2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
17 * Permanent SPARSEMEM data:
19 * 1) mem_section - memory sections, mem_map's for valid memory
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
23 ____cacheline_internodealigned_in_smp
;
25 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
26 ____cacheline_internodealigned_in_smp
;
28 EXPORT_SYMBOL(mem_section
);
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
39 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 int page_to_nid(struct page
*page
)
44 return section_to_node_table
[page_to_section(page
)];
46 EXPORT_SYMBOL(page_to_nid
);
48 static void set_section_nid(unsigned long section_nr
, int nid
)
50 section_to_node_table
[section_nr
] = nid
;
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr
, int nid
)
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
61 struct mem_section
*section
= NULL
;
62 unsigned long array_size
= SECTIONS_PER_ROOT
*
63 sizeof(struct mem_section
);
65 if (slab_is_available())
66 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
68 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
71 memset(section
, 0, array_size
);
76 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
78 static DEFINE_SPINLOCK(index_init_lock
);
79 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
80 struct mem_section
*section
;
83 if (mem_section
[root
])
86 section
= sparse_index_alloc(nid
);
90 * This lock keeps two different sections from
91 * reallocating for the same index
93 spin_lock(&index_init_lock
);
95 if (mem_section
[root
]) {
100 mem_section
[root
] = section
;
102 spin_unlock(&index_init_lock
);
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
113 * Although written for the SPARSEMEM_EXTREME case, this happens
114 * to also work for the flat array case because
115 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
117 int __section_nr(struct mem_section
* ms
)
119 unsigned long root_nr
;
120 struct mem_section
* root
;
122 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
123 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
127 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
131 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
135 * During early boot, before section_mem_map is used for an actual
136 * mem_map, we use section_mem_map to store the section's NUMA
137 * node. This keeps us from having to use another data structure. The
138 * node information is cleared just before we store the real mem_map.
140 static inline unsigned long sparse_encode_early_nid(int nid
)
142 return (nid
<< SECTION_NID_SHIFT
);
145 static inline int sparse_early_nid(struct mem_section
*section
)
147 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
150 /* Validate the physical addressing limitations of the model */
151 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
152 unsigned long *end_pfn
)
154 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
157 * Sanity checks - do not allow an architecture to pass
158 * in larger pfns than the maximum scope of sparsemem:
160 if (*start_pfn
> max_sparsemem_pfn
) {
161 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
162 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
165 *start_pfn
= max_sparsemem_pfn
;
166 *end_pfn
= max_sparsemem_pfn
;
169 if (*end_pfn
> max_sparsemem_pfn
) {
170 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
171 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
172 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
174 *end_pfn
= max_sparsemem_pfn
;
178 /* Record a memory area against a node. */
179 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
183 start
&= PAGE_SECTION_MASK
;
184 mminit_validate_memmodel_limits(&start
, &end
);
185 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
186 unsigned long section
= pfn_to_section_nr(pfn
);
187 struct mem_section
*ms
;
189 sparse_index_init(section
, nid
);
190 set_section_nid(section
, nid
);
192 ms
= __nr_to_section(section
);
193 if (!ms
->section_mem_map
)
194 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
195 SECTION_MARKED_PRESENT
;
200 * Only used by the i386 NUMA architecures, but relatively
203 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
204 unsigned long end_pfn
)
207 unsigned long nr_pages
= 0;
209 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
210 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
211 if (nid
!= early_pfn_to_nid(pfn
))
214 if (pfn_present(pfn
))
215 nr_pages
+= PAGES_PER_SECTION
;
218 return nr_pages
* sizeof(struct page
);
222 * Subtle, we encode the real pfn into the mem_map such that
223 * the identity pfn - section_mem_map will return the actual
224 * physical page frame number.
226 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
228 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
232 * Decode mem_map from the coded memmap
234 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
236 /* mask off the extra low bits of information */
237 coded_mem_map
&= SECTION_MAP_MASK
;
238 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
241 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
242 unsigned long pnum
, struct page
*mem_map
,
243 unsigned long *pageblock_bitmap
)
245 if (!present_section(ms
))
248 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
249 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
251 ms
->pageblock_flags
= pageblock_bitmap
;
256 unsigned long usemap_size(void)
258 unsigned long size_bytes
;
259 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
260 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
264 #ifdef CONFIG_MEMORY_HOTPLUG
265 static unsigned long *__kmalloc_section_usemap(void)
267 return kmalloc(usemap_size(), GFP_KERNEL
);
269 #endif /* CONFIG_MEMORY_HOTPLUG */
271 #ifdef CONFIG_MEMORY_HOTREMOVE
272 static unsigned long * __init
273 sparse_early_usemap_alloc_pgdat_section(struct pglist_data
*pgdat
)
275 unsigned long section_nr
;
278 * A page may contain usemaps for other sections preventing the
279 * page being freed and making a section unremovable while
280 * other sections referencing the usemap retmain active. Similarly,
281 * a pgdat can prevent a section being removed. If section A
282 * contains a pgdat and section B contains the usemap, both
283 * sections become inter-dependent. This allocates usemaps
284 * from the same section as the pgdat where possible to avoid
287 section_nr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
288 return alloc_bootmem_section(usemap_size(), section_nr
);
291 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
293 unsigned long usemap_snr
, pgdat_snr
;
294 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
295 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
296 struct pglist_data
*pgdat
= NODE_DATA(nid
);
299 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
300 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
301 if (usemap_snr
== pgdat_snr
)
304 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
305 /* skip redundant message */
308 old_usemap_snr
= usemap_snr
;
309 old_pgdat_snr
= pgdat_snr
;
311 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
312 if (usemap_nid
!= nid
) {
314 "node %d must be removed before remove section %ld\n",
319 * There is a circular dependency.
320 * Some platforms allow un-removable section because they will just
321 * gather other removable sections for dynamic partitioning.
322 * Just notify un-removable section's number here.
324 printk(KERN_INFO
"Section %ld and %ld (node %d)", usemap_snr
,
327 " have a circular dependency on usemap and pgdat allocations\n");
330 static unsigned long * __init
331 sparse_early_usemap_alloc_pgdat_section(struct pglist_data
*pgdat
)
336 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
339 #endif /* CONFIG_MEMORY_HOTREMOVE */
341 static unsigned long *__init
sparse_early_usemap_alloc(unsigned long pnum
)
343 unsigned long *usemap
;
344 struct mem_section
*ms
= __nr_to_section(pnum
);
345 int nid
= sparse_early_nid(ms
);
347 usemap
= sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid
));
351 usemap
= alloc_bootmem_node(NODE_DATA(nid
), usemap_size());
353 check_usemap_section_nr(nid
, usemap
);
357 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
360 printk(KERN_WARNING
"%s: allocation failed\n", __func__
);
364 #ifndef CONFIG_SPARSEMEM_VMEMMAP
365 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
369 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
373 map
= alloc_bootmem_pages_node(NODE_DATA(nid
),
374 PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
));
377 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
379 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
382 struct mem_section
*ms
= __nr_to_section(pnum
);
383 int nid
= sparse_early_nid(ms
);
385 map
= sparse_mem_map_populate(pnum
, nid
);
389 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
390 "some memory will not be available.\n", __func__
);
391 ms
->section_mem_map
= 0;
395 void __attribute__((weak
)) __meminit
vmemmap_populate_print_last(void)
399 * Allocate the accumulated non-linear sections, allocate a mem_map
400 * for each and record the physical to section mapping.
402 void __init
sparse_init(void)
406 unsigned long *usemap
;
407 unsigned long **usemap_map
;
411 * map is using big page (aka 2M in x86 64 bit)
412 * usemap is less one page (aka 24 bytes)
413 * so alloc 2M (with 2M align) and 24 bytes in turn will
414 * make next 2M slip to one more 2M later.
415 * then in big system, the memory will have a lot of holes...
416 * here try to allocate 2M pages continously.
418 * powerpc need to call sparse_init_one_section right after each
419 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
421 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
422 usemap_map
= alloc_bootmem(size
);
424 panic("can not allocate usemap_map\n");
426 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
427 if (!present_section_nr(pnum
))
429 usemap_map
[pnum
] = sparse_early_usemap_alloc(pnum
);
432 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
433 if (!present_section_nr(pnum
))
436 usemap
= usemap_map
[pnum
];
440 map
= sparse_early_mem_map_alloc(pnum
);
444 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
448 vmemmap_populate_print_last();
450 free_bootmem(__pa(usemap_map
), size
);
453 #ifdef CONFIG_MEMORY_HOTPLUG
454 #ifdef CONFIG_SPARSEMEM_VMEMMAP
455 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
456 unsigned long nr_pages
)
458 /* This will make the necessary allocations eventually. */
459 return sparse_mem_map_populate(pnum
, nid
);
461 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
463 return; /* XXX: Not implemented yet */
465 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
469 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
471 struct page
*page
, *ret
;
472 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
474 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
478 ret
= vmalloc(memmap_size
);
484 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
486 memset(ret
, 0, memmap_size
);
491 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
492 unsigned long nr_pages
)
494 return __kmalloc_section_memmap(nr_pages
);
497 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
499 if (is_vmalloc_addr(memmap
))
502 free_pages((unsigned long)memmap
,
503 get_order(sizeof(struct page
) * nr_pages
));
506 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
508 unsigned long maps_section_nr
, removing_section_nr
, i
;
511 for (i
= 0; i
< nr_pages
; i
++, page
++) {
512 magic
= atomic_read(&page
->_mapcount
);
514 BUG_ON(magic
== NODE_INFO
);
516 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
517 removing_section_nr
= page
->private;
520 * When this function is called, the removing section is
521 * logical offlined state. This means all pages are isolated
522 * from page allocator. If removing section's memmap is placed
523 * on the same section, it must not be freed.
524 * If it is freed, page allocator may allocate it which will
525 * be removed physically soon.
527 if (maps_section_nr
!= removing_section_nr
)
528 put_page_bootmem(page
);
531 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
533 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
535 struct page
*usemap_page
;
536 unsigned long nr_pages
;
541 usemap_page
= virt_to_page(usemap
);
543 * Check to see if allocation came from hot-plug-add
545 if (PageSlab(usemap_page
)) {
548 __kfree_section_memmap(memmap
, PAGES_PER_SECTION
);
553 * The usemap came from bootmem. This is packed with other usemaps
554 * on the section which has pgdat at boot time. Just keep it as is now.
558 struct page
*memmap_page
;
559 memmap_page
= virt_to_page(memmap
);
561 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
564 free_map_bootmem(memmap_page
, nr_pages
);
569 * returns the number of sections whose mem_maps were properly
570 * set. If this is <=0, then that means that the passed-in
571 * map was not consumed and must be freed.
573 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
576 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
577 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
578 struct mem_section
*ms
;
580 unsigned long *usemap
;
585 * no locking for this, because it does its own
586 * plus, it does a kmalloc
588 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
589 if (ret
< 0 && ret
!= -EEXIST
)
591 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, nr_pages
);
594 usemap
= __kmalloc_section_usemap();
596 __kfree_section_memmap(memmap
, nr_pages
);
600 pgdat_resize_lock(pgdat
, &flags
);
602 ms
= __pfn_to_section(start_pfn
);
603 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
608 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
610 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
613 pgdat_resize_unlock(pgdat
, &flags
);
616 __kfree_section_memmap(memmap
, nr_pages
);
621 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
623 struct page
*memmap
= NULL
;
624 unsigned long *usemap
= NULL
;
626 if (ms
->section_mem_map
) {
627 usemap
= ms
->pageblock_flags
;
628 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
630 ms
->section_mem_map
= 0;
631 ms
->pageblock_flags
= NULL
;
634 free_section_usemap(memmap
, usemap
);