2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
27 #include <linux/fault-inject.h>
34 * The slab_lock protects operations on the object of a particular
35 * slab and its metadata in the page struct. If the slab lock
36 * has been taken then no allocations nor frees can be performed
37 * on the objects in the slab nor can the slab be added or removed
38 * from the partial or full lists since this would mean modifying
39 * the page_struct of the slab.
41 * The list_lock protects the partial and full list on each node and
42 * the partial slab counter. If taken then no new slabs may be added or
43 * removed from the lists nor make the number of partial slabs be modified.
44 * (Note that the total number of slabs is an atomic value that may be
45 * modified without taking the list lock).
47 * The list_lock is a centralized lock and thus we avoid taking it as
48 * much as possible. As long as SLUB does not have to handle partial
49 * slabs, operations can continue without any centralized lock. F.e.
50 * allocating a long series of objects that fill up slabs does not require
53 * The lock order is sometimes inverted when we are trying to get a slab
54 * off a list. We take the list_lock and then look for a page on the list
55 * to use. While we do that objects in the slabs may be freed. We can
56 * only operate on the slab if we have also taken the slab_lock. So we use
57 * a slab_trylock() on the slab. If trylock was successful then no frees
58 * can occur anymore and we can use the slab for allocations etc. If the
59 * slab_trylock() does not succeed then frees are in progress in the slab and
60 * we must stay away from it for a while since we may cause a bouncing
61 * cacheline if we try to acquire the lock. So go onto the next slab.
62 * If all pages are busy then we may allocate a new slab instead of reusing
63 * a partial slab. A new slab has noone operating on it and thus there is
64 * no danger of cacheline contention.
66 * Interrupts are disabled during allocation and deallocation in order to
67 * make the slab allocator safe to use in the context of an irq. In addition
68 * interrupts are disabled to ensure that the processor does not change
69 * while handling per_cpu slabs, due to kernel preemption.
71 * SLUB assigns one slab for allocation to each processor.
72 * Allocations only occur from these slabs called cpu slabs.
74 * Slabs with free elements are kept on a partial list and during regular
75 * operations no list for full slabs is used. If an object in a full slab is
76 * freed then the slab will show up again on the partial lists.
77 * We track full slabs for debugging purposes though because otherwise we
78 * cannot scan all objects.
80 * Slabs are freed when they become empty. Teardown and setup is
81 * minimal so we rely on the page allocators per cpu caches for
82 * fast frees and allocs.
84 * Overloading of page flags that are otherwise used for LRU management.
86 * PageActive The slab is frozen and exempt from list processing.
87 * This means that the slab is dedicated to a purpose
88 * such as satisfying allocations for a specific
89 * processor. Objects may be freed in the slab while
90 * it is frozen but slab_free will then skip the usual
91 * list operations. It is up to the processor holding
92 * the slab to integrate the slab into the slab lists
93 * when the slab is no longer needed.
95 * One use of this flag is to mark slabs that are
96 * used for allocations. Then such a slab becomes a cpu
97 * slab. The cpu slab may be equipped with an additional
98 * freelist that allows lockless access to
99 * free objects in addition to the regular freelist
100 * that requires the slab lock.
102 * PageError Slab requires special handling due to debug
103 * options set. This moves slab handling out of
104 * the fast path and disables lockless freelists.
107 #ifdef CONFIG_SLUB_DEBUG
114 * Issues still to be resolved:
116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118 * - Variable sizing of the per node arrays
121 /* Enable to test recovery from slab corruption on boot */
122 #undef SLUB_RESILIENCY_TEST
125 * Mininum number of partial slabs. These will be left on the partial
126 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 #define MIN_PARTIAL 5
131 * Maximum number of desirable partial slabs.
132 * The existence of more partial slabs makes kmem_cache_shrink
133 * sort the partial list by the number of objects in the.
135 #define MAX_PARTIAL 10
137 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138 SLAB_POISON | SLAB_STORE_USER)
141 * Set of flags that will prevent slab merging
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
158 #define OO_MASK ((1 << OO_SHIFT) - 1)
159 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
161 /* Internal SLUB flags */
162 #define __OBJECT_POISON 0x80000000 /* Poison object */
163 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
165 static int kmem_size
= sizeof(struct kmem_cache
);
168 static struct notifier_block slab_notifier
;
172 DOWN
, /* No slab functionality available */
173 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
174 UP
, /* Everything works but does not show up in sysfs */
178 /* A list of all slab caches on the system */
179 static DECLARE_RWSEM(slub_lock
);
180 static LIST_HEAD(slab_caches
);
183 * Tracking user of a slab.
186 unsigned long addr
; /* Called from address */
187 int cpu
; /* Was running on cpu */
188 int pid
; /* Pid context */
189 unsigned long when
; /* When did the operation occur */
192 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
194 #ifdef CONFIG_SLUB_DEBUG
195 static int sysfs_slab_add(struct kmem_cache
*);
196 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
197 static void sysfs_slab_remove(struct kmem_cache
*);
200 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
201 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
203 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
210 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
212 #ifdef CONFIG_SLUB_STATS
217 /********************************************************************
218 * Core slab cache functions
219 *******************************************************************/
221 int slab_is_available(void)
223 return slab_state
>= UP
;
226 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
229 return s
->node
[node
];
231 return &s
->local_node
;
235 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
238 return s
->cpu_slab
[cpu
];
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache
*s
,
246 struct page
*page
, const void *object
)
253 base
= page_address(page
);
254 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
255 (object
- base
) % s
->size
) {
263 * Slow version of get and set free pointer.
265 * This version requires touching the cache lines of kmem_cache which
266 * we avoid to do in the fast alloc free paths. There we obtain the offset
267 * from the page struct.
269 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
271 return *(void **)(object
+ s
->offset
);
274 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
276 *(void **)(object
+ s
->offset
) = fp
;
279 /* Loop over all objects in a slab */
280 #define for_each_object(__p, __s, __addr, __objects) \
281 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 #define for_each_free_object(__p, __s, __free) \
286 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288 /* Determine object index from a given position */
289 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
291 return (p
- addr
) / s
->size
;
294 static inline struct kmem_cache_order_objects
oo_make(int order
,
297 struct kmem_cache_order_objects x
= {
298 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
304 static inline int oo_order(struct kmem_cache_order_objects x
)
306 return x
.x
>> OO_SHIFT
;
309 static inline int oo_objects(struct kmem_cache_order_objects x
)
311 return x
.x
& OO_MASK
;
314 #ifdef CONFIG_SLUB_DEBUG
318 #ifdef CONFIG_SLUB_DEBUG_ON
319 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
321 static int slub_debug
;
324 static char *slub_debug_slabs
;
329 static void print_section(char *text
, u8
*addr
, unsigned int length
)
337 for (i
= 0; i
< length
; i
++) {
339 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
342 printk(KERN_CONT
" %02x", addr
[i
]);
344 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
346 printk(KERN_CONT
" %s\n", ascii
);
353 printk(KERN_CONT
" ");
357 printk(KERN_CONT
" %s\n", ascii
);
361 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
362 enum track_item alloc
)
367 p
= object
+ s
->offset
+ sizeof(void *);
369 p
= object
+ s
->inuse
;
374 static void set_track(struct kmem_cache
*s
, void *object
,
375 enum track_item alloc
, unsigned long addr
)
380 p
= object
+ s
->offset
+ sizeof(void *);
382 p
= object
+ s
->inuse
;
387 p
->cpu
= smp_processor_id();
388 p
->pid
= current
->pid
;
391 memset(p
, 0, sizeof(struct track
));
394 static void init_tracking(struct kmem_cache
*s
, void *object
)
396 if (!(s
->flags
& SLAB_STORE_USER
))
399 set_track(s
, object
, TRACK_FREE
, 0UL);
400 set_track(s
, object
, TRACK_ALLOC
, 0UL);
403 static void print_track(const char *s
, struct track
*t
)
408 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
409 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
412 static void print_tracking(struct kmem_cache
*s
, void *object
)
414 if (!(s
->flags
& SLAB_STORE_USER
))
417 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
418 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
421 static void print_page_info(struct page
*page
)
423 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
424 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
428 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
434 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
436 printk(KERN_ERR
"========================================"
437 "=====================================\n");
438 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
439 printk(KERN_ERR
"----------------------------------------"
440 "-------------------------------------\n\n");
443 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
449 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
451 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
454 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
456 unsigned int off
; /* Offset of last byte */
457 u8
*addr
= page_address(page
);
459 print_tracking(s
, p
);
461 print_page_info(page
);
463 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
464 p
, p
- addr
, get_freepointer(s
, p
));
467 print_section("Bytes b4", p
- 16, 16);
469 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
471 if (s
->flags
& SLAB_RED_ZONE
)
472 print_section("Redzone", p
+ s
->objsize
,
473 s
->inuse
- s
->objsize
);
476 off
= s
->offset
+ sizeof(void *);
480 if (s
->flags
& SLAB_STORE_USER
)
481 off
+= 2 * sizeof(struct track
);
484 /* Beginning of the filler is the free pointer */
485 print_section("Padding", p
+ off
, s
->size
- off
);
490 static void object_err(struct kmem_cache
*s
, struct page
*page
,
491 u8
*object
, char *reason
)
493 slab_bug(s
, "%s", reason
);
494 print_trailer(s
, page
, object
);
497 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
503 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
505 slab_bug(s
, "%s", buf
);
506 print_page_info(page
);
510 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
514 if (s
->flags
& __OBJECT_POISON
) {
515 memset(p
, POISON_FREE
, s
->objsize
- 1);
516 p
[s
->objsize
- 1] = POISON_END
;
519 if (s
->flags
& SLAB_RED_ZONE
)
520 memset(p
+ s
->objsize
,
521 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
522 s
->inuse
- s
->objsize
);
525 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
528 if (*start
!= (u8
)value
)
536 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
537 void *from
, void *to
)
539 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
540 memset(from
, data
, to
- from
);
543 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
544 u8
*object
, char *what
,
545 u8
*start
, unsigned int value
, unsigned int bytes
)
550 fault
= check_bytes(start
, value
, bytes
);
555 while (end
> fault
&& end
[-1] == value
)
558 slab_bug(s
, "%s overwritten", what
);
559 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
560 fault
, end
- 1, fault
[0], value
);
561 print_trailer(s
, page
, object
);
563 restore_bytes(s
, what
, value
, fault
, end
);
571 * Bytes of the object to be managed.
572 * If the freepointer may overlay the object then the free
573 * pointer is the first word of the object.
575 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
578 * object + s->objsize
579 * Padding to reach word boundary. This is also used for Redzoning.
580 * Padding is extended by another word if Redzoning is enabled and
583 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
584 * 0xcc (RED_ACTIVE) for objects in use.
587 * Meta data starts here.
589 * A. Free pointer (if we cannot overwrite object on free)
590 * B. Tracking data for SLAB_STORE_USER
591 * C. Padding to reach required alignment boundary or at mininum
592 * one word if debugging is on to be able to detect writes
593 * before the word boundary.
595 * Padding is done using 0x5a (POISON_INUSE)
598 * Nothing is used beyond s->size.
600 * If slabcaches are merged then the objsize and inuse boundaries are mostly
601 * ignored. And therefore no slab options that rely on these boundaries
602 * may be used with merged slabcaches.
605 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
607 unsigned long off
= s
->inuse
; /* The end of info */
610 /* Freepointer is placed after the object. */
611 off
+= sizeof(void *);
613 if (s
->flags
& SLAB_STORE_USER
)
614 /* We also have user information there */
615 off
+= 2 * sizeof(struct track
);
620 return check_bytes_and_report(s
, page
, p
, "Object padding",
621 p
+ off
, POISON_INUSE
, s
->size
- off
);
624 /* Check the pad bytes at the end of a slab page */
625 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
633 if (!(s
->flags
& SLAB_POISON
))
636 start
= page_address(page
);
637 length
= (PAGE_SIZE
<< compound_order(page
));
638 end
= start
+ length
;
639 remainder
= length
% s
->size
;
643 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
646 while (end
> fault
&& end
[-1] == POISON_INUSE
)
649 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
650 print_section("Padding", end
- remainder
, remainder
);
652 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
656 static int check_object(struct kmem_cache
*s
, struct page
*page
,
657 void *object
, int active
)
660 u8
*endobject
= object
+ s
->objsize
;
662 if (s
->flags
& SLAB_RED_ZONE
) {
664 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
666 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
667 endobject
, red
, s
->inuse
- s
->objsize
))
670 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
671 check_bytes_and_report(s
, page
, p
, "Alignment padding",
672 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
676 if (s
->flags
& SLAB_POISON
) {
677 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
678 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
679 POISON_FREE
, s
->objsize
- 1) ||
680 !check_bytes_and_report(s
, page
, p
, "Poison",
681 p
+ s
->objsize
- 1, POISON_END
, 1)))
684 * check_pad_bytes cleans up on its own.
686 check_pad_bytes(s
, page
, p
);
689 if (!s
->offset
&& active
)
691 * Object and freepointer overlap. Cannot check
692 * freepointer while object is allocated.
696 /* Check free pointer validity */
697 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
698 object_err(s
, page
, p
, "Freepointer corrupt");
700 * No choice but to zap it and thus lose the remainder
701 * of the free objects in this slab. May cause
702 * another error because the object count is now wrong.
704 set_freepointer(s
, p
, NULL
);
710 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
714 VM_BUG_ON(!irqs_disabled());
716 if (!PageSlab(page
)) {
717 slab_err(s
, page
, "Not a valid slab page");
721 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
722 if (page
->objects
> maxobj
) {
723 slab_err(s
, page
, "objects %u > max %u",
724 s
->name
, page
->objects
, maxobj
);
727 if (page
->inuse
> page
->objects
) {
728 slab_err(s
, page
, "inuse %u > max %u",
729 s
->name
, page
->inuse
, page
->objects
);
732 /* Slab_pad_check fixes things up after itself */
733 slab_pad_check(s
, page
);
738 * Determine if a certain object on a page is on the freelist. Must hold the
739 * slab lock to guarantee that the chains are in a consistent state.
741 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
744 void *fp
= page
->freelist
;
746 unsigned long max_objects
;
748 while (fp
&& nr
<= page
->objects
) {
751 if (!check_valid_pointer(s
, page
, fp
)) {
753 object_err(s
, page
, object
,
754 "Freechain corrupt");
755 set_freepointer(s
, object
, NULL
);
758 slab_err(s
, page
, "Freepointer corrupt");
759 page
->freelist
= NULL
;
760 page
->inuse
= page
->objects
;
761 slab_fix(s
, "Freelist cleared");
767 fp
= get_freepointer(s
, object
);
771 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
772 if (max_objects
> MAX_OBJS_PER_PAGE
)
773 max_objects
= MAX_OBJS_PER_PAGE
;
775 if (page
->objects
!= max_objects
) {
776 slab_err(s
, page
, "Wrong number of objects. Found %d but "
777 "should be %d", page
->objects
, max_objects
);
778 page
->objects
= max_objects
;
779 slab_fix(s
, "Number of objects adjusted.");
781 if (page
->inuse
!= page
->objects
- nr
) {
782 slab_err(s
, page
, "Wrong object count. Counter is %d but "
783 "counted were %d", page
->inuse
, page
->objects
- nr
);
784 page
->inuse
= page
->objects
- nr
;
785 slab_fix(s
, "Object count adjusted.");
787 return search
== NULL
;
790 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
793 if (s
->flags
& SLAB_TRACE
) {
794 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
796 alloc
? "alloc" : "free",
801 print_section("Object", (void *)object
, s
->objsize
);
808 * Tracking of fully allocated slabs for debugging purposes.
810 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
812 spin_lock(&n
->list_lock
);
813 list_add(&page
->lru
, &n
->full
);
814 spin_unlock(&n
->list_lock
);
817 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
819 struct kmem_cache_node
*n
;
821 if (!(s
->flags
& SLAB_STORE_USER
))
824 n
= get_node(s
, page_to_nid(page
));
826 spin_lock(&n
->list_lock
);
827 list_del(&page
->lru
);
828 spin_unlock(&n
->list_lock
);
831 /* Tracking of the number of slabs for debugging purposes */
832 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
834 struct kmem_cache_node
*n
= get_node(s
, node
);
836 return atomic_long_read(&n
->nr_slabs
);
839 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
841 struct kmem_cache_node
*n
= get_node(s
, node
);
844 * May be called early in order to allocate a slab for the
845 * kmem_cache_node structure. Solve the chicken-egg
846 * dilemma by deferring the increment of the count during
847 * bootstrap (see early_kmem_cache_node_alloc).
849 if (!NUMA_BUILD
|| n
) {
850 atomic_long_inc(&n
->nr_slabs
);
851 atomic_long_add(objects
, &n
->total_objects
);
854 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
856 struct kmem_cache_node
*n
= get_node(s
, node
);
858 atomic_long_dec(&n
->nr_slabs
);
859 atomic_long_sub(objects
, &n
->total_objects
);
862 /* Object debug checks for alloc/free paths */
863 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
866 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
869 init_object(s
, object
, 0);
870 init_tracking(s
, object
);
873 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
874 void *object
, unsigned long addr
)
876 if (!check_slab(s
, page
))
879 if (!on_freelist(s
, page
, object
)) {
880 object_err(s
, page
, object
, "Object already allocated");
884 if (!check_valid_pointer(s
, page
, object
)) {
885 object_err(s
, page
, object
, "Freelist Pointer check fails");
889 if (!check_object(s
, page
, object
, 0))
892 /* Success perform special debug activities for allocs */
893 if (s
->flags
& SLAB_STORE_USER
)
894 set_track(s
, object
, TRACK_ALLOC
, addr
);
895 trace(s
, page
, object
, 1);
896 init_object(s
, object
, 1);
900 if (PageSlab(page
)) {
902 * If this is a slab page then lets do the best we can
903 * to avoid issues in the future. Marking all objects
904 * as used avoids touching the remaining objects.
906 slab_fix(s
, "Marking all objects used");
907 page
->inuse
= page
->objects
;
908 page
->freelist
= NULL
;
913 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
914 void *object
, unsigned long addr
)
916 if (!check_slab(s
, page
))
919 if (!check_valid_pointer(s
, page
, object
)) {
920 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
924 if (on_freelist(s
, page
, object
)) {
925 object_err(s
, page
, object
, "Object already free");
929 if (!check_object(s
, page
, object
, 1))
932 if (unlikely(s
!= page
->slab
)) {
933 if (!PageSlab(page
)) {
934 slab_err(s
, page
, "Attempt to free object(0x%p) "
935 "outside of slab", object
);
936 } else if (!page
->slab
) {
938 "SLUB <none>: no slab for object 0x%p.\n",
942 object_err(s
, page
, object
,
943 "page slab pointer corrupt.");
947 /* Special debug activities for freeing objects */
948 if (!PageSlubFrozen(page
) && !page
->freelist
)
949 remove_full(s
, page
);
950 if (s
->flags
& SLAB_STORE_USER
)
951 set_track(s
, object
, TRACK_FREE
, addr
);
952 trace(s
, page
, object
, 0);
953 init_object(s
, object
, 0);
957 slab_fix(s
, "Object at 0x%p not freed", object
);
961 static int __init
setup_slub_debug(char *str
)
963 slub_debug
= DEBUG_DEFAULT_FLAGS
;
964 if (*str
++ != '=' || !*str
)
966 * No options specified. Switch on full debugging.
972 * No options but restriction on slabs. This means full
973 * debugging for slabs matching a pattern.
980 * Switch off all debugging measures.
985 * Determine which debug features should be switched on
987 for (; *str
&& *str
!= ','; str
++) {
988 switch (tolower(*str
)) {
990 slub_debug
|= SLAB_DEBUG_FREE
;
993 slub_debug
|= SLAB_RED_ZONE
;
996 slub_debug
|= SLAB_POISON
;
999 slub_debug
|= SLAB_STORE_USER
;
1002 slub_debug
|= SLAB_TRACE
;
1005 printk(KERN_ERR
"slub_debug option '%c' "
1006 "unknown. skipped\n", *str
);
1012 slub_debug_slabs
= str
+ 1;
1017 __setup("slub_debug", setup_slub_debug
);
1019 static unsigned long kmem_cache_flags(unsigned long objsize
,
1020 unsigned long flags
, const char *name
,
1021 void (*ctor
)(void *))
1024 * Enable debugging if selected on the kernel commandline.
1026 if (slub_debug
&& (!slub_debug_slabs
||
1027 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1028 flags
|= slub_debug
;
1033 static inline void setup_object_debug(struct kmem_cache
*s
,
1034 struct page
*page
, void *object
) {}
1036 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1037 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1039 static inline int free_debug_processing(struct kmem_cache
*s
,
1040 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1042 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1044 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1045 void *object
, int active
) { return 1; }
1046 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1047 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1048 unsigned long flags
, const char *name
,
1049 void (*ctor
)(void *))
1053 #define slub_debug 0
1055 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1057 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1059 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1064 * Slab allocation and freeing
1066 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1067 struct kmem_cache_order_objects oo
)
1069 int order
= oo_order(oo
);
1072 return alloc_pages(flags
, order
);
1074 return alloc_pages_node(node
, flags
, order
);
1077 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1080 struct kmem_cache_order_objects oo
= s
->oo
;
1082 flags
|= s
->allocflags
;
1084 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1086 if (unlikely(!page
)) {
1089 * Allocation may have failed due to fragmentation.
1090 * Try a lower order alloc if possible
1092 page
= alloc_slab_page(flags
, node
, oo
);
1096 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1098 page
->objects
= oo_objects(oo
);
1099 mod_zone_page_state(page_zone(page
),
1100 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1101 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1107 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1110 setup_object_debug(s
, page
, object
);
1111 if (unlikely(s
->ctor
))
1115 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1122 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1124 page
= allocate_slab(s
,
1125 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1129 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1131 page
->flags
|= 1 << PG_slab
;
1132 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1133 SLAB_STORE_USER
| SLAB_TRACE
))
1134 __SetPageSlubDebug(page
);
1136 start
= page_address(page
);
1138 if (unlikely(s
->flags
& SLAB_POISON
))
1139 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1142 for_each_object(p
, s
, start
, page
->objects
) {
1143 setup_object(s
, page
, last
);
1144 set_freepointer(s
, last
, p
);
1147 setup_object(s
, page
, last
);
1148 set_freepointer(s
, last
, NULL
);
1150 page
->freelist
= start
;
1156 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1158 int order
= compound_order(page
);
1159 int pages
= 1 << order
;
1161 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1164 slab_pad_check(s
, page
);
1165 for_each_object(p
, s
, page_address(page
),
1167 check_object(s
, page
, p
, 0);
1168 __ClearPageSlubDebug(page
);
1171 mod_zone_page_state(page_zone(page
),
1172 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1173 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1176 __ClearPageSlab(page
);
1177 reset_page_mapcount(page
);
1178 __free_pages(page
, order
);
1181 static void rcu_free_slab(struct rcu_head
*h
)
1185 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1186 __free_slab(page
->slab
, page
);
1189 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1191 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1193 * RCU free overloads the RCU head over the LRU
1195 struct rcu_head
*head
= (void *)&page
->lru
;
1197 call_rcu(head
, rcu_free_slab
);
1199 __free_slab(s
, page
);
1202 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1204 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1209 * Per slab locking using the pagelock
1211 static __always_inline
void slab_lock(struct page
*page
)
1213 bit_spin_lock(PG_locked
, &page
->flags
);
1216 static __always_inline
void slab_unlock(struct page
*page
)
1218 __bit_spin_unlock(PG_locked
, &page
->flags
);
1221 static __always_inline
int slab_trylock(struct page
*page
)
1225 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1230 * Management of partially allocated slabs
1232 static void add_partial(struct kmem_cache_node
*n
,
1233 struct page
*page
, int tail
)
1235 spin_lock(&n
->list_lock
);
1238 list_add_tail(&page
->lru
, &n
->partial
);
1240 list_add(&page
->lru
, &n
->partial
);
1241 spin_unlock(&n
->list_lock
);
1244 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1246 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1248 spin_lock(&n
->list_lock
);
1249 list_del(&page
->lru
);
1251 spin_unlock(&n
->list_lock
);
1255 * Lock slab and remove from the partial list.
1257 * Must hold list_lock.
1259 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1262 if (slab_trylock(page
)) {
1263 list_del(&page
->lru
);
1265 __SetPageSlubFrozen(page
);
1272 * Try to allocate a partial slab from a specific node.
1274 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1279 * Racy check. If we mistakenly see no partial slabs then we
1280 * just allocate an empty slab. If we mistakenly try to get a
1281 * partial slab and there is none available then get_partials()
1284 if (!n
|| !n
->nr_partial
)
1287 spin_lock(&n
->list_lock
);
1288 list_for_each_entry(page
, &n
->partial
, lru
)
1289 if (lock_and_freeze_slab(n
, page
))
1293 spin_unlock(&n
->list_lock
);
1298 * Get a page from somewhere. Search in increasing NUMA distances.
1300 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1303 struct zonelist
*zonelist
;
1306 enum zone_type high_zoneidx
= gfp_zone(flags
);
1310 * The defrag ratio allows a configuration of the tradeoffs between
1311 * inter node defragmentation and node local allocations. A lower
1312 * defrag_ratio increases the tendency to do local allocations
1313 * instead of attempting to obtain partial slabs from other nodes.
1315 * If the defrag_ratio is set to 0 then kmalloc() always
1316 * returns node local objects. If the ratio is higher then kmalloc()
1317 * may return off node objects because partial slabs are obtained
1318 * from other nodes and filled up.
1320 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1321 * defrag_ratio = 1000) then every (well almost) allocation will
1322 * first attempt to defrag slab caches on other nodes. This means
1323 * scanning over all nodes to look for partial slabs which may be
1324 * expensive if we do it every time we are trying to find a slab
1325 * with available objects.
1327 if (!s
->remote_node_defrag_ratio
||
1328 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1331 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1332 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1333 struct kmem_cache_node
*n
;
1335 n
= get_node(s
, zone_to_nid(zone
));
1337 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1338 n
->nr_partial
> n
->min_partial
) {
1339 page
= get_partial_node(n
);
1349 * Get a partial page, lock it and return it.
1351 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1354 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1356 page
= get_partial_node(get_node(s
, searchnode
));
1357 if (page
|| (flags
& __GFP_THISNODE
))
1360 return get_any_partial(s
, flags
);
1364 * Move a page back to the lists.
1366 * Must be called with the slab lock held.
1368 * On exit the slab lock will have been dropped.
1370 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1372 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1373 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1375 __ClearPageSlubFrozen(page
);
1378 if (page
->freelist
) {
1379 add_partial(n
, page
, tail
);
1380 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1382 stat(c
, DEACTIVATE_FULL
);
1383 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1384 (s
->flags
& SLAB_STORE_USER
))
1389 stat(c
, DEACTIVATE_EMPTY
);
1390 if (n
->nr_partial
< n
->min_partial
) {
1392 * Adding an empty slab to the partial slabs in order
1393 * to avoid page allocator overhead. This slab needs
1394 * to come after the other slabs with objects in
1395 * so that the others get filled first. That way the
1396 * size of the partial list stays small.
1398 * kmem_cache_shrink can reclaim any empty slabs from
1401 add_partial(n
, page
, 1);
1405 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1406 discard_slab(s
, page
);
1412 * Remove the cpu slab
1414 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1416 struct page
*page
= c
->page
;
1420 stat(c
, DEACTIVATE_REMOTE_FREES
);
1422 * Merge cpu freelist into slab freelist. Typically we get here
1423 * because both freelists are empty. So this is unlikely
1426 while (unlikely(c
->freelist
)) {
1429 tail
= 0; /* Hot objects. Put the slab first */
1431 /* Retrieve object from cpu_freelist */
1432 object
= c
->freelist
;
1433 c
->freelist
= c
->freelist
[c
->offset
];
1435 /* And put onto the regular freelist */
1436 object
[c
->offset
] = page
->freelist
;
1437 page
->freelist
= object
;
1441 unfreeze_slab(s
, page
, tail
);
1444 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1446 stat(c
, CPUSLAB_FLUSH
);
1448 deactivate_slab(s
, c
);
1454 * Called from IPI handler with interrupts disabled.
1456 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1458 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1460 if (likely(c
&& c
->page
))
1464 static void flush_cpu_slab(void *d
)
1466 struct kmem_cache
*s
= d
;
1468 __flush_cpu_slab(s
, smp_processor_id());
1471 static void flush_all(struct kmem_cache
*s
)
1473 on_each_cpu(flush_cpu_slab
, s
, 1);
1477 * Check if the objects in a per cpu structure fit numa
1478 * locality expectations.
1480 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1483 if (node
!= -1 && c
->node
!= node
)
1490 * Slow path. The lockless freelist is empty or we need to perform
1493 * Interrupts are disabled.
1495 * Processing is still very fast if new objects have been freed to the
1496 * regular freelist. In that case we simply take over the regular freelist
1497 * as the lockless freelist and zap the regular freelist.
1499 * If that is not working then we fall back to the partial lists. We take the
1500 * first element of the freelist as the object to allocate now and move the
1501 * rest of the freelist to the lockless freelist.
1503 * And if we were unable to get a new slab from the partial slab lists then
1504 * we need to allocate a new slab. This is the slowest path since it involves
1505 * a call to the page allocator and the setup of a new slab.
1507 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1508 unsigned long addr
, struct kmem_cache_cpu
*c
)
1513 /* We handle __GFP_ZERO in the caller */
1514 gfpflags
&= ~__GFP_ZERO
;
1520 if (unlikely(!node_match(c
, node
)))
1523 stat(c
, ALLOC_REFILL
);
1526 object
= c
->page
->freelist
;
1527 if (unlikely(!object
))
1529 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1532 c
->freelist
= object
[c
->offset
];
1533 c
->page
->inuse
= c
->page
->objects
;
1534 c
->page
->freelist
= NULL
;
1535 c
->node
= page_to_nid(c
->page
);
1537 slab_unlock(c
->page
);
1538 stat(c
, ALLOC_SLOWPATH
);
1542 deactivate_slab(s
, c
);
1545 new = get_partial(s
, gfpflags
, node
);
1548 stat(c
, ALLOC_FROM_PARTIAL
);
1552 if (gfpflags
& __GFP_WAIT
)
1555 new = new_slab(s
, gfpflags
, node
);
1557 if (gfpflags
& __GFP_WAIT
)
1558 local_irq_disable();
1561 c
= get_cpu_slab(s
, smp_processor_id());
1562 stat(c
, ALLOC_SLAB
);
1566 __SetPageSlubFrozen(new);
1572 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1576 c
->page
->freelist
= object
[c
->offset
];
1582 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1583 * have the fastpath folded into their functions. So no function call
1584 * overhead for requests that can be satisfied on the fastpath.
1586 * The fastpath works by first checking if the lockless freelist can be used.
1587 * If not then __slab_alloc is called for slow processing.
1589 * Otherwise we can simply pick the next object from the lockless free list.
1591 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1592 gfp_t gfpflags
, int node
, unsigned long addr
)
1595 struct kmem_cache_cpu
*c
;
1596 unsigned long flags
;
1597 unsigned int objsize
;
1599 might_sleep_if(gfpflags
& __GFP_WAIT
);
1601 if (should_failslab(s
->objsize
, gfpflags
))
1604 local_irq_save(flags
);
1605 c
= get_cpu_slab(s
, smp_processor_id());
1606 objsize
= c
->objsize
;
1607 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1609 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1612 object
= c
->freelist
;
1613 c
->freelist
= object
[c
->offset
];
1614 stat(c
, ALLOC_FASTPATH
);
1616 local_irq_restore(flags
);
1618 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1619 memset(object
, 0, objsize
);
1624 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1626 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1628 EXPORT_SYMBOL(kmem_cache_alloc
);
1631 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1633 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1635 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1639 * Slow patch handling. This may still be called frequently since objects
1640 * have a longer lifetime than the cpu slabs in most processing loads.
1642 * So we still attempt to reduce cache line usage. Just take the slab
1643 * lock and free the item. If there is no additional partial page
1644 * handling required then we can return immediately.
1646 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1647 void *x
, unsigned long addr
, unsigned int offset
)
1650 void **object
= (void *)x
;
1651 struct kmem_cache_cpu
*c
;
1653 c
= get_cpu_slab(s
, raw_smp_processor_id());
1654 stat(c
, FREE_SLOWPATH
);
1657 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1661 prior
= object
[offset
] = page
->freelist
;
1662 page
->freelist
= object
;
1665 if (unlikely(PageSlubFrozen(page
))) {
1666 stat(c
, FREE_FROZEN
);
1670 if (unlikely(!page
->inuse
))
1674 * Objects left in the slab. If it was not on the partial list before
1677 if (unlikely(!prior
)) {
1678 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1679 stat(c
, FREE_ADD_PARTIAL
);
1689 * Slab still on the partial list.
1691 remove_partial(s
, page
);
1692 stat(c
, FREE_REMOVE_PARTIAL
);
1696 discard_slab(s
, page
);
1700 if (!free_debug_processing(s
, page
, x
, addr
))
1706 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1707 * can perform fastpath freeing without additional function calls.
1709 * The fastpath is only possible if we are freeing to the current cpu slab
1710 * of this processor. This typically the case if we have just allocated
1713 * If fastpath is not possible then fall back to __slab_free where we deal
1714 * with all sorts of special processing.
1716 static __always_inline
void slab_free(struct kmem_cache
*s
,
1717 struct page
*page
, void *x
, unsigned long addr
)
1719 void **object
= (void *)x
;
1720 struct kmem_cache_cpu
*c
;
1721 unsigned long flags
;
1723 local_irq_save(flags
);
1724 c
= get_cpu_slab(s
, smp_processor_id());
1725 debug_check_no_locks_freed(object
, c
->objsize
);
1726 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1727 debug_check_no_obj_freed(object
, s
->objsize
);
1728 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1729 object
[c
->offset
] = c
->freelist
;
1730 c
->freelist
= object
;
1731 stat(c
, FREE_FASTPATH
);
1733 __slab_free(s
, page
, x
, addr
, c
->offset
);
1735 local_irq_restore(flags
);
1738 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1742 page
= virt_to_head_page(x
);
1744 slab_free(s
, page
, x
, _RET_IP_
);
1746 EXPORT_SYMBOL(kmem_cache_free
);
1748 /* Figure out on which slab page the object resides */
1749 static struct page
*get_object_page(const void *x
)
1751 struct page
*page
= virt_to_head_page(x
);
1753 if (!PageSlab(page
))
1760 * Object placement in a slab is made very easy because we always start at
1761 * offset 0. If we tune the size of the object to the alignment then we can
1762 * get the required alignment by putting one properly sized object after
1765 * Notice that the allocation order determines the sizes of the per cpu
1766 * caches. Each processor has always one slab available for allocations.
1767 * Increasing the allocation order reduces the number of times that slabs
1768 * must be moved on and off the partial lists and is therefore a factor in
1773 * Mininum / Maximum order of slab pages. This influences locking overhead
1774 * and slab fragmentation. A higher order reduces the number of partial slabs
1775 * and increases the number of allocations possible without having to
1776 * take the list_lock.
1778 static int slub_min_order
;
1779 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1780 static int slub_min_objects
;
1783 * Merge control. If this is set then no merging of slab caches will occur.
1784 * (Could be removed. This was introduced to pacify the merge skeptics.)
1786 static int slub_nomerge
;
1789 * Calculate the order of allocation given an slab object size.
1791 * The order of allocation has significant impact on performance and other
1792 * system components. Generally order 0 allocations should be preferred since
1793 * order 0 does not cause fragmentation in the page allocator. Larger objects
1794 * be problematic to put into order 0 slabs because there may be too much
1795 * unused space left. We go to a higher order if more than 1/16th of the slab
1798 * In order to reach satisfactory performance we must ensure that a minimum
1799 * number of objects is in one slab. Otherwise we may generate too much
1800 * activity on the partial lists which requires taking the list_lock. This is
1801 * less a concern for large slabs though which are rarely used.
1803 * slub_max_order specifies the order where we begin to stop considering the
1804 * number of objects in a slab as critical. If we reach slub_max_order then
1805 * we try to keep the page order as low as possible. So we accept more waste
1806 * of space in favor of a small page order.
1808 * Higher order allocations also allow the placement of more objects in a
1809 * slab and thereby reduce object handling overhead. If the user has
1810 * requested a higher mininum order then we start with that one instead of
1811 * the smallest order which will fit the object.
1813 static inline int slab_order(int size
, int min_objects
,
1814 int max_order
, int fract_leftover
)
1818 int min_order
= slub_min_order
;
1820 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1821 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1823 for (order
= max(min_order
,
1824 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1825 order
<= max_order
; order
++) {
1827 unsigned long slab_size
= PAGE_SIZE
<< order
;
1829 if (slab_size
< min_objects
* size
)
1832 rem
= slab_size
% size
;
1834 if (rem
<= slab_size
/ fract_leftover
)
1842 static inline int calculate_order(int size
)
1849 * Attempt to find best configuration for a slab. This
1850 * works by first attempting to generate a layout with
1851 * the best configuration and backing off gradually.
1853 * First we reduce the acceptable waste in a slab. Then
1854 * we reduce the minimum objects required in a slab.
1856 min_objects
= slub_min_objects
;
1858 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1859 while (min_objects
> 1) {
1861 while (fraction
>= 4) {
1862 order
= slab_order(size
, min_objects
,
1863 slub_max_order
, fraction
);
1864 if (order
<= slub_max_order
)
1872 * We were unable to place multiple objects in a slab. Now
1873 * lets see if we can place a single object there.
1875 order
= slab_order(size
, 1, slub_max_order
, 1);
1876 if (order
<= slub_max_order
)
1880 * Doh this slab cannot be placed using slub_max_order.
1882 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1883 if (order
<= MAX_ORDER
)
1889 * Figure out what the alignment of the objects will be.
1891 static unsigned long calculate_alignment(unsigned long flags
,
1892 unsigned long align
, unsigned long size
)
1895 * If the user wants hardware cache aligned objects then follow that
1896 * suggestion if the object is sufficiently large.
1898 * The hardware cache alignment cannot override the specified
1899 * alignment though. If that is greater then use it.
1901 if (flags
& SLAB_HWCACHE_ALIGN
) {
1902 unsigned long ralign
= cache_line_size();
1903 while (size
<= ralign
/ 2)
1905 align
= max(align
, ralign
);
1908 if (align
< ARCH_SLAB_MINALIGN
)
1909 align
= ARCH_SLAB_MINALIGN
;
1911 return ALIGN(align
, sizeof(void *));
1914 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1915 struct kmem_cache_cpu
*c
)
1920 c
->offset
= s
->offset
/ sizeof(void *);
1921 c
->objsize
= s
->objsize
;
1922 #ifdef CONFIG_SLUB_STATS
1923 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1928 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1933 * The larger the object size is, the more pages we want on the partial
1934 * list to avoid pounding the page allocator excessively.
1936 n
->min_partial
= ilog2(s
->size
);
1937 if (n
->min_partial
< MIN_PARTIAL
)
1938 n
->min_partial
= MIN_PARTIAL
;
1939 else if (n
->min_partial
> MAX_PARTIAL
)
1940 n
->min_partial
= MAX_PARTIAL
;
1942 spin_lock_init(&n
->list_lock
);
1943 INIT_LIST_HEAD(&n
->partial
);
1944 #ifdef CONFIG_SLUB_DEBUG
1945 atomic_long_set(&n
->nr_slabs
, 0);
1946 atomic_long_set(&n
->total_objects
, 0);
1947 INIT_LIST_HEAD(&n
->full
);
1953 * Per cpu array for per cpu structures.
1955 * The per cpu array places all kmem_cache_cpu structures from one processor
1956 * close together meaning that it becomes possible that multiple per cpu
1957 * structures are contained in one cacheline. This may be particularly
1958 * beneficial for the kmalloc caches.
1960 * A desktop system typically has around 60-80 slabs. With 100 here we are
1961 * likely able to get per cpu structures for all caches from the array defined
1962 * here. We must be able to cover all kmalloc caches during bootstrap.
1964 * If the per cpu array is exhausted then fall back to kmalloc
1965 * of individual cachelines. No sharing is possible then.
1967 #define NR_KMEM_CACHE_CPU 100
1969 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1970 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1972 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1973 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
1975 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1976 int cpu
, gfp_t flags
)
1978 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1981 per_cpu(kmem_cache_cpu_free
, cpu
) =
1982 (void *)c
->freelist
;
1984 /* Table overflow: So allocate ourselves */
1986 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1987 flags
, cpu_to_node(cpu
));
1992 init_kmem_cache_cpu(s
, c
);
1996 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1998 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1999 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2003 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2004 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2007 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2011 for_each_online_cpu(cpu
) {
2012 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2015 s
->cpu_slab
[cpu
] = NULL
;
2016 free_kmem_cache_cpu(c
, cpu
);
2021 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2025 for_each_online_cpu(cpu
) {
2026 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2031 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2033 free_kmem_cache_cpus(s
);
2036 s
->cpu_slab
[cpu
] = c
;
2042 * Initialize the per cpu array.
2044 static void init_alloc_cpu_cpu(int cpu
)
2048 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2051 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2052 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2054 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2057 static void __init
init_alloc_cpu(void)
2061 for_each_online_cpu(cpu
)
2062 init_alloc_cpu_cpu(cpu
);
2066 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2067 static inline void init_alloc_cpu(void) {}
2069 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2071 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2078 * No kmalloc_node yet so do it by hand. We know that this is the first
2079 * slab on the node for this slabcache. There are no concurrent accesses
2082 * Note that this function only works on the kmalloc_node_cache
2083 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2084 * memory on a fresh node that has no slab structures yet.
2086 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2089 struct kmem_cache_node
*n
;
2090 unsigned long flags
;
2092 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2094 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2097 if (page_to_nid(page
) != node
) {
2098 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2100 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2101 "in order to be able to continue\n");
2106 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2108 kmalloc_caches
->node
[node
] = n
;
2109 #ifdef CONFIG_SLUB_DEBUG
2110 init_object(kmalloc_caches
, n
, 1);
2111 init_tracking(kmalloc_caches
, n
);
2113 init_kmem_cache_node(n
, kmalloc_caches
);
2114 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2117 * lockdep requires consistent irq usage for each lock
2118 * so even though there cannot be a race this early in
2119 * the boot sequence, we still disable irqs.
2121 local_irq_save(flags
);
2122 add_partial(n
, page
, 0);
2123 local_irq_restore(flags
);
2126 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2130 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2131 struct kmem_cache_node
*n
= s
->node
[node
];
2132 if (n
&& n
!= &s
->local_node
)
2133 kmem_cache_free(kmalloc_caches
, n
);
2134 s
->node
[node
] = NULL
;
2138 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2143 if (slab_state
>= UP
)
2144 local_node
= page_to_nid(virt_to_page(s
));
2148 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2149 struct kmem_cache_node
*n
;
2151 if (local_node
== node
)
2154 if (slab_state
== DOWN
) {
2155 early_kmem_cache_node_alloc(gfpflags
, node
);
2158 n
= kmem_cache_alloc_node(kmalloc_caches
,
2162 free_kmem_cache_nodes(s
);
2168 init_kmem_cache_node(n
, s
);
2173 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2177 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2179 init_kmem_cache_node(&s
->local_node
, s
);
2185 * calculate_sizes() determines the order and the distribution of data within
2188 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2190 unsigned long flags
= s
->flags
;
2191 unsigned long size
= s
->objsize
;
2192 unsigned long align
= s
->align
;
2196 * Round up object size to the next word boundary. We can only
2197 * place the free pointer at word boundaries and this determines
2198 * the possible location of the free pointer.
2200 size
= ALIGN(size
, sizeof(void *));
2202 #ifdef CONFIG_SLUB_DEBUG
2204 * Determine if we can poison the object itself. If the user of
2205 * the slab may touch the object after free or before allocation
2206 * then we should never poison the object itself.
2208 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2210 s
->flags
|= __OBJECT_POISON
;
2212 s
->flags
&= ~__OBJECT_POISON
;
2216 * If we are Redzoning then check if there is some space between the
2217 * end of the object and the free pointer. If not then add an
2218 * additional word to have some bytes to store Redzone information.
2220 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2221 size
+= sizeof(void *);
2225 * With that we have determined the number of bytes in actual use
2226 * by the object. This is the potential offset to the free pointer.
2230 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2233 * Relocate free pointer after the object if it is not
2234 * permitted to overwrite the first word of the object on
2237 * This is the case if we do RCU, have a constructor or
2238 * destructor or are poisoning the objects.
2241 size
+= sizeof(void *);
2244 #ifdef CONFIG_SLUB_DEBUG
2245 if (flags
& SLAB_STORE_USER
)
2247 * Need to store information about allocs and frees after
2250 size
+= 2 * sizeof(struct track
);
2252 if (flags
& SLAB_RED_ZONE
)
2254 * Add some empty padding so that we can catch
2255 * overwrites from earlier objects rather than let
2256 * tracking information or the free pointer be
2257 * corrupted if a user writes before the start
2260 size
+= sizeof(void *);
2264 * Determine the alignment based on various parameters that the
2265 * user specified and the dynamic determination of cache line size
2268 align
= calculate_alignment(flags
, align
, s
->objsize
);
2271 * SLUB stores one object immediately after another beginning from
2272 * offset 0. In order to align the objects we have to simply size
2273 * each object to conform to the alignment.
2275 size
= ALIGN(size
, align
);
2277 if (forced_order
>= 0)
2278 order
= forced_order
;
2280 order
= calculate_order(size
);
2287 s
->allocflags
|= __GFP_COMP
;
2289 if (s
->flags
& SLAB_CACHE_DMA
)
2290 s
->allocflags
|= SLUB_DMA
;
2292 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2293 s
->allocflags
|= __GFP_RECLAIMABLE
;
2296 * Determine the number of objects per slab
2298 s
->oo
= oo_make(order
, size
);
2299 s
->min
= oo_make(get_order(size
), size
);
2300 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2303 return !!oo_objects(s
->oo
);
2307 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2308 const char *name
, size_t size
,
2309 size_t align
, unsigned long flags
,
2310 void (*ctor
)(void *))
2312 memset(s
, 0, kmem_size
);
2317 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2319 if (!calculate_sizes(s
, -1))
2324 s
->remote_node_defrag_ratio
= 1000;
2326 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2329 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2331 free_kmem_cache_nodes(s
);
2333 if (flags
& SLAB_PANIC
)
2334 panic("Cannot create slab %s size=%lu realsize=%u "
2335 "order=%u offset=%u flags=%lx\n",
2336 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2342 * Check if a given pointer is valid
2344 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2348 page
= get_object_page(object
);
2350 if (!page
|| s
!= page
->slab
)
2351 /* No slab or wrong slab */
2354 if (!check_valid_pointer(s
, page
, object
))
2358 * We could also check if the object is on the slabs freelist.
2359 * But this would be too expensive and it seems that the main
2360 * purpose of kmem_ptr_valid() is to check if the object belongs
2361 * to a certain slab.
2365 EXPORT_SYMBOL(kmem_ptr_validate
);
2368 * Determine the size of a slab object
2370 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2374 EXPORT_SYMBOL(kmem_cache_size
);
2376 const char *kmem_cache_name(struct kmem_cache
*s
)
2380 EXPORT_SYMBOL(kmem_cache_name
);
2382 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2385 #ifdef CONFIG_SLUB_DEBUG
2386 void *addr
= page_address(page
);
2388 DECLARE_BITMAP(map
, page
->objects
);
2390 bitmap_zero(map
, page
->objects
);
2391 slab_err(s
, page
, "%s", text
);
2393 for_each_free_object(p
, s
, page
->freelist
)
2394 set_bit(slab_index(p
, s
, addr
), map
);
2396 for_each_object(p
, s
, addr
, page
->objects
) {
2398 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2399 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2401 print_tracking(s
, p
);
2409 * Attempt to free all partial slabs on a node.
2411 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2413 unsigned long flags
;
2414 struct page
*page
, *h
;
2416 spin_lock_irqsave(&n
->list_lock
, flags
);
2417 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2419 list_del(&page
->lru
);
2420 discard_slab(s
, page
);
2423 list_slab_objects(s
, page
,
2424 "Objects remaining on kmem_cache_close()");
2427 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2431 * Release all resources used by a slab cache.
2433 static inline int kmem_cache_close(struct kmem_cache
*s
)
2439 /* Attempt to free all objects */
2440 free_kmem_cache_cpus(s
);
2441 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2442 struct kmem_cache_node
*n
= get_node(s
, node
);
2445 if (n
->nr_partial
|| slabs_node(s
, node
))
2448 free_kmem_cache_nodes(s
);
2453 * Close a cache and release the kmem_cache structure
2454 * (must be used for caches created using kmem_cache_create)
2456 void kmem_cache_destroy(struct kmem_cache
*s
)
2458 down_write(&slub_lock
);
2462 up_write(&slub_lock
);
2463 if (kmem_cache_close(s
)) {
2464 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2465 "still has objects.\n", s
->name
, __func__
);
2468 sysfs_slab_remove(s
);
2470 up_write(&slub_lock
);
2472 EXPORT_SYMBOL(kmem_cache_destroy
);
2474 /********************************************************************
2476 *******************************************************************/
2478 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2479 EXPORT_SYMBOL(kmalloc_caches
);
2481 static int __init
setup_slub_min_order(char *str
)
2483 get_option(&str
, &slub_min_order
);
2488 __setup("slub_min_order=", setup_slub_min_order
);
2490 static int __init
setup_slub_max_order(char *str
)
2492 get_option(&str
, &slub_max_order
);
2497 __setup("slub_max_order=", setup_slub_max_order
);
2499 static int __init
setup_slub_min_objects(char *str
)
2501 get_option(&str
, &slub_min_objects
);
2506 __setup("slub_min_objects=", setup_slub_min_objects
);
2508 static int __init
setup_slub_nomerge(char *str
)
2514 __setup("slub_nomerge", setup_slub_nomerge
);
2516 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2517 const char *name
, int size
, gfp_t gfp_flags
)
2519 unsigned int flags
= 0;
2521 if (gfp_flags
& SLUB_DMA
)
2522 flags
= SLAB_CACHE_DMA
;
2524 down_write(&slub_lock
);
2525 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2529 list_add(&s
->list
, &slab_caches
);
2530 up_write(&slub_lock
);
2531 if (sysfs_slab_add(s
))
2536 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2539 #ifdef CONFIG_ZONE_DMA
2540 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2542 static void sysfs_add_func(struct work_struct
*w
)
2544 struct kmem_cache
*s
;
2546 down_write(&slub_lock
);
2547 list_for_each_entry(s
, &slab_caches
, list
) {
2548 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2549 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2553 up_write(&slub_lock
);
2556 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2558 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2560 struct kmem_cache
*s
;
2564 s
= kmalloc_caches_dma
[index
];
2568 /* Dynamically create dma cache */
2569 if (flags
& __GFP_WAIT
)
2570 down_write(&slub_lock
);
2572 if (!down_write_trylock(&slub_lock
))
2576 if (kmalloc_caches_dma
[index
])
2579 realsize
= kmalloc_caches
[index
].objsize
;
2580 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2581 (unsigned int)realsize
);
2582 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2584 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2585 realsize
, ARCH_KMALLOC_MINALIGN
,
2586 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2592 list_add(&s
->list
, &slab_caches
);
2593 kmalloc_caches_dma
[index
] = s
;
2595 schedule_work(&sysfs_add_work
);
2598 up_write(&slub_lock
);
2600 return kmalloc_caches_dma
[index
];
2605 * Conversion table for small slabs sizes / 8 to the index in the
2606 * kmalloc array. This is necessary for slabs < 192 since we have non power
2607 * of two cache sizes there. The size of larger slabs can be determined using
2610 static s8 size_index
[24] = {
2637 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2643 return ZERO_SIZE_PTR
;
2645 index
= size_index
[(size
- 1) / 8];
2647 index
= fls(size
- 1);
2649 #ifdef CONFIG_ZONE_DMA
2650 if (unlikely((flags
& SLUB_DMA
)))
2651 return dma_kmalloc_cache(index
, flags
);
2654 return &kmalloc_caches
[index
];
2657 void *__kmalloc(size_t size
, gfp_t flags
)
2659 struct kmem_cache
*s
;
2661 if (unlikely(size
> PAGE_SIZE
))
2662 return kmalloc_large(size
, flags
);
2664 s
= get_slab(size
, flags
);
2666 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2669 return slab_alloc(s
, flags
, -1, _RET_IP_
);
2671 EXPORT_SYMBOL(__kmalloc
);
2673 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2675 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2679 return page_address(page
);
2685 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2687 struct kmem_cache
*s
;
2689 if (unlikely(size
> PAGE_SIZE
))
2690 return kmalloc_large_node(size
, flags
, node
);
2692 s
= get_slab(size
, flags
);
2694 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2697 return slab_alloc(s
, flags
, node
, _RET_IP_
);
2699 EXPORT_SYMBOL(__kmalloc_node
);
2702 size_t ksize(const void *object
)
2705 struct kmem_cache
*s
;
2707 if (unlikely(object
== ZERO_SIZE_PTR
))
2710 page
= virt_to_head_page(object
);
2712 if (unlikely(!PageSlab(page
))) {
2713 WARN_ON(!PageCompound(page
));
2714 return PAGE_SIZE
<< compound_order(page
);
2718 #ifdef CONFIG_SLUB_DEBUG
2720 * Debugging requires use of the padding between object
2721 * and whatever may come after it.
2723 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2728 * If we have the need to store the freelist pointer
2729 * back there or track user information then we can
2730 * only use the space before that information.
2732 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2735 * Else we can use all the padding etc for the allocation
2740 void kfree(const void *x
)
2743 void *object
= (void *)x
;
2745 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2748 page
= virt_to_head_page(x
);
2749 if (unlikely(!PageSlab(page
))) {
2750 BUG_ON(!PageCompound(page
));
2754 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2756 EXPORT_SYMBOL(kfree
);
2759 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2760 * the remaining slabs by the number of items in use. The slabs with the
2761 * most items in use come first. New allocations will then fill those up
2762 * and thus they can be removed from the partial lists.
2764 * The slabs with the least items are placed last. This results in them
2765 * being allocated from last increasing the chance that the last objects
2766 * are freed in them.
2768 int kmem_cache_shrink(struct kmem_cache
*s
)
2772 struct kmem_cache_node
*n
;
2775 int objects
= oo_objects(s
->max
);
2776 struct list_head
*slabs_by_inuse
=
2777 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2778 unsigned long flags
;
2780 if (!slabs_by_inuse
)
2784 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2785 n
= get_node(s
, node
);
2790 for (i
= 0; i
< objects
; i
++)
2791 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2793 spin_lock_irqsave(&n
->list_lock
, flags
);
2796 * Build lists indexed by the items in use in each slab.
2798 * Note that concurrent frees may occur while we hold the
2799 * list_lock. page->inuse here is the upper limit.
2801 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2802 if (!page
->inuse
&& slab_trylock(page
)) {
2804 * Must hold slab lock here because slab_free
2805 * may have freed the last object and be
2806 * waiting to release the slab.
2808 list_del(&page
->lru
);
2811 discard_slab(s
, page
);
2813 list_move(&page
->lru
,
2814 slabs_by_inuse
+ page
->inuse
);
2819 * Rebuild the partial list with the slabs filled up most
2820 * first and the least used slabs at the end.
2822 for (i
= objects
- 1; i
>= 0; i
--)
2823 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2825 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2828 kfree(slabs_by_inuse
);
2831 EXPORT_SYMBOL(kmem_cache_shrink
);
2833 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2834 static int slab_mem_going_offline_callback(void *arg
)
2836 struct kmem_cache
*s
;
2838 down_read(&slub_lock
);
2839 list_for_each_entry(s
, &slab_caches
, list
)
2840 kmem_cache_shrink(s
);
2841 up_read(&slub_lock
);
2846 static void slab_mem_offline_callback(void *arg
)
2848 struct kmem_cache_node
*n
;
2849 struct kmem_cache
*s
;
2850 struct memory_notify
*marg
= arg
;
2853 offline_node
= marg
->status_change_nid
;
2856 * If the node still has available memory. we need kmem_cache_node
2859 if (offline_node
< 0)
2862 down_read(&slub_lock
);
2863 list_for_each_entry(s
, &slab_caches
, list
) {
2864 n
= get_node(s
, offline_node
);
2867 * if n->nr_slabs > 0, slabs still exist on the node
2868 * that is going down. We were unable to free them,
2869 * and offline_pages() function shoudn't call this
2870 * callback. So, we must fail.
2872 BUG_ON(slabs_node(s
, offline_node
));
2874 s
->node
[offline_node
] = NULL
;
2875 kmem_cache_free(kmalloc_caches
, n
);
2878 up_read(&slub_lock
);
2881 static int slab_mem_going_online_callback(void *arg
)
2883 struct kmem_cache_node
*n
;
2884 struct kmem_cache
*s
;
2885 struct memory_notify
*marg
= arg
;
2886 int nid
= marg
->status_change_nid
;
2890 * If the node's memory is already available, then kmem_cache_node is
2891 * already created. Nothing to do.
2897 * We are bringing a node online. No memory is available yet. We must
2898 * allocate a kmem_cache_node structure in order to bring the node
2901 down_read(&slub_lock
);
2902 list_for_each_entry(s
, &slab_caches
, list
) {
2904 * XXX: kmem_cache_alloc_node will fallback to other nodes
2905 * since memory is not yet available from the node that
2908 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2913 init_kmem_cache_node(n
, s
);
2917 up_read(&slub_lock
);
2921 static int slab_memory_callback(struct notifier_block
*self
,
2922 unsigned long action
, void *arg
)
2927 case MEM_GOING_ONLINE
:
2928 ret
= slab_mem_going_online_callback(arg
);
2930 case MEM_GOING_OFFLINE
:
2931 ret
= slab_mem_going_offline_callback(arg
);
2934 case MEM_CANCEL_ONLINE
:
2935 slab_mem_offline_callback(arg
);
2938 case MEM_CANCEL_OFFLINE
:
2942 ret
= notifier_from_errno(ret
);
2948 #endif /* CONFIG_MEMORY_HOTPLUG */
2950 /********************************************************************
2951 * Basic setup of slabs
2952 *******************************************************************/
2954 void __init
kmem_cache_init(void)
2963 * Must first have the slab cache available for the allocations of the
2964 * struct kmem_cache_node's. There is special bootstrap code in
2965 * kmem_cache_open for slab_state == DOWN.
2967 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2968 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2969 kmalloc_caches
[0].refcount
= -1;
2972 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2975 /* Able to allocate the per node structures */
2976 slab_state
= PARTIAL
;
2978 /* Caches that are not of the two-to-the-power-of size */
2979 if (KMALLOC_MIN_SIZE
<= 64) {
2980 create_kmalloc_cache(&kmalloc_caches
[1],
2981 "kmalloc-96", 96, GFP_KERNEL
);
2983 create_kmalloc_cache(&kmalloc_caches
[2],
2984 "kmalloc-192", 192, GFP_KERNEL
);
2988 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
2989 create_kmalloc_cache(&kmalloc_caches
[i
],
2990 "kmalloc", 1 << i
, GFP_KERNEL
);
2996 * Patch up the size_index table if we have strange large alignment
2997 * requirements for the kmalloc array. This is only the case for
2998 * MIPS it seems. The standard arches will not generate any code here.
3000 * Largest permitted alignment is 256 bytes due to the way we
3001 * handle the index determination for the smaller caches.
3003 * Make sure that nothing crazy happens if someone starts tinkering
3004 * around with ARCH_KMALLOC_MINALIGN
3006 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3007 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3009 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3010 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3012 if (KMALLOC_MIN_SIZE
== 128) {
3014 * The 192 byte sized cache is not used if the alignment
3015 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3018 for (i
= 128 + 8; i
<= 192; i
+= 8)
3019 size_index
[(i
- 1) / 8] = 8;
3024 /* Provide the correct kmalloc names now that the caches are up */
3025 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3026 kmalloc_caches
[i
]. name
=
3027 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3030 register_cpu_notifier(&slab_notifier
);
3031 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3032 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3034 kmem_size
= sizeof(struct kmem_cache
);
3038 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3039 " CPUs=%d, Nodes=%d\n",
3040 caches
, cache_line_size(),
3041 slub_min_order
, slub_max_order
, slub_min_objects
,
3042 nr_cpu_ids
, nr_node_ids
);
3046 * Find a mergeable slab cache
3048 static int slab_unmergeable(struct kmem_cache
*s
)
3050 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3057 * We may have set a slab to be unmergeable during bootstrap.
3059 if (s
->refcount
< 0)
3065 static struct kmem_cache
*find_mergeable(size_t size
,
3066 size_t align
, unsigned long flags
, const char *name
,
3067 void (*ctor
)(void *))
3069 struct kmem_cache
*s
;
3071 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3077 size
= ALIGN(size
, sizeof(void *));
3078 align
= calculate_alignment(flags
, align
, size
);
3079 size
= ALIGN(size
, align
);
3080 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3082 list_for_each_entry(s
, &slab_caches
, list
) {
3083 if (slab_unmergeable(s
))
3089 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3092 * Check if alignment is compatible.
3093 * Courtesy of Adrian Drzewiecki
3095 if ((s
->size
& ~(align
- 1)) != s
->size
)
3098 if (s
->size
- size
>= sizeof(void *))
3106 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3107 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3109 struct kmem_cache
*s
;
3111 down_write(&slub_lock
);
3112 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3118 * Adjust the object sizes so that we clear
3119 * the complete object on kzalloc.
3121 s
->objsize
= max(s
->objsize
, (int)size
);
3124 * And then we need to update the object size in the
3125 * per cpu structures
3127 for_each_online_cpu(cpu
)
3128 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3130 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3131 up_write(&slub_lock
);
3133 if (sysfs_slab_alias(s
, name
)) {
3134 down_write(&slub_lock
);
3136 up_write(&slub_lock
);
3142 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3144 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3145 size
, align
, flags
, ctor
)) {
3146 list_add(&s
->list
, &slab_caches
);
3147 up_write(&slub_lock
);
3148 if (sysfs_slab_add(s
)) {
3149 down_write(&slub_lock
);
3151 up_write(&slub_lock
);
3159 up_write(&slub_lock
);
3162 if (flags
& SLAB_PANIC
)
3163 panic("Cannot create slabcache %s\n", name
);
3168 EXPORT_SYMBOL(kmem_cache_create
);
3172 * Use the cpu notifier to insure that the cpu slabs are flushed when
3175 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3176 unsigned long action
, void *hcpu
)
3178 long cpu
= (long)hcpu
;
3179 struct kmem_cache
*s
;
3180 unsigned long flags
;
3183 case CPU_UP_PREPARE
:
3184 case CPU_UP_PREPARE_FROZEN
:
3185 init_alloc_cpu_cpu(cpu
);
3186 down_read(&slub_lock
);
3187 list_for_each_entry(s
, &slab_caches
, list
)
3188 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3190 up_read(&slub_lock
);
3193 case CPU_UP_CANCELED
:
3194 case CPU_UP_CANCELED_FROZEN
:
3196 case CPU_DEAD_FROZEN
:
3197 down_read(&slub_lock
);
3198 list_for_each_entry(s
, &slab_caches
, list
) {
3199 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3201 local_irq_save(flags
);
3202 __flush_cpu_slab(s
, cpu
);
3203 local_irq_restore(flags
);
3204 free_kmem_cache_cpu(c
, cpu
);
3205 s
->cpu_slab
[cpu
] = NULL
;
3207 up_read(&slub_lock
);
3215 static struct notifier_block __cpuinitdata slab_notifier
= {
3216 .notifier_call
= slab_cpuup_callback
3221 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3223 struct kmem_cache
*s
;
3225 if (unlikely(size
> PAGE_SIZE
))
3226 return kmalloc_large(size
, gfpflags
);
3228 s
= get_slab(size
, gfpflags
);
3230 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3233 return slab_alloc(s
, gfpflags
, -1, caller
);
3236 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3237 int node
, unsigned long caller
)
3239 struct kmem_cache
*s
;
3241 if (unlikely(size
> PAGE_SIZE
))
3242 return kmalloc_large_node(size
, gfpflags
, node
);
3244 s
= get_slab(size
, gfpflags
);
3246 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3249 return slab_alloc(s
, gfpflags
, node
, caller
);
3252 #ifdef CONFIG_SLUB_DEBUG
3253 static unsigned long count_partial(struct kmem_cache_node
*n
,
3254 int (*get_count
)(struct page
*))
3256 unsigned long flags
;
3257 unsigned long x
= 0;
3260 spin_lock_irqsave(&n
->list_lock
, flags
);
3261 list_for_each_entry(page
, &n
->partial
, lru
)
3262 x
+= get_count(page
);
3263 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3267 static int count_inuse(struct page
*page
)
3272 static int count_total(struct page
*page
)
3274 return page
->objects
;
3277 static int count_free(struct page
*page
)
3279 return page
->objects
- page
->inuse
;
3282 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3286 void *addr
= page_address(page
);
3288 if (!check_slab(s
, page
) ||
3289 !on_freelist(s
, page
, NULL
))
3292 /* Now we know that a valid freelist exists */
3293 bitmap_zero(map
, page
->objects
);
3295 for_each_free_object(p
, s
, page
->freelist
) {
3296 set_bit(slab_index(p
, s
, addr
), map
);
3297 if (!check_object(s
, page
, p
, 0))
3301 for_each_object(p
, s
, addr
, page
->objects
)
3302 if (!test_bit(slab_index(p
, s
, addr
), map
))
3303 if (!check_object(s
, page
, p
, 1))
3308 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3311 if (slab_trylock(page
)) {
3312 validate_slab(s
, page
, map
);
3315 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3318 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3319 if (!PageSlubDebug(page
))
3320 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3321 "on slab 0x%p\n", s
->name
, page
);
3323 if (PageSlubDebug(page
))
3324 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3325 "slab 0x%p\n", s
->name
, page
);
3329 static int validate_slab_node(struct kmem_cache
*s
,
3330 struct kmem_cache_node
*n
, unsigned long *map
)
3332 unsigned long count
= 0;
3334 unsigned long flags
;
3336 spin_lock_irqsave(&n
->list_lock
, flags
);
3338 list_for_each_entry(page
, &n
->partial
, lru
) {
3339 validate_slab_slab(s
, page
, map
);
3342 if (count
!= n
->nr_partial
)
3343 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3344 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3346 if (!(s
->flags
& SLAB_STORE_USER
))
3349 list_for_each_entry(page
, &n
->full
, lru
) {
3350 validate_slab_slab(s
, page
, map
);
3353 if (count
!= atomic_long_read(&n
->nr_slabs
))
3354 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3355 "counter=%ld\n", s
->name
, count
,
3356 atomic_long_read(&n
->nr_slabs
));
3359 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3363 static long validate_slab_cache(struct kmem_cache
*s
)
3366 unsigned long count
= 0;
3367 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3368 sizeof(unsigned long), GFP_KERNEL
);
3374 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3375 struct kmem_cache_node
*n
= get_node(s
, node
);
3377 count
+= validate_slab_node(s
, n
, map
);
3383 #ifdef SLUB_RESILIENCY_TEST
3384 static void resiliency_test(void)
3388 printk(KERN_ERR
"SLUB resiliency testing\n");
3389 printk(KERN_ERR
"-----------------------\n");
3390 printk(KERN_ERR
"A. Corruption after allocation\n");
3392 p
= kzalloc(16, GFP_KERNEL
);
3394 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3395 " 0x12->0x%p\n\n", p
+ 16);
3397 validate_slab_cache(kmalloc_caches
+ 4);
3399 /* Hmmm... The next two are dangerous */
3400 p
= kzalloc(32, GFP_KERNEL
);
3401 p
[32 + sizeof(void *)] = 0x34;
3402 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3403 " 0x34 -> -0x%p\n", p
);
3405 "If allocated object is overwritten then not detectable\n\n");
3407 validate_slab_cache(kmalloc_caches
+ 5);
3408 p
= kzalloc(64, GFP_KERNEL
);
3409 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3411 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3414 "If allocated object is overwritten then not detectable\n\n");
3415 validate_slab_cache(kmalloc_caches
+ 6);
3417 printk(KERN_ERR
"\nB. Corruption after free\n");
3418 p
= kzalloc(128, GFP_KERNEL
);
3421 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3422 validate_slab_cache(kmalloc_caches
+ 7);
3424 p
= kzalloc(256, GFP_KERNEL
);
3427 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3429 validate_slab_cache(kmalloc_caches
+ 8);
3431 p
= kzalloc(512, GFP_KERNEL
);
3434 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3435 validate_slab_cache(kmalloc_caches
+ 9);
3438 static void resiliency_test(void) {};
3442 * Generate lists of code addresses where slabcache objects are allocated
3447 unsigned long count
;
3454 DECLARE_BITMAP(cpus
, NR_CPUS
);
3460 unsigned long count
;
3461 struct location
*loc
;
3464 static void free_loc_track(struct loc_track
*t
)
3467 free_pages((unsigned long)t
->loc
,
3468 get_order(sizeof(struct location
) * t
->max
));
3471 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3476 order
= get_order(sizeof(struct location
) * max
);
3478 l
= (void *)__get_free_pages(flags
, order
);
3483 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3491 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3492 const struct track
*track
)
3494 long start
, end
, pos
;
3496 unsigned long caddr
;
3497 unsigned long age
= jiffies
- track
->when
;
3503 pos
= start
+ (end
- start
+ 1) / 2;
3506 * There is nothing at "end". If we end up there
3507 * we need to add something to before end.
3512 caddr
= t
->loc
[pos
].addr
;
3513 if (track
->addr
== caddr
) {
3519 if (age
< l
->min_time
)
3521 if (age
> l
->max_time
)
3524 if (track
->pid
< l
->min_pid
)
3525 l
->min_pid
= track
->pid
;
3526 if (track
->pid
> l
->max_pid
)
3527 l
->max_pid
= track
->pid
;
3529 cpumask_set_cpu(track
->cpu
,
3530 to_cpumask(l
->cpus
));
3532 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3536 if (track
->addr
< caddr
)
3543 * Not found. Insert new tracking element.
3545 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3551 (t
->count
- pos
) * sizeof(struct location
));
3554 l
->addr
= track
->addr
;
3558 l
->min_pid
= track
->pid
;
3559 l
->max_pid
= track
->pid
;
3560 cpumask_clear(to_cpumask(l
->cpus
));
3561 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3562 nodes_clear(l
->nodes
);
3563 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3567 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3568 struct page
*page
, enum track_item alloc
)
3570 void *addr
= page_address(page
);
3571 DECLARE_BITMAP(map
, page
->objects
);
3574 bitmap_zero(map
, page
->objects
);
3575 for_each_free_object(p
, s
, page
->freelist
)
3576 set_bit(slab_index(p
, s
, addr
), map
);
3578 for_each_object(p
, s
, addr
, page
->objects
)
3579 if (!test_bit(slab_index(p
, s
, addr
), map
))
3580 add_location(t
, s
, get_track(s
, p
, alloc
));
3583 static int list_locations(struct kmem_cache
*s
, char *buf
,
3584 enum track_item alloc
)
3588 struct loc_track t
= { 0, 0, NULL
};
3591 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3593 return sprintf(buf
, "Out of memory\n");
3595 /* Push back cpu slabs */
3598 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3599 struct kmem_cache_node
*n
= get_node(s
, node
);
3600 unsigned long flags
;
3603 if (!atomic_long_read(&n
->nr_slabs
))
3606 spin_lock_irqsave(&n
->list_lock
, flags
);
3607 list_for_each_entry(page
, &n
->partial
, lru
)
3608 process_slab(&t
, s
, page
, alloc
);
3609 list_for_each_entry(page
, &n
->full
, lru
)
3610 process_slab(&t
, s
, page
, alloc
);
3611 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3614 for (i
= 0; i
< t
.count
; i
++) {
3615 struct location
*l
= &t
.loc
[i
];
3617 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3619 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3622 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3624 len
+= sprintf(buf
+ len
, "<not-available>");
3626 if (l
->sum_time
!= l
->min_time
) {
3627 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3629 (long)div_u64(l
->sum_time
, l
->count
),
3632 len
+= sprintf(buf
+ len
, " age=%ld",
3635 if (l
->min_pid
!= l
->max_pid
)
3636 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3637 l
->min_pid
, l
->max_pid
);
3639 len
+= sprintf(buf
+ len
, " pid=%ld",
3642 if (num_online_cpus() > 1 &&
3643 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3644 len
< PAGE_SIZE
- 60) {
3645 len
+= sprintf(buf
+ len
, " cpus=");
3646 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3647 to_cpumask(l
->cpus
));
3650 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3651 len
< PAGE_SIZE
- 60) {
3652 len
+= sprintf(buf
+ len
, " nodes=");
3653 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3657 len
+= sprintf(buf
+ len
, "\n");
3662 len
+= sprintf(buf
, "No data\n");
3666 enum slab_stat_type
{
3667 SL_ALL
, /* All slabs */
3668 SL_PARTIAL
, /* Only partially allocated slabs */
3669 SL_CPU
, /* Only slabs used for cpu caches */
3670 SL_OBJECTS
, /* Determine allocated objects not slabs */
3671 SL_TOTAL
/* Determine object capacity not slabs */
3674 #define SO_ALL (1 << SL_ALL)
3675 #define SO_PARTIAL (1 << SL_PARTIAL)
3676 #define SO_CPU (1 << SL_CPU)
3677 #define SO_OBJECTS (1 << SL_OBJECTS)
3678 #define SO_TOTAL (1 << SL_TOTAL)
3680 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3681 char *buf
, unsigned long flags
)
3683 unsigned long total
= 0;
3686 unsigned long *nodes
;
3687 unsigned long *per_cpu
;
3689 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3692 per_cpu
= nodes
+ nr_node_ids
;
3694 if (flags
& SO_CPU
) {
3697 for_each_possible_cpu(cpu
) {
3698 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3700 if (!c
|| c
->node
< 0)
3704 if (flags
& SO_TOTAL
)
3705 x
= c
->page
->objects
;
3706 else if (flags
& SO_OBJECTS
)
3712 nodes
[c
->node
] += x
;
3718 if (flags
& SO_ALL
) {
3719 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3720 struct kmem_cache_node
*n
= get_node(s
, node
);
3722 if (flags
& SO_TOTAL
)
3723 x
= atomic_long_read(&n
->total_objects
);
3724 else if (flags
& SO_OBJECTS
)
3725 x
= atomic_long_read(&n
->total_objects
) -
3726 count_partial(n
, count_free
);
3729 x
= atomic_long_read(&n
->nr_slabs
);
3734 } else if (flags
& SO_PARTIAL
) {
3735 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3736 struct kmem_cache_node
*n
= get_node(s
, node
);
3738 if (flags
& SO_TOTAL
)
3739 x
= count_partial(n
, count_total
);
3740 else if (flags
& SO_OBJECTS
)
3741 x
= count_partial(n
, count_inuse
);
3748 x
= sprintf(buf
, "%lu", total
);
3750 for_each_node_state(node
, N_NORMAL_MEMORY
)
3752 x
+= sprintf(buf
+ x
, " N%d=%lu",
3756 return x
+ sprintf(buf
+ x
, "\n");
3759 static int any_slab_objects(struct kmem_cache
*s
)
3763 for_each_online_node(node
) {
3764 struct kmem_cache_node
*n
= get_node(s
, node
);
3769 if (atomic_long_read(&n
->total_objects
))
3775 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3776 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3778 struct slab_attribute
{
3779 struct attribute attr
;
3780 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3781 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3784 #define SLAB_ATTR_RO(_name) \
3785 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3787 #define SLAB_ATTR(_name) \
3788 static struct slab_attribute _name##_attr = \
3789 __ATTR(_name, 0644, _name##_show, _name##_store)
3791 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3793 return sprintf(buf
, "%d\n", s
->size
);
3795 SLAB_ATTR_RO(slab_size
);
3797 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3799 return sprintf(buf
, "%d\n", s
->align
);
3801 SLAB_ATTR_RO(align
);
3803 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3805 return sprintf(buf
, "%d\n", s
->objsize
);
3807 SLAB_ATTR_RO(object_size
);
3809 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3811 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3813 SLAB_ATTR_RO(objs_per_slab
);
3815 static ssize_t
order_store(struct kmem_cache
*s
,
3816 const char *buf
, size_t length
)
3818 unsigned long order
;
3821 err
= strict_strtoul(buf
, 10, &order
);
3825 if (order
> slub_max_order
|| order
< slub_min_order
)
3828 calculate_sizes(s
, order
);
3832 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3834 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3838 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3841 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3843 return n
+ sprintf(buf
+ n
, "\n");
3849 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3851 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3853 SLAB_ATTR_RO(aliases
);
3855 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3857 return show_slab_objects(s
, buf
, SO_ALL
);
3859 SLAB_ATTR_RO(slabs
);
3861 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3863 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3865 SLAB_ATTR_RO(partial
);
3867 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3869 return show_slab_objects(s
, buf
, SO_CPU
);
3871 SLAB_ATTR_RO(cpu_slabs
);
3873 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3875 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3877 SLAB_ATTR_RO(objects
);
3879 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3881 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3883 SLAB_ATTR_RO(objects_partial
);
3885 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3887 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3889 SLAB_ATTR_RO(total_objects
);
3891 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3893 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3896 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3897 const char *buf
, size_t length
)
3899 s
->flags
&= ~SLAB_DEBUG_FREE
;
3901 s
->flags
|= SLAB_DEBUG_FREE
;
3904 SLAB_ATTR(sanity_checks
);
3906 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3908 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3911 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3914 s
->flags
&= ~SLAB_TRACE
;
3916 s
->flags
|= SLAB_TRACE
;
3921 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3923 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3926 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3927 const char *buf
, size_t length
)
3929 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3931 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3934 SLAB_ATTR(reclaim_account
);
3936 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3938 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3940 SLAB_ATTR_RO(hwcache_align
);
3942 #ifdef CONFIG_ZONE_DMA
3943 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3945 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3947 SLAB_ATTR_RO(cache_dma
);
3950 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3952 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3954 SLAB_ATTR_RO(destroy_by_rcu
);
3956 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3958 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3961 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3962 const char *buf
, size_t length
)
3964 if (any_slab_objects(s
))
3967 s
->flags
&= ~SLAB_RED_ZONE
;
3969 s
->flags
|= SLAB_RED_ZONE
;
3970 calculate_sizes(s
, -1);
3973 SLAB_ATTR(red_zone
);
3975 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3977 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3980 static ssize_t
poison_store(struct kmem_cache
*s
,
3981 const char *buf
, size_t length
)
3983 if (any_slab_objects(s
))
3986 s
->flags
&= ~SLAB_POISON
;
3988 s
->flags
|= SLAB_POISON
;
3989 calculate_sizes(s
, -1);
3994 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3996 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3999 static ssize_t
store_user_store(struct kmem_cache
*s
,
4000 const char *buf
, size_t length
)
4002 if (any_slab_objects(s
))
4005 s
->flags
&= ~SLAB_STORE_USER
;
4007 s
->flags
|= SLAB_STORE_USER
;
4008 calculate_sizes(s
, -1);
4011 SLAB_ATTR(store_user
);
4013 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4018 static ssize_t
validate_store(struct kmem_cache
*s
,
4019 const char *buf
, size_t length
)
4023 if (buf
[0] == '1') {
4024 ret
= validate_slab_cache(s
);
4030 SLAB_ATTR(validate
);
4032 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4037 static ssize_t
shrink_store(struct kmem_cache
*s
,
4038 const char *buf
, size_t length
)
4040 if (buf
[0] == '1') {
4041 int rc
= kmem_cache_shrink(s
);
4051 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4053 if (!(s
->flags
& SLAB_STORE_USER
))
4055 return list_locations(s
, buf
, TRACK_ALLOC
);
4057 SLAB_ATTR_RO(alloc_calls
);
4059 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4061 if (!(s
->flags
& SLAB_STORE_USER
))
4063 return list_locations(s
, buf
, TRACK_FREE
);
4065 SLAB_ATTR_RO(free_calls
);
4068 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4070 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4073 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4074 const char *buf
, size_t length
)
4076 unsigned long ratio
;
4079 err
= strict_strtoul(buf
, 10, &ratio
);
4084 s
->remote_node_defrag_ratio
= ratio
* 10;
4088 SLAB_ATTR(remote_node_defrag_ratio
);
4091 #ifdef CONFIG_SLUB_STATS
4092 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4094 unsigned long sum
= 0;
4097 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4102 for_each_online_cpu(cpu
) {
4103 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4109 len
= sprintf(buf
, "%lu", sum
);
4112 for_each_online_cpu(cpu
) {
4113 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4114 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4118 return len
+ sprintf(buf
+ len
, "\n");
4121 #define STAT_ATTR(si, text) \
4122 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4124 return show_stat(s, buf, si); \
4126 SLAB_ATTR_RO(text); \
4128 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4129 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4130 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4131 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4132 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4133 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4134 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4135 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4136 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4137 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4138 STAT_ATTR(FREE_SLAB
, free_slab
);
4139 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4140 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4141 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4142 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4143 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4144 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4145 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4148 static struct attribute
*slab_attrs
[] = {
4149 &slab_size_attr
.attr
,
4150 &object_size_attr
.attr
,
4151 &objs_per_slab_attr
.attr
,
4154 &objects_partial_attr
.attr
,
4155 &total_objects_attr
.attr
,
4158 &cpu_slabs_attr
.attr
,
4162 &sanity_checks_attr
.attr
,
4164 &hwcache_align_attr
.attr
,
4165 &reclaim_account_attr
.attr
,
4166 &destroy_by_rcu_attr
.attr
,
4167 &red_zone_attr
.attr
,
4169 &store_user_attr
.attr
,
4170 &validate_attr
.attr
,
4172 &alloc_calls_attr
.attr
,
4173 &free_calls_attr
.attr
,
4174 #ifdef CONFIG_ZONE_DMA
4175 &cache_dma_attr
.attr
,
4178 &remote_node_defrag_ratio_attr
.attr
,
4180 #ifdef CONFIG_SLUB_STATS
4181 &alloc_fastpath_attr
.attr
,
4182 &alloc_slowpath_attr
.attr
,
4183 &free_fastpath_attr
.attr
,
4184 &free_slowpath_attr
.attr
,
4185 &free_frozen_attr
.attr
,
4186 &free_add_partial_attr
.attr
,
4187 &free_remove_partial_attr
.attr
,
4188 &alloc_from_partial_attr
.attr
,
4189 &alloc_slab_attr
.attr
,
4190 &alloc_refill_attr
.attr
,
4191 &free_slab_attr
.attr
,
4192 &cpuslab_flush_attr
.attr
,
4193 &deactivate_full_attr
.attr
,
4194 &deactivate_empty_attr
.attr
,
4195 &deactivate_to_head_attr
.attr
,
4196 &deactivate_to_tail_attr
.attr
,
4197 &deactivate_remote_frees_attr
.attr
,
4198 &order_fallback_attr
.attr
,
4203 static struct attribute_group slab_attr_group
= {
4204 .attrs
= slab_attrs
,
4207 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4208 struct attribute
*attr
,
4211 struct slab_attribute
*attribute
;
4212 struct kmem_cache
*s
;
4215 attribute
= to_slab_attr(attr
);
4218 if (!attribute
->show
)
4221 err
= attribute
->show(s
, buf
);
4226 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4227 struct attribute
*attr
,
4228 const char *buf
, size_t len
)
4230 struct slab_attribute
*attribute
;
4231 struct kmem_cache
*s
;
4234 attribute
= to_slab_attr(attr
);
4237 if (!attribute
->store
)
4240 err
= attribute
->store(s
, buf
, len
);
4245 static void kmem_cache_release(struct kobject
*kobj
)
4247 struct kmem_cache
*s
= to_slab(kobj
);
4252 static struct sysfs_ops slab_sysfs_ops
= {
4253 .show
= slab_attr_show
,
4254 .store
= slab_attr_store
,
4257 static struct kobj_type slab_ktype
= {
4258 .sysfs_ops
= &slab_sysfs_ops
,
4259 .release
= kmem_cache_release
4262 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4264 struct kobj_type
*ktype
= get_ktype(kobj
);
4266 if (ktype
== &slab_ktype
)
4271 static struct kset_uevent_ops slab_uevent_ops
= {
4272 .filter
= uevent_filter
,
4275 static struct kset
*slab_kset
;
4277 #define ID_STR_LENGTH 64
4279 /* Create a unique string id for a slab cache:
4281 * Format :[flags-]size
4283 static char *create_unique_id(struct kmem_cache
*s
)
4285 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4292 * First flags affecting slabcache operations. We will only
4293 * get here for aliasable slabs so we do not need to support
4294 * too many flags. The flags here must cover all flags that
4295 * are matched during merging to guarantee that the id is
4298 if (s
->flags
& SLAB_CACHE_DMA
)
4300 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4302 if (s
->flags
& SLAB_DEBUG_FREE
)
4306 p
+= sprintf(p
, "%07d", s
->size
);
4307 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4311 static int sysfs_slab_add(struct kmem_cache
*s
)
4317 if (slab_state
< SYSFS
)
4318 /* Defer until later */
4321 unmergeable
= slab_unmergeable(s
);
4324 * Slabcache can never be merged so we can use the name proper.
4325 * This is typically the case for debug situations. In that
4326 * case we can catch duplicate names easily.
4328 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4332 * Create a unique name for the slab as a target
4335 name
= create_unique_id(s
);
4338 s
->kobj
.kset
= slab_kset
;
4339 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4341 kobject_put(&s
->kobj
);
4345 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4348 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4350 /* Setup first alias */
4351 sysfs_slab_alias(s
, s
->name
);
4357 static void sysfs_slab_remove(struct kmem_cache
*s
)
4359 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4360 kobject_del(&s
->kobj
);
4361 kobject_put(&s
->kobj
);
4365 * Need to buffer aliases during bootup until sysfs becomes
4366 * available lest we lose that information.
4368 struct saved_alias
{
4369 struct kmem_cache
*s
;
4371 struct saved_alias
*next
;
4374 static struct saved_alias
*alias_list
;
4376 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4378 struct saved_alias
*al
;
4380 if (slab_state
== SYSFS
) {
4382 * If we have a leftover link then remove it.
4384 sysfs_remove_link(&slab_kset
->kobj
, name
);
4385 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4388 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4394 al
->next
= alias_list
;
4399 static int __init
slab_sysfs_init(void)
4401 struct kmem_cache
*s
;
4404 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4406 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4412 list_for_each_entry(s
, &slab_caches
, list
) {
4413 err
= sysfs_slab_add(s
);
4415 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4416 " to sysfs\n", s
->name
);
4419 while (alias_list
) {
4420 struct saved_alias
*al
= alias_list
;
4422 alias_list
= alias_list
->next
;
4423 err
= sysfs_slab_alias(al
->s
, al
->name
);
4425 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4426 " %s to sysfs\n", s
->name
);
4434 __initcall(slab_sysfs_init
);
4438 * The /proc/slabinfo ABI
4440 #ifdef CONFIG_SLABINFO
4441 static void print_slabinfo_header(struct seq_file
*m
)
4443 seq_puts(m
, "slabinfo - version: 2.1\n");
4444 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4445 "<objperslab> <pagesperslab>");
4446 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4447 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4451 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4455 down_read(&slub_lock
);
4457 print_slabinfo_header(m
);
4459 return seq_list_start(&slab_caches
, *pos
);
4462 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4464 return seq_list_next(p
, &slab_caches
, pos
);
4467 static void s_stop(struct seq_file
*m
, void *p
)
4469 up_read(&slub_lock
);
4472 static int s_show(struct seq_file
*m
, void *p
)
4474 unsigned long nr_partials
= 0;
4475 unsigned long nr_slabs
= 0;
4476 unsigned long nr_inuse
= 0;
4477 unsigned long nr_objs
= 0;
4478 unsigned long nr_free
= 0;
4479 struct kmem_cache
*s
;
4482 s
= list_entry(p
, struct kmem_cache
, list
);
4484 for_each_online_node(node
) {
4485 struct kmem_cache_node
*n
= get_node(s
, node
);
4490 nr_partials
+= n
->nr_partial
;
4491 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4492 nr_objs
+= atomic_long_read(&n
->total_objects
);
4493 nr_free
+= count_partial(n
, count_free
);
4496 nr_inuse
= nr_objs
- nr_free
;
4498 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4499 nr_objs
, s
->size
, oo_objects(s
->oo
),
4500 (1 << oo_order(s
->oo
)));
4501 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4502 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4508 static const struct seq_operations slabinfo_op
= {
4515 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4517 return seq_open(file
, &slabinfo_op
);
4520 static const struct file_operations proc_slabinfo_operations
= {
4521 .open
= slabinfo_open
,
4523 .llseek
= seq_lseek
,
4524 .release
= seq_release
,
4527 static int __init
slab_proc_init(void)
4529 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4532 module_init(slab_proc_init
);
4533 #endif /* CONFIG_SLABINFO */