MINI2440: Rename the SoC tty names.
[linux-2.6/mini2440.git] / drivers / md / dm.c
blob724efc63904dd5459b5e675a5ead3f5aba0394f6
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
34 static const char *_name = DM_NAME;
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
39 static DEFINE_SPINLOCK(_minor_lock);
41 * For bio-based dm.
42 * One of these is allocated per bio.
44 struct dm_io {
45 struct mapped_device *md;
46 int error;
47 atomic_t io_count;
48 struct bio *bio;
49 unsigned long start_time;
50 spinlock_t endio_lock;
54 * For bio-based dm.
55 * One of these is allocated per target within a bio. Hopefully
56 * this will be simplified out one day.
58 struct dm_target_io {
59 struct dm_io *io;
60 struct dm_target *ti;
61 union map_info info;
65 * For request-based dm.
66 * One of these is allocated per request.
68 struct dm_rq_target_io {
69 struct mapped_device *md;
70 struct dm_target *ti;
71 struct request *orig, clone;
72 int error;
73 union map_info info;
77 * For request-based dm.
78 * One of these is allocated per bio.
80 struct dm_rq_clone_bio_info {
81 struct bio *orig;
82 struct dm_rq_target_io *tio;
85 union map_info *dm_get_mapinfo(struct bio *bio)
87 if (bio && bio->bi_private)
88 return &((struct dm_target_io *)bio->bi_private)->info;
89 return NULL;
92 union map_info *dm_get_rq_mapinfo(struct request *rq)
94 if (rq && rq->end_io_data)
95 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
96 return NULL;
98 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
100 #define MINOR_ALLOCED ((void *)-1)
103 * Bits for the md->flags field.
105 #define DMF_BLOCK_IO_FOR_SUSPEND 0
106 #define DMF_SUSPENDED 1
107 #define DMF_FROZEN 2
108 #define DMF_FREEING 3
109 #define DMF_DELETING 4
110 #define DMF_NOFLUSH_SUSPENDING 5
111 #define DMF_QUEUE_IO_TO_THREAD 6
114 * Work processed by per-device workqueue.
116 struct mapped_device {
117 struct rw_semaphore io_lock;
118 struct mutex suspend_lock;
119 rwlock_t map_lock;
120 atomic_t holders;
121 atomic_t open_count;
123 unsigned long flags;
125 struct request_queue *queue;
126 struct gendisk *disk;
127 char name[16];
129 void *interface_ptr;
132 * A list of ios that arrived while we were suspended.
134 atomic_t pending[2];
135 wait_queue_head_t wait;
136 struct work_struct work;
137 struct bio_list deferred;
138 spinlock_t deferred_lock;
141 * An error from the barrier request currently being processed.
143 int barrier_error;
146 * Processing queue (flush/barriers)
148 struct workqueue_struct *wq;
151 * The current mapping.
153 struct dm_table *map;
156 * io objects are allocated from here.
158 mempool_t *io_pool;
159 mempool_t *tio_pool;
161 struct bio_set *bs;
164 * Event handling.
166 atomic_t event_nr;
167 wait_queue_head_t eventq;
168 atomic_t uevent_seq;
169 struct list_head uevent_list;
170 spinlock_t uevent_lock; /* Protect access to uevent_list */
173 * freeze/thaw support require holding onto a super block
175 struct super_block *frozen_sb;
176 struct block_device *bdev;
178 /* forced geometry settings */
179 struct hd_geometry geometry;
181 /* marker of flush suspend for request-based dm */
182 struct request suspend_rq;
184 /* For saving the address of __make_request for request based dm */
185 make_request_fn *saved_make_request_fn;
187 /* sysfs handle */
188 struct kobject kobj;
190 /* zero-length barrier that will be cloned and submitted to targets */
191 struct bio barrier_bio;
195 * For mempools pre-allocation at the table loading time.
197 struct dm_md_mempools {
198 mempool_t *io_pool;
199 mempool_t *tio_pool;
200 struct bio_set *bs;
203 #define MIN_IOS 256
204 static struct kmem_cache *_io_cache;
205 static struct kmem_cache *_tio_cache;
206 static struct kmem_cache *_rq_tio_cache;
207 static struct kmem_cache *_rq_bio_info_cache;
209 static int __init local_init(void)
211 int r = -ENOMEM;
213 /* allocate a slab for the dm_ios */
214 _io_cache = KMEM_CACHE(dm_io, 0);
215 if (!_io_cache)
216 return r;
218 /* allocate a slab for the target ios */
219 _tio_cache = KMEM_CACHE(dm_target_io, 0);
220 if (!_tio_cache)
221 goto out_free_io_cache;
223 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
224 if (!_rq_tio_cache)
225 goto out_free_tio_cache;
227 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 if (!_rq_bio_info_cache)
229 goto out_free_rq_tio_cache;
231 r = dm_uevent_init();
232 if (r)
233 goto out_free_rq_bio_info_cache;
235 _major = major;
236 r = register_blkdev(_major, _name);
237 if (r < 0)
238 goto out_uevent_exit;
240 if (!_major)
241 _major = r;
243 return 0;
245 out_uevent_exit:
246 dm_uevent_exit();
247 out_free_rq_bio_info_cache:
248 kmem_cache_destroy(_rq_bio_info_cache);
249 out_free_rq_tio_cache:
250 kmem_cache_destroy(_rq_tio_cache);
251 out_free_tio_cache:
252 kmem_cache_destroy(_tio_cache);
253 out_free_io_cache:
254 kmem_cache_destroy(_io_cache);
256 return r;
259 static void local_exit(void)
261 kmem_cache_destroy(_rq_bio_info_cache);
262 kmem_cache_destroy(_rq_tio_cache);
263 kmem_cache_destroy(_tio_cache);
264 kmem_cache_destroy(_io_cache);
265 unregister_blkdev(_major, _name);
266 dm_uevent_exit();
268 _major = 0;
270 DMINFO("cleaned up");
273 static int (*_inits[])(void) __initdata = {
274 local_init,
275 dm_target_init,
276 dm_linear_init,
277 dm_stripe_init,
278 dm_kcopyd_init,
279 dm_interface_init,
282 static void (*_exits[])(void) = {
283 local_exit,
284 dm_target_exit,
285 dm_linear_exit,
286 dm_stripe_exit,
287 dm_kcopyd_exit,
288 dm_interface_exit,
291 static int __init dm_init(void)
293 const int count = ARRAY_SIZE(_inits);
295 int r, i;
297 for (i = 0; i < count; i++) {
298 r = _inits[i]();
299 if (r)
300 goto bad;
303 return 0;
305 bad:
306 while (i--)
307 _exits[i]();
309 return r;
312 static void __exit dm_exit(void)
314 int i = ARRAY_SIZE(_exits);
316 while (i--)
317 _exits[i]();
321 * Block device functions
323 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
325 struct mapped_device *md;
327 spin_lock(&_minor_lock);
329 md = bdev->bd_disk->private_data;
330 if (!md)
331 goto out;
333 if (test_bit(DMF_FREEING, &md->flags) ||
334 test_bit(DMF_DELETING, &md->flags)) {
335 md = NULL;
336 goto out;
339 dm_get(md);
340 atomic_inc(&md->open_count);
342 out:
343 spin_unlock(&_minor_lock);
345 return md ? 0 : -ENXIO;
348 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
350 struct mapped_device *md = disk->private_data;
351 atomic_dec(&md->open_count);
352 dm_put(md);
353 return 0;
356 int dm_open_count(struct mapped_device *md)
358 return atomic_read(&md->open_count);
362 * Guarantees nothing is using the device before it's deleted.
364 int dm_lock_for_deletion(struct mapped_device *md)
366 int r = 0;
368 spin_lock(&_minor_lock);
370 if (dm_open_count(md))
371 r = -EBUSY;
372 else
373 set_bit(DMF_DELETING, &md->flags);
375 spin_unlock(&_minor_lock);
377 return r;
380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
382 struct mapped_device *md = bdev->bd_disk->private_data;
384 return dm_get_geometry(md, geo);
387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
388 unsigned int cmd, unsigned long arg)
390 struct mapped_device *md = bdev->bd_disk->private_data;
391 struct dm_table *map = dm_get_table(md);
392 struct dm_target *tgt;
393 int r = -ENOTTY;
395 if (!map || !dm_table_get_size(map))
396 goto out;
398 /* We only support devices that have a single target */
399 if (dm_table_get_num_targets(map) != 1)
400 goto out;
402 tgt = dm_table_get_target(map, 0);
404 if (dm_suspended(md)) {
405 r = -EAGAIN;
406 goto out;
409 if (tgt->type->ioctl)
410 r = tgt->type->ioctl(tgt, cmd, arg);
412 out:
413 dm_table_put(map);
415 return r;
418 static struct dm_io *alloc_io(struct mapped_device *md)
420 return mempool_alloc(md->io_pool, GFP_NOIO);
423 static void free_io(struct mapped_device *md, struct dm_io *io)
425 mempool_free(io, md->io_pool);
428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
430 mempool_free(tio, md->tio_pool);
433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
435 return mempool_alloc(md->tio_pool, GFP_ATOMIC);
438 static void free_rq_tio(struct dm_rq_target_io *tio)
440 mempool_free(tio, tio->md->tio_pool);
443 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
445 return mempool_alloc(md->io_pool, GFP_ATOMIC);
448 static void free_bio_info(struct dm_rq_clone_bio_info *info)
450 mempool_free(info, info->tio->md->io_pool);
453 static void start_io_acct(struct dm_io *io)
455 struct mapped_device *md = io->md;
456 int cpu;
457 int rw = bio_data_dir(io->bio);
459 io->start_time = jiffies;
461 cpu = part_stat_lock();
462 part_round_stats(cpu, &dm_disk(md)->part0);
463 part_stat_unlock();
464 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
467 static void end_io_acct(struct dm_io *io)
469 struct mapped_device *md = io->md;
470 struct bio *bio = io->bio;
471 unsigned long duration = jiffies - io->start_time;
472 int pending, cpu;
473 int rw = bio_data_dir(bio);
475 cpu = part_stat_lock();
476 part_round_stats(cpu, &dm_disk(md)->part0);
477 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
478 part_stat_unlock();
481 * After this is decremented the bio must not be touched if it is
482 * a barrier.
484 dm_disk(md)->part0.in_flight[rw] = pending =
485 atomic_dec_return(&md->pending[rw]);
486 pending += atomic_read(&md->pending[rw^0x1]);
488 /* nudge anyone waiting on suspend queue */
489 if (!pending)
490 wake_up(&md->wait);
494 * Add the bio to the list of deferred io.
496 static void queue_io(struct mapped_device *md, struct bio *bio)
498 down_write(&md->io_lock);
500 spin_lock_irq(&md->deferred_lock);
501 bio_list_add(&md->deferred, bio);
502 spin_unlock_irq(&md->deferred_lock);
504 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
505 queue_work(md->wq, &md->work);
507 up_write(&md->io_lock);
511 * Everyone (including functions in this file), should use this
512 * function to access the md->map field, and make sure they call
513 * dm_table_put() when finished.
515 struct dm_table *dm_get_table(struct mapped_device *md)
517 struct dm_table *t;
518 unsigned long flags;
520 read_lock_irqsave(&md->map_lock, flags);
521 t = md->map;
522 if (t)
523 dm_table_get(t);
524 read_unlock_irqrestore(&md->map_lock, flags);
526 return t;
530 * Get the geometry associated with a dm device
532 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
534 *geo = md->geometry;
536 return 0;
540 * Set the geometry of a device.
542 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
544 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
546 if (geo->start > sz) {
547 DMWARN("Start sector is beyond the geometry limits.");
548 return -EINVAL;
551 md->geometry = *geo;
553 return 0;
556 /*-----------------------------------------------------------------
557 * CRUD START:
558 * A more elegant soln is in the works that uses the queue
559 * merge fn, unfortunately there are a couple of changes to
560 * the block layer that I want to make for this. So in the
561 * interests of getting something for people to use I give
562 * you this clearly demarcated crap.
563 *---------------------------------------------------------------*/
565 static int __noflush_suspending(struct mapped_device *md)
567 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
571 * Decrements the number of outstanding ios that a bio has been
572 * cloned into, completing the original io if necc.
574 static void dec_pending(struct dm_io *io, int error)
576 unsigned long flags;
577 int io_error;
578 struct bio *bio;
579 struct mapped_device *md = io->md;
581 /* Push-back supersedes any I/O errors */
582 if (unlikely(error)) {
583 spin_lock_irqsave(&io->endio_lock, flags);
584 if (!(io->error > 0 && __noflush_suspending(md)))
585 io->error = error;
586 spin_unlock_irqrestore(&io->endio_lock, flags);
589 if (atomic_dec_and_test(&io->io_count)) {
590 if (io->error == DM_ENDIO_REQUEUE) {
592 * Target requested pushing back the I/O.
594 spin_lock_irqsave(&md->deferred_lock, flags);
595 if (__noflush_suspending(md)) {
596 if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
597 bio_list_add_head(&md->deferred,
598 io->bio);
599 } else
600 /* noflush suspend was interrupted. */
601 io->error = -EIO;
602 spin_unlock_irqrestore(&md->deferred_lock, flags);
605 io_error = io->error;
606 bio = io->bio;
608 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
610 * There can be just one barrier request so we use
611 * a per-device variable for error reporting.
612 * Note that you can't touch the bio after end_io_acct
614 if (!md->barrier_error && io_error != -EOPNOTSUPP)
615 md->barrier_error = io_error;
616 end_io_acct(io);
617 } else {
618 end_io_acct(io);
620 if (io_error != DM_ENDIO_REQUEUE) {
621 trace_block_bio_complete(md->queue, bio);
623 bio_endio(bio, io_error);
627 free_io(md, io);
631 static void clone_endio(struct bio *bio, int error)
633 int r = 0;
634 struct dm_target_io *tio = bio->bi_private;
635 struct dm_io *io = tio->io;
636 struct mapped_device *md = tio->io->md;
637 dm_endio_fn endio = tio->ti->type->end_io;
639 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
640 error = -EIO;
642 if (endio) {
643 r = endio(tio->ti, bio, error, &tio->info);
644 if (r < 0 || r == DM_ENDIO_REQUEUE)
646 * error and requeue request are handled
647 * in dec_pending().
649 error = r;
650 else if (r == DM_ENDIO_INCOMPLETE)
651 /* The target will handle the io */
652 return;
653 else if (r) {
654 DMWARN("unimplemented target endio return value: %d", r);
655 BUG();
660 * Store md for cleanup instead of tio which is about to get freed.
662 bio->bi_private = md->bs;
664 free_tio(md, tio);
665 bio_put(bio);
666 dec_pending(io, error);
670 * Partial completion handling for request-based dm
672 static void end_clone_bio(struct bio *clone, int error)
674 struct dm_rq_clone_bio_info *info = clone->bi_private;
675 struct dm_rq_target_io *tio = info->tio;
676 struct bio *bio = info->orig;
677 unsigned int nr_bytes = info->orig->bi_size;
679 bio_put(clone);
681 if (tio->error)
683 * An error has already been detected on the request.
684 * Once error occurred, just let clone->end_io() handle
685 * the remainder.
687 return;
688 else if (error) {
690 * Don't notice the error to the upper layer yet.
691 * The error handling decision is made by the target driver,
692 * when the request is completed.
694 tio->error = error;
695 return;
699 * I/O for the bio successfully completed.
700 * Notice the data completion to the upper layer.
704 * bios are processed from the head of the list.
705 * So the completing bio should always be rq->bio.
706 * If it's not, something wrong is happening.
708 if (tio->orig->bio != bio)
709 DMERR("bio completion is going in the middle of the request");
712 * Update the original request.
713 * Do not use blk_end_request() here, because it may complete
714 * the original request before the clone, and break the ordering.
716 blk_update_request(tio->orig, 0, nr_bytes);
720 * Don't touch any member of the md after calling this function because
721 * the md may be freed in dm_put() at the end of this function.
722 * Or do dm_get() before calling this function and dm_put() later.
724 static void rq_completed(struct mapped_device *md, int run_queue)
726 int wakeup_waiters = 0;
727 struct request_queue *q = md->queue;
728 unsigned long flags;
730 spin_lock_irqsave(q->queue_lock, flags);
731 if (!queue_in_flight(q))
732 wakeup_waiters = 1;
733 spin_unlock_irqrestore(q->queue_lock, flags);
735 /* nudge anyone waiting on suspend queue */
736 if (wakeup_waiters)
737 wake_up(&md->wait);
739 if (run_queue)
740 blk_run_queue(q);
743 * dm_put() must be at the end of this function. See the comment above
745 dm_put(md);
748 static void free_rq_clone(struct request *clone)
750 struct dm_rq_target_io *tio = clone->end_io_data;
752 blk_rq_unprep_clone(clone);
753 free_rq_tio(tio);
756 static void dm_unprep_request(struct request *rq)
758 struct request *clone = rq->special;
760 rq->special = NULL;
761 rq->cmd_flags &= ~REQ_DONTPREP;
763 free_rq_clone(clone);
767 * Requeue the original request of a clone.
769 void dm_requeue_unmapped_request(struct request *clone)
771 struct dm_rq_target_io *tio = clone->end_io_data;
772 struct mapped_device *md = tio->md;
773 struct request *rq = tio->orig;
774 struct request_queue *q = rq->q;
775 unsigned long flags;
777 dm_unprep_request(rq);
779 spin_lock_irqsave(q->queue_lock, flags);
780 if (elv_queue_empty(q))
781 blk_plug_device(q);
782 blk_requeue_request(q, rq);
783 spin_unlock_irqrestore(q->queue_lock, flags);
785 rq_completed(md, 0);
787 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
789 static void __stop_queue(struct request_queue *q)
791 blk_stop_queue(q);
794 static void stop_queue(struct request_queue *q)
796 unsigned long flags;
798 spin_lock_irqsave(q->queue_lock, flags);
799 __stop_queue(q);
800 spin_unlock_irqrestore(q->queue_lock, flags);
803 static void __start_queue(struct request_queue *q)
805 if (blk_queue_stopped(q))
806 blk_start_queue(q);
809 static void start_queue(struct request_queue *q)
811 unsigned long flags;
813 spin_lock_irqsave(q->queue_lock, flags);
814 __start_queue(q);
815 spin_unlock_irqrestore(q->queue_lock, flags);
819 * Complete the clone and the original request.
820 * Must be called without queue lock.
822 static void dm_end_request(struct request *clone, int error)
824 struct dm_rq_target_io *tio = clone->end_io_data;
825 struct mapped_device *md = tio->md;
826 struct request *rq = tio->orig;
828 if (blk_pc_request(rq)) {
829 rq->errors = clone->errors;
830 rq->resid_len = clone->resid_len;
832 if (rq->sense)
834 * We are using the sense buffer of the original
835 * request.
836 * So setting the length of the sense data is enough.
838 rq->sense_len = clone->sense_len;
841 free_rq_clone(clone);
843 blk_end_request_all(rq, error);
845 rq_completed(md, 1);
849 * Request completion handler for request-based dm
851 static void dm_softirq_done(struct request *rq)
853 struct request *clone = rq->completion_data;
854 struct dm_rq_target_io *tio = clone->end_io_data;
855 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
856 int error = tio->error;
858 if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
859 error = rq_end_io(tio->ti, clone, error, &tio->info);
861 if (error <= 0)
862 /* The target wants to complete the I/O */
863 dm_end_request(clone, error);
864 else if (error == DM_ENDIO_INCOMPLETE)
865 /* The target will handle the I/O */
866 return;
867 else if (error == DM_ENDIO_REQUEUE)
868 /* The target wants to requeue the I/O */
869 dm_requeue_unmapped_request(clone);
870 else {
871 DMWARN("unimplemented target endio return value: %d", error);
872 BUG();
877 * Complete the clone and the original request with the error status
878 * through softirq context.
880 static void dm_complete_request(struct request *clone, int error)
882 struct dm_rq_target_io *tio = clone->end_io_data;
883 struct request *rq = tio->orig;
885 tio->error = error;
886 rq->completion_data = clone;
887 blk_complete_request(rq);
891 * Complete the not-mapped clone and the original request with the error status
892 * through softirq context.
893 * Target's rq_end_io() function isn't called.
894 * This may be used when the target's map_rq() function fails.
896 void dm_kill_unmapped_request(struct request *clone, int error)
898 struct dm_rq_target_io *tio = clone->end_io_data;
899 struct request *rq = tio->orig;
901 rq->cmd_flags |= REQ_FAILED;
902 dm_complete_request(clone, error);
904 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
907 * Called with the queue lock held
909 static void end_clone_request(struct request *clone, int error)
912 * For just cleaning up the information of the queue in which
913 * the clone was dispatched.
914 * The clone is *NOT* freed actually here because it is alloced from
915 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
917 __blk_put_request(clone->q, clone);
920 * Actual request completion is done in a softirq context which doesn't
921 * hold the queue lock. Otherwise, deadlock could occur because:
922 * - another request may be submitted by the upper level driver
923 * of the stacking during the completion
924 * - the submission which requires queue lock may be done
925 * against this queue
927 dm_complete_request(clone, error);
930 static sector_t max_io_len(struct mapped_device *md,
931 sector_t sector, struct dm_target *ti)
933 sector_t offset = sector - ti->begin;
934 sector_t len = ti->len - offset;
937 * Does the target need to split even further ?
939 if (ti->split_io) {
940 sector_t boundary;
941 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
942 - offset;
943 if (len > boundary)
944 len = boundary;
947 return len;
950 static void __map_bio(struct dm_target *ti, struct bio *clone,
951 struct dm_target_io *tio)
953 int r;
954 sector_t sector;
955 struct mapped_device *md;
957 clone->bi_end_io = clone_endio;
958 clone->bi_private = tio;
961 * Map the clone. If r == 0 we don't need to do
962 * anything, the target has assumed ownership of
963 * this io.
965 atomic_inc(&tio->io->io_count);
966 sector = clone->bi_sector;
967 r = ti->type->map(ti, clone, &tio->info);
968 if (r == DM_MAPIO_REMAPPED) {
969 /* the bio has been remapped so dispatch it */
971 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
972 tio->io->bio->bi_bdev->bd_dev, sector);
974 generic_make_request(clone);
975 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
976 /* error the io and bail out, or requeue it if needed */
977 md = tio->io->md;
978 dec_pending(tio->io, r);
980 * Store bio_set for cleanup.
982 clone->bi_private = md->bs;
983 bio_put(clone);
984 free_tio(md, tio);
985 } else if (r) {
986 DMWARN("unimplemented target map return value: %d", r);
987 BUG();
991 struct clone_info {
992 struct mapped_device *md;
993 struct dm_table *map;
994 struct bio *bio;
995 struct dm_io *io;
996 sector_t sector;
997 sector_t sector_count;
998 unsigned short idx;
1001 static void dm_bio_destructor(struct bio *bio)
1003 struct bio_set *bs = bio->bi_private;
1005 bio_free(bio, bs);
1009 * Creates a little bio that is just does part of a bvec.
1011 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1012 unsigned short idx, unsigned int offset,
1013 unsigned int len, struct bio_set *bs)
1015 struct bio *clone;
1016 struct bio_vec *bv = bio->bi_io_vec + idx;
1018 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1019 clone->bi_destructor = dm_bio_destructor;
1020 *clone->bi_io_vec = *bv;
1022 clone->bi_sector = sector;
1023 clone->bi_bdev = bio->bi_bdev;
1024 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1025 clone->bi_vcnt = 1;
1026 clone->bi_size = to_bytes(len);
1027 clone->bi_io_vec->bv_offset = offset;
1028 clone->bi_io_vec->bv_len = clone->bi_size;
1029 clone->bi_flags |= 1 << BIO_CLONED;
1031 if (bio_integrity(bio)) {
1032 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1033 bio_integrity_trim(clone,
1034 bio_sector_offset(bio, idx, offset), len);
1037 return clone;
1041 * Creates a bio that consists of range of complete bvecs.
1043 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1044 unsigned short idx, unsigned short bv_count,
1045 unsigned int len, struct bio_set *bs)
1047 struct bio *clone;
1049 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1050 __bio_clone(clone, bio);
1051 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1052 clone->bi_destructor = dm_bio_destructor;
1053 clone->bi_sector = sector;
1054 clone->bi_idx = idx;
1055 clone->bi_vcnt = idx + bv_count;
1056 clone->bi_size = to_bytes(len);
1057 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1059 if (bio_integrity(bio)) {
1060 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1062 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1063 bio_integrity_trim(clone,
1064 bio_sector_offset(bio, idx, 0), len);
1067 return clone;
1070 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1071 struct dm_target *ti)
1073 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1075 tio->io = ci->io;
1076 tio->ti = ti;
1077 memset(&tio->info, 0, sizeof(tio->info));
1079 return tio;
1082 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1083 unsigned flush_nr)
1085 struct dm_target_io *tio = alloc_tio(ci, ti);
1086 struct bio *clone;
1088 tio->info.flush_request = flush_nr;
1090 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1091 __bio_clone(clone, ci->bio);
1092 clone->bi_destructor = dm_bio_destructor;
1094 __map_bio(ti, clone, tio);
1097 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1099 unsigned target_nr = 0, flush_nr;
1100 struct dm_target *ti;
1102 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1103 for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1104 flush_nr++)
1105 __flush_target(ci, ti, flush_nr);
1107 ci->sector_count = 0;
1109 return 0;
1112 static int __clone_and_map(struct clone_info *ci)
1114 struct bio *clone, *bio = ci->bio;
1115 struct dm_target *ti;
1116 sector_t len = 0, max;
1117 struct dm_target_io *tio;
1119 if (unlikely(bio_empty_barrier(bio)))
1120 return __clone_and_map_empty_barrier(ci);
1122 ti = dm_table_find_target(ci->map, ci->sector);
1123 if (!dm_target_is_valid(ti))
1124 return -EIO;
1126 max = max_io_len(ci->md, ci->sector, ti);
1129 * Allocate a target io object.
1131 tio = alloc_tio(ci, ti);
1133 if (ci->sector_count <= max) {
1135 * Optimise for the simple case where we can do all of
1136 * the remaining io with a single clone.
1138 clone = clone_bio(bio, ci->sector, ci->idx,
1139 bio->bi_vcnt - ci->idx, ci->sector_count,
1140 ci->md->bs);
1141 __map_bio(ti, clone, tio);
1142 ci->sector_count = 0;
1144 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1146 * There are some bvecs that don't span targets.
1147 * Do as many of these as possible.
1149 int i;
1150 sector_t remaining = max;
1151 sector_t bv_len;
1153 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1154 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1156 if (bv_len > remaining)
1157 break;
1159 remaining -= bv_len;
1160 len += bv_len;
1163 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1164 ci->md->bs);
1165 __map_bio(ti, clone, tio);
1167 ci->sector += len;
1168 ci->sector_count -= len;
1169 ci->idx = i;
1171 } else {
1173 * Handle a bvec that must be split between two or more targets.
1175 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1176 sector_t remaining = to_sector(bv->bv_len);
1177 unsigned int offset = 0;
1179 do {
1180 if (offset) {
1181 ti = dm_table_find_target(ci->map, ci->sector);
1182 if (!dm_target_is_valid(ti))
1183 return -EIO;
1185 max = max_io_len(ci->md, ci->sector, ti);
1187 tio = alloc_tio(ci, ti);
1190 len = min(remaining, max);
1192 clone = split_bvec(bio, ci->sector, ci->idx,
1193 bv->bv_offset + offset, len,
1194 ci->md->bs);
1196 __map_bio(ti, clone, tio);
1198 ci->sector += len;
1199 ci->sector_count -= len;
1200 offset += to_bytes(len);
1201 } while (remaining -= len);
1203 ci->idx++;
1206 return 0;
1210 * Split the bio into several clones and submit it to targets.
1212 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1214 struct clone_info ci;
1215 int error = 0;
1217 ci.map = dm_get_table(md);
1218 if (unlikely(!ci.map)) {
1219 if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
1220 bio_io_error(bio);
1221 else
1222 if (!md->barrier_error)
1223 md->barrier_error = -EIO;
1224 return;
1227 ci.md = md;
1228 ci.bio = bio;
1229 ci.io = alloc_io(md);
1230 ci.io->error = 0;
1231 atomic_set(&ci.io->io_count, 1);
1232 ci.io->bio = bio;
1233 ci.io->md = md;
1234 spin_lock_init(&ci.io->endio_lock);
1235 ci.sector = bio->bi_sector;
1236 ci.sector_count = bio_sectors(bio);
1237 if (unlikely(bio_empty_barrier(bio)))
1238 ci.sector_count = 1;
1239 ci.idx = bio->bi_idx;
1241 start_io_acct(ci.io);
1242 while (ci.sector_count && !error)
1243 error = __clone_and_map(&ci);
1245 /* drop the extra reference count */
1246 dec_pending(ci.io, error);
1247 dm_table_put(ci.map);
1249 /*-----------------------------------------------------------------
1250 * CRUD END
1251 *---------------------------------------------------------------*/
1253 static int dm_merge_bvec(struct request_queue *q,
1254 struct bvec_merge_data *bvm,
1255 struct bio_vec *biovec)
1257 struct mapped_device *md = q->queuedata;
1258 struct dm_table *map = dm_get_table(md);
1259 struct dm_target *ti;
1260 sector_t max_sectors;
1261 int max_size = 0;
1263 if (unlikely(!map))
1264 goto out;
1266 ti = dm_table_find_target(map, bvm->bi_sector);
1267 if (!dm_target_is_valid(ti))
1268 goto out_table;
1271 * Find maximum amount of I/O that won't need splitting
1273 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1274 (sector_t) BIO_MAX_SECTORS);
1275 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1276 if (max_size < 0)
1277 max_size = 0;
1280 * merge_bvec_fn() returns number of bytes
1281 * it can accept at this offset
1282 * max is precomputed maximal io size
1284 if (max_size && ti->type->merge)
1285 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1287 * If the target doesn't support merge method and some of the devices
1288 * provided their merge_bvec method (we know this by looking at
1289 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1290 * entries. So always set max_size to 0, and the code below allows
1291 * just one page.
1293 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1295 max_size = 0;
1297 out_table:
1298 dm_table_put(map);
1300 out:
1302 * Always allow an entire first page
1304 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1305 max_size = biovec->bv_len;
1307 return max_size;
1311 * The request function that just remaps the bio built up by
1312 * dm_merge_bvec.
1314 static int _dm_request(struct request_queue *q, struct bio *bio)
1316 int rw = bio_data_dir(bio);
1317 struct mapped_device *md = q->queuedata;
1318 int cpu;
1320 down_read(&md->io_lock);
1322 cpu = part_stat_lock();
1323 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1324 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1325 part_stat_unlock();
1328 * If we're suspended or the thread is processing barriers
1329 * we have to queue this io for later.
1331 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1332 unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1333 up_read(&md->io_lock);
1335 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1336 bio_rw(bio) == READA) {
1337 bio_io_error(bio);
1338 return 0;
1341 queue_io(md, bio);
1343 return 0;
1346 __split_and_process_bio(md, bio);
1347 up_read(&md->io_lock);
1348 return 0;
1351 static int dm_make_request(struct request_queue *q, struct bio *bio)
1353 struct mapped_device *md = q->queuedata;
1355 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1356 bio_endio(bio, -EOPNOTSUPP);
1357 return 0;
1360 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1363 static int dm_request_based(struct mapped_device *md)
1365 return blk_queue_stackable(md->queue);
1368 static int dm_request(struct request_queue *q, struct bio *bio)
1370 struct mapped_device *md = q->queuedata;
1372 if (dm_request_based(md))
1373 return dm_make_request(q, bio);
1375 return _dm_request(q, bio);
1378 void dm_dispatch_request(struct request *rq)
1380 int r;
1382 if (blk_queue_io_stat(rq->q))
1383 rq->cmd_flags |= REQ_IO_STAT;
1385 rq->start_time = jiffies;
1386 r = blk_insert_cloned_request(rq->q, rq);
1387 if (r)
1388 dm_complete_request(rq, r);
1390 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1392 static void dm_rq_bio_destructor(struct bio *bio)
1394 struct dm_rq_clone_bio_info *info = bio->bi_private;
1395 struct mapped_device *md = info->tio->md;
1397 free_bio_info(info);
1398 bio_free(bio, md->bs);
1401 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1402 void *data)
1404 struct dm_rq_target_io *tio = data;
1405 struct mapped_device *md = tio->md;
1406 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1408 if (!info)
1409 return -ENOMEM;
1411 info->orig = bio_orig;
1412 info->tio = tio;
1413 bio->bi_end_io = end_clone_bio;
1414 bio->bi_private = info;
1415 bio->bi_destructor = dm_rq_bio_destructor;
1417 return 0;
1420 static int setup_clone(struct request *clone, struct request *rq,
1421 struct dm_rq_target_io *tio)
1423 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1424 dm_rq_bio_constructor, tio);
1426 if (r)
1427 return r;
1429 clone->cmd = rq->cmd;
1430 clone->cmd_len = rq->cmd_len;
1431 clone->sense = rq->sense;
1432 clone->buffer = rq->buffer;
1433 clone->end_io = end_clone_request;
1434 clone->end_io_data = tio;
1436 return 0;
1439 static int dm_rq_flush_suspending(struct mapped_device *md)
1441 return !md->suspend_rq.special;
1445 * Called with the queue lock held.
1447 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1449 struct mapped_device *md = q->queuedata;
1450 struct dm_rq_target_io *tio;
1451 struct request *clone;
1453 if (unlikely(rq == &md->suspend_rq)) {
1454 if (dm_rq_flush_suspending(md))
1455 return BLKPREP_OK;
1456 else
1457 /* The flush suspend was interrupted */
1458 return BLKPREP_KILL;
1461 if (unlikely(rq->special)) {
1462 DMWARN("Already has something in rq->special.");
1463 return BLKPREP_KILL;
1466 tio = alloc_rq_tio(md); /* Only one for each original request */
1467 if (!tio)
1468 /* -ENOMEM */
1469 return BLKPREP_DEFER;
1471 tio->md = md;
1472 tio->ti = NULL;
1473 tio->orig = rq;
1474 tio->error = 0;
1475 memset(&tio->info, 0, sizeof(tio->info));
1477 clone = &tio->clone;
1478 if (setup_clone(clone, rq, tio)) {
1479 /* -ENOMEM */
1480 free_rq_tio(tio);
1481 return BLKPREP_DEFER;
1484 rq->special = clone;
1485 rq->cmd_flags |= REQ_DONTPREP;
1487 return BLKPREP_OK;
1490 static void map_request(struct dm_target *ti, struct request *rq,
1491 struct mapped_device *md)
1493 int r;
1494 struct request *clone = rq->special;
1495 struct dm_rq_target_io *tio = clone->end_io_data;
1498 * Hold the md reference here for the in-flight I/O.
1499 * We can't rely on the reference count by device opener,
1500 * because the device may be closed during the request completion
1501 * when all bios are completed.
1502 * See the comment in rq_completed() too.
1504 dm_get(md);
1506 tio->ti = ti;
1507 r = ti->type->map_rq(ti, clone, &tio->info);
1508 switch (r) {
1509 case DM_MAPIO_SUBMITTED:
1510 /* The target has taken the I/O to submit by itself later */
1511 break;
1512 case DM_MAPIO_REMAPPED:
1513 /* The target has remapped the I/O so dispatch it */
1514 dm_dispatch_request(clone);
1515 break;
1516 case DM_MAPIO_REQUEUE:
1517 /* The target wants to requeue the I/O */
1518 dm_requeue_unmapped_request(clone);
1519 break;
1520 default:
1521 if (r > 0) {
1522 DMWARN("unimplemented target map return value: %d", r);
1523 BUG();
1526 /* The target wants to complete the I/O */
1527 dm_kill_unmapped_request(clone, r);
1528 break;
1533 * q->request_fn for request-based dm.
1534 * Called with the queue lock held.
1536 static void dm_request_fn(struct request_queue *q)
1538 struct mapped_device *md = q->queuedata;
1539 struct dm_table *map = dm_get_table(md);
1540 struct dm_target *ti;
1541 struct request *rq;
1544 * For noflush suspend, check blk_queue_stopped() to immediately
1545 * quit I/O dispatching.
1547 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1548 rq = blk_peek_request(q);
1549 if (!rq)
1550 goto plug_and_out;
1552 if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1553 if (queue_in_flight(q))
1554 /* Not quiet yet. Wait more */
1555 goto plug_and_out;
1557 /* This device should be quiet now */
1558 __stop_queue(q);
1559 blk_start_request(rq);
1560 __blk_end_request_all(rq, 0);
1561 wake_up(&md->wait);
1562 goto out;
1565 ti = dm_table_find_target(map, blk_rq_pos(rq));
1566 if (ti->type->busy && ti->type->busy(ti))
1567 goto plug_and_out;
1569 blk_start_request(rq);
1570 spin_unlock(q->queue_lock);
1571 map_request(ti, rq, md);
1572 spin_lock_irq(q->queue_lock);
1575 goto out;
1577 plug_and_out:
1578 if (!elv_queue_empty(q))
1579 /* Some requests still remain, retry later */
1580 blk_plug_device(q);
1582 out:
1583 dm_table_put(map);
1585 return;
1588 int dm_underlying_device_busy(struct request_queue *q)
1590 return blk_lld_busy(q);
1592 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1594 static int dm_lld_busy(struct request_queue *q)
1596 int r;
1597 struct mapped_device *md = q->queuedata;
1598 struct dm_table *map = dm_get_table(md);
1600 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1601 r = 1;
1602 else
1603 r = dm_table_any_busy_target(map);
1605 dm_table_put(map);
1607 return r;
1610 static void dm_unplug_all(struct request_queue *q)
1612 struct mapped_device *md = q->queuedata;
1613 struct dm_table *map = dm_get_table(md);
1615 if (map) {
1616 if (dm_request_based(md))
1617 generic_unplug_device(q);
1619 dm_table_unplug_all(map);
1620 dm_table_put(map);
1624 static int dm_any_congested(void *congested_data, int bdi_bits)
1626 int r = bdi_bits;
1627 struct mapped_device *md = congested_data;
1628 struct dm_table *map;
1630 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1631 map = dm_get_table(md);
1632 if (map) {
1634 * Request-based dm cares about only own queue for
1635 * the query about congestion status of request_queue
1637 if (dm_request_based(md))
1638 r = md->queue->backing_dev_info.state &
1639 bdi_bits;
1640 else
1641 r = dm_table_any_congested(map, bdi_bits);
1643 dm_table_put(map);
1647 return r;
1650 /*-----------------------------------------------------------------
1651 * An IDR is used to keep track of allocated minor numbers.
1652 *---------------------------------------------------------------*/
1653 static DEFINE_IDR(_minor_idr);
1655 static void free_minor(int minor)
1657 spin_lock(&_minor_lock);
1658 idr_remove(&_minor_idr, minor);
1659 spin_unlock(&_minor_lock);
1663 * See if the device with a specific minor # is free.
1665 static int specific_minor(int minor)
1667 int r, m;
1669 if (minor >= (1 << MINORBITS))
1670 return -EINVAL;
1672 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1673 if (!r)
1674 return -ENOMEM;
1676 spin_lock(&_minor_lock);
1678 if (idr_find(&_minor_idr, minor)) {
1679 r = -EBUSY;
1680 goto out;
1683 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1684 if (r)
1685 goto out;
1687 if (m != minor) {
1688 idr_remove(&_minor_idr, m);
1689 r = -EBUSY;
1690 goto out;
1693 out:
1694 spin_unlock(&_minor_lock);
1695 return r;
1698 static int next_free_minor(int *minor)
1700 int r, m;
1702 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1703 if (!r)
1704 return -ENOMEM;
1706 spin_lock(&_minor_lock);
1708 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1709 if (r)
1710 goto out;
1712 if (m >= (1 << MINORBITS)) {
1713 idr_remove(&_minor_idr, m);
1714 r = -ENOSPC;
1715 goto out;
1718 *minor = m;
1720 out:
1721 spin_unlock(&_minor_lock);
1722 return r;
1725 static const struct block_device_operations dm_blk_dops;
1727 static void dm_wq_work(struct work_struct *work);
1730 * Allocate and initialise a blank device with a given minor.
1732 static struct mapped_device *alloc_dev(int minor)
1734 int r;
1735 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1736 void *old_md;
1738 if (!md) {
1739 DMWARN("unable to allocate device, out of memory.");
1740 return NULL;
1743 if (!try_module_get(THIS_MODULE))
1744 goto bad_module_get;
1746 /* get a minor number for the dev */
1747 if (minor == DM_ANY_MINOR)
1748 r = next_free_minor(&minor);
1749 else
1750 r = specific_minor(minor);
1751 if (r < 0)
1752 goto bad_minor;
1754 init_rwsem(&md->io_lock);
1755 mutex_init(&md->suspend_lock);
1756 spin_lock_init(&md->deferred_lock);
1757 rwlock_init(&md->map_lock);
1758 atomic_set(&md->holders, 1);
1759 atomic_set(&md->open_count, 0);
1760 atomic_set(&md->event_nr, 0);
1761 atomic_set(&md->uevent_seq, 0);
1762 INIT_LIST_HEAD(&md->uevent_list);
1763 spin_lock_init(&md->uevent_lock);
1765 md->queue = blk_init_queue(dm_request_fn, NULL);
1766 if (!md->queue)
1767 goto bad_queue;
1770 * Request-based dm devices cannot be stacked on top of bio-based dm
1771 * devices. The type of this dm device has not been decided yet,
1772 * although we initialized the queue using blk_init_queue().
1773 * The type is decided at the first table loading time.
1774 * To prevent problematic device stacking, clear the queue flag
1775 * for request stacking support until then.
1777 * This queue is new, so no concurrency on the queue_flags.
1779 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1780 md->saved_make_request_fn = md->queue->make_request_fn;
1781 md->queue->queuedata = md;
1782 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1783 md->queue->backing_dev_info.congested_data = md;
1784 blk_queue_make_request(md->queue, dm_request);
1785 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1786 md->queue->unplug_fn = dm_unplug_all;
1787 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1788 blk_queue_softirq_done(md->queue, dm_softirq_done);
1789 blk_queue_prep_rq(md->queue, dm_prep_fn);
1790 blk_queue_lld_busy(md->queue, dm_lld_busy);
1792 md->disk = alloc_disk(1);
1793 if (!md->disk)
1794 goto bad_disk;
1796 atomic_set(&md->pending[0], 0);
1797 atomic_set(&md->pending[1], 0);
1798 init_waitqueue_head(&md->wait);
1799 INIT_WORK(&md->work, dm_wq_work);
1800 init_waitqueue_head(&md->eventq);
1802 md->disk->major = _major;
1803 md->disk->first_minor = minor;
1804 md->disk->fops = &dm_blk_dops;
1805 md->disk->queue = md->queue;
1806 md->disk->private_data = md;
1807 sprintf(md->disk->disk_name, "dm-%d", minor);
1808 add_disk(md->disk);
1809 format_dev_t(md->name, MKDEV(_major, minor));
1811 md->wq = create_singlethread_workqueue("kdmflush");
1812 if (!md->wq)
1813 goto bad_thread;
1815 md->bdev = bdget_disk(md->disk, 0);
1816 if (!md->bdev)
1817 goto bad_bdev;
1819 /* Populate the mapping, nobody knows we exist yet */
1820 spin_lock(&_minor_lock);
1821 old_md = idr_replace(&_minor_idr, md, minor);
1822 spin_unlock(&_minor_lock);
1824 BUG_ON(old_md != MINOR_ALLOCED);
1826 return md;
1828 bad_bdev:
1829 destroy_workqueue(md->wq);
1830 bad_thread:
1831 del_gendisk(md->disk);
1832 put_disk(md->disk);
1833 bad_disk:
1834 blk_cleanup_queue(md->queue);
1835 bad_queue:
1836 free_minor(minor);
1837 bad_minor:
1838 module_put(THIS_MODULE);
1839 bad_module_get:
1840 kfree(md);
1841 return NULL;
1844 static void unlock_fs(struct mapped_device *md);
1846 static void free_dev(struct mapped_device *md)
1848 int minor = MINOR(disk_devt(md->disk));
1850 unlock_fs(md);
1851 bdput(md->bdev);
1852 destroy_workqueue(md->wq);
1853 if (md->tio_pool)
1854 mempool_destroy(md->tio_pool);
1855 if (md->io_pool)
1856 mempool_destroy(md->io_pool);
1857 if (md->bs)
1858 bioset_free(md->bs);
1859 blk_integrity_unregister(md->disk);
1860 del_gendisk(md->disk);
1861 free_minor(minor);
1863 spin_lock(&_minor_lock);
1864 md->disk->private_data = NULL;
1865 spin_unlock(&_minor_lock);
1867 put_disk(md->disk);
1868 blk_cleanup_queue(md->queue);
1869 module_put(THIS_MODULE);
1870 kfree(md);
1873 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1875 struct dm_md_mempools *p;
1877 if (md->io_pool && md->tio_pool && md->bs)
1878 /* the md already has necessary mempools */
1879 goto out;
1881 p = dm_table_get_md_mempools(t);
1882 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1884 md->io_pool = p->io_pool;
1885 p->io_pool = NULL;
1886 md->tio_pool = p->tio_pool;
1887 p->tio_pool = NULL;
1888 md->bs = p->bs;
1889 p->bs = NULL;
1891 out:
1892 /* mempool bind completed, now no need any mempools in the table */
1893 dm_table_free_md_mempools(t);
1897 * Bind a table to the device.
1899 static void event_callback(void *context)
1901 unsigned long flags;
1902 LIST_HEAD(uevents);
1903 struct mapped_device *md = (struct mapped_device *) context;
1905 spin_lock_irqsave(&md->uevent_lock, flags);
1906 list_splice_init(&md->uevent_list, &uevents);
1907 spin_unlock_irqrestore(&md->uevent_lock, flags);
1909 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1911 atomic_inc(&md->event_nr);
1912 wake_up(&md->eventq);
1915 static void __set_size(struct mapped_device *md, sector_t size)
1917 set_capacity(md->disk, size);
1919 mutex_lock(&md->bdev->bd_inode->i_mutex);
1920 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1921 mutex_unlock(&md->bdev->bd_inode->i_mutex);
1924 static int __bind(struct mapped_device *md, struct dm_table *t,
1925 struct queue_limits *limits)
1927 struct request_queue *q = md->queue;
1928 sector_t size;
1929 unsigned long flags;
1931 size = dm_table_get_size(t);
1934 * Wipe any geometry if the size of the table changed.
1936 if (size != get_capacity(md->disk))
1937 memset(&md->geometry, 0, sizeof(md->geometry));
1939 __set_size(md, size);
1941 if (!size) {
1942 dm_table_destroy(t);
1943 return 0;
1946 dm_table_event_callback(t, event_callback, md);
1949 * The queue hasn't been stopped yet, if the old table type wasn't
1950 * for request-based during suspension. So stop it to prevent
1951 * I/O mapping before resume.
1952 * This must be done before setting the queue restrictions,
1953 * because request-based dm may be run just after the setting.
1955 if (dm_table_request_based(t) && !blk_queue_stopped(q))
1956 stop_queue(q);
1958 __bind_mempools(md, t);
1960 write_lock_irqsave(&md->map_lock, flags);
1961 md->map = t;
1962 dm_table_set_restrictions(t, q, limits);
1963 write_unlock_irqrestore(&md->map_lock, flags);
1965 return 0;
1968 static void __unbind(struct mapped_device *md)
1970 struct dm_table *map = md->map;
1971 unsigned long flags;
1973 if (!map)
1974 return;
1976 dm_table_event_callback(map, NULL, NULL);
1977 write_lock_irqsave(&md->map_lock, flags);
1978 md->map = NULL;
1979 write_unlock_irqrestore(&md->map_lock, flags);
1980 dm_table_destroy(map);
1984 * Constructor for a new device.
1986 int dm_create(int minor, struct mapped_device **result)
1988 struct mapped_device *md;
1990 md = alloc_dev(minor);
1991 if (!md)
1992 return -ENXIO;
1994 dm_sysfs_init(md);
1996 *result = md;
1997 return 0;
2000 static struct mapped_device *dm_find_md(dev_t dev)
2002 struct mapped_device *md;
2003 unsigned minor = MINOR(dev);
2005 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2006 return NULL;
2008 spin_lock(&_minor_lock);
2010 md = idr_find(&_minor_idr, minor);
2011 if (md && (md == MINOR_ALLOCED ||
2012 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2013 test_bit(DMF_FREEING, &md->flags))) {
2014 md = NULL;
2015 goto out;
2018 out:
2019 spin_unlock(&_minor_lock);
2021 return md;
2024 struct mapped_device *dm_get_md(dev_t dev)
2026 struct mapped_device *md = dm_find_md(dev);
2028 if (md)
2029 dm_get(md);
2031 return md;
2034 void *dm_get_mdptr(struct mapped_device *md)
2036 return md->interface_ptr;
2039 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2041 md->interface_ptr = ptr;
2044 void dm_get(struct mapped_device *md)
2046 atomic_inc(&md->holders);
2049 const char *dm_device_name(struct mapped_device *md)
2051 return md->name;
2053 EXPORT_SYMBOL_GPL(dm_device_name);
2055 void dm_put(struct mapped_device *md)
2057 struct dm_table *map;
2059 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2061 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2062 map = dm_get_table(md);
2063 idr_replace(&_minor_idr, MINOR_ALLOCED,
2064 MINOR(disk_devt(dm_disk(md))));
2065 set_bit(DMF_FREEING, &md->flags);
2066 spin_unlock(&_minor_lock);
2067 if (!dm_suspended(md)) {
2068 dm_table_presuspend_targets(map);
2069 dm_table_postsuspend_targets(map);
2071 dm_sysfs_exit(md);
2072 dm_table_put(map);
2073 __unbind(md);
2074 free_dev(md);
2077 EXPORT_SYMBOL_GPL(dm_put);
2079 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2081 int r = 0;
2082 DECLARE_WAITQUEUE(wait, current);
2083 struct request_queue *q = md->queue;
2084 unsigned long flags;
2086 dm_unplug_all(md->queue);
2088 add_wait_queue(&md->wait, &wait);
2090 while (1) {
2091 set_current_state(interruptible);
2093 smp_mb();
2094 if (dm_request_based(md)) {
2095 spin_lock_irqsave(q->queue_lock, flags);
2096 if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2097 spin_unlock_irqrestore(q->queue_lock, flags);
2098 break;
2100 spin_unlock_irqrestore(q->queue_lock, flags);
2101 } else if (!atomic_read(&md->pending[0]) &&
2102 !atomic_read(&md->pending[1]))
2103 break;
2105 if (interruptible == TASK_INTERRUPTIBLE &&
2106 signal_pending(current)) {
2107 r = -EINTR;
2108 break;
2111 io_schedule();
2113 set_current_state(TASK_RUNNING);
2115 remove_wait_queue(&md->wait, &wait);
2117 return r;
2120 static void dm_flush(struct mapped_device *md)
2122 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2124 bio_init(&md->barrier_bio);
2125 md->barrier_bio.bi_bdev = md->bdev;
2126 md->barrier_bio.bi_rw = WRITE_BARRIER;
2127 __split_and_process_bio(md, &md->barrier_bio);
2129 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2132 static void process_barrier(struct mapped_device *md, struct bio *bio)
2134 md->barrier_error = 0;
2136 dm_flush(md);
2138 if (!bio_empty_barrier(bio)) {
2139 __split_and_process_bio(md, bio);
2140 dm_flush(md);
2143 if (md->barrier_error != DM_ENDIO_REQUEUE)
2144 bio_endio(bio, md->barrier_error);
2145 else {
2146 spin_lock_irq(&md->deferred_lock);
2147 bio_list_add_head(&md->deferred, bio);
2148 spin_unlock_irq(&md->deferred_lock);
2153 * Process the deferred bios
2155 static void dm_wq_work(struct work_struct *work)
2157 struct mapped_device *md = container_of(work, struct mapped_device,
2158 work);
2159 struct bio *c;
2161 down_write(&md->io_lock);
2163 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2164 spin_lock_irq(&md->deferred_lock);
2165 c = bio_list_pop(&md->deferred);
2166 spin_unlock_irq(&md->deferred_lock);
2168 if (!c) {
2169 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2170 break;
2173 up_write(&md->io_lock);
2175 if (dm_request_based(md))
2176 generic_make_request(c);
2177 else {
2178 if (bio_rw_flagged(c, BIO_RW_BARRIER))
2179 process_barrier(md, c);
2180 else
2181 __split_and_process_bio(md, c);
2184 down_write(&md->io_lock);
2187 up_write(&md->io_lock);
2190 static void dm_queue_flush(struct mapped_device *md)
2192 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2193 smp_mb__after_clear_bit();
2194 queue_work(md->wq, &md->work);
2198 * Swap in a new table (destroying old one).
2200 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2202 struct queue_limits limits;
2203 int r = -EINVAL;
2205 mutex_lock(&md->suspend_lock);
2207 /* device must be suspended */
2208 if (!dm_suspended(md))
2209 goto out;
2211 r = dm_calculate_queue_limits(table, &limits);
2212 if (r)
2213 goto out;
2215 /* cannot change the device type, once a table is bound */
2216 if (md->map &&
2217 (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2218 DMWARN("can't change the device type after a table is bound");
2219 goto out;
2222 __unbind(md);
2223 r = __bind(md, table, &limits);
2225 out:
2226 mutex_unlock(&md->suspend_lock);
2227 return r;
2230 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2232 md->suspend_rq.special = (void *)0x1;
2235 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2237 struct request_queue *q = md->queue;
2238 unsigned long flags;
2240 spin_lock_irqsave(q->queue_lock, flags);
2241 if (!noflush)
2242 dm_rq_invalidate_suspend_marker(md);
2243 __start_queue(q);
2244 spin_unlock_irqrestore(q->queue_lock, flags);
2247 static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2249 struct request *rq = &md->suspend_rq;
2250 struct request_queue *q = md->queue;
2252 if (noflush)
2253 stop_queue(q);
2254 else {
2255 blk_rq_init(q, rq);
2256 blk_insert_request(q, rq, 0, NULL);
2260 static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2262 int r = 1;
2263 struct request *rq = &md->suspend_rq;
2264 struct request_queue *q = md->queue;
2265 unsigned long flags;
2267 if (noflush)
2268 return r;
2270 /* The marker must be protected by queue lock if it is in use */
2271 spin_lock_irqsave(q->queue_lock, flags);
2272 if (unlikely(rq->ref_count)) {
2274 * This can happen, when the previous flush suspend was
2275 * interrupted, the marker is still in the queue and
2276 * this flush suspend has been invoked, because we don't
2277 * remove the marker at the time of suspend interruption.
2278 * We have only one marker per mapped_device, so we can't
2279 * start another flush suspend while it is in use.
2281 BUG_ON(!rq->special); /* The marker should be invalidated */
2282 DMWARN("Invalidating the previous flush suspend is still in"
2283 " progress. Please retry later.");
2284 r = 0;
2286 spin_unlock_irqrestore(q->queue_lock, flags);
2288 return r;
2292 * Functions to lock and unlock any filesystem running on the
2293 * device.
2295 static int lock_fs(struct mapped_device *md)
2297 int r;
2299 WARN_ON(md->frozen_sb);
2301 md->frozen_sb = freeze_bdev(md->bdev);
2302 if (IS_ERR(md->frozen_sb)) {
2303 r = PTR_ERR(md->frozen_sb);
2304 md->frozen_sb = NULL;
2305 return r;
2308 set_bit(DMF_FROZEN, &md->flags);
2310 return 0;
2313 static void unlock_fs(struct mapped_device *md)
2315 if (!test_bit(DMF_FROZEN, &md->flags))
2316 return;
2318 thaw_bdev(md->bdev, md->frozen_sb);
2319 md->frozen_sb = NULL;
2320 clear_bit(DMF_FROZEN, &md->flags);
2324 * We need to be able to change a mapping table under a mounted
2325 * filesystem. For example we might want to move some data in
2326 * the background. Before the table can be swapped with
2327 * dm_bind_table, dm_suspend must be called to flush any in
2328 * flight bios and ensure that any further io gets deferred.
2331 * Suspend mechanism in request-based dm.
2333 * After the suspend starts, further incoming requests are kept in
2334 * the request_queue and deferred.
2335 * Remaining requests in the request_queue at the start of suspend are flushed
2336 * if it is flush suspend.
2337 * The suspend completes when the following conditions have been satisfied,
2338 * so wait for it:
2339 * 1. q->in_flight is 0 (which means no in_flight request)
2340 * 2. queue has been stopped (which means no request dispatching)
2343 * Noflush suspend
2344 * ---------------
2345 * Noflush suspend doesn't need to dispatch remaining requests.
2346 * So stop the queue immediately. Then, wait for all in_flight requests
2347 * to be completed or requeued.
2349 * To abort noflush suspend, start the queue.
2352 * Flush suspend
2353 * -------------
2354 * Flush suspend needs to dispatch remaining requests. So stop the queue
2355 * after the remaining requests are completed. (Requeued request must be also
2356 * re-dispatched and completed. Until then, we can't stop the queue.)
2358 * During flushing the remaining requests, further incoming requests are also
2359 * inserted to the same queue. To distinguish which requests are to be
2360 * flushed, we insert a marker request to the queue at the time of starting
2361 * flush suspend, like a barrier.
2362 * The dispatching is blocked when the marker is found on the top of the queue.
2363 * And the queue is stopped when all in_flight requests are completed, since
2364 * that means the remaining requests are completely flushed.
2365 * Then, the marker is removed from the queue.
2367 * To abort flush suspend, we also need to take care of the marker, not only
2368 * starting the queue.
2369 * We don't remove the marker forcibly from the queue since it's against
2370 * the block-layer manner. Instead, we put a invalidated mark on the marker.
2371 * When the invalidated marker is found on the top of the queue, it is
2372 * immediately removed from the queue, so it doesn't block dispatching.
2373 * Because we have only one marker per mapped_device, we can't start another
2374 * flush suspend until the invalidated marker is removed from the queue.
2375 * So fail and return with -EBUSY in such a case.
2377 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2379 struct dm_table *map = NULL;
2380 int r = 0;
2381 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2382 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2384 mutex_lock(&md->suspend_lock);
2386 if (dm_suspended(md)) {
2387 r = -EINVAL;
2388 goto out_unlock;
2391 if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2392 r = -EBUSY;
2393 goto out_unlock;
2396 map = dm_get_table(md);
2399 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2400 * This flag is cleared before dm_suspend returns.
2402 if (noflush)
2403 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2405 /* This does not get reverted if there's an error later. */
2406 dm_table_presuspend_targets(map);
2409 * Flush I/O to the device. noflush supersedes do_lockfs,
2410 * because lock_fs() needs to flush I/Os.
2412 if (!noflush && do_lockfs) {
2413 r = lock_fs(md);
2414 if (r)
2415 goto out;
2419 * Here we must make sure that no processes are submitting requests
2420 * to target drivers i.e. no one may be executing
2421 * __split_and_process_bio. This is called from dm_request and
2422 * dm_wq_work.
2424 * To get all processes out of __split_and_process_bio in dm_request,
2425 * we take the write lock. To prevent any process from reentering
2426 * __split_and_process_bio from dm_request, we set
2427 * DMF_QUEUE_IO_TO_THREAD.
2429 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2430 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2431 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2432 * further calls to __split_and_process_bio from dm_wq_work.
2434 down_write(&md->io_lock);
2435 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2436 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2437 up_write(&md->io_lock);
2439 flush_workqueue(md->wq);
2441 if (dm_request_based(md))
2442 dm_rq_start_suspend(md, noflush);
2445 * At this point no more requests are entering target request routines.
2446 * We call dm_wait_for_completion to wait for all existing requests
2447 * to finish.
2449 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2451 down_write(&md->io_lock);
2452 if (noflush)
2453 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2454 up_write(&md->io_lock);
2456 /* were we interrupted ? */
2457 if (r < 0) {
2458 dm_queue_flush(md);
2460 if (dm_request_based(md))
2461 dm_rq_abort_suspend(md, noflush);
2463 unlock_fs(md);
2464 goto out; /* pushback list is already flushed, so skip flush */
2468 * If dm_wait_for_completion returned 0, the device is completely
2469 * quiescent now. There is no request-processing activity. All new
2470 * requests are being added to md->deferred list.
2473 dm_table_postsuspend_targets(map);
2475 set_bit(DMF_SUSPENDED, &md->flags);
2477 out:
2478 dm_table_put(map);
2480 out_unlock:
2481 mutex_unlock(&md->suspend_lock);
2482 return r;
2485 int dm_resume(struct mapped_device *md)
2487 int r = -EINVAL;
2488 struct dm_table *map = NULL;
2490 mutex_lock(&md->suspend_lock);
2491 if (!dm_suspended(md))
2492 goto out;
2494 map = dm_get_table(md);
2495 if (!map || !dm_table_get_size(map))
2496 goto out;
2498 r = dm_table_resume_targets(map);
2499 if (r)
2500 goto out;
2502 dm_queue_flush(md);
2505 * Flushing deferred I/Os must be done after targets are resumed
2506 * so that mapping of targets can work correctly.
2507 * Request-based dm is queueing the deferred I/Os in its request_queue.
2509 if (dm_request_based(md))
2510 start_queue(md->queue);
2512 unlock_fs(md);
2514 clear_bit(DMF_SUSPENDED, &md->flags);
2516 dm_table_unplug_all(map);
2517 r = 0;
2518 out:
2519 dm_table_put(map);
2520 mutex_unlock(&md->suspend_lock);
2522 return r;
2525 /*-----------------------------------------------------------------
2526 * Event notification.
2527 *---------------------------------------------------------------*/
2528 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2529 unsigned cookie)
2531 char udev_cookie[DM_COOKIE_LENGTH];
2532 char *envp[] = { udev_cookie, NULL };
2534 if (!cookie)
2535 kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2536 else {
2537 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2538 DM_COOKIE_ENV_VAR_NAME, cookie);
2539 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2543 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2545 return atomic_add_return(1, &md->uevent_seq);
2548 uint32_t dm_get_event_nr(struct mapped_device *md)
2550 return atomic_read(&md->event_nr);
2553 int dm_wait_event(struct mapped_device *md, int event_nr)
2555 return wait_event_interruptible(md->eventq,
2556 (event_nr != atomic_read(&md->event_nr)));
2559 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2561 unsigned long flags;
2563 spin_lock_irqsave(&md->uevent_lock, flags);
2564 list_add(elist, &md->uevent_list);
2565 spin_unlock_irqrestore(&md->uevent_lock, flags);
2569 * The gendisk is only valid as long as you have a reference
2570 * count on 'md'.
2572 struct gendisk *dm_disk(struct mapped_device *md)
2574 return md->disk;
2577 struct kobject *dm_kobject(struct mapped_device *md)
2579 return &md->kobj;
2583 * struct mapped_device should not be exported outside of dm.c
2584 * so use this check to verify that kobj is part of md structure
2586 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2588 struct mapped_device *md;
2590 md = container_of(kobj, struct mapped_device, kobj);
2591 if (&md->kobj != kobj)
2592 return NULL;
2594 if (test_bit(DMF_FREEING, &md->flags) ||
2595 test_bit(DMF_DELETING, &md->flags))
2596 return NULL;
2598 dm_get(md);
2599 return md;
2602 int dm_suspended(struct mapped_device *md)
2604 return test_bit(DMF_SUSPENDED, &md->flags);
2607 int dm_noflush_suspending(struct dm_target *ti)
2609 struct mapped_device *md = dm_table_get_md(ti->table);
2610 int r = __noflush_suspending(md);
2612 dm_put(md);
2614 return r;
2616 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2618 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2620 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2622 if (!pools)
2623 return NULL;
2625 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2626 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2627 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2628 if (!pools->io_pool)
2629 goto free_pools_and_out;
2631 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2632 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2633 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2634 if (!pools->tio_pool)
2635 goto free_io_pool_and_out;
2637 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2638 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2639 if (!pools->bs)
2640 goto free_tio_pool_and_out;
2642 return pools;
2644 free_tio_pool_and_out:
2645 mempool_destroy(pools->tio_pool);
2647 free_io_pool_and_out:
2648 mempool_destroy(pools->io_pool);
2650 free_pools_and_out:
2651 kfree(pools);
2653 return NULL;
2656 void dm_free_md_mempools(struct dm_md_mempools *pools)
2658 if (!pools)
2659 return;
2661 if (pools->io_pool)
2662 mempool_destroy(pools->io_pool);
2664 if (pools->tio_pool)
2665 mempool_destroy(pools->tio_pool);
2667 if (pools->bs)
2668 bioset_free(pools->bs);
2670 kfree(pools);
2673 static const struct block_device_operations dm_blk_dops = {
2674 .open = dm_blk_open,
2675 .release = dm_blk_close,
2676 .ioctl = dm_blk_ioctl,
2677 .getgeo = dm_blk_getgeo,
2678 .owner = THIS_MODULE
2681 EXPORT_SYMBOL(dm_get_mapinfo);
2684 * module hooks
2686 module_init(dm_init);
2687 module_exit(dm_exit);
2689 module_param(major, uint, 0);
2690 MODULE_PARM_DESC(major, "The major number of the device mapper");
2691 MODULE_DESCRIPTION(DM_NAME " driver");
2692 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2693 MODULE_LICENSE("GPL");