2 * Intel 5000(P/V/X) class Memory Controllers kernel module
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
10 * This module is based on the following document:
12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://developer.intel.com/design/chipsets/datashts/313070.htm
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
25 #include "edac_core.h"
28 * Alter this version for the I5000 module when modifications are made
30 #define I5000_REVISION " Ver: 2.0.12 " __DATE__
31 #define EDAC_MOD_STR "i5000_edac"
33 #define i5000_printk(level, fmt, arg...) \
34 edac_printk(level, "i5000", fmt, ##arg)
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37 edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
47 * Function 0: System Address
48 * Function 1: Memory Branch Map, Control, Errors Register
49 * Function 2: FSB Error Registers
51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
53 #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
55 /* OFFSETS for Function 0 */
57 /* OFFSETS for Function 1 */
60 #define MAXDIMMPERCH 0x57
63 #define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
64 #define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
65 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
73 #define FERR_FAT_FBD 0x98
74 #define NERR_FAT_FBD 0x9C
75 #define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
76 #define FERR_FAT_FBDCHAN 0x30000000
77 #define FERR_FAT_M3ERR 0x00000004
78 #define FERR_FAT_M2ERR 0x00000002
79 #define FERR_FAT_M1ERR 0x00000001
80 #define FERR_FAT_MASK (FERR_FAT_M1ERR | \
84 #define FERR_NF_FBD 0xA0
86 /* Thermal and SPD or BFD errors */
87 #define FERR_NF_M28ERR 0x01000000
88 #define FERR_NF_M27ERR 0x00800000
89 #define FERR_NF_M26ERR 0x00400000
90 #define FERR_NF_M25ERR 0x00200000
91 #define FERR_NF_M24ERR 0x00100000
92 #define FERR_NF_M23ERR 0x00080000
93 #define FERR_NF_M22ERR 0x00040000
94 #define FERR_NF_M21ERR 0x00020000
96 /* Correctable errors */
97 #define FERR_NF_M20ERR 0x00010000
98 #define FERR_NF_M19ERR 0x00008000
99 #define FERR_NF_M18ERR 0x00004000
100 #define FERR_NF_M17ERR 0x00002000
102 /* Non-Retry or redundant Retry errors */
103 #define FERR_NF_M16ERR 0x00001000
104 #define FERR_NF_M15ERR 0x00000800
105 #define FERR_NF_M14ERR 0x00000400
106 #define FERR_NF_M13ERR 0x00000200
108 /* Uncorrectable errors */
109 #define FERR_NF_M12ERR 0x00000100
110 #define FERR_NF_M11ERR 0x00000080
111 #define FERR_NF_M10ERR 0x00000040
112 #define FERR_NF_M9ERR 0x00000020
113 #define FERR_NF_M8ERR 0x00000010
114 #define FERR_NF_M7ERR 0x00000008
115 #define FERR_NF_M6ERR 0x00000004
116 #define FERR_NF_M5ERR 0x00000002
117 #define FERR_NF_M4ERR 0x00000001
119 #define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
128 #define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
132 #define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
134 #define FERR_NF_THERMAL (FERR_NF_M26ERR | \
138 #define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
139 #define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
140 #define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
144 #define NERR_NF_FBD 0xA4
145 #define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
146 FERR_NF_CORRECTABLE | \
147 FERR_NF_DIMM_SPARE | \
149 FERR_NF_SPD_PROTOCOL | \
150 FERR_NF_NORTH_CRC | \
153 #define EMASK_FBD 0xA8
154 #define EMASK_FBD_M28ERR 0x08000000
155 #define EMASK_FBD_M27ERR 0x04000000
156 #define EMASK_FBD_M26ERR 0x02000000
157 #define EMASK_FBD_M25ERR 0x01000000
158 #define EMASK_FBD_M24ERR 0x00800000
159 #define EMASK_FBD_M23ERR 0x00400000
160 #define EMASK_FBD_M22ERR 0x00200000
161 #define EMASK_FBD_M21ERR 0x00100000
162 #define EMASK_FBD_M20ERR 0x00080000
163 #define EMASK_FBD_M19ERR 0x00040000
164 #define EMASK_FBD_M18ERR 0x00020000
165 #define EMASK_FBD_M17ERR 0x00010000
167 #define EMASK_FBD_M15ERR 0x00004000
168 #define EMASK_FBD_M14ERR 0x00002000
169 #define EMASK_FBD_M13ERR 0x00001000
170 #define EMASK_FBD_M12ERR 0x00000800
171 #define EMASK_FBD_M11ERR 0x00000400
172 #define EMASK_FBD_M10ERR 0x00000200
173 #define EMASK_FBD_M9ERR 0x00000100
174 #define EMASK_FBD_M8ERR 0x00000080
175 #define EMASK_FBD_M7ERR 0x00000040
176 #define EMASK_FBD_M6ERR 0x00000020
177 #define EMASK_FBD_M5ERR 0x00000010
178 #define EMASK_FBD_M4ERR 0x00000008
179 #define EMASK_FBD_M3ERR 0x00000004
180 #define EMASK_FBD_M2ERR 0x00000002
181 #define EMASK_FBD_M1ERR 0x00000001
183 #define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
187 #define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
196 #define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
200 #define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
202 #define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
206 #define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
207 #define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
208 #define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
212 #define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
213 ENABLE_EMASK_FBD_NORTH_CRC | \
214 ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 ENABLE_EMASK_FBD_THERMALS | \
216 ENABLE_EMASK_FBD_DIMM_SPARE | \
217 ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 ENABLE_EMASK_FBD_CORRECTABLE | \
219 ENABLE_EMASK_FBD_UNCORRECTABLE)
221 #define ERR0_FBD 0xAC
222 #define ERR1_FBD 0xB0
223 #define ERR2_FBD 0xB4
224 #define MCERR_FBD 0xB8
225 #define NRECMEMA 0xBE
226 #define NREC_BANK(x) (((x)>>12) & 0x7)
227 #define NREC_RDWR(x) (((x)>>11) & 1)
228 #define NREC_RANK(x) (((x)>>8) & 0x7)
229 #define NRECMEMB 0xC0
230 #define NREC_CAS(x) (((x)>>16) & 0xFFFFFF)
231 #define NREC_RAS(x) ((x) & 0x7FFF)
232 #define NRECFGLOG 0xC4
233 #define NREEECFBDA 0xC8
234 #define NREEECFBDB 0xCC
235 #define NREEECFBDC 0xD0
236 #define NREEECFBDD 0xD4
237 #define NREEECFBDE 0xD8
240 #define REC_BANK(x) (((x)>>12) & 0x7)
241 #define REC_RDWR(x) (((x)>>11) & 1)
242 #define REC_RANK(x) (((x)>>8) & 0x7)
244 #define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
245 #define REC_RAS(x) ((x) & 0x7FFF)
246 #define RECFGLOG 0xE8
253 /* OFFSETS for Function 2 */
257 * Function 0: Memory Map Branch 0
260 * Function 0: Memory Map Branch 1
262 #define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
265 #define AMB_PRESENT_0 0x64
266 #define AMB_PRESENT_1 0x66
273 #define CHANNELS_PER_BRANCH (2)
275 /* Defines to extract the vaious fields from the
276 * MTRx - Memory Technology Registers
278 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
279 #define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
280 #define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
282 #define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
283 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
284 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
285 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
286 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
287 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
289 #ifdef CONFIG_EDAC_DEBUG
290 static char *numrow_toString
[] = {
297 static char *numcol_toString
[] = {
298 "1,024 - 10 columns",
299 "2,048 - 11 columns",
300 "4,096 - 12 columns",
305 /* enables the report of miscellaneous messages as CE errors - default off */
306 static int misc_messages
;
308 /* Enumeration of supported devices */
311 I5000V
= 1, /* future */
312 I5000X
= 2 /* future */
315 /* Device name and register DID (Device ID) */
316 struct i5000_dev_info
{
317 const char *ctl_name
; /* name for this device */
318 u16 fsb_mapping_errors
; /* DID for the branchmap,control */
321 /* Table of devices attributes supported by this driver */
322 static const struct i5000_dev_info i5000_devs
[] = {
325 .fsb_mapping_errors
= PCI_DEVICE_ID_INTEL_I5000_DEV16
,
329 struct i5000_dimm_info
{
330 int megabytes
; /* size, 0 means not present */
334 #define MAX_CHANNELS 6 /* max possible channels */
335 #define MAX_CSROWS (8*2) /* max possible csrows per channel */
337 /* driver private data structure */
339 struct pci_dev
*system_address
; /* 16.0 */
340 struct pci_dev
*branchmap_werrors
; /* 16.1 */
341 struct pci_dev
*fsb_error_regs
; /* 16.2 */
342 struct pci_dev
*branch_0
; /* 21.0 */
343 struct pci_dev
*branch_1
; /* 22.0 */
345 u16 tolm
; /* top of low memory */
346 u64 ambase
; /* AMB BAR */
348 u16 mir0
, mir1
, mir2
;
350 u16 b0_mtr
[NUM_MTRS
]; /* Memory Technlogy Reg */
351 u16 b0_ambpresent0
; /* Branch 0, Channel 0 */
352 u16 b0_ambpresent1
; /* Brnach 0, Channel 1 */
354 u16 b1_mtr
[NUM_MTRS
]; /* Memory Technlogy Reg */
355 u16 b1_ambpresent0
; /* Branch 1, Channel 8 */
356 u16 b1_ambpresent1
; /* Branch 1, Channel 1 */
358 /* DIMM information matrix, allocating architecture maximums */
359 struct i5000_dimm_info dimm_info
[MAX_CSROWS
][MAX_CHANNELS
];
361 /* Actual values for this controller */
362 int maxch
; /* Max channels */
363 int maxdimmperch
; /* Max DIMMs per channel */
366 /* I5000 MCH error information retrieved from Hardware */
367 struct i5000_error_info
{
369 /* These registers are always read from the MC */
370 u32 ferr_fat_fbd
; /* First Errors Fatal */
371 u32 nerr_fat_fbd
; /* Next Errors Fatal */
372 u32 ferr_nf_fbd
; /* First Errors Non-Fatal */
373 u32 nerr_nf_fbd
; /* Next Errors Non-Fatal */
375 /* These registers are input ONLY if there was a Recoverable Error */
376 u32 redmemb
; /* Recoverable Mem Data Error log B */
377 u16 recmema
; /* Recoverable Mem Error log A */
378 u32 recmemb
; /* Recoverable Mem Error log B */
380 /* These registers are input ONLY if there was a
381 * Non-Recoverable Error */
382 u16 nrecmema
; /* Non-Recoverable Mem log A */
383 u16 nrecmemb
; /* Non-Recoverable Mem log B */
387 static struct edac_pci_ctl_info
*i5000_pci
;
390 * i5000_get_error_info Retrieve the hardware error information from
391 * the hardware and cache it in the 'info'
394 static void i5000_get_error_info(struct mem_ctl_info
*mci
,
395 struct i5000_error_info
*info
)
397 struct i5000_pvt
*pvt
;
402 /* read in the 1st FATAL error register */
403 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_FAT_FBD
, &value
);
405 /* Mask only the bits that the doc says are valid
407 value
&= (FERR_FAT_FBDCHAN
| FERR_FAT_MASK
);
409 /* If there is an error, then read in the */
410 /* NEXT FATAL error register and the Memory Error Log Register A */
411 if (value
& FERR_FAT_MASK
) {
412 info
->ferr_fat_fbd
= value
;
414 /* harvest the various error data we need */
415 pci_read_config_dword(pvt
->branchmap_werrors
,
416 NERR_FAT_FBD
, &info
->nerr_fat_fbd
);
417 pci_read_config_word(pvt
->branchmap_werrors
,
418 NRECMEMA
, &info
->nrecmema
);
419 pci_read_config_word(pvt
->branchmap_werrors
,
420 NRECMEMB
, &info
->nrecmemb
);
422 /* Clear the error bits, by writing them back */
423 pci_write_config_dword(pvt
->branchmap_werrors
,
424 FERR_FAT_FBD
, value
);
426 info
->ferr_fat_fbd
= 0;
427 info
->nerr_fat_fbd
= 0;
432 /* read in the 1st NON-FATAL error register */
433 pci_read_config_dword(pvt
->branchmap_werrors
, FERR_NF_FBD
, &value
);
435 /* If there is an error, then read in the 1st NON-FATAL error
436 * register as well */
437 if (value
& FERR_NF_MASK
) {
438 info
->ferr_nf_fbd
= value
;
440 /* harvest the various error data we need */
441 pci_read_config_dword(pvt
->branchmap_werrors
,
442 NERR_NF_FBD
, &info
->nerr_nf_fbd
);
443 pci_read_config_word(pvt
->branchmap_werrors
,
444 RECMEMA
, &info
->recmema
);
445 pci_read_config_dword(pvt
->branchmap_werrors
,
446 RECMEMB
, &info
->recmemb
);
447 pci_read_config_dword(pvt
->branchmap_werrors
,
448 REDMEMB
, &info
->redmemb
);
450 /* Clear the error bits, by writing them back */
451 pci_write_config_dword(pvt
->branchmap_werrors
,
454 info
->ferr_nf_fbd
= 0;
455 info
->nerr_nf_fbd
= 0;
463 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
464 * struct i5000_error_info *info,
465 * int handle_errors);
467 * handle the Intel FATAL errors, if any
469 static void i5000_process_fatal_error_info(struct mem_ctl_info
*mci
,
470 struct i5000_error_info
*info
,
473 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 160];
474 char *specific
= NULL
;
483 /* mask off the Error bits that are possible */
484 allErrors
= (info
->ferr_fat_fbd
& FERR_FAT_MASK
);
486 return; /* if no error, return now */
488 branch
= EXTRACT_FBDCHAN_INDX(info
->ferr_fat_fbd
);
491 /* Use the NON-Recoverable macros to extract data */
492 bank
= NREC_BANK(info
->nrecmema
);
493 rank
= NREC_RANK(info
->nrecmema
);
494 rdwr
= NREC_RDWR(info
->nrecmema
);
495 ras
= NREC_RAS(info
->nrecmemb
);
496 cas
= NREC_CAS(info
->nrecmemb
);
498 debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
499 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
500 rank
, channel
, channel
+ 1, branch
>> 1, bank
,
501 rdwr
? "Write" : "Read", ras
, cas
);
503 /* Only 1 bit will be on */
506 specific
= "Alert on non-redundant retry or fast "
510 specific
= "Northbound CRC error on non-redundant "
518 * This error is generated to inform that the intelligent
519 * throttling is disabled and the temperature passed the
520 * specified middle point. Since this is something the BIOS
521 * should take care of, we'll warn only once to avoid
522 * worthlessly flooding the log.
528 specific
= ">Tmid Thermal event with intelligent "
529 "throttling disabled";
534 /* Form out message */
535 snprintf(msg
, sizeof(msg
),
536 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
537 "FATAL Err=0x%x (%s))",
538 branch
>> 1, bank
, rdwr
? "Write" : "Read", ras
, cas
,
539 allErrors
, specific
);
541 /* Call the helper to output message */
542 edac_mc_handle_fbd_ue(mci
, rank
, channel
, channel
+ 1, msg
);
546 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
547 * struct i5000_error_info *info,
548 * int handle_errors);
550 * handle the Intel NON-FATAL errors, if any
552 static void i5000_process_nonfatal_error_info(struct mem_ctl_info
*mci
,
553 struct i5000_error_info
*info
,
556 char msg
[EDAC_MC_LABEL_LEN
+ 1 + 170];
557 char *specific
= NULL
;
569 /* mask off the Error bits that are possible */
570 allErrors
= (info
->ferr_nf_fbd
& FERR_NF_MASK
);
572 return; /* if no error, return now */
574 /* ONLY ONE of the possible error bits will be set, as per the docs */
575 ue_errors
= allErrors
& FERR_NF_UNCORRECTABLE
;
577 debugf0("\tUncorrected bits= 0x%x\n", ue_errors
);
579 branch
= EXTRACT_FBDCHAN_INDX(info
->ferr_nf_fbd
);
581 bank
= NREC_BANK(info
->nrecmema
);
582 rank
= NREC_RANK(info
->nrecmema
);
583 rdwr
= NREC_RDWR(info
->nrecmema
);
584 ras
= NREC_RAS(info
->nrecmemb
);
585 cas
= NREC_CAS(info
->nrecmemb
);
588 ("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
589 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
590 rank
, channel
, channel
+ 1, branch
>> 1, bank
,
591 rdwr
? "Write" : "Read", ras
, cas
);
595 specific
= "Non-Aliased Uncorrectable Patrol Data ECC";
598 specific
= "Non-Aliased Uncorrectable Spare-Copy "
602 specific
= "Non-Aliased Uncorrectable Mirrored Demand "
606 specific
= "Non-Aliased Uncorrectable Non-Mirrored "
610 specific
= "Aliased Uncorrectable Patrol Data ECC";
613 specific
= "Aliased Uncorrectable Spare-Copy Data ECC";
616 specific
= "Aliased Uncorrectable Mirrored Demand "
620 specific
= "Aliased Uncorrectable Non-Mirrored Demand "
624 specific
= "Uncorrectable Data ECC on Replay";
628 /* Form out message */
629 snprintf(msg
, sizeof(msg
),
630 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
631 "CAS=%d, UE Err=0x%x (%s))",
632 branch
>> 1, bank
, rdwr
? "Write" : "Read", ras
, cas
,
633 ue_errors
, specific
);
635 /* Call the helper to output message */
636 edac_mc_handle_fbd_ue(mci
, rank
, channel
, channel
+ 1, msg
);
639 /* Check correctable errors */
640 ce_errors
= allErrors
& FERR_NF_CORRECTABLE
;
642 debugf0("\tCorrected bits= 0x%x\n", ce_errors
);
644 branch
= EXTRACT_FBDCHAN_INDX(info
->ferr_nf_fbd
);
647 if (REC_ECC_LOCATOR_ODD(info
->redmemb
))
650 /* Convert channel to be based from zero, instead of
651 * from branch base of 0 */
654 bank
= REC_BANK(info
->recmema
);
655 rank
= REC_RANK(info
->recmema
);
656 rdwr
= REC_RDWR(info
->recmema
);
657 ras
= REC_RAS(info
->recmemb
);
658 cas
= REC_CAS(info
->recmemb
);
660 debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
661 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
662 rank
, channel
, branch
>> 1, bank
,
663 rdwr
? "Write" : "Read", ras
, cas
);
667 specific
= "Correctable Non-Mirrored Demand Data ECC";
670 specific
= "Correctable Mirrored Demand Data ECC";
673 specific
= "Correctable Spare-Copy Data ECC";
676 specific
= "Correctable Patrol Data ECC";
680 /* Form out message */
681 snprintf(msg
, sizeof(msg
),
682 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
683 "CAS=%d, CE Err=0x%x (%s))", branch
>> 1, bank
,
684 rdwr
? "Write" : "Read", ras
, cas
, ce_errors
,
687 /* Call the helper to output message */
688 edac_mc_handle_fbd_ce(mci
, rank
, channel
, msg
);
694 misc_errors
= allErrors
& (FERR_NF_NON_RETRY
| FERR_NF_NORTH_CRC
|
695 FERR_NF_SPD_PROTOCOL
| FERR_NF_DIMM_SPARE
);
697 switch (misc_errors
) {
699 specific
= "Non-Retry or Redundant Retry FBD Memory "
700 "Alert or Redundant Fast Reset Timeout";
703 specific
= "Non-Retry or Redundant Retry FBD "
704 "Configuration Alert";
707 specific
= "Non-Retry or Redundant Retry FBD "
708 "Northbound CRC error on read data";
711 specific
= "FBD Northbound CRC error on "
715 specific
= "SPD protocol error";
718 specific
= "DIMM-spare copy started";
721 specific
= "DIMM-spare copy completed";
724 branch
= EXTRACT_FBDCHAN_INDX(info
->ferr_nf_fbd
);
726 /* Form out message */
727 snprintf(msg
, sizeof(msg
),
728 "(Branch=%d Err=%#x (%s))", branch
>> 1,
729 misc_errors
, specific
);
731 /* Call the helper to output message */
732 edac_mc_handle_fbd_ce(mci
, 0, 0, msg
);
737 * i5000_process_error_info Process the error info that is
738 * in the 'info' structure, previously retrieved from hardware
740 static void i5000_process_error_info(struct mem_ctl_info
*mci
,
741 struct i5000_error_info
*info
,
744 /* First handle any fatal errors that occurred */
745 i5000_process_fatal_error_info(mci
, info
, handle_errors
);
747 /* now handle any non-fatal errors that occurred */
748 i5000_process_nonfatal_error_info(mci
, info
, handle_errors
);
752 * i5000_clear_error Retrieve any error from the hardware
753 * but do NOT process that error.
754 * Used for 'clearing' out of previous errors
755 * Called by the Core module.
757 static void i5000_clear_error(struct mem_ctl_info
*mci
)
759 struct i5000_error_info info
;
761 i5000_get_error_info(mci
, &info
);
765 * i5000_check_error Retrieve and process errors reported by the
766 * hardware. Called by the Core module.
768 static void i5000_check_error(struct mem_ctl_info
*mci
)
770 struct i5000_error_info info
;
771 debugf4("MC%d: " __FILE__
": %s()\n", mci
->mc_idx
, __func__
);
772 i5000_get_error_info(mci
, &info
);
773 i5000_process_error_info(mci
, &info
, 1);
777 * i5000_get_devices Find and perform 'get' operation on the MCH's
778 * device/functions we want to reference for this driver
780 * Need to 'get' device 16 func 1 and func 2
782 static int i5000_get_devices(struct mem_ctl_info
*mci
, int dev_idx
)
784 //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
785 struct i5000_pvt
*pvt
;
786 struct pci_dev
*pdev
;
790 /* Attempt to 'get' the MCH register we want */
793 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
794 PCI_DEVICE_ID_INTEL_I5000_DEV16
, pdev
);
796 /* End of list, leave */
798 i5000_printk(KERN_ERR
,
799 "'system address,Process Bus' "
801 "vendor 0x%x device 0x%x FUNC 1 "
804 PCI_DEVICE_ID_INTEL_I5000_DEV16
);
809 /* Scan for device 16 func 1 */
810 if (PCI_FUNC(pdev
->devfn
) == 1)
814 pvt
->branchmap_werrors
= pdev
;
816 /* Attempt to 'get' the MCH register we want */
819 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
820 PCI_DEVICE_ID_INTEL_I5000_DEV16
, pdev
);
823 i5000_printk(KERN_ERR
,
824 "MC: 'branchmap,control,errors' "
826 "vendor 0x%x device 0x%x Func 2 "
829 PCI_DEVICE_ID_INTEL_I5000_DEV16
);
831 pci_dev_put(pvt
->branchmap_werrors
);
835 /* Scan for device 16 func 1 */
836 if (PCI_FUNC(pdev
->devfn
) == 2)
840 pvt
->fsb_error_regs
= pdev
;
842 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
843 pci_name(pvt
->system_address
),
844 pvt
->system_address
->vendor
, pvt
->system_address
->device
);
845 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
846 pci_name(pvt
->branchmap_werrors
),
847 pvt
->branchmap_werrors
->vendor
, pvt
->branchmap_werrors
->device
);
848 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
849 pci_name(pvt
->fsb_error_regs
),
850 pvt
->fsb_error_regs
->vendor
, pvt
->fsb_error_regs
->device
);
853 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
854 PCI_DEVICE_ID_I5000_BRANCH_0
, pdev
);
857 i5000_printk(KERN_ERR
,
858 "MC: 'BRANCH 0' device not found:"
859 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
860 PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_I5000_BRANCH_0
);
862 pci_dev_put(pvt
->branchmap_werrors
);
863 pci_dev_put(pvt
->fsb_error_regs
);
867 pvt
->branch_0
= pdev
;
869 /* If this device claims to have more than 2 channels then
870 * fetch Branch 1's information
872 if (pvt
->maxch
>= CHANNELS_PER_BRANCH
) {
874 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
875 PCI_DEVICE_ID_I5000_BRANCH_1
, pdev
);
878 i5000_printk(KERN_ERR
,
879 "MC: 'BRANCH 1' device not found:"
880 "vendor 0x%x device 0x%x Func 0 "
883 PCI_DEVICE_ID_I5000_BRANCH_1
);
885 pci_dev_put(pvt
->branchmap_werrors
);
886 pci_dev_put(pvt
->fsb_error_regs
);
887 pci_dev_put(pvt
->branch_0
);
891 pvt
->branch_1
= pdev
;
898 * i5000_put_devices 'put' all the devices that we have
901 static void i5000_put_devices(struct mem_ctl_info
*mci
)
903 struct i5000_pvt
*pvt
;
907 pci_dev_put(pvt
->branchmap_werrors
); /* FUNC 1 */
908 pci_dev_put(pvt
->fsb_error_regs
); /* FUNC 2 */
909 pci_dev_put(pvt
->branch_0
); /* DEV 21 */
911 /* Only if more than 2 channels do we release the second branch */
912 if (pvt
->maxch
>= CHANNELS_PER_BRANCH
)
913 pci_dev_put(pvt
->branch_1
); /* DEV 22 */
917 * determine_amb_resent
919 * the information is contained in NUM_MTRS different registers
920 * determineing which of the NUM_MTRS requires knowing
921 * which channel is in question
923 * 2 branches, each with 2 channels
924 * b0_ambpresent0 for channel '0'
925 * b0_ambpresent1 for channel '1'
926 * b1_ambpresent0 for channel '2'
927 * b1_ambpresent1 for channel '3'
929 static int determine_amb_present_reg(struct i5000_pvt
*pvt
, int channel
)
933 if (channel
< CHANNELS_PER_BRANCH
) {
935 amb_present
= pvt
->b0_ambpresent1
;
937 amb_present
= pvt
->b0_ambpresent0
;
940 amb_present
= pvt
->b1_ambpresent1
;
942 amb_present
= pvt
->b1_ambpresent0
;
949 * determine_mtr(pvt, csrow, channel)
951 * return the proper MTR register as determine by the csrow and channel desired
953 static int determine_mtr(struct i5000_pvt
*pvt
, int csrow
, int channel
)
957 if (channel
< CHANNELS_PER_BRANCH
)
958 mtr
= pvt
->b0_mtr
[csrow
>> 1];
960 mtr
= pvt
->b1_mtr
[csrow
>> 1];
967 static void decode_mtr(int slot_row
, u16 mtr
)
971 ans
= MTR_DIMMS_PRESENT(mtr
);
973 debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row
, mtr
,
974 ans
? "Present" : "NOT Present");
978 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr
));
979 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr
));
980 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr
) ? "double" : "single");
981 debugf2("\t\tNUMROW: %s\n", numrow_toString
[MTR_DIMM_ROWS(mtr
)]);
982 debugf2("\t\tNUMCOL: %s\n", numcol_toString
[MTR_DIMM_COLS(mtr
)]);
985 static void handle_channel(struct i5000_pvt
*pvt
, int csrow
, int channel
,
986 struct i5000_dimm_info
*dinfo
)
992 mtr
= determine_mtr(pvt
, csrow
, channel
);
993 if (MTR_DIMMS_PRESENT(mtr
)) {
994 amb_present_reg
= determine_amb_present_reg(pvt
, channel
);
996 /* Determine if there is a DIMM present in this DIMM slot */
997 if (amb_present_reg
& (1 << (csrow
>> 1))) {
998 dinfo
->dual_rank
= MTR_DIMM_RANK(mtr
);
1000 if (!((dinfo
->dual_rank
== 0) &&
1001 ((csrow
& 0x1) == 0x1))) {
1002 /* Start with the number of bits for a Bank
1004 addrBits
= MTR_DRAM_BANKS_ADDR_BITS(mtr
);
1005 /* Add thenumber of ROW bits */
1006 addrBits
+= MTR_DIMM_ROWS_ADDR_BITS(mtr
);
1007 /* add the number of COLUMN bits */
1008 addrBits
+= MTR_DIMM_COLS_ADDR_BITS(mtr
);
1010 addrBits
+= 6; /* add 64 bits per DIMM */
1011 addrBits
-= 20; /* divide by 2^^20 */
1012 addrBits
-= 3; /* 8 bits per bytes */
1014 dinfo
->megabytes
= 1 << addrBits
;
1021 * calculate_dimm_size
1023 * also will output a DIMM matrix map, if debug is enabled, for viewing
1024 * how the DIMMs are populated
1026 static void calculate_dimm_size(struct i5000_pvt
*pvt
)
1028 struct i5000_dimm_info
*dinfo
;
1029 int csrow
, max_csrows
;
1030 char *p
, *mem_buffer
;
1034 /* ================= Generate some debug output ================= */
1036 mem_buffer
= p
= kmalloc(space
, GFP_KERNEL
);
1038 i5000_printk(KERN_ERR
, "MC: %s:%s() kmalloc() failed\n",
1039 __FILE__
, __func__
);
1043 n
= snprintf(p
, space
, "\n");
1047 /* Scan all the actual CSROWS (which is # of DIMMS * 2)
1048 * and calculate the information for each DIMM
1049 * Start with the highest csrow first, to display it first
1050 * and work toward the 0th csrow
1052 max_csrows
= pvt
->maxdimmperch
* 2;
1053 for (csrow
= max_csrows
- 1; csrow
>= 0; csrow
--) {
1055 /* on an odd csrow, first output a 'boundary' marker,
1056 * then reset the message buffer */
1058 n
= snprintf(p
, space
, "---------------------------"
1059 "--------------------------------");
1062 debugf2("%s\n", mem_buffer
);
1066 n
= snprintf(p
, space
, "csrow %2d ", csrow
);
1070 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
1071 dinfo
= &pvt
->dimm_info
[csrow
][channel
];
1072 handle_channel(pvt
, csrow
, channel
, dinfo
);
1073 n
= snprintf(p
, space
, "%4d MB | ", dinfo
->megabytes
);
1077 n
= snprintf(p
, space
, "\n");
1082 /* Output the last bottom 'boundary' marker */
1083 n
= snprintf(p
, space
, "---------------------------"
1084 "--------------------------------\n");
1088 /* now output the 'channel' labels */
1089 n
= snprintf(p
, space
, " ");
1092 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
1093 n
= snprintf(p
, space
, "channel %d | ", channel
);
1097 n
= snprintf(p
, space
, "\n");
1101 /* output the last message and free buffer */
1102 debugf2("%s\n", mem_buffer
);
1107 * i5000_get_mc_regs read in the necessary registers and
1110 * Fills in the private data members
1112 static void i5000_get_mc_regs(struct mem_ctl_info
*mci
)
1114 struct i5000_pvt
*pvt
;
1122 pvt
= mci
->pvt_info
;
1124 pci_read_config_dword(pvt
->system_address
, AMBASE
,
1125 (u32
*) & pvt
->ambase
);
1126 pci_read_config_dword(pvt
->system_address
, AMBASE
+ sizeof(u32
),
1127 ((u32
*) & pvt
->ambase
) + sizeof(u32
));
1129 maxdimmperch
= pvt
->maxdimmperch
;
1132 debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1133 (long unsigned int)pvt
->ambase
, pvt
->maxch
, pvt
->maxdimmperch
);
1135 /* Get the Branch Map regs */
1136 pci_read_config_word(pvt
->branchmap_werrors
, TOLM
, &pvt
->tolm
);
1138 debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt
->tolm
,
1141 actual_tolm
= pvt
->tolm
<< 28;
1142 debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm
, actual_tolm
);
1144 pci_read_config_word(pvt
->branchmap_werrors
, MIR0
, &pvt
->mir0
);
1145 pci_read_config_word(pvt
->branchmap_werrors
, MIR1
, &pvt
->mir1
);
1146 pci_read_config_word(pvt
->branchmap_werrors
, MIR2
, &pvt
->mir2
);
1148 /* Get the MIR[0-2] regs */
1149 limit
= (pvt
->mir0
>> 4) & 0x0FFF;
1150 way0
= pvt
->mir0
& 0x1;
1151 way1
= pvt
->mir0
& 0x2;
1152 debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit
, way1
, way0
);
1153 limit
= (pvt
->mir1
>> 4) & 0x0FFF;
1154 way0
= pvt
->mir1
& 0x1;
1155 way1
= pvt
->mir1
& 0x2;
1156 debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit
, way1
, way0
);
1157 limit
= (pvt
->mir2
>> 4) & 0x0FFF;
1158 way0
= pvt
->mir2
& 0x1;
1159 way1
= pvt
->mir2
& 0x2;
1160 debugf2("MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit
, way1
, way0
);
1162 /* Get the MTR[0-3] regs */
1163 for (slot_row
= 0; slot_row
< NUM_MTRS
; slot_row
++) {
1164 int where
= MTR0
+ (slot_row
* sizeof(u32
));
1166 pci_read_config_word(pvt
->branch_0
, where
,
1167 &pvt
->b0_mtr
[slot_row
]);
1169 debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row
, where
,
1170 pvt
->b0_mtr
[slot_row
]);
1172 if (pvt
->maxch
>= CHANNELS_PER_BRANCH
) {
1173 pci_read_config_word(pvt
->branch_1
, where
,
1174 &pvt
->b1_mtr
[slot_row
]);
1175 debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row
,
1176 where
, pvt
->b0_mtr
[slot_row
]);
1178 pvt
->b1_mtr
[slot_row
] = 0;
1182 /* Read and dump branch 0's MTRs */
1183 debugf2("\nMemory Technology Registers:\n");
1184 debugf2(" Branch 0:\n");
1185 for (slot_row
= 0; slot_row
< NUM_MTRS
; slot_row
++) {
1186 decode_mtr(slot_row
, pvt
->b0_mtr
[slot_row
]);
1188 pci_read_config_word(pvt
->branch_0
, AMB_PRESENT_0
,
1189 &pvt
->b0_ambpresent0
);
1190 debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt
->b0_ambpresent0
);
1191 pci_read_config_word(pvt
->branch_0
, AMB_PRESENT_1
,
1192 &pvt
->b0_ambpresent1
);
1193 debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt
->b0_ambpresent1
);
1195 /* Only if we have 2 branchs (4 channels) */
1196 if (pvt
->maxch
< CHANNELS_PER_BRANCH
) {
1197 pvt
->b1_ambpresent0
= 0;
1198 pvt
->b1_ambpresent1
= 0;
1200 /* Read and dump branch 1's MTRs */
1201 debugf2(" Branch 1:\n");
1202 for (slot_row
= 0; slot_row
< NUM_MTRS
; slot_row
++) {
1203 decode_mtr(slot_row
, pvt
->b1_mtr
[slot_row
]);
1205 pci_read_config_word(pvt
->branch_1
, AMB_PRESENT_0
,
1206 &pvt
->b1_ambpresent0
);
1207 debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1208 pvt
->b1_ambpresent0
);
1209 pci_read_config_word(pvt
->branch_1
, AMB_PRESENT_1
,
1210 &pvt
->b1_ambpresent1
);
1211 debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1212 pvt
->b1_ambpresent1
);
1215 /* Go and determine the size of each DIMM and place in an
1217 calculate_dimm_size(pvt
);
1221 * i5000_init_csrows Initialize the 'csrows' table within
1222 * the mci control structure with the
1223 * addressing of memory.
1227 * 1 no actual memory found on this MC
1229 static int i5000_init_csrows(struct mem_ctl_info
*mci
)
1231 struct i5000_pvt
*pvt
;
1232 struct csrow_info
*p_csrow
;
1233 int empty
, channel_count
;
1240 pvt
= mci
->pvt_info
;
1242 channel_count
= pvt
->maxch
;
1243 max_csrows
= pvt
->maxdimmperch
* 2;
1245 empty
= 1; /* Assume NO memory */
1247 for (csrow
= 0; csrow
< max_csrows
; csrow
++) {
1248 p_csrow
= &mci
->csrows
[csrow
];
1250 p_csrow
->csrow_idx
= csrow
;
1252 /* use branch 0 for the basis */
1253 mtr
= pvt
->b0_mtr
[csrow
>> 1];
1255 /* if no DIMMS on this row, continue */
1256 if (!MTR_DIMMS_PRESENT(mtr
))
1259 /* FAKE OUT VALUES, FIXME */
1260 p_csrow
->first_page
= 0 + csrow
* 20;
1261 p_csrow
->last_page
= 9 + csrow
* 20;
1262 p_csrow
->page_mask
= 0xFFF;
1267 for (channel
= 0; channel
< pvt
->maxch
; channel
++) {
1268 csrow_megs
+= pvt
->dimm_info
[csrow
][channel
].megabytes
;
1271 p_csrow
->nr_pages
= csrow_megs
<< 8;
1273 /* Assume DDR2 for now */
1274 p_csrow
->mtype
= MEM_FB_DDR2
;
1276 /* ask what device type on this row */
1277 if (MTR_DRAM_WIDTH(mtr
))
1278 p_csrow
->dtype
= DEV_X8
;
1280 p_csrow
->dtype
= DEV_X4
;
1282 p_csrow
->edac_mode
= EDAC_S8ECD8ED
;
1291 * i5000_enable_error_reporting
1292 * Turn on the memory reporting features of the hardware
1294 static void i5000_enable_error_reporting(struct mem_ctl_info
*mci
)
1296 struct i5000_pvt
*pvt
;
1299 pvt
= mci
->pvt_info
;
1301 /* Read the FBD Error Mask Register */
1302 pci_read_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1305 /* Enable with a '0' */
1306 fbd_error_mask
&= ~(ENABLE_EMASK_ALL
);
1308 pci_write_config_dword(pvt
->branchmap_werrors
, EMASK_FBD
,
1313 * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1315 * ask the device how many channels are present and how many CSROWS
1318 static void i5000_get_dimm_and_channel_counts(struct pci_dev
*pdev
,
1319 int *num_dimms_per_channel
,
1324 /* Need to retrieve just how many channels and dimms per channel are
1325 * supported on this memory controller
1327 pci_read_config_byte(pdev
, MAXDIMMPERCH
, &value
);
1328 *num_dimms_per_channel
= (int)value
*2;
1330 pci_read_config_byte(pdev
, MAXCH
, &value
);
1331 *num_channels
= (int)value
;
1335 * i5000_probe1 Probe for ONE instance of device to see if it is
1338 * 0 for FOUND a device
1339 * < 0 for error code
1341 static int i5000_probe1(struct pci_dev
*pdev
, int dev_idx
)
1343 struct mem_ctl_info
*mci
;
1344 struct i5000_pvt
*pvt
;
1346 int num_dimms_per_channel
;
1349 debugf0("MC: " __FILE__
": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1352 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1354 /* We only are looking for func 0 of the set */
1355 if (PCI_FUNC(pdev
->devfn
) != 0)
1358 /* Ask the devices for the number of CSROWS and CHANNELS so
1359 * that we can calculate the memory resources, etc
1361 * The Chipset will report what it can handle which will be greater
1362 * or equal to what the motherboard manufacturer will implement.
1364 * As we don't have a motherboard identification routine to determine
1365 * actual number of slots/dimms per channel, we thus utilize the
1366 * resource as specified by the chipset. Thus, we might have
1367 * have more DIMMs per channel than actually on the mobo, but this
1368 * allows the driver to support upto the chipset max, without
1369 * some fancy mobo determination.
1371 i5000_get_dimm_and_channel_counts(pdev
, &num_dimms_per_channel
,
1373 num_csrows
= num_dimms_per_channel
* 2;
1375 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1376 __func__
, num_channels
, num_dimms_per_channel
, num_csrows
);
1378 /* allocate a new MC control structure */
1379 mci
= edac_mc_alloc(sizeof(*pvt
), num_csrows
, num_channels
, 0);
1384 kobject_get(&mci
->edac_mci_kobj
);
1385 debugf0("MC: " __FILE__
": %s(): mci = %p\n", __func__
, mci
);
1387 mci
->dev
= &pdev
->dev
; /* record ptr to the generic device */
1389 pvt
= mci
->pvt_info
;
1390 pvt
->system_address
= pdev
; /* Record this device in our private */
1391 pvt
->maxch
= num_channels
;
1392 pvt
->maxdimmperch
= num_dimms_per_channel
;
1394 /* 'get' the pci devices we want to reserve for our use */
1395 if (i5000_get_devices(mci
, dev_idx
))
1398 /* Time to get serious */
1399 i5000_get_mc_regs(mci
); /* retrieve the hardware registers */
1402 mci
->mtype_cap
= MEM_FLAG_FB_DDR2
;
1403 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
1404 mci
->edac_cap
= EDAC_FLAG_NONE
;
1405 mci
->mod_name
= "i5000_edac.c";
1406 mci
->mod_ver
= I5000_REVISION
;
1407 mci
->ctl_name
= i5000_devs
[dev_idx
].ctl_name
;
1408 mci
->dev_name
= pci_name(pdev
);
1409 mci
->ctl_page_to_phys
= NULL
;
1411 /* Set the function pointer to an actual operation function */
1412 mci
->edac_check
= i5000_check_error
;
1414 /* initialize the MC control structure 'csrows' table
1415 * with the mapping and control information */
1416 if (i5000_init_csrows(mci
)) {
1417 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1418 " because i5000_init_csrows() returned nonzero "
1420 mci
->edac_cap
= EDAC_FLAG_NONE
; /* no csrows found */
1422 debugf1("MC: Enable error reporting now\n");
1423 i5000_enable_error_reporting(mci
);
1426 /* add this new MC control structure to EDAC's list of MCs */
1427 if (edac_mc_add_mc(mci
)) {
1428 debugf0("MC: " __FILE__
1429 ": %s(): failed edac_mc_add_mc()\n", __func__
);
1430 /* FIXME: perhaps some code should go here that disables error
1431 * reporting if we just enabled it
1436 i5000_clear_error(mci
);
1438 /* allocating generic PCI control info */
1439 i5000_pci
= edac_pci_create_generic_ctl(&pdev
->dev
, EDAC_MOD_STR
);
1442 "%s(): Unable to create PCI control\n",
1445 "%s(): PCI error report via EDAC not setup\n",
1451 /* Error exit unwinding stack */
1454 i5000_put_devices(mci
);
1457 kobject_put(&mci
->edac_mci_kobj
);
1463 * i5000_init_one constructor for one instance of device
1469 static int __devinit
i5000_init_one(struct pci_dev
*pdev
,
1470 const struct pci_device_id
*id
)
1474 debugf0("MC: " __FILE__
": %s()\n", __func__
);
1476 /* wake up device */
1477 rc
= pci_enable_device(pdev
);
1481 /* now probe and enable the device */
1482 return i5000_probe1(pdev
, id
->driver_data
);
1486 * i5000_remove_one destructor for one instance of device
1489 static void __devexit
i5000_remove_one(struct pci_dev
*pdev
)
1491 struct mem_ctl_info
*mci
;
1493 debugf0(__FILE__
": %s()\n", __func__
);
1496 edac_pci_release_generic_ctl(i5000_pci
);
1498 if ((mci
= edac_mc_del_mc(&pdev
->dev
)) == NULL
)
1501 /* retrieve references to resources, and free those resources */
1502 i5000_put_devices(mci
);
1503 kobject_put(&mci
->edac_mci_kobj
);
1508 * pci_device_id table for which devices we are looking for
1510 * The "E500P" device is the first device supported.
1512 static const struct pci_device_id i5000_pci_tbl
[] __devinitdata
= {
1513 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_I5000_DEV16
),
1514 .driver_data
= I5000P
},
1516 {0,} /* 0 terminated list. */
1519 MODULE_DEVICE_TABLE(pci
, i5000_pci_tbl
);
1522 * i5000_driver pci_driver structure for this module
1525 static struct pci_driver i5000_driver
= {
1526 .name
= KBUILD_BASENAME
,
1527 .probe
= i5000_init_one
,
1528 .remove
= __devexit_p(i5000_remove_one
),
1529 .id_table
= i5000_pci_tbl
,
1533 * i5000_init Module entry function
1534 * Try to initialize this module for its devices
1536 static int __init
i5000_init(void)
1540 debugf2("MC: " __FILE__
": %s()\n", __func__
);
1542 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1545 pci_rc
= pci_register_driver(&i5000_driver
);
1547 return (pci_rc
< 0) ? pci_rc
: 0;
1551 * i5000_exit() Module exit function
1552 * Unregister the driver
1554 static void __exit
i5000_exit(void)
1556 debugf2("MC: " __FILE__
": %s()\n", __func__
);
1557 pci_unregister_driver(&i5000_driver
);
1560 module_init(i5000_init
);
1561 module_exit(i5000_exit
);
1563 MODULE_LICENSE("GPL");
1565 ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1566 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1569 module_param(edac_op_state
, int, 0444);
1570 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
1571 module_param(misc_messages
, int, 0444);
1572 MODULE_PARM_DESC(misc_messages
, "Log miscellaneous non fatal messages");