the slash */
1603 memcpy(retval, dentry->d_name.name, namelen);
1604 return retval;
1605 Elong:
1606 return ERR_PTR(-ENAMETOOLONG);
1609 /* write full pathname into buffer and return start of pathname */
1610 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1611 char *buf, int buflen)
1613 char *res;
1614 struct vfsmount *rootmnt;
1615 struct dentry *root;
1617 read_lock(&current->fs->lock);
1618 rootmnt = mntget(current->fs->rootmnt);
1619 root = dget(current->fs->root);
1620 read_unlock(&current->fs->lock);
1621 spin_lock(&dcache_lock);
1622 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1623 spin_unlock(&dcache_lock);
1624 dput(root);
1625 mntput(rootmnt);
1626 return res;
1630 * NOTE! The user-level library version returns a
1631 * character pointer. The kernel system call just
1632 * returns the length of the buffer filled (which
1633 * includes the ending '\0' character), or a negative
1634 * error value. So libc would do something like
1636 * char *getcwd(char * buf, size_t size)
1638 * int retval;
1640 * retval = sys_getcwd(buf, size);
1641 * if (retval >= 0)
1642 * return buf;
1643 * errno = -retval;
1644 * return NULL;
1647 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1649 int error;
1650 struct vfsmount *pwdmnt, *rootmnt;
1651 struct dentry *pwd, *root;
1652 char *page = (char *) __get_free_page(GFP_USER);
1654 if (!page)
1655 return -ENOMEM;
1657 read_lock(&current->fs->lock);
1658 pwdmnt = mntget(current->fs->pwdmnt);
1659 pwd = dget(current->fs->pwd);
1660 rootmnt = mntget(current->fs->rootmnt);
1661 root = dget(current->fs->root);
1662 read_unlock(&current->fs->lock);
1664 error = -ENOENT;
1665 /* Has the current directory has been unlinked? */
1666 spin_lock(&dcache_lock);
1667 if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1668 unsigned long len;
1669 char * cwd;
1671 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1672 spin_unlock(&dcache_lock);
1674 error = PTR_ERR(cwd);
1675 if (IS_ERR(cwd))
1676 goto out;
1678 error = -ERANGE;
1679 len = PAGE_SIZE + page - cwd;
1680 if (len <= size) {
1681 error = len;
1682 if (copy_to_user(buf, cwd, len))
1683 error = -EFAULT;
1685 } else
1686 spin_unlock(&dcache_lock);
1688 out:
1689 dput(pwd);
1690 mntput(pwdmnt);
1691 dput(root);
1692 mntput(rootmnt);
1693 free_page((unsigned long) page);
1694 return error;
1698 * Test whether new_dentry is a subdirectory of old_dentry.
1700 * Trivially implemented using the dcache structure
1704 * is_subdir - is new dentry a subdirectory of old_dentry
1705 * @new_dentry: new dentry
1706 * @old_dentry: old dentry
1708 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1709 * Returns 0 otherwise.
1710 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1713 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1715 int result;
1716 struct dentry * saved = new_dentry;
1717 unsigned long seq;
1719 /* need rcu_readlock to protect against the d_parent trashing due to
1720 * d_move
1722 rcu_read_lock();
1723 do {
1724 /* for restarting inner loop in case of seq retry */
1725 new_dentry = saved;
1726 result = 0;
1727 seq = read_seqbegin(&rename_lock);
1728 for (;;) {
1729 if (new_dentry != old_dentry) {
1730 struct dentry * parent = new_dentry->d_parent;
1731 if (parent == new_dentry)
1732 break;
1733 new_dentry = parent;
1734 continue;
1736 result = 1;
1737 break;
1739 } while (read_seqretry(&rename_lock, seq));
1740 rcu_read_unlock();
1742 return result;
1745 void d_genocide(struct dentry *root)
1747 struct dentry *this_parent = root;
1748 struct list_head *next;
1750 spin_lock(&dcache_lock);
1751 repeat:
1752 next = this_parent->d_subdirs.next;
1753 resume:
1754 while (next != &this_parent->d_subdirs) {
1755 struct list_head *tmp = next;
1756 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1757 next = tmp->next;
1758 if (d_unhashed(dentry)||!dentry->d_inode)
1759 continue;
1760 if (!list_empty(&dentry->d_subdirs)) {
1761 this_parent = dentry;
1762 goto repeat;
1764 atomic_dec(&dentry->d_count);
1766 if (this_parent != root) {
1767 next = this_parent->d_u.d_child.next;
1768 atomic_dec(&this_parent->d_count);
1769 this_parent = this_parent->d_parent;
1770 goto resume;
1772 spin_unlock(&dcache_lock);
1776 * find_inode_number - check for dentry with name
1777 * @dir: directory to check
1778 * @name: Name to find.
1780 * Check whether a dentry already exists for the given name,
1781 * and return the inode number if it has an inode. Otherwise
1782 * 0 is returned.
1784 * This routine is used to post-process directory listings for
1785 * filesystems using synthetic inode numbers, and is necessary
1786 * to keep getcwd() working.
1789 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1791 struct dentry * dentry;
1792 ino_t ino = 0;
1794 dentry = d_hash_and_lookup(dir, name);
1795 if (dentry) {
1796 if (dentry->d_inode)
1797 ino = dentry->d_inode->i_ino;
1798 dput(dentry);
1800 return ino;
1803 static __initdata unsigned long dhash_entries;
1804 static int __init set_dhash_entries(char *str)
1806 if (!str)
1807 return 0;
1808 dhash_entries = simple_strtoul(str, &str, 0);
1809 return 1;
1811 __setup("dhash_entries=", set_dhash_entries);
1813 static void __init dcache_init_early(void)
1815 int loop;
1817 /* If hashes are distributed across NUMA nodes, defer
1818 * hash allocation until vmalloc space is available.
1820 if (hashdist)
1821 return;
1823 dentry_hashtable =
1824 alloc_large_system_hash("Dentry cache",
1825 sizeof(struct hlist_head),
1826 dhash_entries,
1828 HASH_EARLY,
1829 &d_hash_shift,
1830 &d_hash_mask,
1833 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1834 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1837 static void __init dcache_init(unsigned long mempages)
1839 int loop;
1842 * A constructor could be added for stable state like the lists,
1843 * but it is probably not worth it because of the cache nature
1844 * of the dcache.
1846 dentry_cache = kmem_cache_create("dentry_cache",
1847 sizeof(struct dentry),
1849 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1850 SLAB_MEM_SPREAD),
1851 NULL, NULL);
1853 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1855 /* Hash may have been set up in dcache_init_early */
1856 if (!hashdist)
1857 return;
1859 dentry_hashtable =
1860 alloc_large_system_hash("Dentry cache",
1861 sizeof(struct hlist_head),
1862 dhash_entries,
1865 &d_hash_shift,
1866 &d_hash_mask,
1869 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1870 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1873 /* SLAB cache for __getname() consumers */
1874 kmem_cache_t *names_cachep __read_mostly;
1876 /* SLAB cache for file structures */
1877 kmem_cache_t *filp_cachep __read_mostly;
1879 EXPORT_SYMBOL(d_genocide);
1881 void __init vfs_caches_init_early(void)
1883 dcache_init_early();
1884 inode_init_early();
1887 void __init vfs_caches_init(unsigned long mempages)
1889 unsigned long reserve;
1891 /* Base hash sizes on available memory, with a reserve equal to
1892 150% of current kernel size */
1894 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1895 mempages -= reserve;
1897 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1898 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1900 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1901 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1903 dcache_init(mempages);
1904 inode_init(mempages);
1905 files_init(mempages);
1906 mnt_init(mempages);
1907 bdev_cache_init();
1908 chrdev_init();
1911 EXPORT_SYMBOL(d_alloc);
1912 EXPORT_SYMBOL(d_alloc_anon);
1913 EXPORT_SYMBOL(d_alloc_root);
1914 EXPORT_SYMBOL(d_delete);
1915 EXPORT_SYMBOL(d_find_alias);
1916 EXPORT_SYMBOL(d_instantiate);
1917 EXPORT_SYMBOL(d_invalidate);
1918 EXPORT_SYMBOL(d_lookup);
1919 EXPORT_SYMBOL(d_move);
1920 EXPORT_SYMBOL_GPL(d_materialise_unique);
1921 EXPORT_SYMBOL(d_path);
1922 EXPORT_SYMBOL(d_prune_aliases);
1923 EXPORT_SYMBOL(d_rehash);
1924 EXPORT_SYMBOL(d_splice_alias);
1925 EXPORT_SYMBOL(d_validate);
1926 EXPORT_SYMBOL(dget_locked);
1927 EXPORT_SYMBOL(dput);
1928 EXPORT_SYMBOL(find_inode_number);
1929 EXPORT_SYMBOL(have_submounts);
1930 EXPORT_SYMBOL(names_cachep);
1931 EXPORT_SYMBOL(shrink_dcache_parent);
1932 EXPORT_SYMBOL(shrink_dcache_sb);