4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/cpu_acct.h>
56 #include <linux/kthread.h>
57 #include <linux/seq_file.h>
58 #include <linux/sysctl.h>
59 #include <linux/syscalls.h>
60 #include <linux/times.h>
61 #include <linux/tsacct_kern.h>
62 #include <linux/kprobes.h>
63 #include <linux/delayacct.h>
64 #include <linux/reciprocal_div.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)jiffies
* (1000000000 / HZ
);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 static inline int rt_policy(int policy
)
138 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
143 static inline int task_has_rt_policy(struct task_struct
*p
)
145 return rt_policy(p
->policy
);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array
{
152 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
153 struct list_head queue
[MAX_RT_PRIO
];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
160 /* task group related information */
162 /* schedulable entities of this group on each cpu */
163 struct sched_entity
**se
;
164 /* runqueue "owned" by this group on each cpu */
165 struct cfs_rq
**cfs_rq
;
166 unsigned long shares
;
167 /* spinlock to serialize modification to shares */
171 /* Default task group's sched entity on each cpu */
172 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
173 /* Default task group's cfs_rq on each cpu */
174 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
176 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
177 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
179 /* Default task group.
180 * Every task in system belong to this group at bootup.
182 struct task_group init_task_group
= {
183 .se
= init_sched_entity_p
,
184 .cfs_rq
= init_cfs_rq_p
,
187 #ifdef CONFIG_FAIR_USER_SCHED
188 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
190 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
193 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
195 /* return group to which a task belongs */
196 static inline struct task_group
*task_group(struct task_struct
*p
)
198 struct task_group
*tg
;
200 #ifdef CONFIG_FAIR_USER_SCHED
203 tg
= &init_task_group
;
209 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
210 static inline void set_task_cfs_rq(struct task_struct
*p
)
212 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[task_cpu(p
)];
213 p
->se
.parent
= task_group(p
)->se
[task_cpu(p
)];
218 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
220 #endif /* CONFIG_FAIR_GROUP_SCHED */
222 /* CFS-related fields in a runqueue */
224 struct load_weight load
;
225 unsigned long nr_running
;
230 struct rb_root tasks_timeline
;
231 struct rb_node
*rb_leftmost
;
232 struct rb_node
*rb_load_balance_curr
;
233 /* 'curr' points to currently running entity on this cfs_rq.
234 * It is set to NULL otherwise (i.e when none are currently running).
236 struct sched_entity
*curr
;
238 unsigned long nr_spread_over
;
240 #ifdef CONFIG_FAIR_GROUP_SCHED
241 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
243 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
244 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
245 * (like users, containers etc.)
247 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
248 * list is used during load balance.
250 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
251 struct task_group
*tg
; /* group that "owns" this runqueue */
256 /* Real-Time classes' related field in a runqueue: */
258 struct rt_prio_array active
;
259 int rt_load_balance_idx
;
260 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
264 * This is the main, per-CPU runqueue data structure.
266 * Locking rule: those places that want to lock multiple runqueues
267 * (such as the load balancing or the thread migration code), lock
268 * acquire operations must be ordered by ascending &runqueue.
275 * nr_running and cpu_load should be in the same cacheline because
276 * remote CPUs use both these fields when doing load calculation.
278 unsigned long nr_running
;
279 #define CPU_LOAD_IDX_MAX 5
280 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
281 unsigned char idle_at_tick
;
283 unsigned char in_nohz_recently
;
285 /* capture load from *all* tasks on this cpu: */
286 struct load_weight load
;
287 unsigned long nr_load_updates
;
291 #ifdef CONFIG_FAIR_GROUP_SCHED
292 /* list of leaf cfs_rq on this cpu: */
293 struct list_head leaf_cfs_rq_list
;
298 * This is part of a global counter where only the total sum
299 * over all CPUs matters. A task can increase this counter on
300 * one CPU and if it got migrated afterwards it may decrease
301 * it on another CPU. Always updated under the runqueue lock:
303 unsigned long nr_uninterruptible
;
305 struct task_struct
*curr
, *idle
;
306 unsigned long next_balance
;
307 struct mm_struct
*prev_mm
;
309 u64 clock
, prev_clock_raw
;
312 unsigned int clock_warps
, clock_overflows
;
314 unsigned int clock_deep_idle_events
;
320 struct sched_domain
*sd
;
322 /* For active balancing */
325 /* cpu of this runqueue: */
328 struct task_struct
*migration_thread
;
329 struct list_head migration_queue
;
332 #ifdef CONFIG_SCHEDSTATS
334 struct sched_info rq_sched_info
;
336 /* sys_sched_yield() stats */
337 unsigned int yld_exp_empty
;
338 unsigned int yld_act_empty
;
339 unsigned int yld_both_empty
;
340 unsigned int yld_count
;
342 /* schedule() stats */
343 unsigned int sched_switch
;
344 unsigned int sched_count
;
345 unsigned int sched_goidle
;
347 /* try_to_wake_up() stats */
348 unsigned int ttwu_count
;
349 unsigned int ttwu_local
;
352 unsigned int bkl_count
;
354 struct lock_class_key rq_lock_key
;
357 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
358 static DEFINE_MUTEX(sched_hotcpu_mutex
);
360 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
362 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
365 static inline int cpu_of(struct rq
*rq
)
375 * Update the per-runqueue clock, as finegrained as the platform can give
376 * us, but without assuming monotonicity, etc.:
378 static void __update_rq_clock(struct rq
*rq
)
380 u64 prev_raw
= rq
->prev_clock_raw
;
381 u64 now
= sched_clock();
382 s64 delta
= now
- prev_raw
;
383 u64 clock
= rq
->clock
;
385 #ifdef CONFIG_SCHED_DEBUG
386 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
389 * Protect against sched_clock() occasionally going backwards:
391 if (unlikely(delta
< 0)) {
396 * Catch too large forward jumps too:
398 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
399 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
400 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
403 rq
->clock_overflows
++;
405 if (unlikely(delta
> rq
->clock_max_delta
))
406 rq
->clock_max_delta
= delta
;
411 rq
->prev_clock_raw
= now
;
415 static void update_rq_clock(struct rq
*rq
)
417 if (likely(smp_processor_id() == cpu_of(rq
)))
418 __update_rq_clock(rq
);
422 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
423 * See detach_destroy_domains: synchronize_sched for details.
425 * The domain tree of any CPU may only be accessed from within
426 * preempt-disabled sections.
428 #define for_each_domain(cpu, __sd) \
429 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
431 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
432 #define this_rq() (&__get_cpu_var(runqueues))
433 #define task_rq(p) cpu_rq(task_cpu(p))
434 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
437 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
439 #ifdef CONFIG_SCHED_DEBUG
440 # define const_debug __read_mostly
442 # define const_debug static const
446 * Debugging: various feature bits
449 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
450 SCHED_FEAT_START_DEBIT
= 2,
451 SCHED_FEAT_TREE_AVG
= 4,
452 SCHED_FEAT_APPROX_AVG
= 8,
453 SCHED_FEAT_WAKEUP_PREEMPT
= 16,
454 SCHED_FEAT_PREEMPT_RESTRICT
= 32,
457 const_debug
unsigned int sysctl_sched_features
=
458 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
459 SCHED_FEAT_START_DEBIT
* 1 |
460 SCHED_FEAT_TREE_AVG
* 0 |
461 SCHED_FEAT_APPROX_AVG
* 0 |
462 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
463 SCHED_FEAT_PREEMPT_RESTRICT
* 1;
465 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
468 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
469 * clock constructed from sched_clock():
471 unsigned long long cpu_clock(int cpu
)
473 unsigned long long now
;
477 local_irq_save(flags
);
481 local_irq_restore(flags
);
485 EXPORT_SYMBOL_GPL(cpu_clock
);
487 #ifndef prepare_arch_switch
488 # define prepare_arch_switch(next) do { } while (0)
490 #ifndef finish_arch_switch
491 # define finish_arch_switch(prev) do { } while (0)
494 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
495 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
497 return rq
->curr
== p
;
500 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
504 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
506 #ifdef CONFIG_DEBUG_SPINLOCK
507 /* this is a valid case when another task releases the spinlock */
508 rq
->lock
.owner
= current
;
511 * If we are tracking spinlock dependencies then we have to
512 * fix up the runqueue lock - which gets 'carried over' from
515 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
517 spin_unlock_irq(&rq
->lock
);
520 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
521 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
526 return rq
->curr
== p
;
530 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
534 * We can optimise this out completely for !SMP, because the
535 * SMP rebalancing from interrupt is the only thing that cares
540 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
541 spin_unlock_irq(&rq
->lock
);
543 spin_unlock(&rq
->lock
);
547 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
551 * After ->oncpu is cleared, the task can be moved to a different CPU.
552 * We must ensure this doesn't happen until the switch is completely
558 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
562 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
565 * __task_rq_lock - lock the runqueue a given task resides on.
566 * Must be called interrupts disabled.
568 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
572 struct rq
*rq
= task_rq(p
);
573 spin_lock(&rq
->lock
);
574 if (likely(rq
== task_rq(p
)))
576 spin_unlock(&rq
->lock
);
581 * task_rq_lock - lock the runqueue a given task resides on and disable
582 * interrupts. Note the ordering: we can safely lookup the task_rq without
583 * explicitly disabling preemption.
585 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
591 local_irq_save(*flags
);
593 spin_lock(&rq
->lock
);
594 if (likely(rq
== task_rq(p
)))
596 spin_unlock_irqrestore(&rq
->lock
, *flags
);
600 static void __task_rq_unlock(struct rq
*rq
)
603 spin_unlock(&rq
->lock
);
606 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
609 spin_unlock_irqrestore(&rq
->lock
, *flags
);
613 * this_rq_lock - lock this runqueue and disable interrupts.
615 static struct rq
*this_rq_lock(void)
622 spin_lock(&rq
->lock
);
628 * We are going deep-idle (irqs are disabled):
630 void sched_clock_idle_sleep_event(void)
632 struct rq
*rq
= cpu_rq(smp_processor_id());
634 spin_lock(&rq
->lock
);
635 __update_rq_clock(rq
);
636 spin_unlock(&rq
->lock
);
637 rq
->clock_deep_idle_events
++;
639 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
642 * We just idled delta nanoseconds (called with irqs disabled):
644 void sched_clock_idle_wakeup_event(u64 delta_ns
)
646 struct rq
*rq
= cpu_rq(smp_processor_id());
647 u64 now
= sched_clock();
649 rq
->idle_clock
+= delta_ns
;
651 * Override the previous timestamp and ignore all
652 * sched_clock() deltas that occured while we idled,
653 * and use the PM-provided delta_ns to advance the
656 spin_lock(&rq
->lock
);
657 rq
->prev_clock_raw
= now
;
658 rq
->clock
+= delta_ns
;
659 spin_unlock(&rq
->lock
);
661 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
664 * resched_task - mark a task 'to be rescheduled now'.
666 * On UP this means the setting of the need_resched flag, on SMP it
667 * might also involve a cross-CPU call to trigger the scheduler on
672 #ifndef tsk_is_polling
673 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
676 static void resched_task(struct task_struct
*p
)
680 assert_spin_locked(&task_rq(p
)->lock
);
682 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
685 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
688 if (cpu
== smp_processor_id())
691 /* NEED_RESCHED must be visible before we test polling */
693 if (!tsk_is_polling(p
))
694 smp_send_reschedule(cpu
);
697 static void resched_cpu(int cpu
)
699 struct rq
*rq
= cpu_rq(cpu
);
702 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
704 resched_task(cpu_curr(cpu
));
705 spin_unlock_irqrestore(&rq
->lock
, flags
);
708 static inline void resched_task(struct task_struct
*p
)
710 assert_spin_locked(&task_rq(p
)->lock
);
711 set_tsk_need_resched(p
);
715 #if BITS_PER_LONG == 32
716 # define WMULT_CONST (~0UL)
718 # define WMULT_CONST (1UL << 32)
721 #define WMULT_SHIFT 32
724 * Shift right and round:
726 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
729 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
730 struct load_weight
*lw
)
734 if (unlikely(!lw
->inv_weight
))
735 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
737 tmp
= (u64
)delta_exec
* weight
;
739 * Check whether we'd overflow the 64-bit multiplication:
741 if (unlikely(tmp
> WMULT_CONST
))
742 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
745 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
747 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
750 static inline unsigned long
751 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
753 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
756 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
761 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
767 * To aid in avoiding the subversion of "niceness" due to uneven distribution
768 * of tasks with abnormal "nice" values across CPUs the contribution that
769 * each task makes to its run queue's load is weighted according to its
770 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
771 * scaled version of the new time slice allocation that they receive on time
775 #define WEIGHT_IDLEPRIO 2
776 #define WMULT_IDLEPRIO (1 << 31)
779 * Nice levels are multiplicative, with a gentle 10% change for every
780 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
781 * nice 1, it will get ~10% less CPU time than another CPU-bound task
782 * that remained on nice 0.
784 * The "10% effect" is relative and cumulative: from _any_ nice level,
785 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
786 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
787 * If a task goes up by ~10% and another task goes down by ~10% then
788 * the relative distance between them is ~25%.)
790 static const int prio_to_weight
[40] = {
791 /* -20 */ 88761, 71755, 56483, 46273, 36291,
792 /* -15 */ 29154, 23254, 18705, 14949, 11916,
793 /* -10 */ 9548, 7620, 6100, 4904, 3906,
794 /* -5 */ 3121, 2501, 1991, 1586, 1277,
795 /* 0 */ 1024, 820, 655, 526, 423,
796 /* 5 */ 335, 272, 215, 172, 137,
797 /* 10 */ 110, 87, 70, 56, 45,
798 /* 15 */ 36, 29, 23, 18, 15,
802 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
804 * In cases where the weight does not change often, we can use the
805 * precalculated inverse to speed up arithmetics by turning divisions
806 * into multiplications:
808 static const u32 prio_to_wmult
[40] = {
809 /* -20 */ 48388, 59856, 76040, 92818, 118348,
810 /* -15 */ 147320, 184698, 229616, 287308, 360437,
811 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
812 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
813 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
814 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
815 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
816 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
819 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
822 * runqueue iterator, to support SMP load-balancing between different
823 * scheduling classes, without having to expose their internal data
824 * structures to the load-balancing proper:
828 struct task_struct
*(*start
)(void *);
829 struct task_struct
*(*next
)(void *);
832 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
833 unsigned long max_nr_move
, unsigned long max_load_move
,
834 struct sched_domain
*sd
, enum cpu_idle_type idle
,
835 int *all_pinned
, unsigned long *load_moved
,
836 int *this_best_prio
, struct rq_iterator
*iterator
);
838 #include "sched_stats.h"
839 #include "sched_idletask.c"
840 #include "sched_fair.c"
841 #include "sched_rt.c"
842 #ifdef CONFIG_SCHED_DEBUG
843 # include "sched_debug.c"
846 #define sched_class_highest (&rt_sched_class)
849 * Update delta_exec, delta_fair fields for rq.
851 * delta_fair clock advances at a rate inversely proportional to
852 * total load (rq->load.weight) on the runqueue, while
853 * delta_exec advances at the same rate as wall-clock (provided
856 * delta_exec / delta_fair is a measure of the (smoothened) load on this
857 * runqueue over any given interval. This (smoothened) load is used
858 * during load balance.
860 * This function is called /before/ updating rq->load
861 * and when switching tasks.
863 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
865 update_load_add(&rq
->load
, p
->se
.load
.weight
);
868 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
870 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
873 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
879 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
885 static void set_load_weight(struct task_struct
*p
)
887 if (task_has_rt_policy(p
)) {
888 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
889 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
894 * SCHED_IDLE tasks get minimal weight:
896 if (p
->policy
== SCHED_IDLE
) {
897 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
898 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
902 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
903 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
906 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
908 sched_info_queued(p
);
909 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
913 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
915 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
920 * __normal_prio - return the priority that is based on the static prio
922 static inline int __normal_prio(struct task_struct
*p
)
924 return p
->static_prio
;
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
934 static inline int normal_prio(struct task_struct
*p
)
938 if (task_has_rt_policy(p
))
939 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
941 prio
= __normal_prio(p
);
946 * Calculate the current priority, i.e. the priority
947 * taken into account by the scheduler. This value might
948 * be boosted by RT tasks, or might be boosted by
949 * interactivity modifiers. Will be RT if the task got
950 * RT-boosted. If not then it returns p->normal_prio.
952 static int effective_prio(struct task_struct
*p
)
954 p
->normal_prio
= normal_prio(p
);
956 * If we are RT tasks or we were boosted to RT priority,
957 * keep the priority unchanged. Otherwise, update priority
958 * to the normal priority:
960 if (!rt_prio(p
->prio
))
961 return p
->normal_prio
;
966 * activate_task - move a task to the runqueue.
968 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
970 if (p
->state
== TASK_UNINTERRUPTIBLE
)
971 rq
->nr_uninterruptible
--;
973 enqueue_task(rq
, p
, wakeup
);
974 inc_nr_running(p
, rq
);
978 * deactivate_task - remove a task from the runqueue.
980 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
982 if (p
->state
== TASK_UNINTERRUPTIBLE
)
983 rq
->nr_uninterruptible
++;
985 dequeue_task(rq
, p
, sleep
);
986 dec_nr_running(p
, rq
);
990 * task_curr - is this task currently executing on a CPU?
991 * @p: the task in question.
993 inline int task_curr(const struct task_struct
*p
)
995 return cpu_curr(task_cpu(p
)) == p
;
998 /* Used instead of source_load when we know the type == 0 */
999 unsigned long weighted_cpuload(const int cpu
)
1001 return cpu_rq(cpu
)->load
.weight
;
1004 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1007 task_thread_info(p
)->cpu
= cpu
;
1015 * Is this task likely cache-hot:
1018 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1022 if (p
->sched_class
!= &fair_sched_class
)
1025 if (sysctl_sched_migration_cost
== -1)
1027 if (sysctl_sched_migration_cost
== 0)
1030 delta
= now
- p
->se
.exec_start
;
1032 return delta
< (s64
)sysctl_sched_migration_cost
;
1036 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1038 int old_cpu
= task_cpu(p
);
1039 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1040 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1041 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1044 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1046 #ifdef CONFIG_SCHEDSTATS
1047 if (p
->se
.wait_start
)
1048 p
->se
.wait_start
-= clock_offset
;
1049 if (p
->se
.sleep_start
)
1050 p
->se
.sleep_start
-= clock_offset
;
1051 if (p
->se
.block_start
)
1052 p
->se
.block_start
-= clock_offset
;
1053 if (old_cpu
!= new_cpu
) {
1054 schedstat_inc(p
, se
.nr_migrations
);
1055 if (task_hot(p
, old_rq
->clock
, NULL
))
1056 schedstat_inc(p
, se
.nr_forced2_migrations
);
1059 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1060 new_cfsrq
->min_vruntime
;
1062 __set_task_cpu(p
, new_cpu
);
1065 struct migration_req
{
1066 struct list_head list
;
1068 struct task_struct
*task
;
1071 struct completion done
;
1075 * The task's runqueue lock must be held.
1076 * Returns true if you have to wait for migration thread.
1079 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1081 struct rq
*rq
= task_rq(p
);
1084 * If the task is not on a runqueue (and not running), then
1085 * it is sufficient to simply update the task's cpu field.
1087 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1088 set_task_cpu(p
, dest_cpu
);
1092 init_completion(&req
->done
);
1094 req
->dest_cpu
= dest_cpu
;
1095 list_add(&req
->list
, &rq
->migration_queue
);
1101 * wait_task_inactive - wait for a thread to unschedule.
1103 * The caller must ensure that the task *will* unschedule sometime soon,
1104 * else this function might spin for a *long* time. This function can't
1105 * be called with interrupts off, or it may introduce deadlock with
1106 * smp_call_function() if an IPI is sent by the same process we are
1107 * waiting to become inactive.
1109 void wait_task_inactive(struct task_struct
*p
)
1111 unsigned long flags
;
1117 * We do the initial early heuristics without holding
1118 * any task-queue locks at all. We'll only try to get
1119 * the runqueue lock when things look like they will
1125 * If the task is actively running on another CPU
1126 * still, just relax and busy-wait without holding
1129 * NOTE! Since we don't hold any locks, it's not
1130 * even sure that "rq" stays as the right runqueue!
1131 * But we don't care, since "task_running()" will
1132 * return false if the runqueue has changed and p
1133 * is actually now running somewhere else!
1135 while (task_running(rq
, p
))
1139 * Ok, time to look more closely! We need the rq
1140 * lock now, to be *sure*. If we're wrong, we'll
1141 * just go back and repeat.
1143 rq
= task_rq_lock(p
, &flags
);
1144 running
= task_running(rq
, p
);
1145 on_rq
= p
->se
.on_rq
;
1146 task_rq_unlock(rq
, &flags
);
1149 * Was it really running after all now that we
1150 * checked with the proper locks actually held?
1152 * Oops. Go back and try again..
1154 if (unlikely(running
)) {
1160 * It's not enough that it's not actively running,
1161 * it must be off the runqueue _entirely_, and not
1164 * So if it wa still runnable (but just not actively
1165 * running right now), it's preempted, and we should
1166 * yield - it could be a while.
1168 if (unlikely(on_rq
)) {
1169 schedule_timeout_uninterruptible(1);
1174 * Ahh, all good. It wasn't running, and it wasn't
1175 * runnable, which means that it will never become
1176 * running in the future either. We're all done!
1183 * kick_process - kick a running thread to enter/exit the kernel
1184 * @p: the to-be-kicked thread
1186 * Cause a process which is running on another CPU to enter
1187 * kernel-mode, without any delay. (to get signals handled.)
1189 * NOTE: this function doesnt have to take the runqueue lock,
1190 * because all it wants to ensure is that the remote task enters
1191 * the kernel. If the IPI races and the task has been migrated
1192 * to another CPU then no harm is done and the purpose has been
1195 void kick_process(struct task_struct
*p
)
1201 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1202 smp_send_reschedule(cpu
);
1207 * Return a low guess at the load of a migration-source cpu weighted
1208 * according to the scheduling class and "nice" value.
1210 * We want to under-estimate the load of migration sources, to
1211 * balance conservatively.
1213 static unsigned long source_load(int cpu
, int type
)
1215 struct rq
*rq
= cpu_rq(cpu
);
1216 unsigned long total
= weighted_cpuload(cpu
);
1221 return min(rq
->cpu_load
[type
-1], total
);
1225 * Return a high guess at the load of a migration-target cpu weighted
1226 * according to the scheduling class and "nice" value.
1228 static unsigned long target_load(int cpu
, int type
)
1230 struct rq
*rq
= cpu_rq(cpu
);
1231 unsigned long total
= weighted_cpuload(cpu
);
1236 return max(rq
->cpu_load
[type
-1], total
);
1240 * Return the average load per task on the cpu's run queue
1242 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1244 struct rq
*rq
= cpu_rq(cpu
);
1245 unsigned long total
= weighted_cpuload(cpu
);
1246 unsigned long n
= rq
->nr_running
;
1248 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1252 * find_idlest_group finds and returns the least busy CPU group within the
1255 static struct sched_group
*
1256 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1258 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1259 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1260 int load_idx
= sd
->forkexec_idx
;
1261 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1264 unsigned long load
, avg_load
;
1268 /* Skip over this group if it has no CPUs allowed */
1269 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1272 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1274 /* Tally up the load of all CPUs in the group */
1277 for_each_cpu_mask(i
, group
->cpumask
) {
1278 /* Bias balancing toward cpus of our domain */
1280 load
= source_load(i
, load_idx
);
1282 load
= target_load(i
, load_idx
);
1287 /* Adjust by relative CPU power of the group */
1288 avg_load
= sg_div_cpu_power(group
,
1289 avg_load
* SCHED_LOAD_SCALE
);
1292 this_load
= avg_load
;
1294 } else if (avg_load
< min_load
) {
1295 min_load
= avg_load
;
1298 } while (group
= group
->next
, group
!= sd
->groups
);
1300 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1306 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1309 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1312 unsigned long load
, min_load
= ULONG_MAX
;
1316 /* Traverse only the allowed CPUs */
1317 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1319 for_each_cpu_mask(i
, tmp
) {
1320 load
= weighted_cpuload(i
);
1322 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1332 * sched_balance_self: balance the current task (running on cpu) in domains
1333 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1336 * Balance, ie. select the least loaded group.
1338 * Returns the target CPU number, or the same CPU if no balancing is needed.
1340 * preempt must be disabled.
1342 static int sched_balance_self(int cpu
, int flag
)
1344 struct task_struct
*t
= current
;
1345 struct sched_domain
*tmp
, *sd
= NULL
;
1347 for_each_domain(cpu
, tmp
) {
1349 * If power savings logic is enabled for a domain, stop there.
1351 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1353 if (tmp
->flags
& flag
)
1359 struct sched_group
*group
;
1360 int new_cpu
, weight
;
1362 if (!(sd
->flags
& flag
)) {
1368 group
= find_idlest_group(sd
, t
, cpu
);
1374 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1375 if (new_cpu
== -1 || new_cpu
== cpu
) {
1376 /* Now try balancing at a lower domain level of cpu */
1381 /* Now try balancing at a lower domain level of new_cpu */
1384 weight
= cpus_weight(span
);
1385 for_each_domain(cpu
, tmp
) {
1386 if (weight
<= cpus_weight(tmp
->span
))
1388 if (tmp
->flags
& flag
)
1391 /* while loop will break here if sd == NULL */
1397 #endif /* CONFIG_SMP */
1400 * wake_idle() will wake a task on an idle cpu if task->cpu is
1401 * not idle and an idle cpu is available. The span of cpus to
1402 * search starts with cpus closest then further out as needed,
1403 * so we always favor a closer, idle cpu.
1405 * Returns the CPU we should wake onto.
1407 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1408 static int wake_idle(int cpu
, struct task_struct
*p
)
1411 struct sched_domain
*sd
;
1415 * If it is idle, then it is the best cpu to run this task.
1417 * This cpu is also the best, if it has more than one task already.
1418 * Siblings must be also busy(in most cases) as they didn't already
1419 * pickup the extra load from this cpu and hence we need not check
1420 * sibling runqueue info. This will avoid the checks and cache miss
1421 * penalities associated with that.
1423 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1426 for_each_domain(cpu
, sd
) {
1427 if (sd
->flags
& SD_WAKE_IDLE
) {
1428 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1429 for_each_cpu_mask(i
, tmp
) {
1431 if (i
!= task_cpu(p
)) {
1433 se
.nr_wakeups_idle
);
1445 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1452 * try_to_wake_up - wake up a thread
1453 * @p: the to-be-woken-up thread
1454 * @state: the mask of task states that can be woken
1455 * @sync: do a synchronous wakeup?
1457 * Put it on the run-queue if it's not already there. The "current"
1458 * thread is always on the run-queue (except when the actual
1459 * re-schedule is in progress), and as such you're allowed to do
1460 * the simpler "current->state = TASK_RUNNING" to mark yourself
1461 * runnable without the overhead of this.
1463 * returns failure only if the task is already active.
1465 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1467 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1468 unsigned long flags
;
1472 struct sched_domain
*sd
, *this_sd
= NULL
;
1473 unsigned long load
, this_load
;
1477 rq
= task_rq_lock(p
, &flags
);
1478 old_state
= p
->state
;
1479 if (!(old_state
& state
))
1487 this_cpu
= smp_processor_id();
1490 if (unlikely(task_running(rq
, p
)))
1495 schedstat_inc(rq
, ttwu_count
);
1496 if (cpu
== this_cpu
) {
1497 schedstat_inc(rq
, ttwu_local
);
1501 for_each_domain(this_cpu
, sd
) {
1502 if (cpu_isset(cpu
, sd
->span
)) {
1503 schedstat_inc(sd
, ttwu_wake_remote
);
1509 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1513 * Check for affine wakeup and passive balancing possibilities.
1516 int idx
= this_sd
->wake_idx
;
1517 unsigned int imbalance
;
1519 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1521 load
= source_load(cpu
, idx
);
1522 this_load
= target_load(this_cpu
, idx
);
1524 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1526 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1527 unsigned long tl
= this_load
;
1528 unsigned long tl_per_task
;
1531 * Attract cache-cold tasks on sync wakeups:
1533 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1536 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1537 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1540 * If sync wakeup then subtract the (maximum possible)
1541 * effect of the currently running task from the load
1542 * of the current CPU:
1545 tl
-= current
->se
.load
.weight
;
1548 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1549 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1551 * This domain has SD_WAKE_AFFINE and
1552 * p is cache cold in this domain, and
1553 * there is no bad imbalance.
1555 schedstat_inc(this_sd
, ttwu_move_affine
);
1556 schedstat_inc(p
, se
.nr_wakeups_affine
);
1562 * Start passive balancing when half the imbalance_pct
1565 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1566 if (imbalance
*this_load
<= 100*load
) {
1567 schedstat_inc(this_sd
, ttwu_move_balance
);
1568 schedstat_inc(p
, se
.nr_wakeups_passive
);
1574 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1576 new_cpu
= wake_idle(new_cpu
, p
);
1577 if (new_cpu
!= cpu
) {
1578 set_task_cpu(p
, new_cpu
);
1579 task_rq_unlock(rq
, &flags
);
1580 /* might preempt at this point */
1581 rq
= task_rq_lock(p
, &flags
);
1582 old_state
= p
->state
;
1583 if (!(old_state
& state
))
1588 this_cpu
= smp_processor_id();
1593 #endif /* CONFIG_SMP */
1594 schedstat_inc(p
, se
.nr_wakeups
);
1596 schedstat_inc(p
, se
.nr_wakeups_sync
);
1597 if (orig_cpu
!= cpu
)
1598 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1599 if (cpu
== this_cpu
)
1600 schedstat_inc(p
, se
.nr_wakeups_local
);
1602 schedstat_inc(p
, se
.nr_wakeups_remote
);
1603 update_rq_clock(rq
);
1604 activate_task(rq
, p
, 1);
1605 check_preempt_curr(rq
, p
);
1609 p
->state
= TASK_RUNNING
;
1611 task_rq_unlock(rq
, &flags
);
1616 int fastcall
wake_up_process(struct task_struct
*p
)
1618 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1619 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1621 EXPORT_SYMBOL(wake_up_process
);
1623 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1625 return try_to_wake_up(p
, state
, 0);
1629 * Perform scheduler related setup for a newly forked process p.
1630 * p is forked by current.
1632 * __sched_fork() is basic setup used by init_idle() too:
1634 static void __sched_fork(struct task_struct
*p
)
1636 p
->se
.exec_start
= 0;
1637 p
->se
.sum_exec_runtime
= 0;
1638 p
->se
.prev_sum_exec_runtime
= 0;
1640 #ifdef CONFIG_SCHEDSTATS
1641 p
->se
.wait_start
= 0;
1642 p
->se
.sum_sleep_runtime
= 0;
1643 p
->se
.sleep_start
= 0;
1644 p
->se
.block_start
= 0;
1645 p
->se
.sleep_max
= 0;
1646 p
->se
.block_max
= 0;
1648 p
->se
.slice_max
= 0;
1652 INIT_LIST_HEAD(&p
->run_list
);
1655 #ifdef CONFIG_PREEMPT_NOTIFIERS
1656 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1660 * We mark the process as running here, but have not actually
1661 * inserted it onto the runqueue yet. This guarantees that
1662 * nobody will actually run it, and a signal or other external
1663 * event cannot wake it up and insert it on the runqueue either.
1665 p
->state
= TASK_RUNNING
;
1669 * fork()/clone()-time setup:
1671 void sched_fork(struct task_struct
*p
, int clone_flags
)
1673 int cpu
= get_cpu();
1678 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1680 set_task_cpu(p
, cpu
);
1683 * Make sure we do not leak PI boosting priority to the child:
1685 p
->prio
= current
->normal_prio
;
1686 if (!rt_prio(p
->prio
))
1687 p
->sched_class
= &fair_sched_class
;
1689 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1690 if (likely(sched_info_on()))
1691 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1693 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1696 #ifdef CONFIG_PREEMPT
1697 /* Want to start with kernel preemption disabled. */
1698 task_thread_info(p
)->preempt_count
= 1;
1704 * wake_up_new_task - wake up a newly created task for the first time.
1706 * This function will do some initial scheduler statistics housekeeping
1707 * that must be done for every newly created context, then puts the task
1708 * on the runqueue and wakes it.
1710 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1712 unsigned long flags
;
1715 rq
= task_rq_lock(p
, &flags
);
1716 BUG_ON(p
->state
!= TASK_RUNNING
);
1717 update_rq_clock(rq
);
1719 p
->prio
= effective_prio(p
);
1721 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1722 activate_task(rq
, p
, 0);
1725 * Let the scheduling class do new task startup
1726 * management (if any):
1728 p
->sched_class
->task_new(rq
, p
);
1729 inc_nr_running(p
, rq
);
1731 check_preempt_curr(rq
, p
);
1732 task_rq_unlock(rq
, &flags
);
1735 #ifdef CONFIG_PREEMPT_NOTIFIERS
1738 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1739 * @notifier: notifier struct to register
1741 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1743 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1745 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1748 * preempt_notifier_unregister - no longer interested in preemption notifications
1749 * @notifier: notifier struct to unregister
1751 * This is safe to call from within a preemption notifier.
1753 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1755 hlist_del(¬ifier
->link
);
1757 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1759 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1761 struct preempt_notifier
*notifier
;
1762 struct hlist_node
*node
;
1764 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1765 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1769 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1770 struct task_struct
*next
)
1772 struct preempt_notifier
*notifier
;
1773 struct hlist_node
*node
;
1775 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1776 notifier
->ops
->sched_out(notifier
, next
);
1781 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1786 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1787 struct task_struct
*next
)
1794 * prepare_task_switch - prepare to switch tasks
1795 * @rq: the runqueue preparing to switch
1796 * @prev: the current task that is being switched out
1797 * @next: the task we are going to switch to.
1799 * This is called with the rq lock held and interrupts off. It must
1800 * be paired with a subsequent finish_task_switch after the context
1803 * prepare_task_switch sets up locking and calls architecture specific
1807 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1808 struct task_struct
*next
)
1810 fire_sched_out_preempt_notifiers(prev
, next
);
1811 prepare_lock_switch(rq
, next
);
1812 prepare_arch_switch(next
);
1816 * finish_task_switch - clean up after a task-switch
1817 * @rq: runqueue associated with task-switch
1818 * @prev: the thread we just switched away from.
1820 * finish_task_switch must be called after the context switch, paired
1821 * with a prepare_task_switch call before the context switch.
1822 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1823 * and do any other architecture-specific cleanup actions.
1825 * Note that we may have delayed dropping an mm in context_switch(). If
1826 * so, we finish that here outside of the runqueue lock. (Doing it
1827 * with the lock held can cause deadlocks; see schedule() for
1830 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1831 __releases(rq
->lock
)
1833 struct mm_struct
*mm
= rq
->prev_mm
;
1839 * A task struct has one reference for the use as "current".
1840 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1841 * schedule one last time. The schedule call will never return, and
1842 * the scheduled task must drop that reference.
1843 * The test for TASK_DEAD must occur while the runqueue locks are
1844 * still held, otherwise prev could be scheduled on another cpu, die
1845 * there before we look at prev->state, and then the reference would
1847 * Manfred Spraul <manfred@colorfullife.com>
1849 prev_state
= prev
->state
;
1850 finish_arch_switch(prev
);
1851 finish_lock_switch(rq
, prev
);
1852 fire_sched_in_preempt_notifiers(current
);
1855 if (unlikely(prev_state
== TASK_DEAD
)) {
1857 * Remove function-return probe instances associated with this
1858 * task and put them back on the free list.
1860 kprobe_flush_task(prev
);
1861 put_task_struct(prev
);
1866 * schedule_tail - first thing a freshly forked thread must call.
1867 * @prev: the thread we just switched away from.
1869 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1870 __releases(rq
->lock
)
1872 struct rq
*rq
= this_rq();
1874 finish_task_switch(rq
, prev
);
1875 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1876 /* In this case, finish_task_switch does not reenable preemption */
1879 if (current
->set_child_tid
)
1880 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1884 * context_switch - switch to the new MM and the new
1885 * thread's register state.
1888 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1889 struct task_struct
*next
)
1891 struct mm_struct
*mm
, *oldmm
;
1893 prepare_task_switch(rq
, prev
, next
);
1895 oldmm
= prev
->active_mm
;
1897 * For paravirt, this is coupled with an exit in switch_to to
1898 * combine the page table reload and the switch backend into
1901 arch_enter_lazy_cpu_mode();
1903 if (unlikely(!mm
)) {
1904 next
->active_mm
= oldmm
;
1905 atomic_inc(&oldmm
->mm_count
);
1906 enter_lazy_tlb(oldmm
, next
);
1908 switch_mm(oldmm
, mm
, next
);
1910 if (unlikely(!prev
->mm
)) {
1911 prev
->active_mm
= NULL
;
1912 rq
->prev_mm
= oldmm
;
1915 * Since the runqueue lock will be released by the next
1916 * task (which is an invalid locking op but in the case
1917 * of the scheduler it's an obvious special-case), so we
1918 * do an early lockdep release here:
1920 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1921 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1924 /* Here we just switch the register state and the stack. */
1925 switch_to(prev
, next
, prev
);
1929 * this_rq must be evaluated again because prev may have moved
1930 * CPUs since it called schedule(), thus the 'rq' on its stack
1931 * frame will be invalid.
1933 finish_task_switch(this_rq(), prev
);
1937 * nr_running, nr_uninterruptible and nr_context_switches:
1939 * externally visible scheduler statistics: current number of runnable
1940 * threads, current number of uninterruptible-sleeping threads, total
1941 * number of context switches performed since bootup.
1943 unsigned long nr_running(void)
1945 unsigned long i
, sum
= 0;
1947 for_each_online_cpu(i
)
1948 sum
+= cpu_rq(i
)->nr_running
;
1953 unsigned long nr_uninterruptible(void)
1955 unsigned long i
, sum
= 0;
1957 for_each_possible_cpu(i
)
1958 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1961 * Since we read the counters lockless, it might be slightly
1962 * inaccurate. Do not allow it to go below zero though:
1964 if (unlikely((long)sum
< 0))
1970 unsigned long long nr_context_switches(void)
1973 unsigned long long sum
= 0;
1975 for_each_possible_cpu(i
)
1976 sum
+= cpu_rq(i
)->nr_switches
;
1981 unsigned long nr_iowait(void)
1983 unsigned long i
, sum
= 0;
1985 for_each_possible_cpu(i
)
1986 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1991 unsigned long nr_active(void)
1993 unsigned long i
, running
= 0, uninterruptible
= 0;
1995 for_each_online_cpu(i
) {
1996 running
+= cpu_rq(i
)->nr_running
;
1997 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2000 if (unlikely((long)uninterruptible
< 0))
2001 uninterruptible
= 0;
2003 return running
+ uninterruptible
;
2007 * Update rq->cpu_load[] statistics. This function is usually called every
2008 * scheduler tick (TICK_NSEC).
2010 static void update_cpu_load(struct rq
*this_rq
)
2012 unsigned long this_load
= this_rq
->load
.weight
;
2015 this_rq
->nr_load_updates
++;
2017 /* Update our load: */
2018 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2019 unsigned long old_load
, new_load
;
2021 /* scale is effectively 1 << i now, and >> i divides by scale */
2023 old_load
= this_rq
->cpu_load
[i
];
2024 new_load
= this_load
;
2026 * Round up the averaging division if load is increasing. This
2027 * prevents us from getting stuck on 9 if the load is 10, for
2030 if (new_load
> old_load
)
2031 new_load
+= scale
-1;
2032 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2039 * double_rq_lock - safely lock two runqueues
2041 * Note this does not disable interrupts like task_rq_lock,
2042 * you need to do so manually before calling.
2044 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2045 __acquires(rq1
->lock
)
2046 __acquires(rq2
->lock
)
2048 BUG_ON(!irqs_disabled());
2050 spin_lock(&rq1
->lock
);
2051 __acquire(rq2
->lock
); /* Fake it out ;) */
2054 spin_lock(&rq1
->lock
);
2055 spin_lock(&rq2
->lock
);
2057 spin_lock(&rq2
->lock
);
2058 spin_lock(&rq1
->lock
);
2061 update_rq_clock(rq1
);
2062 update_rq_clock(rq2
);
2066 * double_rq_unlock - safely unlock two runqueues
2068 * Note this does not restore interrupts like task_rq_unlock,
2069 * you need to do so manually after calling.
2071 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2072 __releases(rq1
->lock
)
2073 __releases(rq2
->lock
)
2075 spin_unlock(&rq1
->lock
);
2077 spin_unlock(&rq2
->lock
);
2079 __release(rq2
->lock
);
2083 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2085 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2086 __releases(this_rq
->lock
)
2087 __acquires(busiest
->lock
)
2088 __acquires(this_rq
->lock
)
2090 if (unlikely(!irqs_disabled())) {
2091 /* printk() doesn't work good under rq->lock */
2092 spin_unlock(&this_rq
->lock
);
2095 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2096 if (busiest
< this_rq
) {
2097 spin_unlock(&this_rq
->lock
);
2098 spin_lock(&busiest
->lock
);
2099 spin_lock(&this_rq
->lock
);
2101 spin_lock(&busiest
->lock
);
2106 * If dest_cpu is allowed for this process, migrate the task to it.
2107 * This is accomplished by forcing the cpu_allowed mask to only
2108 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2109 * the cpu_allowed mask is restored.
2111 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2113 struct migration_req req
;
2114 unsigned long flags
;
2117 rq
= task_rq_lock(p
, &flags
);
2118 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2119 || unlikely(cpu_is_offline(dest_cpu
)))
2122 /* force the process onto the specified CPU */
2123 if (migrate_task(p
, dest_cpu
, &req
)) {
2124 /* Need to wait for migration thread (might exit: take ref). */
2125 struct task_struct
*mt
= rq
->migration_thread
;
2127 get_task_struct(mt
);
2128 task_rq_unlock(rq
, &flags
);
2129 wake_up_process(mt
);
2130 put_task_struct(mt
);
2131 wait_for_completion(&req
.done
);
2136 task_rq_unlock(rq
, &flags
);
2140 * sched_exec - execve() is a valuable balancing opportunity, because at
2141 * this point the task has the smallest effective memory and cache footprint.
2143 void sched_exec(void)
2145 int new_cpu
, this_cpu
= get_cpu();
2146 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2148 if (new_cpu
!= this_cpu
)
2149 sched_migrate_task(current
, new_cpu
);
2153 * pull_task - move a task from a remote runqueue to the local runqueue.
2154 * Both runqueues must be locked.
2156 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2157 struct rq
*this_rq
, int this_cpu
)
2159 deactivate_task(src_rq
, p
, 0);
2160 set_task_cpu(p
, this_cpu
);
2161 activate_task(this_rq
, p
, 0);
2163 * Note that idle threads have a prio of MAX_PRIO, for this test
2164 * to be always true for them.
2166 check_preempt_curr(this_rq
, p
);
2170 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2173 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2174 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2178 * We do not migrate tasks that are:
2179 * 1) running (obviously), or
2180 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2181 * 3) are cache-hot on their current CPU.
2183 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2184 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2189 if (task_running(rq
, p
)) {
2190 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2195 * Aggressive migration if:
2196 * 1) task is cache cold, or
2197 * 2) too many balance attempts have failed.
2200 if (!task_hot(p
, rq
->clock
, sd
) ||
2201 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2202 #ifdef CONFIG_SCHEDSTATS
2203 if (task_hot(p
, rq
->clock
, sd
)) {
2204 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2205 schedstat_inc(p
, se
.nr_forced_migrations
);
2211 if (task_hot(p
, rq
->clock
, sd
)) {
2212 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2218 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2219 unsigned long max_nr_move
, unsigned long max_load_move
,
2220 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2221 int *all_pinned
, unsigned long *load_moved
,
2222 int *this_best_prio
, struct rq_iterator
*iterator
)
2224 int pulled
= 0, pinned
= 0, skip_for_load
;
2225 struct task_struct
*p
;
2226 long rem_load_move
= max_load_move
;
2228 if (max_nr_move
== 0 || max_load_move
== 0)
2234 * Start the load-balancing iterator:
2236 p
= iterator
->start(iterator
->arg
);
2241 * To help distribute high priority tasks accross CPUs we don't
2242 * skip a task if it will be the highest priority task (i.e. smallest
2243 * prio value) on its new queue regardless of its load weight
2245 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2246 SCHED_LOAD_SCALE_FUZZ
;
2247 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2248 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2249 p
= iterator
->next(iterator
->arg
);
2253 pull_task(busiest
, p
, this_rq
, this_cpu
);
2255 rem_load_move
-= p
->se
.load
.weight
;
2258 * We only want to steal up to the prescribed number of tasks
2259 * and the prescribed amount of weighted load.
2261 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2262 if (p
->prio
< *this_best_prio
)
2263 *this_best_prio
= p
->prio
;
2264 p
= iterator
->next(iterator
->arg
);
2269 * Right now, this is the only place pull_task() is called,
2270 * so we can safely collect pull_task() stats here rather than
2271 * inside pull_task().
2273 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2276 *all_pinned
= pinned
;
2277 *load_moved
= max_load_move
- rem_load_move
;
2282 * move_tasks tries to move up to max_load_move weighted load from busiest to
2283 * this_rq, as part of a balancing operation within domain "sd".
2284 * Returns 1 if successful and 0 otherwise.
2286 * Called with both runqueues locked.
2288 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2289 unsigned long max_load_move
,
2290 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2293 const struct sched_class
*class = sched_class_highest
;
2294 unsigned long total_load_moved
= 0;
2295 int this_best_prio
= this_rq
->curr
->prio
;
2299 class->load_balance(this_rq
, this_cpu
, busiest
,
2300 ULONG_MAX
, max_load_move
- total_load_moved
,
2301 sd
, idle
, all_pinned
, &this_best_prio
);
2302 class = class->next
;
2303 } while (class && max_load_move
> total_load_moved
);
2305 return total_load_moved
> 0;
2309 * move_one_task tries to move exactly one task from busiest to this_rq, as
2310 * part of active balancing operations within "domain".
2311 * Returns 1 if successful and 0 otherwise.
2313 * Called with both runqueues locked.
2315 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2316 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2318 const struct sched_class
*class;
2319 int this_best_prio
= MAX_PRIO
;
2321 for (class = sched_class_highest
; class; class = class->next
)
2322 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2323 1, ULONG_MAX
, sd
, idle
, NULL
,
2331 * find_busiest_group finds and returns the busiest CPU group within the
2332 * domain. It calculates and returns the amount of weighted load which
2333 * should be moved to restore balance via the imbalance parameter.
2335 static struct sched_group
*
2336 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2337 unsigned long *imbalance
, enum cpu_idle_type idle
,
2338 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2340 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2341 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2342 unsigned long max_pull
;
2343 unsigned long busiest_load_per_task
, busiest_nr_running
;
2344 unsigned long this_load_per_task
, this_nr_running
;
2345 int load_idx
, group_imb
= 0;
2346 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2347 int power_savings_balance
= 1;
2348 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2349 unsigned long min_nr_running
= ULONG_MAX
;
2350 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2353 max_load
= this_load
= total_load
= total_pwr
= 0;
2354 busiest_load_per_task
= busiest_nr_running
= 0;
2355 this_load_per_task
= this_nr_running
= 0;
2356 if (idle
== CPU_NOT_IDLE
)
2357 load_idx
= sd
->busy_idx
;
2358 else if (idle
== CPU_NEWLY_IDLE
)
2359 load_idx
= sd
->newidle_idx
;
2361 load_idx
= sd
->idle_idx
;
2364 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2367 int __group_imb
= 0;
2368 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2369 unsigned long sum_nr_running
, sum_weighted_load
;
2371 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2374 balance_cpu
= first_cpu(group
->cpumask
);
2376 /* Tally up the load of all CPUs in the group */
2377 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2379 min_cpu_load
= ~0UL;
2381 for_each_cpu_mask(i
, group
->cpumask
) {
2384 if (!cpu_isset(i
, *cpus
))
2389 if (*sd_idle
&& rq
->nr_running
)
2392 /* Bias balancing toward cpus of our domain */
2394 if (idle_cpu(i
) && !first_idle_cpu
) {
2399 load
= target_load(i
, load_idx
);
2401 load
= source_load(i
, load_idx
);
2402 if (load
> max_cpu_load
)
2403 max_cpu_load
= load
;
2404 if (min_cpu_load
> load
)
2405 min_cpu_load
= load
;
2409 sum_nr_running
+= rq
->nr_running
;
2410 sum_weighted_load
+= weighted_cpuload(i
);
2414 * First idle cpu or the first cpu(busiest) in this sched group
2415 * is eligible for doing load balancing at this and above
2416 * domains. In the newly idle case, we will allow all the cpu's
2417 * to do the newly idle load balance.
2419 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2420 balance_cpu
!= this_cpu
&& balance
) {
2425 total_load
+= avg_load
;
2426 total_pwr
+= group
->__cpu_power
;
2428 /* Adjust by relative CPU power of the group */
2429 avg_load
= sg_div_cpu_power(group
,
2430 avg_load
* SCHED_LOAD_SCALE
);
2432 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2435 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2438 this_load
= avg_load
;
2440 this_nr_running
= sum_nr_running
;
2441 this_load_per_task
= sum_weighted_load
;
2442 } else if (avg_load
> max_load
&&
2443 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2444 max_load
= avg_load
;
2446 busiest_nr_running
= sum_nr_running
;
2447 busiest_load_per_task
= sum_weighted_load
;
2448 group_imb
= __group_imb
;
2451 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2453 * Busy processors will not participate in power savings
2456 if (idle
== CPU_NOT_IDLE
||
2457 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2461 * If the local group is idle or completely loaded
2462 * no need to do power savings balance at this domain
2464 if (local_group
&& (this_nr_running
>= group_capacity
||
2466 power_savings_balance
= 0;
2469 * If a group is already running at full capacity or idle,
2470 * don't include that group in power savings calculations
2472 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2477 * Calculate the group which has the least non-idle load.
2478 * This is the group from where we need to pick up the load
2481 if ((sum_nr_running
< min_nr_running
) ||
2482 (sum_nr_running
== min_nr_running
&&
2483 first_cpu(group
->cpumask
) <
2484 first_cpu(group_min
->cpumask
))) {
2486 min_nr_running
= sum_nr_running
;
2487 min_load_per_task
= sum_weighted_load
/
2492 * Calculate the group which is almost near its
2493 * capacity but still has some space to pick up some load
2494 * from other group and save more power
2496 if (sum_nr_running
<= group_capacity
- 1) {
2497 if (sum_nr_running
> leader_nr_running
||
2498 (sum_nr_running
== leader_nr_running
&&
2499 first_cpu(group
->cpumask
) >
2500 first_cpu(group_leader
->cpumask
))) {
2501 group_leader
= group
;
2502 leader_nr_running
= sum_nr_running
;
2507 group
= group
->next
;
2508 } while (group
!= sd
->groups
);
2510 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2513 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2515 if (this_load
>= avg_load
||
2516 100*max_load
<= sd
->imbalance_pct
*this_load
)
2519 busiest_load_per_task
/= busiest_nr_running
;
2521 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2524 * We're trying to get all the cpus to the average_load, so we don't
2525 * want to push ourselves above the average load, nor do we wish to
2526 * reduce the max loaded cpu below the average load, as either of these
2527 * actions would just result in more rebalancing later, and ping-pong
2528 * tasks around. Thus we look for the minimum possible imbalance.
2529 * Negative imbalances (*we* are more loaded than anyone else) will
2530 * be counted as no imbalance for these purposes -- we can't fix that
2531 * by pulling tasks to us. Be careful of negative numbers as they'll
2532 * appear as very large values with unsigned longs.
2534 if (max_load
<= busiest_load_per_task
)
2538 * In the presence of smp nice balancing, certain scenarios can have
2539 * max load less than avg load(as we skip the groups at or below
2540 * its cpu_power, while calculating max_load..)
2542 if (max_load
< avg_load
) {
2544 goto small_imbalance
;
2547 /* Don't want to pull so many tasks that a group would go idle */
2548 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2550 /* How much load to actually move to equalise the imbalance */
2551 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2552 (avg_load
- this_load
) * this->__cpu_power
)
2556 * if *imbalance is less than the average load per runnable task
2557 * there is no gaurantee that any tasks will be moved so we'll have
2558 * a think about bumping its value to force at least one task to be
2561 if (*imbalance
< busiest_load_per_task
) {
2562 unsigned long tmp
, pwr_now
, pwr_move
;
2566 pwr_move
= pwr_now
= 0;
2568 if (this_nr_running
) {
2569 this_load_per_task
/= this_nr_running
;
2570 if (busiest_load_per_task
> this_load_per_task
)
2573 this_load_per_task
= SCHED_LOAD_SCALE
;
2575 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2576 busiest_load_per_task
* imbn
) {
2577 *imbalance
= busiest_load_per_task
;
2582 * OK, we don't have enough imbalance to justify moving tasks,
2583 * however we may be able to increase total CPU power used by
2587 pwr_now
+= busiest
->__cpu_power
*
2588 min(busiest_load_per_task
, max_load
);
2589 pwr_now
+= this->__cpu_power
*
2590 min(this_load_per_task
, this_load
);
2591 pwr_now
/= SCHED_LOAD_SCALE
;
2593 /* Amount of load we'd subtract */
2594 tmp
= sg_div_cpu_power(busiest
,
2595 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2597 pwr_move
+= busiest
->__cpu_power
*
2598 min(busiest_load_per_task
, max_load
- tmp
);
2600 /* Amount of load we'd add */
2601 if (max_load
* busiest
->__cpu_power
<
2602 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2603 tmp
= sg_div_cpu_power(this,
2604 max_load
* busiest
->__cpu_power
);
2606 tmp
= sg_div_cpu_power(this,
2607 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2608 pwr_move
+= this->__cpu_power
*
2609 min(this_load_per_task
, this_load
+ tmp
);
2610 pwr_move
/= SCHED_LOAD_SCALE
;
2612 /* Move if we gain throughput */
2613 if (pwr_move
> pwr_now
)
2614 *imbalance
= busiest_load_per_task
;
2620 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2621 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2624 if (this == group_leader
&& group_leader
!= group_min
) {
2625 *imbalance
= min_load_per_task
;
2635 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2638 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2639 unsigned long imbalance
, cpumask_t
*cpus
)
2641 struct rq
*busiest
= NULL
, *rq
;
2642 unsigned long max_load
= 0;
2645 for_each_cpu_mask(i
, group
->cpumask
) {
2648 if (!cpu_isset(i
, *cpus
))
2652 wl
= weighted_cpuload(i
);
2654 if (rq
->nr_running
== 1 && wl
> imbalance
)
2657 if (wl
> max_load
) {
2667 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2668 * so long as it is large enough.
2670 #define MAX_PINNED_INTERVAL 512
2673 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2674 * tasks if there is an imbalance.
2676 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2677 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2680 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2681 struct sched_group
*group
;
2682 unsigned long imbalance
;
2684 cpumask_t cpus
= CPU_MASK_ALL
;
2685 unsigned long flags
;
2688 * When power savings policy is enabled for the parent domain, idle
2689 * sibling can pick up load irrespective of busy siblings. In this case,
2690 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2691 * portraying it as CPU_NOT_IDLE.
2693 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2694 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2697 schedstat_inc(sd
, lb_count
[idle
]);
2700 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2707 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2711 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2713 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2717 BUG_ON(busiest
== this_rq
);
2719 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2722 if (busiest
->nr_running
> 1) {
2724 * Attempt to move tasks. If find_busiest_group has found
2725 * an imbalance but busiest->nr_running <= 1, the group is
2726 * still unbalanced. ld_moved simply stays zero, so it is
2727 * correctly treated as an imbalance.
2729 local_irq_save(flags
);
2730 double_rq_lock(this_rq
, busiest
);
2731 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2732 imbalance
, sd
, idle
, &all_pinned
);
2733 double_rq_unlock(this_rq
, busiest
);
2734 local_irq_restore(flags
);
2737 * some other cpu did the load balance for us.
2739 if (ld_moved
&& this_cpu
!= smp_processor_id())
2740 resched_cpu(this_cpu
);
2742 /* All tasks on this runqueue were pinned by CPU affinity */
2743 if (unlikely(all_pinned
)) {
2744 cpu_clear(cpu_of(busiest
), cpus
);
2745 if (!cpus_empty(cpus
))
2752 schedstat_inc(sd
, lb_failed
[idle
]);
2753 sd
->nr_balance_failed
++;
2755 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2757 spin_lock_irqsave(&busiest
->lock
, flags
);
2759 /* don't kick the migration_thread, if the curr
2760 * task on busiest cpu can't be moved to this_cpu
2762 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2763 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2765 goto out_one_pinned
;
2768 if (!busiest
->active_balance
) {
2769 busiest
->active_balance
= 1;
2770 busiest
->push_cpu
= this_cpu
;
2773 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2775 wake_up_process(busiest
->migration_thread
);
2778 * We've kicked active balancing, reset the failure
2781 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2784 sd
->nr_balance_failed
= 0;
2786 if (likely(!active_balance
)) {
2787 /* We were unbalanced, so reset the balancing interval */
2788 sd
->balance_interval
= sd
->min_interval
;
2791 * If we've begun active balancing, start to back off. This
2792 * case may not be covered by the all_pinned logic if there
2793 * is only 1 task on the busy runqueue (because we don't call
2796 if (sd
->balance_interval
< sd
->max_interval
)
2797 sd
->balance_interval
*= 2;
2800 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2801 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2806 schedstat_inc(sd
, lb_balanced
[idle
]);
2808 sd
->nr_balance_failed
= 0;
2811 /* tune up the balancing interval */
2812 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2813 (sd
->balance_interval
< sd
->max_interval
))
2814 sd
->balance_interval
*= 2;
2816 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2817 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2823 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2824 * tasks if there is an imbalance.
2826 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2827 * this_rq is locked.
2830 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2832 struct sched_group
*group
;
2833 struct rq
*busiest
= NULL
;
2834 unsigned long imbalance
;
2838 cpumask_t cpus
= CPU_MASK_ALL
;
2841 * When power savings policy is enabled for the parent domain, idle
2842 * sibling can pick up load irrespective of busy siblings. In this case,
2843 * let the state of idle sibling percolate up as IDLE, instead of
2844 * portraying it as CPU_NOT_IDLE.
2846 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2847 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2850 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2852 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2853 &sd_idle
, &cpus
, NULL
);
2855 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2859 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2862 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2866 BUG_ON(busiest
== this_rq
);
2868 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2871 if (busiest
->nr_running
> 1) {
2872 /* Attempt to move tasks */
2873 double_lock_balance(this_rq
, busiest
);
2874 /* this_rq->clock is already updated */
2875 update_rq_clock(busiest
);
2876 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2877 imbalance
, sd
, CPU_NEWLY_IDLE
,
2879 spin_unlock(&busiest
->lock
);
2881 if (unlikely(all_pinned
)) {
2882 cpu_clear(cpu_of(busiest
), cpus
);
2883 if (!cpus_empty(cpus
))
2889 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2890 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2891 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2894 sd
->nr_balance_failed
= 0;
2899 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2900 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2901 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2903 sd
->nr_balance_failed
= 0;
2909 * idle_balance is called by schedule() if this_cpu is about to become
2910 * idle. Attempts to pull tasks from other CPUs.
2912 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2914 struct sched_domain
*sd
;
2915 int pulled_task
= -1;
2916 unsigned long next_balance
= jiffies
+ HZ
;
2918 for_each_domain(this_cpu
, sd
) {
2919 unsigned long interval
;
2921 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2924 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2925 /* If we've pulled tasks over stop searching: */
2926 pulled_task
= load_balance_newidle(this_cpu
,
2929 interval
= msecs_to_jiffies(sd
->balance_interval
);
2930 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2931 next_balance
= sd
->last_balance
+ interval
;
2935 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2937 * We are going idle. next_balance may be set based on
2938 * a busy processor. So reset next_balance.
2940 this_rq
->next_balance
= next_balance
;
2945 * active_load_balance is run by migration threads. It pushes running tasks
2946 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2947 * running on each physical CPU where possible, and avoids physical /
2948 * logical imbalances.
2950 * Called with busiest_rq locked.
2952 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2954 int target_cpu
= busiest_rq
->push_cpu
;
2955 struct sched_domain
*sd
;
2956 struct rq
*target_rq
;
2958 /* Is there any task to move? */
2959 if (busiest_rq
->nr_running
<= 1)
2962 target_rq
= cpu_rq(target_cpu
);
2965 * This condition is "impossible", if it occurs
2966 * we need to fix it. Originally reported by
2967 * Bjorn Helgaas on a 128-cpu setup.
2969 BUG_ON(busiest_rq
== target_rq
);
2971 /* move a task from busiest_rq to target_rq */
2972 double_lock_balance(busiest_rq
, target_rq
);
2973 update_rq_clock(busiest_rq
);
2974 update_rq_clock(target_rq
);
2976 /* Search for an sd spanning us and the target CPU. */
2977 for_each_domain(target_cpu
, sd
) {
2978 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2979 cpu_isset(busiest_cpu
, sd
->span
))
2984 schedstat_inc(sd
, alb_count
);
2986 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2988 schedstat_inc(sd
, alb_pushed
);
2990 schedstat_inc(sd
, alb_failed
);
2992 spin_unlock(&target_rq
->lock
);
2997 atomic_t load_balancer
;
2999 } nohz ____cacheline_aligned
= {
3000 .load_balancer
= ATOMIC_INIT(-1),
3001 .cpu_mask
= CPU_MASK_NONE
,
3005 * This routine will try to nominate the ilb (idle load balancing)
3006 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3007 * load balancing on behalf of all those cpus. If all the cpus in the system
3008 * go into this tickless mode, then there will be no ilb owner (as there is
3009 * no need for one) and all the cpus will sleep till the next wakeup event
3012 * For the ilb owner, tick is not stopped. And this tick will be used
3013 * for idle load balancing. ilb owner will still be part of
3016 * While stopping the tick, this cpu will become the ilb owner if there
3017 * is no other owner. And will be the owner till that cpu becomes busy
3018 * or if all cpus in the system stop their ticks at which point
3019 * there is no need for ilb owner.
3021 * When the ilb owner becomes busy, it nominates another owner, during the
3022 * next busy scheduler_tick()
3024 int select_nohz_load_balancer(int stop_tick
)
3026 int cpu
= smp_processor_id();
3029 cpu_set(cpu
, nohz
.cpu_mask
);
3030 cpu_rq(cpu
)->in_nohz_recently
= 1;
3033 * If we are going offline and still the leader, give up!
3035 if (cpu_is_offline(cpu
) &&
3036 atomic_read(&nohz
.load_balancer
) == cpu
) {
3037 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3042 /* time for ilb owner also to sleep */
3043 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3044 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3045 atomic_set(&nohz
.load_balancer
, -1);
3049 if (atomic_read(&nohz
.load_balancer
) == -1) {
3050 /* make me the ilb owner */
3051 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3053 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3056 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3059 cpu_clear(cpu
, nohz
.cpu_mask
);
3061 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3062 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3069 static DEFINE_SPINLOCK(balancing
);
3072 * It checks each scheduling domain to see if it is due to be balanced,
3073 * and initiates a balancing operation if so.
3075 * Balancing parameters are set up in arch_init_sched_domains.
3077 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3080 struct rq
*rq
= cpu_rq(cpu
);
3081 unsigned long interval
;
3082 struct sched_domain
*sd
;
3083 /* Earliest time when we have to do rebalance again */
3084 unsigned long next_balance
= jiffies
+ 60*HZ
;
3085 int update_next_balance
= 0;
3087 for_each_domain(cpu
, sd
) {
3088 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3091 interval
= sd
->balance_interval
;
3092 if (idle
!= CPU_IDLE
)
3093 interval
*= sd
->busy_factor
;
3095 /* scale ms to jiffies */
3096 interval
= msecs_to_jiffies(interval
);
3097 if (unlikely(!interval
))
3099 if (interval
> HZ
*NR_CPUS
/10)
3100 interval
= HZ
*NR_CPUS
/10;
3103 if (sd
->flags
& SD_SERIALIZE
) {
3104 if (!spin_trylock(&balancing
))
3108 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3109 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3111 * We've pulled tasks over so either we're no
3112 * longer idle, or one of our SMT siblings is
3115 idle
= CPU_NOT_IDLE
;
3117 sd
->last_balance
= jiffies
;
3119 if (sd
->flags
& SD_SERIALIZE
)
3120 spin_unlock(&balancing
);
3122 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3123 next_balance
= sd
->last_balance
+ interval
;
3124 update_next_balance
= 1;
3128 * Stop the load balance at this level. There is another
3129 * CPU in our sched group which is doing load balancing more
3137 * next_balance will be updated only when there is a need.
3138 * When the cpu is attached to null domain for ex, it will not be
3141 if (likely(update_next_balance
))
3142 rq
->next_balance
= next_balance
;
3146 * run_rebalance_domains is triggered when needed from the scheduler tick.
3147 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3148 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3150 static void run_rebalance_domains(struct softirq_action
*h
)
3152 int this_cpu
= smp_processor_id();
3153 struct rq
*this_rq
= cpu_rq(this_cpu
);
3154 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3155 CPU_IDLE
: CPU_NOT_IDLE
;
3157 rebalance_domains(this_cpu
, idle
);
3161 * If this cpu is the owner for idle load balancing, then do the
3162 * balancing on behalf of the other idle cpus whose ticks are
3165 if (this_rq
->idle_at_tick
&&
3166 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3167 cpumask_t cpus
= nohz
.cpu_mask
;
3171 cpu_clear(this_cpu
, cpus
);
3172 for_each_cpu_mask(balance_cpu
, cpus
) {
3174 * If this cpu gets work to do, stop the load balancing
3175 * work being done for other cpus. Next load
3176 * balancing owner will pick it up.
3181 rebalance_domains(balance_cpu
, CPU_IDLE
);
3183 rq
= cpu_rq(balance_cpu
);
3184 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3185 this_rq
->next_balance
= rq
->next_balance
;
3192 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3194 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3195 * idle load balancing owner or decide to stop the periodic load balancing,
3196 * if the whole system is idle.
3198 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3202 * If we were in the nohz mode recently and busy at the current
3203 * scheduler tick, then check if we need to nominate new idle
3206 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3207 rq
->in_nohz_recently
= 0;
3209 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3210 cpu_clear(cpu
, nohz
.cpu_mask
);
3211 atomic_set(&nohz
.load_balancer
, -1);
3214 if (atomic_read(&nohz
.load_balancer
) == -1) {
3216 * simple selection for now: Nominate the
3217 * first cpu in the nohz list to be the next
3220 * TBD: Traverse the sched domains and nominate
3221 * the nearest cpu in the nohz.cpu_mask.
3223 int ilb
= first_cpu(nohz
.cpu_mask
);
3231 * If this cpu is idle and doing idle load balancing for all the
3232 * cpus with ticks stopped, is it time for that to stop?
3234 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3235 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3241 * If this cpu is idle and the idle load balancing is done by
3242 * someone else, then no need raise the SCHED_SOFTIRQ
3244 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3245 cpu_isset(cpu
, nohz
.cpu_mask
))
3248 if (time_after_eq(jiffies
, rq
->next_balance
))
3249 raise_softirq(SCHED_SOFTIRQ
);
3252 #else /* CONFIG_SMP */
3255 * on UP we do not need to balance between CPUs:
3257 static inline void idle_balance(int cpu
, struct rq
*rq
)
3261 /* Avoid "used but not defined" warning on UP */
3262 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3263 unsigned long max_nr_move
, unsigned long max_load_move
,
3264 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3265 int *all_pinned
, unsigned long *load_moved
,
3266 int *this_best_prio
, struct rq_iterator
*iterator
)
3275 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3277 EXPORT_PER_CPU_SYMBOL(kstat
);
3280 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3281 * that have not yet been banked in case the task is currently running.
3283 unsigned long long task_sched_runtime(struct task_struct
*p
)
3285 unsigned long flags
;
3289 rq
= task_rq_lock(p
, &flags
);
3290 ns
= p
->se
.sum_exec_runtime
;
3291 if (rq
->curr
== p
) {
3292 update_rq_clock(rq
);
3293 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3294 if ((s64
)delta_exec
> 0)
3297 task_rq_unlock(rq
, &flags
);
3303 * Account user cpu time to a process.
3304 * @p: the process that the cpu time gets accounted to
3305 * @hardirq_offset: the offset to subtract from hardirq_count()
3306 * @cputime: the cpu time spent in user space since the last update
3308 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3310 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3312 struct rq
*rq
= this_rq();
3314 p
->utime
= cputime_add(p
->utime
, cputime
);
3317 cpuacct_charge(p
, cputime
);
3319 /* Add user time to cpustat. */
3320 tmp
= cputime_to_cputime64(cputime
);
3321 if (TASK_NICE(p
) > 0)
3322 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3324 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3328 * Account guest cpu time to a process.
3329 * @p: the process that the cpu time gets accounted to
3330 * @cputime: the cpu time spent in virtual machine since the last update
3332 void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3335 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3337 tmp
= cputime_to_cputime64(cputime
);
3339 p
->utime
= cputime_add(p
->utime
, cputime
);
3340 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3342 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3343 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3347 * Account scaled user cpu time to a process.
3348 * @p: the process that the cpu time gets accounted to
3349 * @cputime: the cpu time spent in user space since the last update
3351 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3353 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3357 * Account system cpu time to a process.
3358 * @p: the process that the cpu time gets accounted to
3359 * @hardirq_offset: the offset to subtract from hardirq_count()
3360 * @cputime: the cpu time spent in kernel space since the last update
3362 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3365 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3366 struct rq
*rq
= this_rq();
3369 if (p
->flags
& PF_VCPU
) {
3370 account_guest_time(p
, cputime
);
3371 p
->flags
&= ~PF_VCPU
;
3375 p
->stime
= cputime_add(p
->stime
, cputime
);
3377 /* Add system time to cpustat. */
3378 tmp
= cputime_to_cputime64(cputime
);
3379 if (hardirq_count() - hardirq_offset
)
3380 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3381 else if (softirq_count())
3382 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3383 else if (p
!= rq
->idle
) {
3384 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3385 cpuacct_charge(p
, cputime
);
3386 } else if (atomic_read(&rq
->nr_iowait
) > 0)
3387 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3389 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3390 /* Account for system time used */
3391 acct_update_integrals(p
);
3395 * Account scaled system cpu time to a process.
3396 * @p: the process that the cpu time gets accounted to
3397 * @hardirq_offset: the offset to subtract from hardirq_count()
3398 * @cputime: the cpu time spent in kernel space since the last update
3400 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3402 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3406 * Account for involuntary wait time.
3407 * @p: the process from which the cpu time has been stolen
3408 * @steal: the cpu time spent in involuntary wait
3410 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3412 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3413 cputime64_t tmp
= cputime_to_cputime64(steal
);
3414 struct rq
*rq
= this_rq();
3416 if (p
== rq
->idle
) {
3417 p
->stime
= cputime_add(p
->stime
, steal
);
3418 if (atomic_read(&rq
->nr_iowait
) > 0)
3419 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3421 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3423 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3424 cpuacct_charge(p
, -tmp
);
3429 * This function gets called by the timer code, with HZ frequency.
3430 * We call it with interrupts disabled.
3432 * It also gets called by the fork code, when changing the parent's
3435 void scheduler_tick(void)
3437 int cpu
= smp_processor_id();
3438 struct rq
*rq
= cpu_rq(cpu
);
3439 struct task_struct
*curr
= rq
->curr
;
3440 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3442 spin_lock(&rq
->lock
);
3443 __update_rq_clock(rq
);
3445 * Let rq->clock advance by at least TICK_NSEC:
3447 if (unlikely(rq
->clock
< next_tick
))
3448 rq
->clock
= next_tick
;
3449 rq
->tick_timestamp
= rq
->clock
;
3450 update_cpu_load(rq
);
3451 if (curr
!= rq
->idle
) /* FIXME: needed? */
3452 curr
->sched_class
->task_tick(rq
, curr
);
3453 spin_unlock(&rq
->lock
);
3456 rq
->idle_at_tick
= idle_cpu(cpu
);
3457 trigger_load_balance(rq
, cpu
);
3461 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3463 void fastcall
add_preempt_count(int val
)
3468 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3470 preempt_count() += val
;
3472 * Spinlock count overflowing soon?
3474 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3477 EXPORT_SYMBOL(add_preempt_count
);
3479 void fastcall
sub_preempt_count(int val
)
3484 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3487 * Is the spinlock portion underflowing?
3489 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3490 !(preempt_count() & PREEMPT_MASK
)))
3493 preempt_count() -= val
;
3495 EXPORT_SYMBOL(sub_preempt_count
);
3500 * Print scheduling while atomic bug:
3502 static noinline
void __schedule_bug(struct task_struct
*prev
)
3504 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3505 prev
->comm
, preempt_count(), task_pid_nr(prev
));
3506 debug_show_held_locks(prev
);
3507 if (irqs_disabled())
3508 print_irqtrace_events(prev
);
3513 * Various schedule()-time debugging checks and statistics:
3515 static inline void schedule_debug(struct task_struct
*prev
)
3518 * Test if we are atomic. Since do_exit() needs to call into
3519 * schedule() atomically, we ignore that path for now.
3520 * Otherwise, whine if we are scheduling when we should not be.
3522 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3523 __schedule_bug(prev
);
3525 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3527 schedstat_inc(this_rq(), sched_count
);
3528 #ifdef CONFIG_SCHEDSTATS
3529 if (unlikely(prev
->lock_depth
>= 0)) {
3530 schedstat_inc(this_rq(), bkl_count
);
3531 schedstat_inc(prev
, sched_info
.bkl_count
);
3537 * Pick up the highest-prio task:
3539 static inline struct task_struct
*
3540 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3542 const struct sched_class
*class;
3543 struct task_struct
*p
;
3546 * Optimization: we know that if all tasks are in
3547 * the fair class we can call that function directly:
3549 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3550 p
= fair_sched_class
.pick_next_task(rq
);
3555 class = sched_class_highest
;
3557 p
= class->pick_next_task(rq
);
3561 * Will never be NULL as the idle class always
3562 * returns a non-NULL p:
3564 class = class->next
;
3569 * schedule() is the main scheduler function.
3571 asmlinkage
void __sched
schedule(void)
3573 struct task_struct
*prev
, *next
;
3580 cpu
= smp_processor_id();
3584 switch_count
= &prev
->nivcsw
;
3586 release_kernel_lock(prev
);
3587 need_resched_nonpreemptible
:
3589 schedule_debug(prev
);
3592 * Do the rq-clock update outside the rq lock:
3594 local_irq_disable();
3595 __update_rq_clock(rq
);
3596 spin_lock(&rq
->lock
);
3597 clear_tsk_need_resched(prev
);
3599 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3600 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3601 unlikely(signal_pending(prev
)))) {
3602 prev
->state
= TASK_RUNNING
;
3604 deactivate_task(rq
, prev
, 1);
3606 switch_count
= &prev
->nvcsw
;
3609 if (unlikely(!rq
->nr_running
))
3610 idle_balance(cpu
, rq
);
3612 prev
->sched_class
->put_prev_task(rq
, prev
);
3613 next
= pick_next_task(rq
, prev
);
3615 sched_info_switch(prev
, next
);
3617 if (likely(prev
!= next
)) {
3622 context_switch(rq
, prev
, next
); /* unlocks the rq */
3624 spin_unlock_irq(&rq
->lock
);
3626 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3627 cpu
= smp_processor_id();
3629 goto need_resched_nonpreemptible
;
3631 preempt_enable_no_resched();
3632 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3635 EXPORT_SYMBOL(schedule
);
3637 #ifdef CONFIG_PREEMPT
3639 * this is the entry point to schedule() from in-kernel preemption
3640 * off of preempt_enable. Kernel preemptions off return from interrupt
3641 * occur there and call schedule directly.
3643 asmlinkage
void __sched
preempt_schedule(void)
3645 struct thread_info
*ti
= current_thread_info();
3646 #ifdef CONFIG_PREEMPT_BKL
3647 struct task_struct
*task
= current
;
3648 int saved_lock_depth
;
3651 * If there is a non-zero preempt_count or interrupts are disabled,
3652 * we do not want to preempt the current task. Just return..
3654 if (likely(ti
->preempt_count
|| irqs_disabled()))
3658 add_preempt_count(PREEMPT_ACTIVE
);
3661 * We keep the big kernel semaphore locked, but we
3662 * clear ->lock_depth so that schedule() doesnt
3663 * auto-release the semaphore:
3665 #ifdef CONFIG_PREEMPT_BKL
3666 saved_lock_depth
= task
->lock_depth
;
3667 task
->lock_depth
= -1;
3670 #ifdef CONFIG_PREEMPT_BKL
3671 task
->lock_depth
= saved_lock_depth
;
3673 sub_preempt_count(PREEMPT_ACTIVE
);
3676 * Check again in case we missed a preemption opportunity
3677 * between schedule and now.
3680 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3682 EXPORT_SYMBOL(preempt_schedule
);
3685 * this is the entry point to schedule() from kernel preemption
3686 * off of irq context.
3687 * Note, that this is called and return with irqs disabled. This will
3688 * protect us against recursive calling from irq.
3690 asmlinkage
void __sched
preempt_schedule_irq(void)
3692 struct thread_info
*ti
= current_thread_info();
3693 #ifdef CONFIG_PREEMPT_BKL
3694 struct task_struct
*task
= current
;
3695 int saved_lock_depth
;
3697 /* Catch callers which need to be fixed */
3698 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3701 add_preempt_count(PREEMPT_ACTIVE
);
3704 * We keep the big kernel semaphore locked, but we
3705 * clear ->lock_depth so that schedule() doesnt
3706 * auto-release the semaphore:
3708 #ifdef CONFIG_PREEMPT_BKL
3709 saved_lock_depth
= task
->lock_depth
;
3710 task
->lock_depth
= -1;
3714 local_irq_disable();
3715 #ifdef CONFIG_PREEMPT_BKL
3716 task
->lock_depth
= saved_lock_depth
;
3718 sub_preempt_count(PREEMPT_ACTIVE
);
3721 * Check again in case we missed a preemption opportunity
3722 * between schedule and now.
3725 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3728 #endif /* CONFIG_PREEMPT */
3730 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3733 return try_to_wake_up(curr
->private, mode
, sync
);
3735 EXPORT_SYMBOL(default_wake_function
);
3738 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3739 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3740 * number) then we wake all the non-exclusive tasks and one exclusive task.
3742 * There are circumstances in which we can try to wake a task which has already
3743 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3744 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3746 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3747 int nr_exclusive
, int sync
, void *key
)
3749 wait_queue_t
*curr
, *next
;
3751 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3752 unsigned flags
= curr
->flags
;
3754 if (curr
->func(curr
, mode
, sync
, key
) &&
3755 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3761 * __wake_up - wake up threads blocked on a waitqueue.
3763 * @mode: which threads
3764 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3765 * @key: is directly passed to the wakeup function
3767 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3768 int nr_exclusive
, void *key
)
3770 unsigned long flags
;
3772 spin_lock_irqsave(&q
->lock
, flags
);
3773 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3774 spin_unlock_irqrestore(&q
->lock
, flags
);
3776 EXPORT_SYMBOL(__wake_up
);
3779 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3781 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3783 __wake_up_common(q
, mode
, 1, 0, NULL
);
3787 * __wake_up_sync - wake up threads blocked on a waitqueue.
3789 * @mode: which threads
3790 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3792 * The sync wakeup differs that the waker knows that it will schedule
3793 * away soon, so while the target thread will be woken up, it will not
3794 * be migrated to another CPU - ie. the two threads are 'synchronized'
3795 * with each other. This can prevent needless bouncing between CPUs.
3797 * On UP it can prevent extra preemption.
3800 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3802 unsigned long flags
;
3808 if (unlikely(!nr_exclusive
))
3811 spin_lock_irqsave(&q
->lock
, flags
);
3812 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3813 spin_unlock_irqrestore(&q
->lock
, flags
);
3815 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3817 void fastcall
complete(struct completion
*x
)
3819 unsigned long flags
;
3821 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3823 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3825 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3827 EXPORT_SYMBOL(complete
);
3829 void fastcall
complete_all(struct completion
*x
)
3831 unsigned long flags
;
3833 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3834 x
->done
+= UINT_MAX
/2;
3835 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3837 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3839 EXPORT_SYMBOL(complete_all
);
3841 static inline long __sched
3842 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3845 DECLARE_WAITQUEUE(wait
, current
);
3847 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3848 __add_wait_queue_tail(&x
->wait
, &wait
);
3850 if (state
== TASK_INTERRUPTIBLE
&&
3851 signal_pending(current
)) {
3852 __remove_wait_queue(&x
->wait
, &wait
);
3853 return -ERESTARTSYS
;
3855 __set_current_state(state
);
3856 spin_unlock_irq(&x
->wait
.lock
);
3857 timeout
= schedule_timeout(timeout
);
3858 spin_lock_irq(&x
->wait
.lock
);
3860 __remove_wait_queue(&x
->wait
, &wait
);
3864 __remove_wait_queue(&x
->wait
, &wait
);
3871 wait_for_common(struct completion
*x
, long timeout
, int state
)
3875 spin_lock_irq(&x
->wait
.lock
);
3876 timeout
= do_wait_for_common(x
, timeout
, state
);
3877 spin_unlock_irq(&x
->wait
.lock
);
3881 void fastcall __sched
wait_for_completion(struct completion
*x
)
3883 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3885 EXPORT_SYMBOL(wait_for_completion
);
3887 unsigned long fastcall __sched
3888 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3890 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3892 EXPORT_SYMBOL(wait_for_completion_timeout
);
3894 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3896 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3897 if (t
== -ERESTARTSYS
)
3901 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3903 unsigned long fastcall __sched
3904 wait_for_completion_interruptible_timeout(struct completion
*x
,
3905 unsigned long timeout
)
3907 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3909 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3912 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3914 unsigned long flags
;
3917 init_waitqueue_entry(&wait
, current
);
3919 __set_current_state(state
);
3921 spin_lock_irqsave(&q
->lock
, flags
);
3922 __add_wait_queue(q
, &wait
);
3923 spin_unlock(&q
->lock
);
3924 timeout
= schedule_timeout(timeout
);
3925 spin_lock_irq(&q
->lock
);
3926 __remove_wait_queue(q
, &wait
);
3927 spin_unlock_irqrestore(&q
->lock
, flags
);
3932 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3934 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3936 EXPORT_SYMBOL(interruptible_sleep_on
);
3939 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3941 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3943 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3945 void __sched
sleep_on(wait_queue_head_t
*q
)
3947 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3949 EXPORT_SYMBOL(sleep_on
);
3951 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3953 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3955 EXPORT_SYMBOL(sleep_on_timeout
);
3957 #ifdef CONFIG_RT_MUTEXES
3960 * rt_mutex_setprio - set the current priority of a task
3962 * @prio: prio value (kernel-internal form)
3964 * This function changes the 'effective' priority of a task. It does
3965 * not touch ->normal_prio like __setscheduler().
3967 * Used by the rt_mutex code to implement priority inheritance logic.
3969 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3971 unsigned long flags
;
3972 int oldprio
, on_rq
, running
;
3975 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3977 rq
= task_rq_lock(p
, &flags
);
3978 update_rq_clock(rq
);
3981 on_rq
= p
->se
.on_rq
;
3982 running
= task_running(rq
, p
);
3984 dequeue_task(rq
, p
, 0);
3986 p
->sched_class
->put_prev_task(rq
, p
);
3990 p
->sched_class
= &rt_sched_class
;
3992 p
->sched_class
= &fair_sched_class
;
3998 p
->sched_class
->set_curr_task(rq
);
3999 enqueue_task(rq
, p
, 0);
4001 * Reschedule if we are currently running on this runqueue and
4002 * our priority decreased, or if we are not currently running on
4003 * this runqueue and our priority is higher than the current's
4006 if (p
->prio
> oldprio
)
4007 resched_task(rq
->curr
);
4009 check_preempt_curr(rq
, p
);
4012 task_rq_unlock(rq
, &flags
);
4017 void set_user_nice(struct task_struct
*p
, long nice
)
4019 int old_prio
, delta
, on_rq
;
4020 unsigned long flags
;
4023 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4026 * We have to be careful, if called from sys_setpriority(),
4027 * the task might be in the middle of scheduling on another CPU.
4029 rq
= task_rq_lock(p
, &flags
);
4030 update_rq_clock(rq
);
4032 * The RT priorities are set via sched_setscheduler(), but we still
4033 * allow the 'normal' nice value to be set - but as expected
4034 * it wont have any effect on scheduling until the task is
4035 * SCHED_FIFO/SCHED_RR:
4037 if (task_has_rt_policy(p
)) {
4038 p
->static_prio
= NICE_TO_PRIO(nice
);
4041 on_rq
= p
->se
.on_rq
;
4043 dequeue_task(rq
, p
, 0);
4047 p
->static_prio
= NICE_TO_PRIO(nice
);
4050 p
->prio
= effective_prio(p
);
4051 delta
= p
->prio
- old_prio
;
4054 enqueue_task(rq
, p
, 0);
4057 * If the task increased its priority or is running and
4058 * lowered its priority, then reschedule its CPU:
4060 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4061 resched_task(rq
->curr
);
4064 task_rq_unlock(rq
, &flags
);
4066 EXPORT_SYMBOL(set_user_nice
);
4069 * can_nice - check if a task can reduce its nice value
4073 int can_nice(const struct task_struct
*p
, const int nice
)
4075 /* convert nice value [19,-20] to rlimit style value [1,40] */
4076 int nice_rlim
= 20 - nice
;
4078 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4079 capable(CAP_SYS_NICE
));
4082 #ifdef __ARCH_WANT_SYS_NICE
4085 * sys_nice - change the priority of the current process.
4086 * @increment: priority increment
4088 * sys_setpriority is a more generic, but much slower function that
4089 * does similar things.
4091 asmlinkage
long sys_nice(int increment
)
4096 * Setpriority might change our priority at the same moment.
4097 * We don't have to worry. Conceptually one call occurs first
4098 * and we have a single winner.
4100 if (increment
< -40)
4105 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4111 if (increment
< 0 && !can_nice(current
, nice
))
4114 retval
= security_task_setnice(current
, nice
);
4118 set_user_nice(current
, nice
);
4125 * task_prio - return the priority value of a given task.
4126 * @p: the task in question.
4128 * This is the priority value as seen by users in /proc.
4129 * RT tasks are offset by -200. Normal tasks are centered
4130 * around 0, value goes from -16 to +15.
4132 int task_prio(const struct task_struct
*p
)
4134 return p
->prio
- MAX_RT_PRIO
;
4138 * task_nice - return the nice value of a given task.
4139 * @p: the task in question.
4141 int task_nice(const struct task_struct
*p
)
4143 return TASK_NICE(p
);
4145 EXPORT_SYMBOL_GPL(task_nice
);
4148 * idle_cpu - is a given cpu idle currently?
4149 * @cpu: the processor in question.
4151 int idle_cpu(int cpu
)
4153 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4157 * idle_task - return the idle task for a given cpu.
4158 * @cpu: the processor in question.
4160 struct task_struct
*idle_task(int cpu
)
4162 return cpu_rq(cpu
)->idle
;
4166 * find_process_by_pid - find a process with a matching PID value.
4167 * @pid: the pid in question.
4169 static struct task_struct
*find_process_by_pid(pid_t pid
)
4171 return pid
? find_task_by_vpid(pid
) : current
;
4174 /* Actually do priority change: must hold rq lock. */
4176 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4178 BUG_ON(p
->se
.on_rq
);
4181 switch (p
->policy
) {
4185 p
->sched_class
= &fair_sched_class
;
4189 p
->sched_class
= &rt_sched_class
;
4193 p
->rt_priority
= prio
;
4194 p
->normal_prio
= normal_prio(p
);
4195 /* we are holding p->pi_lock already */
4196 p
->prio
= rt_mutex_getprio(p
);
4201 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4202 * @p: the task in question.
4203 * @policy: new policy.
4204 * @param: structure containing the new RT priority.
4206 * NOTE that the task may be already dead.
4208 int sched_setscheduler(struct task_struct
*p
, int policy
,
4209 struct sched_param
*param
)
4211 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4212 unsigned long flags
;
4215 /* may grab non-irq protected spin_locks */
4216 BUG_ON(in_interrupt());
4218 /* double check policy once rq lock held */
4220 policy
= oldpolicy
= p
->policy
;
4221 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4222 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4223 policy
!= SCHED_IDLE
)
4226 * Valid priorities for SCHED_FIFO and SCHED_RR are
4227 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4228 * SCHED_BATCH and SCHED_IDLE is 0.
4230 if (param
->sched_priority
< 0 ||
4231 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4232 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4234 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4238 * Allow unprivileged RT tasks to decrease priority:
4240 if (!capable(CAP_SYS_NICE
)) {
4241 if (rt_policy(policy
)) {
4242 unsigned long rlim_rtprio
;
4244 if (!lock_task_sighand(p
, &flags
))
4246 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4247 unlock_task_sighand(p
, &flags
);
4249 /* can't set/change the rt policy */
4250 if (policy
!= p
->policy
&& !rlim_rtprio
)
4253 /* can't increase priority */
4254 if (param
->sched_priority
> p
->rt_priority
&&
4255 param
->sched_priority
> rlim_rtprio
)
4259 * Like positive nice levels, dont allow tasks to
4260 * move out of SCHED_IDLE either:
4262 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4265 /* can't change other user's priorities */
4266 if ((current
->euid
!= p
->euid
) &&
4267 (current
->euid
!= p
->uid
))
4271 retval
= security_task_setscheduler(p
, policy
, param
);
4275 * make sure no PI-waiters arrive (or leave) while we are
4276 * changing the priority of the task:
4278 spin_lock_irqsave(&p
->pi_lock
, flags
);
4280 * To be able to change p->policy safely, the apropriate
4281 * runqueue lock must be held.
4283 rq
= __task_rq_lock(p
);
4284 /* recheck policy now with rq lock held */
4285 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4286 policy
= oldpolicy
= -1;
4287 __task_rq_unlock(rq
);
4288 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4291 update_rq_clock(rq
);
4292 on_rq
= p
->se
.on_rq
;
4293 running
= task_running(rq
, p
);
4295 deactivate_task(rq
, p
, 0);
4297 p
->sched_class
->put_prev_task(rq
, p
);
4301 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4305 p
->sched_class
->set_curr_task(rq
);
4306 activate_task(rq
, p
, 0);
4308 * Reschedule if we are currently running on this runqueue and
4309 * our priority decreased, or if we are not currently running on
4310 * this runqueue and our priority is higher than the current's
4313 if (p
->prio
> oldprio
)
4314 resched_task(rq
->curr
);
4316 check_preempt_curr(rq
, p
);
4319 __task_rq_unlock(rq
);
4320 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4322 rt_mutex_adjust_pi(p
);
4326 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4329 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4331 struct sched_param lparam
;
4332 struct task_struct
*p
;
4335 if (!param
|| pid
< 0)
4337 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4342 p
= find_process_by_pid(pid
);
4344 retval
= sched_setscheduler(p
, policy
, &lparam
);
4351 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4352 * @pid: the pid in question.
4353 * @policy: new policy.
4354 * @param: structure containing the new RT priority.
4356 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4357 struct sched_param __user
*param
)
4359 /* negative values for policy are not valid */
4363 return do_sched_setscheduler(pid
, policy
, param
);
4367 * sys_sched_setparam - set/change the RT priority of a thread
4368 * @pid: the pid in question.
4369 * @param: structure containing the new RT priority.
4371 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4373 return do_sched_setscheduler(pid
, -1, param
);
4377 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4378 * @pid: the pid in question.
4380 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4382 struct task_struct
*p
;
4389 read_lock(&tasklist_lock
);
4390 p
= find_process_by_pid(pid
);
4392 retval
= security_task_getscheduler(p
);
4396 read_unlock(&tasklist_lock
);
4401 * sys_sched_getscheduler - get the RT priority of a thread
4402 * @pid: the pid in question.
4403 * @param: structure containing the RT priority.
4405 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4407 struct sched_param lp
;
4408 struct task_struct
*p
;
4411 if (!param
|| pid
< 0)
4414 read_lock(&tasklist_lock
);
4415 p
= find_process_by_pid(pid
);
4420 retval
= security_task_getscheduler(p
);
4424 lp
.sched_priority
= p
->rt_priority
;
4425 read_unlock(&tasklist_lock
);
4428 * This one might sleep, we cannot do it with a spinlock held ...
4430 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4435 read_unlock(&tasklist_lock
);
4439 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4441 cpumask_t cpus_allowed
;
4442 struct task_struct
*p
;
4445 mutex_lock(&sched_hotcpu_mutex
);
4446 read_lock(&tasklist_lock
);
4448 p
= find_process_by_pid(pid
);
4450 read_unlock(&tasklist_lock
);
4451 mutex_unlock(&sched_hotcpu_mutex
);
4456 * It is not safe to call set_cpus_allowed with the
4457 * tasklist_lock held. We will bump the task_struct's
4458 * usage count and then drop tasklist_lock.
4461 read_unlock(&tasklist_lock
);
4464 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4465 !capable(CAP_SYS_NICE
))
4468 retval
= security_task_setscheduler(p
, 0, NULL
);
4472 cpus_allowed
= cpuset_cpus_allowed(p
);
4473 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4475 retval
= set_cpus_allowed(p
, new_mask
);
4478 cpus_allowed
= cpuset_cpus_allowed(p
);
4479 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4481 * We must have raced with a concurrent cpuset
4482 * update. Just reset the cpus_allowed to the
4483 * cpuset's cpus_allowed
4485 new_mask
= cpus_allowed
;
4491 mutex_unlock(&sched_hotcpu_mutex
);
4495 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4496 cpumask_t
*new_mask
)
4498 if (len
< sizeof(cpumask_t
)) {
4499 memset(new_mask
, 0, sizeof(cpumask_t
));
4500 } else if (len
> sizeof(cpumask_t
)) {
4501 len
= sizeof(cpumask_t
);
4503 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4507 * sys_sched_setaffinity - set the cpu affinity of a process
4508 * @pid: pid of the process
4509 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4510 * @user_mask_ptr: user-space pointer to the new cpu mask
4512 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4513 unsigned long __user
*user_mask_ptr
)
4518 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4522 return sched_setaffinity(pid
, new_mask
);
4526 * Represents all cpu's present in the system
4527 * In systems capable of hotplug, this map could dynamically grow
4528 * as new cpu's are detected in the system via any platform specific
4529 * method, such as ACPI for e.g.
4532 cpumask_t cpu_present_map __read_mostly
;
4533 EXPORT_SYMBOL(cpu_present_map
);
4536 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4537 EXPORT_SYMBOL(cpu_online_map
);
4539 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4540 EXPORT_SYMBOL(cpu_possible_map
);
4543 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4545 struct task_struct
*p
;
4548 mutex_lock(&sched_hotcpu_mutex
);
4549 read_lock(&tasklist_lock
);
4552 p
= find_process_by_pid(pid
);
4556 retval
= security_task_getscheduler(p
);
4560 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4563 read_unlock(&tasklist_lock
);
4564 mutex_unlock(&sched_hotcpu_mutex
);
4570 * sys_sched_getaffinity - get the cpu affinity of a process
4571 * @pid: pid of the process
4572 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4573 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4575 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4576 unsigned long __user
*user_mask_ptr
)
4581 if (len
< sizeof(cpumask_t
))
4584 ret
= sched_getaffinity(pid
, &mask
);
4588 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4591 return sizeof(cpumask_t
);
4595 * sys_sched_yield - yield the current processor to other threads.
4597 * This function yields the current CPU to other tasks. If there are no
4598 * other threads running on this CPU then this function will return.
4600 asmlinkage
long sys_sched_yield(void)
4602 struct rq
*rq
= this_rq_lock();
4604 schedstat_inc(rq
, yld_count
);
4605 current
->sched_class
->yield_task(rq
);
4608 * Since we are going to call schedule() anyway, there's
4609 * no need to preempt or enable interrupts:
4611 __release(rq
->lock
);
4612 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4613 _raw_spin_unlock(&rq
->lock
);
4614 preempt_enable_no_resched();
4621 static void __cond_resched(void)
4623 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4624 __might_sleep(__FILE__
, __LINE__
);
4627 * The BKS might be reacquired before we have dropped
4628 * PREEMPT_ACTIVE, which could trigger a second
4629 * cond_resched() call.
4632 add_preempt_count(PREEMPT_ACTIVE
);
4634 sub_preempt_count(PREEMPT_ACTIVE
);
4635 } while (need_resched());
4638 int __sched
cond_resched(void)
4640 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4641 system_state
== SYSTEM_RUNNING
) {
4647 EXPORT_SYMBOL(cond_resched
);
4650 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4651 * call schedule, and on return reacquire the lock.
4653 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4654 * operations here to prevent schedule() from being called twice (once via
4655 * spin_unlock(), once by hand).
4657 int cond_resched_lock(spinlock_t
*lock
)
4661 if (need_lockbreak(lock
)) {
4667 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4668 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4669 _raw_spin_unlock(lock
);
4670 preempt_enable_no_resched();
4677 EXPORT_SYMBOL(cond_resched_lock
);
4679 int __sched
cond_resched_softirq(void)
4681 BUG_ON(!in_softirq());
4683 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4691 EXPORT_SYMBOL(cond_resched_softirq
);
4694 * yield - yield the current processor to other threads.
4696 * This is a shortcut for kernel-space yielding - it marks the
4697 * thread runnable and calls sys_sched_yield().
4699 void __sched
yield(void)
4701 set_current_state(TASK_RUNNING
);
4704 EXPORT_SYMBOL(yield
);
4707 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4708 * that process accounting knows that this is a task in IO wait state.
4710 * But don't do that if it is a deliberate, throttling IO wait (this task
4711 * has set its backing_dev_info: the queue against which it should throttle)
4713 void __sched
io_schedule(void)
4715 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4717 delayacct_blkio_start();
4718 atomic_inc(&rq
->nr_iowait
);
4720 atomic_dec(&rq
->nr_iowait
);
4721 delayacct_blkio_end();
4723 EXPORT_SYMBOL(io_schedule
);
4725 long __sched
io_schedule_timeout(long timeout
)
4727 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4730 delayacct_blkio_start();
4731 atomic_inc(&rq
->nr_iowait
);
4732 ret
= schedule_timeout(timeout
);
4733 atomic_dec(&rq
->nr_iowait
);
4734 delayacct_blkio_end();
4739 * sys_sched_get_priority_max - return maximum RT priority.
4740 * @policy: scheduling class.
4742 * this syscall returns the maximum rt_priority that can be used
4743 * by a given scheduling class.
4745 asmlinkage
long sys_sched_get_priority_max(int policy
)
4752 ret
= MAX_USER_RT_PRIO
-1;
4764 * sys_sched_get_priority_min - return minimum RT priority.
4765 * @policy: scheduling class.
4767 * this syscall returns the minimum rt_priority that can be used
4768 * by a given scheduling class.
4770 asmlinkage
long sys_sched_get_priority_min(int policy
)
4788 * sys_sched_rr_get_interval - return the default timeslice of a process.
4789 * @pid: pid of the process.
4790 * @interval: userspace pointer to the timeslice value.
4792 * this syscall writes the default timeslice value of a given process
4793 * into the user-space timespec buffer. A value of '0' means infinity.
4796 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4798 struct task_struct
*p
;
4799 unsigned int time_slice
;
4807 read_lock(&tasklist_lock
);
4808 p
= find_process_by_pid(pid
);
4812 retval
= security_task_getscheduler(p
);
4816 if (p
->policy
== SCHED_FIFO
)
4818 else if (p
->policy
== SCHED_RR
)
4819 time_slice
= DEF_TIMESLICE
;
4821 struct sched_entity
*se
= &p
->se
;
4822 unsigned long flags
;
4825 rq
= task_rq_lock(p
, &flags
);
4826 time_slice
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
4827 task_rq_unlock(rq
, &flags
);
4829 read_unlock(&tasklist_lock
);
4830 jiffies_to_timespec(time_slice
, &t
);
4831 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4835 read_unlock(&tasklist_lock
);
4839 static const char stat_nam
[] = "RSDTtZX";
4841 static void show_task(struct task_struct
*p
)
4843 unsigned long free
= 0;
4846 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4847 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4848 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4849 #if BITS_PER_LONG == 32
4850 if (state
== TASK_RUNNING
)
4851 printk(KERN_CONT
" running ");
4853 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4855 if (state
== TASK_RUNNING
)
4856 printk(KERN_CONT
" running task ");
4858 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4860 #ifdef CONFIG_DEBUG_STACK_USAGE
4862 unsigned long *n
= end_of_stack(p
);
4865 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4868 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4869 task_pid_nr(p
), task_pid_nr(p
->parent
));
4871 if (state
!= TASK_RUNNING
)
4872 show_stack(p
, NULL
);
4875 void show_state_filter(unsigned long state_filter
)
4877 struct task_struct
*g
, *p
;
4879 #if BITS_PER_LONG == 32
4881 " task PC stack pid father\n");
4884 " task PC stack pid father\n");
4886 read_lock(&tasklist_lock
);
4887 do_each_thread(g
, p
) {
4889 * reset the NMI-timeout, listing all files on a slow
4890 * console might take alot of time:
4892 touch_nmi_watchdog();
4893 if (!state_filter
|| (p
->state
& state_filter
))
4895 } while_each_thread(g
, p
);
4897 touch_all_softlockup_watchdogs();
4899 #ifdef CONFIG_SCHED_DEBUG
4900 sysrq_sched_debug_show();
4902 read_unlock(&tasklist_lock
);
4904 * Only show locks if all tasks are dumped:
4906 if (state_filter
== -1)
4907 debug_show_all_locks();
4910 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4912 idle
->sched_class
= &idle_sched_class
;
4916 * init_idle - set up an idle thread for a given CPU
4917 * @idle: task in question
4918 * @cpu: cpu the idle task belongs to
4920 * NOTE: this function does not set the idle thread's NEED_RESCHED
4921 * flag, to make booting more robust.
4923 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4925 struct rq
*rq
= cpu_rq(cpu
);
4926 unsigned long flags
;
4929 idle
->se
.exec_start
= sched_clock();
4931 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4932 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4933 __set_task_cpu(idle
, cpu
);
4935 spin_lock_irqsave(&rq
->lock
, flags
);
4936 rq
->curr
= rq
->idle
= idle
;
4937 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4940 spin_unlock_irqrestore(&rq
->lock
, flags
);
4942 /* Set the preempt count _outside_ the spinlocks! */
4943 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4944 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4946 task_thread_info(idle
)->preempt_count
= 0;
4949 * The idle tasks have their own, simple scheduling class:
4951 idle
->sched_class
= &idle_sched_class
;
4955 * In a system that switches off the HZ timer nohz_cpu_mask
4956 * indicates which cpus entered this state. This is used
4957 * in the rcu update to wait only for active cpus. For system
4958 * which do not switch off the HZ timer nohz_cpu_mask should
4959 * always be CPU_MASK_NONE.
4961 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4965 * This is how migration works:
4967 * 1) we queue a struct migration_req structure in the source CPU's
4968 * runqueue and wake up that CPU's migration thread.
4969 * 2) we down() the locked semaphore => thread blocks.
4970 * 3) migration thread wakes up (implicitly it forces the migrated
4971 * thread off the CPU)
4972 * 4) it gets the migration request and checks whether the migrated
4973 * task is still in the wrong runqueue.
4974 * 5) if it's in the wrong runqueue then the migration thread removes
4975 * it and puts it into the right queue.
4976 * 6) migration thread up()s the semaphore.
4977 * 7) we wake up and the migration is done.
4981 * Change a given task's CPU affinity. Migrate the thread to a
4982 * proper CPU and schedule it away if the CPU it's executing on
4983 * is removed from the allowed bitmask.
4985 * NOTE: the caller must have a valid reference to the task, the
4986 * task must not exit() & deallocate itself prematurely. The
4987 * call is not atomic; no spinlocks may be held.
4989 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4991 struct migration_req req
;
4992 unsigned long flags
;
4996 rq
= task_rq_lock(p
, &flags
);
4997 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5002 p
->cpus_allowed
= new_mask
;
5003 /* Can the task run on the task's current CPU? If so, we're done */
5004 if (cpu_isset(task_cpu(p
), new_mask
))
5007 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5008 /* Need help from migration thread: drop lock and wait. */
5009 task_rq_unlock(rq
, &flags
);
5010 wake_up_process(rq
->migration_thread
);
5011 wait_for_completion(&req
.done
);
5012 tlb_migrate_finish(p
->mm
);
5016 task_rq_unlock(rq
, &flags
);
5020 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5023 * Move (not current) task off this cpu, onto dest cpu. We're doing
5024 * this because either it can't run here any more (set_cpus_allowed()
5025 * away from this CPU, or CPU going down), or because we're
5026 * attempting to rebalance this task on exec (sched_exec).
5028 * So we race with normal scheduler movements, but that's OK, as long
5029 * as the task is no longer on this CPU.
5031 * Returns non-zero if task was successfully migrated.
5033 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5035 struct rq
*rq_dest
, *rq_src
;
5038 if (unlikely(cpu_is_offline(dest_cpu
)))
5041 rq_src
= cpu_rq(src_cpu
);
5042 rq_dest
= cpu_rq(dest_cpu
);
5044 double_rq_lock(rq_src
, rq_dest
);
5045 /* Already moved. */
5046 if (task_cpu(p
) != src_cpu
)
5048 /* Affinity changed (again). */
5049 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5052 on_rq
= p
->se
.on_rq
;
5054 deactivate_task(rq_src
, p
, 0);
5056 set_task_cpu(p
, dest_cpu
);
5058 activate_task(rq_dest
, p
, 0);
5059 check_preempt_curr(rq_dest
, p
);
5063 double_rq_unlock(rq_src
, rq_dest
);
5068 * migration_thread - this is a highprio system thread that performs
5069 * thread migration by bumping thread off CPU then 'pushing' onto
5072 static int migration_thread(void *data
)
5074 int cpu
= (long)data
;
5078 BUG_ON(rq
->migration_thread
!= current
);
5080 set_current_state(TASK_INTERRUPTIBLE
);
5081 while (!kthread_should_stop()) {
5082 struct migration_req
*req
;
5083 struct list_head
*head
;
5085 spin_lock_irq(&rq
->lock
);
5087 if (cpu_is_offline(cpu
)) {
5088 spin_unlock_irq(&rq
->lock
);
5092 if (rq
->active_balance
) {
5093 active_load_balance(rq
, cpu
);
5094 rq
->active_balance
= 0;
5097 head
= &rq
->migration_queue
;
5099 if (list_empty(head
)) {
5100 spin_unlock_irq(&rq
->lock
);
5102 set_current_state(TASK_INTERRUPTIBLE
);
5105 req
= list_entry(head
->next
, struct migration_req
, list
);
5106 list_del_init(head
->next
);
5108 spin_unlock(&rq
->lock
);
5109 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5112 complete(&req
->done
);
5114 __set_current_state(TASK_RUNNING
);
5118 /* Wait for kthread_stop */
5119 set_current_state(TASK_INTERRUPTIBLE
);
5120 while (!kthread_should_stop()) {
5122 set_current_state(TASK_INTERRUPTIBLE
);
5124 __set_current_state(TASK_RUNNING
);
5128 #ifdef CONFIG_HOTPLUG_CPU
5130 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5134 local_irq_disable();
5135 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5141 * Figure out where task on dead CPU should go, use force if neccessary.
5142 * NOTE: interrupts should be disabled by the caller
5144 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5146 unsigned long flags
;
5153 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5154 cpus_and(mask
, mask
, p
->cpus_allowed
);
5155 dest_cpu
= any_online_cpu(mask
);
5157 /* On any allowed CPU? */
5158 if (dest_cpu
== NR_CPUS
)
5159 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5161 /* No more Mr. Nice Guy. */
5162 if (dest_cpu
== NR_CPUS
) {
5163 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5165 * Try to stay on the same cpuset, where the
5166 * current cpuset may be a subset of all cpus.
5167 * The cpuset_cpus_allowed_locked() variant of
5168 * cpuset_cpus_allowed() will not block. It must be
5169 * called within calls to cpuset_lock/cpuset_unlock.
5171 rq
= task_rq_lock(p
, &flags
);
5172 p
->cpus_allowed
= cpus_allowed
;
5173 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5174 task_rq_unlock(rq
, &flags
);
5177 * Don't tell them about moving exiting tasks or
5178 * kernel threads (both mm NULL), since they never
5181 if (p
->mm
&& printk_ratelimit())
5182 printk(KERN_INFO
"process %d (%s) no "
5183 "longer affine to cpu%d\n",
5184 task_pid_nr(p
), p
->comm
, dead_cpu
);
5186 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5190 * While a dead CPU has no uninterruptible tasks queued at this point,
5191 * it might still have a nonzero ->nr_uninterruptible counter, because
5192 * for performance reasons the counter is not stricly tracking tasks to
5193 * their home CPUs. So we just add the counter to another CPU's counter,
5194 * to keep the global sum constant after CPU-down:
5196 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5198 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5199 unsigned long flags
;
5201 local_irq_save(flags
);
5202 double_rq_lock(rq_src
, rq_dest
);
5203 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5204 rq_src
->nr_uninterruptible
= 0;
5205 double_rq_unlock(rq_src
, rq_dest
);
5206 local_irq_restore(flags
);
5209 /* Run through task list and migrate tasks from the dead cpu. */
5210 static void migrate_live_tasks(int src_cpu
)
5212 struct task_struct
*p
, *t
;
5214 read_lock(&tasklist_lock
);
5216 do_each_thread(t
, p
) {
5220 if (task_cpu(p
) == src_cpu
)
5221 move_task_off_dead_cpu(src_cpu
, p
);
5222 } while_each_thread(t
, p
);
5224 read_unlock(&tasklist_lock
);
5228 * activate_idle_task - move idle task to the _front_ of runqueue.
5230 static void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
5232 update_rq_clock(rq
);
5234 if (p
->state
== TASK_UNINTERRUPTIBLE
)
5235 rq
->nr_uninterruptible
--;
5237 enqueue_task(rq
, p
, 0);
5238 inc_nr_running(p
, rq
);
5242 * Schedules idle task to be the next runnable task on current CPU.
5243 * It does so by boosting its priority to highest possible and adding it to
5244 * the _front_ of the runqueue. Used by CPU offline code.
5246 void sched_idle_next(void)
5248 int this_cpu
= smp_processor_id();
5249 struct rq
*rq
= cpu_rq(this_cpu
);
5250 struct task_struct
*p
= rq
->idle
;
5251 unsigned long flags
;
5253 /* cpu has to be offline */
5254 BUG_ON(cpu_online(this_cpu
));
5257 * Strictly not necessary since rest of the CPUs are stopped by now
5258 * and interrupts disabled on the current cpu.
5260 spin_lock_irqsave(&rq
->lock
, flags
);
5262 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5264 /* Add idle task to the _front_ of its priority queue: */
5265 activate_idle_task(p
, rq
);
5267 spin_unlock_irqrestore(&rq
->lock
, flags
);
5271 * Ensures that the idle task is using init_mm right before its cpu goes
5274 void idle_task_exit(void)
5276 struct mm_struct
*mm
= current
->active_mm
;
5278 BUG_ON(cpu_online(smp_processor_id()));
5281 switch_mm(mm
, &init_mm
, current
);
5285 /* called under rq->lock with disabled interrupts */
5286 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5288 struct rq
*rq
= cpu_rq(dead_cpu
);
5290 /* Must be exiting, otherwise would be on tasklist. */
5291 BUG_ON(!p
->exit_state
);
5293 /* Cannot have done final schedule yet: would have vanished. */
5294 BUG_ON(p
->state
== TASK_DEAD
);
5299 * Drop lock around migration; if someone else moves it,
5300 * that's OK. No task can be added to this CPU, so iteration is
5303 spin_unlock_irq(&rq
->lock
);
5304 move_task_off_dead_cpu(dead_cpu
, p
);
5305 spin_lock_irq(&rq
->lock
);
5310 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5311 static void migrate_dead_tasks(unsigned int dead_cpu
)
5313 struct rq
*rq
= cpu_rq(dead_cpu
);
5314 struct task_struct
*next
;
5317 if (!rq
->nr_running
)
5319 update_rq_clock(rq
);
5320 next
= pick_next_task(rq
, rq
->curr
);
5323 migrate_dead(dead_cpu
, next
);
5327 #endif /* CONFIG_HOTPLUG_CPU */
5329 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5331 static struct ctl_table sd_ctl_dir
[] = {
5333 .procname
= "sched_domain",
5339 static struct ctl_table sd_ctl_root
[] = {
5341 .ctl_name
= CTL_KERN
,
5342 .procname
= "kernel",
5344 .child
= sd_ctl_dir
,
5349 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5351 struct ctl_table
*entry
=
5352 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5357 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5359 struct ctl_table
*entry
;
5362 * In the intermediate directories, both the child directory and
5363 * procname are dynamically allocated and could fail but the mode
5364 * will always be set. In the lowest directory the names are
5365 * static strings and all have proc handlers.
5367 for (entry
= *tablep
; entry
->mode
; entry
++) {
5369 sd_free_ctl_entry(&entry
->child
);
5370 if (entry
->proc_handler
== NULL
)
5371 kfree(entry
->procname
);
5379 set_table_entry(struct ctl_table
*entry
,
5380 const char *procname
, void *data
, int maxlen
,
5381 mode_t mode
, proc_handler
*proc_handler
)
5383 entry
->procname
= procname
;
5385 entry
->maxlen
= maxlen
;
5387 entry
->proc_handler
= proc_handler
;
5390 static struct ctl_table
*
5391 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5393 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5398 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5399 sizeof(long), 0644, proc_doulongvec_minmax
);
5400 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5401 sizeof(long), 0644, proc_doulongvec_minmax
);
5402 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5403 sizeof(int), 0644, proc_dointvec_minmax
);
5404 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5405 sizeof(int), 0644, proc_dointvec_minmax
);
5406 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5407 sizeof(int), 0644, proc_dointvec_minmax
);
5408 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5409 sizeof(int), 0644, proc_dointvec_minmax
);
5410 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5411 sizeof(int), 0644, proc_dointvec_minmax
);
5412 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5413 sizeof(int), 0644, proc_dointvec_minmax
);
5414 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5415 sizeof(int), 0644, proc_dointvec_minmax
);
5416 set_table_entry(&table
[9], "cache_nice_tries",
5417 &sd
->cache_nice_tries
,
5418 sizeof(int), 0644, proc_dointvec_minmax
);
5419 set_table_entry(&table
[10], "flags", &sd
->flags
,
5420 sizeof(int), 0644, proc_dointvec_minmax
);
5421 /* &table[11] is terminator */
5426 static ctl_table
* sd_alloc_ctl_cpu_table(int cpu
)
5428 struct ctl_table
*entry
, *table
;
5429 struct sched_domain
*sd
;
5430 int domain_num
= 0, i
;
5433 for_each_domain(cpu
, sd
)
5435 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5440 for_each_domain(cpu
, sd
) {
5441 snprintf(buf
, 32, "domain%d", i
);
5442 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5444 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5451 static struct ctl_table_header
*sd_sysctl_header
;
5452 static void register_sched_domain_sysctl(void)
5454 int i
, cpu_num
= num_online_cpus();
5455 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5461 sd_ctl_dir
[0].child
= entry
;
5463 for_each_online_cpu(i
) {
5464 snprintf(buf
, 32, "cpu%d", i
);
5465 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5467 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5470 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5473 static void unregister_sched_domain_sysctl(void)
5475 unregister_sysctl_table(sd_sysctl_header
);
5476 sd_sysctl_header
= NULL
;
5477 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5480 static void register_sched_domain_sysctl(void)
5483 static void unregister_sched_domain_sysctl(void)
5489 * migration_call - callback that gets triggered when a CPU is added.
5490 * Here we can start up the necessary migration thread for the new CPU.
5492 static int __cpuinit
5493 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5495 struct task_struct
*p
;
5496 int cpu
= (long)hcpu
;
5497 unsigned long flags
;
5501 case CPU_LOCK_ACQUIRE
:
5502 mutex_lock(&sched_hotcpu_mutex
);
5505 case CPU_UP_PREPARE
:
5506 case CPU_UP_PREPARE_FROZEN
:
5507 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5510 kthread_bind(p
, cpu
);
5511 /* Must be high prio: stop_machine expects to yield to it. */
5512 rq
= task_rq_lock(p
, &flags
);
5513 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5514 task_rq_unlock(rq
, &flags
);
5515 cpu_rq(cpu
)->migration_thread
= p
;
5519 case CPU_ONLINE_FROZEN
:
5520 /* Strictly unneccessary, as first user will wake it. */
5521 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5524 #ifdef CONFIG_HOTPLUG_CPU
5525 case CPU_UP_CANCELED
:
5526 case CPU_UP_CANCELED_FROZEN
:
5527 if (!cpu_rq(cpu
)->migration_thread
)
5529 /* Unbind it from offline cpu so it can run. Fall thru. */
5530 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5531 any_online_cpu(cpu_online_map
));
5532 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5533 cpu_rq(cpu
)->migration_thread
= NULL
;
5537 case CPU_DEAD_FROZEN
:
5538 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5539 migrate_live_tasks(cpu
);
5541 kthread_stop(rq
->migration_thread
);
5542 rq
->migration_thread
= NULL
;
5543 /* Idle task back to normal (off runqueue, low prio) */
5544 spin_lock_irq(&rq
->lock
);
5545 update_rq_clock(rq
);
5546 deactivate_task(rq
, rq
->idle
, 0);
5547 rq
->idle
->static_prio
= MAX_PRIO
;
5548 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5549 rq
->idle
->sched_class
= &idle_sched_class
;
5550 migrate_dead_tasks(cpu
);
5551 spin_unlock_irq(&rq
->lock
);
5553 migrate_nr_uninterruptible(rq
);
5554 BUG_ON(rq
->nr_running
!= 0);
5556 /* No need to migrate the tasks: it was best-effort if
5557 * they didn't take sched_hotcpu_mutex. Just wake up
5558 * the requestors. */
5559 spin_lock_irq(&rq
->lock
);
5560 while (!list_empty(&rq
->migration_queue
)) {
5561 struct migration_req
*req
;
5563 req
= list_entry(rq
->migration_queue
.next
,
5564 struct migration_req
, list
);
5565 list_del_init(&req
->list
);
5566 complete(&req
->done
);
5568 spin_unlock_irq(&rq
->lock
);
5571 case CPU_LOCK_RELEASE
:
5572 mutex_unlock(&sched_hotcpu_mutex
);
5578 /* Register at highest priority so that task migration (migrate_all_tasks)
5579 * happens before everything else.
5581 static struct notifier_block __cpuinitdata migration_notifier
= {
5582 .notifier_call
= migration_call
,
5586 int __init
migration_init(void)
5588 void *cpu
= (void *)(long)smp_processor_id();
5591 /* Start one for the boot CPU: */
5592 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5593 BUG_ON(err
== NOTIFY_BAD
);
5594 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5595 register_cpu_notifier(&migration_notifier
);
5603 /* Number of possible processor ids */
5604 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5605 EXPORT_SYMBOL(nr_cpu_ids
);
5607 #ifdef CONFIG_SCHED_DEBUG
5608 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5613 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5617 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5622 struct sched_group
*group
= sd
->groups
;
5623 cpumask_t groupmask
;
5625 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5626 cpus_clear(groupmask
);
5629 for (i
= 0; i
< level
+ 1; i
++)
5631 printk("domain %d: ", level
);
5633 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5634 printk("does not load-balance\n");
5636 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5641 printk("span %s\n", str
);
5643 if (!cpu_isset(cpu
, sd
->span
))
5644 printk(KERN_ERR
"ERROR: domain->span does not contain "
5646 if (!cpu_isset(cpu
, group
->cpumask
))
5647 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5651 for (i
= 0; i
< level
+ 2; i
++)
5657 printk(KERN_ERR
"ERROR: group is NULL\n");
5661 if (!group
->__cpu_power
) {
5662 printk(KERN_CONT
"\n");
5663 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5668 if (!cpus_weight(group
->cpumask
)) {
5669 printk(KERN_CONT
"\n");
5670 printk(KERN_ERR
"ERROR: empty group\n");
5674 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5675 printk(KERN_CONT
"\n");
5676 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5680 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5682 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5683 printk(KERN_CONT
" %s", str
);
5685 group
= group
->next
;
5686 } while (group
!= sd
->groups
);
5687 printk(KERN_CONT
"\n");
5689 if (!cpus_equal(sd
->span
, groupmask
))
5690 printk(KERN_ERR
"ERROR: groups don't span "
5698 if (!cpus_subset(groupmask
, sd
->span
))
5699 printk(KERN_ERR
"ERROR: parent span is not a superset "
5700 "of domain->span\n");
5705 # define sched_domain_debug(sd, cpu) do { } while (0)
5708 static int sd_degenerate(struct sched_domain
*sd
)
5710 if (cpus_weight(sd
->span
) == 1)
5713 /* Following flags need at least 2 groups */
5714 if (sd
->flags
& (SD_LOAD_BALANCE
|
5715 SD_BALANCE_NEWIDLE
|
5719 SD_SHARE_PKG_RESOURCES
)) {
5720 if (sd
->groups
!= sd
->groups
->next
)
5724 /* Following flags don't use groups */
5725 if (sd
->flags
& (SD_WAKE_IDLE
|
5734 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5736 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5738 if (sd_degenerate(parent
))
5741 if (!cpus_equal(sd
->span
, parent
->span
))
5744 /* Does parent contain flags not in child? */
5745 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5746 if (cflags
& SD_WAKE_AFFINE
)
5747 pflags
&= ~SD_WAKE_BALANCE
;
5748 /* Flags needing groups don't count if only 1 group in parent */
5749 if (parent
->groups
== parent
->groups
->next
) {
5750 pflags
&= ~(SD_LOAD_BALANCE
|
5751 SD_BALANCE_NEWIDLE
|
5755 SD_SHARE_PKG_RESOURCES
);
5757 if (~cflags
& pflags
)
5764 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5765 * hold the hotplug lock.
5767 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5769 struct rq
*rq
= cpu_rq(cpu
);
5770 struct sched_domain
*tmp
;
5772 /* Remove the sched domains which do not contribute to scheduling. */
5773 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5774 struct sched_domain
*parent
= tmp
->parent
;
5777 if (sd_parent_degenerate(tmp
, parent
)) {
5778 tmp
->parent
= parent
->parent
;
5780 parent
->parent
->child
= tmp
;
5784 if (sd
&& sd_degenerate(sd
)) {
5790 sched_domain_debug(sd
, cpu
);
5792 rcu_assign_pointer(rq
->sd
, sd
);
5795 /* cpus with isolated domains */
5796 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5798 /* Setup the mask of cpus configured for isolated domains */
5799 static int __init
isolated_cpu_setup(char *str
)
5801 int ints
[NR_CPUS
], i
;
5803 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5804 cpus_clear(cpu_isolated_map
);
5805 for (i
= 1; i
<= ints
[0]; i
++)
5806 if (ints
[i
] < NR_CPUS
)
5807 cpu_set(ints
[i
], cpu_isolated_map
);
5811 __setup("isolcpus=", isolated_cpu_setup
);
5814 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5815 * to a function which identifies what group(along with sched group) a CPU
5816 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5817 * (due to the fact that we keep track of groups covered with a cpumask_t).
5819 * init_sched_build_groups will build a circular linked list of the groups
5820 * covered by the given span, and will set each group's ->cpumask correctly,
5821 * and ->cpu_power to 0.
5824 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5825 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5826 struct sched_group
**sg
))
5828 struct sched_group
*first
= NULL
, *last
= NULL
;
5829 cpumask_t covered
= CPU_MASK_NONE
;
5832 for_each_cpu_mask(i
, span
) {
5833 struct sched_group
*sg
;
5834 int group
= group_fn(i
, cpu_map
, &sg
);
5837 if (cpu_isset(i
, covered
))
5840 sg
->cpumask
= CPU_MASK_NONE
;
5841 sg
->__cpu_power
= 0;
5843 for_each_cpu_mask(j
, span
) {
5844 if (group_fn(j
, cpu_map
, NULL
) != group
)
5847 cpu_set(j
, covered
);
5848 cpu_set(j
, sg
->cpumask
);
5859 #define SD_NODES_PER_DOMAIN 16
5864 * find_next_best_node - find the next node to include in a sched_domain
5865 * @node: node whose sched_domain we're building
5866 * @used_nodes: nodes already in the sched_domain
5868 * Find the next node to include in a given scheduling domain. Simply
5869 * finds the closest node not already in the @used_nodes map.
5871 * Should use nodemask_t.
5873 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5875 int i
, n
, val
, min_val
, best_node
= 0;
5879 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5880 /* Start at @node */
5881 n
= (node
+ i
) % MAX_NUMNODES
;
5883 if (!nr_cpus_node(n
))
5886 /* Skip already used nodes */
5887 if (test_bit(n
, used_nodes
))
5890 /* Simple min distance search */
5891 val
= node_distance(node
, n
);
5893 if (val
< min_val
) {
5899 set_bit(best_node
, used_nodes
);
5904 * sched_domain_node_span - get a cpumask for a node's sched_domain
5905 * @node: node whose cpumask we're constructing
5906 * @size: number of nodes to include in this span
5908 * Given a node, construct a good cpumask for its sched_domain to span. It
5909 * should be one that prevents unnecessary balancing, but also spreads tasks
5912 static cpumask_t
sched_domain_node_span(int node
)
5914 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5915 cpumask_t span
, nodemask
;
5919 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5921 nodemask
= node_to_cpumask(node
);
5922 cpus_or(span
, span
, nodemask
);
5923 set_bit(node
, used_nodes
);
5925 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5926 int next_node
= find_next_best_node(node
, used_nodes
);
5928 nodemask
= node_to_cpumask(next_node
);
5929 cpus_or(span
, span
, nodemask
);
5936 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5939 * SMT sched-domains:
5941 #ifdef CONFIG_SCHED_SMT
5942 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5943 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5945 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5946 struct sched_group
**sg
)
5949 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5955 * multi-core sched-domains:
5957 #ifdef CONFIG_SCHED_MC
5958 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5959 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5962 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5963 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5964 struct sched_group
**sg
)
5967 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
5968 cpus_and(mask
, mask
, *cpu_map
);
5969 group
= first_cpu(mask
);
5971 *sg
= &per_cpu(sched_group_core
, group
);
5974 #elif defined(CONFIG_SCHED_MC)
5975 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5976 struct sched_group
**sg
)
5979 *sg
= &per_cpu(sched_group_core
, cpu
);
5984 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5985 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5987 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5988 struct sched_group
**sg
)
5991 #ifdef CONFIG_SCHED_MC
5992 cpumask_t mask
= cpu_coregroup_map(cpu
);
5993 cpus_and(mask
, mask
, *cpu_map
);
5994 group
= first_cpu(mask
);
5995 #elif defined(CONFIG_SCHED_SMT)
5996 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
5997 cpus_and(mask
, mask
, *cpu_map
);
5998 group
= first_cpu(mask
);
6003 *sg
= &per_cpu(sched_group_phys
, group
);
6009 * The init_sched_build_groups can't handle what we want to do with node
6010 * groups, so roll our own. Now each node has its own list of groups which
6011 * gets dynamically allocated.
6013 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6014 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6016 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6017 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6019 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6020 struct sched_group
**sg
)
6022 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6025 cpus_and(nodemask
, nodemask
, *cpu_map
);
6026 group
= first_cpu(nodemask
);
6029 *sg
= &per_cpu(sched_group_allnodes
, group
);
6033 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6035 struct sched_group
*sg
= group_head
;
6041 for_each_cpu_mask(j
, sg
->cpumask
) {
6042 struct sched_domain
*sd
;
6044 sd
= &per_cpu(phys_domains
, j
);
6045 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6047 * Only add "power" once for each
6053 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6056 } while (sg
!= group_head
);
6061 /* Free memory allocated for various sched_group structures */
6062 static void free_sched_groups(const cpumask_t
*cpu_map
)
6066 for_each_cpu_mask(cpu
, *cpu_map
) {
6067 struct sched_group
**sched_group_nodes
6068 = sched_group_nodes_bycpu
[cpu
];
6070 if (!sched_group_nodes
)
6073 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6074 cpumask_t nodemask
= node_to_cpumask(i
);
6075 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6077 cpus_and(nodemask
, nodemask
, *cpu_map
);
6078 if (cpus_empty(nodemask
))
6088 if (oldsg
!= sched_group_nodes
[i
])
6091 kfree(sched_group_nodes
);
6092 sched_group_nodes_bycpu
[cpu
] = NULL
;
6096 static void free_sched_groups(const cpumask_t
*cpu_map
)
6102 * Initialize sched groups cpu_power.
6104 * cpu_power indicates the capacity of sched group, which is used while
6105 * distributing the load between different sched groups in a sched domain.
6106 * Typically cpu_power for all the groups in a sched domain will be same unless
6107 * there are asymmetries in the topology. If there are asymmetries, group
6108 * having more cpu_power will pickup more load compared to the group having
6111 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6112 * the maximum number of tasks a group can handle in the presence of other idle
6113 * or lightly loaded groups in the same sched domain.
6115 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6117 struct sched_domain
*child
;
6118 struct sched_group
*group
;
6120 WARN_ON(!sd
|| !sd
->groups
);
6122 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6127 sd
->groups
->__cpu_power
= 0;
6130 * For perf policy, if the groups in child domain share resources
6131 * (for example cores sharing some portions of the cache hierarchy
6132 * or SMT), then set this domain groups cpu_power such that each group
6133 * can handle only one task, when there are other idle groups in the
6134 * same sched domain.
6136 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6138 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6139 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6144 * add cpu_power of each child group to this groups cpu_power
6146 group
= child
->groups
;
6148 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6149 group
= group
->next
;
6150 } while (group
!= child
->groups
);
6154 * Build sched domains for a given set of cpus and attach the sched domains
6155 * to the individual cpus
6157 static int build_sched_domains(const cpumask_t
*cpu_map
)
6161 struct sched_group
**sched_group_nodes
= NULL
;
6162 int sd_allnodes
= 0;
6165 * Allocate the per-node list of sched groups
6167 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6169 if (!sched_group_nodes
) {
6170 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6173 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6177 * Set up domains for cpus specified by the cpu_map.
6179 for_each_cpu_mask(i
, *cpu_map
) {
6180 struct sched_domain
*sd
= NULL
, *p
;
6181 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6183 cpus_and(nodemask
, nodemask
, *cpu_map
);
6186 if (cpus_weight(*cpu_map
) >
6187 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6188 sd
= &per_cpu(allnodes_domains
, i
);
6189 *sd
= SD_ALLNODES_INIT
;
6190 sd
->span
= *cpu_map
;
6191 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6197 sd
= &per_cpu(node_domains
, i
);
6199 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6203 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6207 sd
= &per_cpu(phys_domains
, i
);
6209 sd
->span
= nodemask
;
6213 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6215 #ifdef CONFIG_SCHED_MC
6217 sd
= &per_cpu(core_domains
, i
);
6219 sd
->span
= cpu_coregroup_map(i
);
6220 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6223 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6226 #ifdef CONFIG_SCHED_SMT
6228 sd
= &per_cpu(cpu_domains
, i
);
6229 *sd
= SD_SIBLING_INIT
;
6230 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6231 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6234 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6238 #ifdef CONFIG_SCHED_SMT
6239 /* Set up CPU (sibling) groups */
6240 for_each_cpu_mask(i
, *cpu_map
) {
6241 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6242 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6243 if (i
!= first_cpu(this_sibling_map
))
6246 init_sched_build_groups(this_sibling_map
, cpu_map
,
6251 #ifdef CONFIG_SCHED_MC
6252 /* Set up multi-core groups */
6253 for_each_cpu_mask(i
, *cpu_map
) {
6254 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6255 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6256 if (i
!= first_cpu(this_core_map
))
6258 init_sched_build_groups(this_core_map
, cpu_map
,
6259 &cpu_to_core_group
);
6263 /* Set up physical groups */
6264 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6265 cpumask_t nodemask
= node_to_cpumask(i
);
6267 cpus_and(nodemask
, nodemask
, *cpu_map
);
6268 if (cpus_empty(nodemask
))
6271 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6275 /* Set up node groups */
6277 init_sched_build_groups(*cpu_map
, cpu_map
,
6278 &cpu_to_allnodes_group
);
6280 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6281 /* Set up node groups */
6282 struct sched_group
*sg
, *prev
;
6283 cpumask_t nodemask
= node_to_cpumask(i
);
6284 cpumask_t domainspan
;
6285 cpumask_t covered
= CPU_MASK_NONE
;
6288 cpus_and(nodemask
, nodemask
, *cpu_map
);
6289 if (cpus_empty(nodemask
)) {
6290 sched_group_nodes
[i
] = NULL
;
6294 domainspan
= sched_domain_node_span(i
);
6295 cpus_and(domainspan
, domainspan
, *cpu_map
);
6297 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6299 printk(KERN_WARNING
"Can not alloc domain group for "
6303 sched_group_nodes
[i
] = sg
;
6304 for_each_cpu_mask(j
, nodemask
) {
6305 struct sched_domain
*sd
;
6307 sd
= &per_cpu(node_domains
, j
);
6310 sg
->__cpu_power
= 0;
6311 sg
->cpumask
= nodemask
;
6313 cpus_or(covered
, covered
, nodemask
);
6316 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6317 cpumask_t tmp
, notcovered
;
6318 int n
= (i
+ j
) % MAX_NUMNODES
;
6320 cpus_complement(notcovered
, covered
);
6321 cpus_and(tmp
, notcovered
, *cpu_map
);
6322 cpus_and(tmp
, tmp
, domainspan
);
6323 if (cpus_empty(tmp
))
6326 nodemask
= node_to_cpumask(n
);
6327 cpus_and(tmp
, tmp
, nodemask
);
6328 if (cpus_empty(tmp
))
6331 sg
= kmalloc_node(sizeof(struct sched_group
),
6335 "Can not alloc domain group for node %d\n", j
);
6338 sg
->__cpu_power
= 0;
6340 sg
->next
= prev
->next
;
6341 cpus_or(covered
, covered
, tmp
);
6348 /* Calculate CPU power for physical packages and nodes */
6349 #ifdef CONFIG_SCHED_SMT
6350 for_each_cpu_mask(i
, *cpu_map
) {
6351 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6353 init_sched_groups_power(i
, sd
);
6356 #ifdef CONFIG_SCHED_MC
6357 for_each_cpu_mask(i
, *cpu_map
) {
6358 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6360 init_sched_groups_power(i
, sd
);
6364 for_each_cpu_mask(i
, *cpu_map
) {
6365 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6367 init_sched_groups_power(i
, sd
);
6371 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6372 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6375 struct sched_group
*sg
;
6377 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6378 init_numa_sched_groups_power(sg
);
6382 /* Attach the domains */
6383 for_each_cpu_mask(i
, *cpu_map
) {
6384 struct sched_domain
*sd
;
6385 #ifdef CONFIG_SCHED_SMT
6386 sd
= &per_cpu(cpu_domains
, i
);
6387 #elif defined(CONFIG_SCHED_MC)
6388 sd
= &per_cpu(core_domains
, i
);
6390 sd
= &per_cpu(phys_domains
, i
);
6392 cpu_attach_domain(sd
, i
);
6399 free_sched_groups(cpu_map
);
6404 static cpumask_t
*doms_cur
; /* current sched domains */
6405 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6408 * Special case: If a kmalloc of a doms_cur partition (array of
6409 * cpumask_t) fails, then fallback to a single sched domain,
6410 * as determined by the single cpumask_t fallback_doms.
6412 static cpumask_t fallback_doms
;
6415 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6416 * For now this just excludes isolated cpus, but could be used to
6417 * exclude other special cases in the future.
6419 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6422 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6424 doms_cur
= &fallback_doms
;
6425 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6426 register_sched_domain_sysctl();
6427 return build_sched_domains(doms_cur
);
6430 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6432 free_sched_groups(cpu_map
);
6436 * Detach sched domains from a group of cpus specified in cpu_map
6437 * These cpus will now be attached to the NULL domain
6439 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6443 unregister_sched_domain_sysctl();
6445 for_each_cpu_mask(i
, *cpu_map
)
6446 cpu_attach_domain(NULL
, i
);
6447 synchronize_sched();
6448 arch_destroy_sched_domains(cpu_map
);
6452 * Partition sched domains as specified by the 'ndoms_new'
6453 * cpumasks in the array doms_new[] of cpumasks. This compares
6454 * doms_new[] to the current sched domain partitioning, doms_cur[].
6455 * It destroys each deleted domain and builds each new domain.
6457 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6458 * The masks don't intersect (don't overlap.) We should setup one
6459 * sched domain for each mask. CPUs not in any of the cpumasks will
6460 * not be load balanced. If the same cpumask appears both in the
6461 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6464 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6465 * ownership of it and will kfree it when done with it. If the caller
6466 * failed the kmalloc call, then it can pass in doms_new == NULL,
6467 * and partition_sched_domains() will fallback to the single partition
6470 * Call with hotplug lock held
6472 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6476 if (doms_new
== NULL
) {
6478 doms_new
= &fallback_doms
;
6479 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6482 /* Destroy deleted domains */
6483 for (i
= 0; i
< ndoms_cur
; i
++) {
6484 for (j
= 0; j
< ndoms_new
; j
++) {
6485 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6488 /* no match - a current sched domain not in new doms_new[] */
6489 detach_destroy_domains(doms_cur
+ i
);
6494 /* Build new domains */
6495 for (i
= 0; i
< ndoms_new
; i
++) {
6496 for (j
= 0; j
< ndoms_cur
; j
++) {
6497 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6500 /* no match - add a new doms_new */
6501 build_sched_domains(doms_new
+ i
);
6506 /* Remember the new sched domains */
6507 if (doms_cur
!= &fallback_doms
)
6509 doms_cur
= doms_new
;
6510 ndoms_cur
= ndoms_new
;
6513 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6514 static int arch_reinit_sched_domains(void)
6518 mutex_lock(&sched_hotcpu_mutex
);
6519 detach_destroy_domains(&cpu_online_map
);
6520 err
= arch_init_sched_domains(&cpu_online_map
);
6521 mutex_unlock(&sched_hotcpu_mutex
);
6526 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6530 if (buf
[0] != '0' && buf
[0] != '1')
6534 sched_smt_power_savings
= (buf
[0] == '1');
6536 sched_mc_power_savings
= (buf
[0] == '1');
6538 ret
= arch_reinit_sched_domains();
6540 return ret
? ret
: count
;
6543 #ifdef CONFIG_SCHED_MC
6544 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6546 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6548 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6549 const char *buf
, size_t count
)
6551 return sched_power_savings_store(buf
, count
, 0);
6553 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6554 sched_mc_power_savings_store
);
6557 #ifdef CONFIG_SCHED_SMT
6558 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6560 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6562 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6563 const char *buf
, size_t count
)
6565 return sched_power_savings_store(buf
, count
, 1);
6567 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6568 sched_smt_power_savings_store
);
6571 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6575 #ifdef CONFIG_SCHED_SMT
6577 err
= sysfs_create_file(&cls
->kset
.kobj
,
6578 &attr_sched_smt_power_savings
.attr
);
6580 #ifdef CONFIG_SCHED_MC
6581 if (!err
&& mc_capable())
6582 err
= sysfs_create_file(&cls
->kset
.kobj
,
6583 &attr_sched_mc_power_savings
.attr
);
6590 * Force a reinitialization of the sched domains hierarchy. The domains
6591 * and groups cannot be updated in place without racing with the balancing
6592 * code, so we temporarily attach all running cpus to the NULL domain
6593 * which will prevent rebalancing while the sched domains are recalculated.
6595 static int update_sched_domains(struct notifier_block
*nfb
,
6596 unsigned long action
, void *hcpu
)
6599 case CPU_UP_PREPARE
:
6600 case CPU_UP_PREPARE_FROZEN
:
6601 case CPU_DOWN_PREPARE
:
6602 case CPU_DOWN_PREPARE_FROZEN
:
6603 detach_destroy_domains(&cpu_online_map
);
6606 case CPU_UP_CANCELED
:
6607 case CPU_UP_CANCELED_FROZEN
:
6608 case CPU_DOWN_FAILED
:
6609 case CPU_DOWN_FAILED_FROZEN
:
6611 case CPU_ONLINE_FROZEN
:
6613 case CPU_DEAD_FROZEN
:
6615 * Fall through and re-initialise the domains.
6622 /* The hotplug lock is already held by cpu_up/cpu_down */
6623 arch_init_sched_domains(&cpu_online_map
);
6628 void __init
sched_init_smp(void)
6630 cpumask_t non_isolated_cpus
;
6632 mutex_lock(&sched_hotcpu_mutex
);
6633 arch_init_sched_domains(&cpu_online_map
);
6634 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6635 if (cpus_empty(non_isolated_cpus
))
6636 cpu_set(smp_processor_id(), non_isolated_cpus
);
6637 mutex_unlock(&sched_hotcpu_mutex
);
6638 /* XXX: Theoretical race here - CPU may be hotplugged now */
6639 hotcpu_notifier(update_sched_domains
, 0);
6641 /* Move init over to a non-isolated CPU */
6642 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6646 void __init
sched_init_smp(void)
6649 #endif /* CONFIG_SMP */
6651 int in_sched_functions(unsigned long addr
)
6653 /* Linker adds these: start and end of __sched functions */
6654 extern char __sched_text_start
[], __sched_text_end
[];
6656 return in_lock_functions(addr
) ||
6657 (addr
>= (unsigned long)__sched_text_start
6658 && addr
< (unsigned long)__sched_text_end
);
6661 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6663 cfs_rq
->tasks_timeline
= RB_ROOT
;
6664 #ifdef CONFIG_FAIR_GROUP_SCHED
6667 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6670 void __init
sched_init(void)
6672 int highest_cpu
= 0;
6675 for_each_possible_cpu(i
) {
6676 struct rt_prio_array
*array
;
6680 spin_lock_init(&rq
->lock
);
6681 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6684 init_cfs_rq(&rq
->cfs
, rq
);
6685 #ifdef CONFIG_FAIR_GROUP_SCHED
6686 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6688 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6689 struct sched_entity
*se
=
6690 &per_cpu(init_sched_entity
, i
);
6692 init_cfs_rq_p
[i
] = cfs_rq
;
6693 init_cfs_rq(cfs_rq
, rq
);
6694 cfs_rq
->tg
= &init_task_group
;
6695 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6696 &rq
->leaf_cfs_rq_list
);
6698 init_sched_entity_p
[i
] = se
;
6699 se
->cfs_rq
= &rq
->cfs
;
6701 se
->load
.weight
= init_task_group_load
;
6702 se
->load
.inv_weight
=
6703 div64_64(1ULL<<32, init_task_group_load
);
6706 init_task_group
.shares
= init_task_group_load
;
6707 spin_lock_init(&init_task_group
.lock
);
6710 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6711 rq
->cpu_load
[j
] = 0;
6714 rq
->active_balance
= 0;
6715 rq
->next_balance
= jiffies
;
6718 rq
->migration_thread
= NULL
;
6719 INIT_LIST_HEAD(&rq
->migration_queue
);
6721 atomic_set(&rq
->nr_iowait
, 0);
6723 array
= &rq
->rt
.active
;
6724 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6725 INIT_LIST_HEAD(array
->queue
+ j
);
6726 __clear_bit(j
, array
->bitmap
);
6729 /* delimiter for bitsearch: */
6730 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6733 set_load_weight(&init_task
);
6735 #ifdef CONFIG_PREEMPT_NOTIFIERS
6736 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6740 nr_cpu_ids
= highest_cpu
+ 1;
6741 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6744 #ifdef CONFIG_RT_MUTEXES
6745 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6749 * The boot idle thread does lazy MMU switching as well:
6751 atomic_inc(&init_mm
.mm_count
);
6752 enter_lazy_tlb(&init_mm
, current
);
6755 * Make us the idle thread. Technically, schedule() should not be
6756 * called from this thread, however somewhere below it might be,
6757 * but because we are the idle thread, we just pick up running again
6758 * when this runqueue becomes "idle".
6760 init_idle(current
, smp_processor_id());
6762 * During early bootup we pretend to be a normal task:
6764 current
->sched_class
= &fair_sched_class
;
6767 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6768 void __might_sleep(char *file
, int line
)
6771 static unsigned long prev_jiffy
; /* ratelimiting */
6773 if ((in_atomic() || irqs_disabled()) &&
6774 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6775 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6777 prev_jiffy
= jiffies
;
6778 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6779 " context at %s:%d\n", file
, line
);
6780 printk("in_atomic():%d, irqs_disabled():%d\n",
6781 in_atomic(), irqs_disabled());
6782 debug_show_held_locks(current
);
6783 if (irqs_disabled())
6784 print_irqtrace_events(current
);
6789 EXPORT_SYMBOL(__might_sleep
);
6792 #ifdef CONFIG_MAGIC_SYSRQ
6793 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6796 update_rq_clock(rq
);
6797 on_rq
= p
->se
.on_rq
;
6799 deactivate_task(rq
, p
, 0);
6800 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6802 activate_task(rq
, p
, 0);
6803 resched_task(rq
->curr
);
6807 void normalize_rt_tasks(void)
6809 struct task_struct
*g
, *p
;
6810 unsigned long flags
;
6813 read_lock_irq(&tasklist_lock
);
6814 do_each_thread(g
, p
) {
6816 * Only normalize user tasks:
6821 p
->se
.exec_start
= 0;
6822 #ifdef CONFIG_SCHEDSTATS
6823 p
->se
.wait_start
= 0;
6824 p
->se
.sleep_start
= 0;
6825 p
->se
.block_start
= 0;
6827 task_rq(p
)->clock
= 0;
6831 * Renice negative nice level userspace
6834 if (TASK_NICE(p
) < 0 && p
->mm
)
6835 set_user_nice(p
, 0);
6839 spin_lock_irqsave(&p
->pi_lock
, flags
);
6840 rq
= __task_rq_lock(p
);
6842 normalize_task(rq
, p
);
6844 __task_rq_unlock(rq
);
6845 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6846 } while_each_thread(g
, p
);
6848 read_unlock_irq(&tasklist_lock
);
6851 #endif /* CONFIG_MAGIC_SYSRQ */
6855 * These functions are only useful for the IA64 MCA handling.
6857 * They can only be called when the whole system has been
6858 * stopped - every CPU needs to be quiescent, and no scheduling
6859 * activity can take place. Using them for anything else would
6860 * be a serious bug, and as a result, they aren't even visible
6861 * under any other configuration.
6865 * curr_task - return the current task for a given cpu.
6866 * @cpu: the processor in question.
6868 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6870 struct task_struct
*curr_task(int cpu
)
6872 return cpu_curr(cpu
);
6876 * set_curr_task - set the current task for a given cpu.
6877 * @cpu: the processor in question.
6878 * @p: the task pointer to set.
6880 * Description: This function must only be used when non-maskable interrupts
6881 * are serviced on a separate stack. It allows the architecture to switch the
6882 * notion of the current task on a cpu in a non-blocking manner. This function
6883 * must be called with all CPU's synchronized, and interrupts disabled, the
6884 * and caller must save the original value of the current task (see
6885 * curr_task() above) and restore that value before reenabling interrupts and
6886 * re-starting the system.
6888 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6890 void set_curr_task(int cpu
, struct task_struct
*p
)
6897 #ifdef CONFIG_FAIR_GROUP_SCHED
6899 /* allocate runqueue etc for a new task group */
6900 struct task_group
*sched_create_group(void)
6902 struct task_group
*tg
;
6903 struct cfs_rq
*cfs_rq
;
6904 struct sched_entity
*se
;
6908 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6910 return ERR_PTR(-ENOMEM
);
6912 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6915 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6919 for_each_possible_cpu(i
) {
6922 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6927 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6932 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6933 memset(se
, 0, sizeof(struct sched_entity
));
6935 tg
->cfs_rq
[i
] = cfs_rq
;
6936 init_cfs_rq(cfs_rq
, rq
);
6940 se
->cfs_rq
= &rq
->cfs
;
6942 se
->load
.weight
= NICE_0_LOAD
;
6943 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6947 for_each_possible_cpu(i
) {
6949 cfs_rq
= tg
->cfs_rq
[i
];
6950 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6953 tg
->shares
= NICE_0_LOAD
;
6954 spin_lock_init(&tg
->lock
);
6959 for_each_possible_cpu(i
) {
6961 kfree(tg
->cfs_rq
[i
]);
6969 return ERR_PTR(-ENOMEM
);
6972 /* rcu callback to free various structures associated with a task group */
6973 static void free_sched_group(struct rcu_head
*rhp
)
6975 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
6976 struct task_group
*tg
= cfs_rq
->tg
;
6977 struct sched_entity
*se
;
6980 /* now it should be safe to free those cfs_rqs */
6981 for_each_possible_cpu(i
) {
6982 cfs_rq
= tg
->cfs_rq
[i
];
6994 /* Destroy runqueue etc associated with a task group */
6995 void sched_destroy_group(struct task_group
*tg
)
6997 struct cfs_rq
*cfs_rq
;
7000 for_each_possible_cpu(i
) {
7001 cfs_rq
= tg
->cfs_rq
[i
];
7002 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7005 cfs_rq
= tg
->cfs_rq
[0];
7007 /* wait for possible concurrent references to cfs_rqs complete */
7008 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
7011 /* change task's runqueue when it moves between groups.
7012 * The caller of this function should have put the task in its new group
7013 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7014 * reflect its new group.
7016 void sched_move_task(struct task_struct
*tsk
)
7019 unsigned long flags
;
7022 rq
= task_rq_lock(tsk
, &flags
);
7024 if (tsk
->sched_class
!= &fair_sched_class
)
7027 update_rq_clock(rq
);
7029 running
= task_running(rq
, tsk
);
7030 on_rq
= tsk
->se
.on_rq
;
7033 dequeue_task(rq
, tsk
, 0);
7034 if (unlikely(running
))
7035 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7038 set_task_cfs_rq(tsk
);
7041 if (unlikely(running
))
7042 tsk
->sched_class
->set_curr_task(rq
);
7043 enqueue_task(rq
, tsk
, 0);
7047 task_rq_unlock(rq
, &flags
);
7050 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7052 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7053 struct rq
*rq
= cfs_rq
->rq
;
7056 spin_lock_irq(&rq
->lock
);
7060 dequeue_entity(cfs_rq
, se
, 0);
7062 se
->load
.weight
= shares
;
7063 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7066 enqueue_entity(cfs_rq
, se
, 0);
7068 spin_unlock_irq(&rq
->lock
);
7071 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7075 spin_lock(&tg
->lock
);
7076 if (tg
->shares
== shares
)
7079 tg
->shares
= shares
;
7080 for_each_possible_cpu(i
)
7081 set_se_shares(tg
->se
[i
], shares
);
7084 spin_unlock(&tg
->lock
);
7088 unsigned long sched_group_shares(struct task_group
*tg
)
7093 #endif /* CONFIG_FAIR_GROUP_SCHED */