ring_buffer: fix ring_buffer_event_length()
[linux-2.6/mini2440.git] / kernel / trace / ring_buffer.c
blobd42b882dfe4ba87131beb591aba51179fe4bb209
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h> /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
19 #include "trace.h"
21 /* Global flag to disable all recording to ring buffers */
22 static int ring_buffers_off __read_mostly;
24 /**
25 * tracing_on - enable all tracing buffers
27 * This function enables all tracing buffers that may have been
28 * disabled with tracing_off.
30 void tracing_on(void)
32 ring_buffers_off = 0;
34 EXPORT_SYMBOL_GPL(tracing_on);
36 /**
37 * tracing_off - turn off all tracing buffers
39 * This function stops all tracing buffers from recording data.
40 * It does not disable any overhead the tracers themselves may
41 * be causing. This function simply causes all recording to
42 * the ring buffers to fail.
44 void tracing_off(void)
46 ring_buffers_off = 1;
48 EXPORT_SYMBOL_GPL(tracing_off);
50 /* Up this if you want to test the TIME_EXTENTS and normalization */
51 #define DEBUG_SHIFT 0
53 /* FIXME!!! */
54 u64 ring_buffer_time_stamp(int cpu)
56 u64 time;
58 preempt_disable_notrace();
59 /* shift to debug/test normalization and TIME_EXTENTS */
60 time = sched_clock() << DEBUG_SHIFT;
61 preempt_enable_notrace();
63 return time;
65 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
67 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
69 /* Just stupid testing the normalize function and deltas */
70 *ts >>= DEBUG_SHIFT;
72 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
74 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
75 #define RB_ALIGNMENT_SHIFT 2
76 #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
77 #define RB_MAX_SMALL_DATA 28
79 enum {
80 RB_LEN_TIME_EXTEND = 8,
81 RB_LEN_TIME_STAMP = 16,
84 /* inline for ring buffer fast paths */
85 static inline unsigned
86 rb_event_length(struct ring_buffer_event *event)
88 unsigned length;
90 switch (event->type) {
91 case RINGBUF_TYPE_PADDING:
92 /* undefined */
93 return -1;
95 case RINGBUF_TYPE_TIME_EXTEND:
96 return RB_LEN_TIME_EXTEND;
98 case RINGBUF_TYPE_TIME_STAMP:
99 return RB_LEN_TIME_STAMP;
101 case RINGBUF_TYPE_DATA:
102 if (event->len)
103 length = event->len << RB_ALIGNMENT_SHIFT;
104 else
105 length = event->array[0];
106 return length + RB_EVNT_HDR_SIZE;
107 default:
108 BUG();
110 /* not hit */
111 return 0;
115 * ring_buffer_event_length - return the length of the event
116 * @event: the event to get the length of
118 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
120 unsigned length = rb_event_length(event);
121 if (event->type != RINGBUF_TYPE_DATA)
122 return length;
123 length -= RB_EVNT_HDR_SIZE;
124 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
125 length -= sizeof(event->array[0]);
126 return length;
128 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
130 /* inline for ring buffer fast paths */
131 static inline void *
132 rb_event_data(struct ring_buffer_event *event)
134 BUG_ON(event->type != RINGBUF_TYPE_DATA);
135 /* If length is in len field, then array[0] has the data */
136 if (event->len)
137 return (void *)&event->array[0];
138 /* Otherwise length is in array[0] and array[1] has the data */
139 return (void *)&event->array[1];
143 * ring_buffer_event_data - return the data of the event
144 * @event: the event to get the data from
146 void *ring_buffer_event_data(struct ring_buffer_event *event)
148 return rb_event_data(event);
150 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
152 #define for_each_buffer_cpu(buffer, cpu) \
153 for_each_cpu_mask(cpu, buffer->cpumask)
155 #define TS_SHIFT 27
156 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
157 #define TS_DELTA_TEST (~TS_MASK)
160 * This hack stolen from mm/slob.c.
161 * We can store per page timing information in the page frame of the page.
162 * Thanks to Peter Zijlstra for suggesting this idea.
164 struct buffer_page {
165 u64 time_stamp; /* page time stamp */
166 local_t write; /* index for next write */
167 local_t commit; /* write commited index */
168 unsigned read; /* index for next read */
169 struct list_head list; /* list of free pages */
170 void *page; /* Actual data page */
174 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
175 * this issue out.
177 static inline void free_buffer_page(struct buffer_page *bpage)
179 if (bpage->page)
180 free_page((unsigned long)bpage->page);
181 kfree(bpage);
185 * We need to fit the time_stamp delta into 27 bits.
187 static inline int test_time_stamp(u64 delta)
189 if (delta & TS_DELTA_TEST)
190 return 1;
191 return 0;
194 #define BUF_PAGE_SIZE PAGE_SIZE
197 * head_page == tail_page && head == tail then buffer is empty.
199 struct ring_buffer_per_cpu {
200 int cpu;
201 struct ring_buffer *buffer;
202 spinlock_t lock;
203 struct lock_class_key lock_key;
204 struct list_head pages;
205 struct buffer_page *head_page; /* read from head */
206 struct buffer_page *tail_page; /* write to tail */
207 struct buffer_page *commit_page; /* commited pages */
208 struct buffer_page *reader_page;
209 unsigned long overrun;
210 unsigned long entries;
211 u64 write_stamp;
212 u64 read_stamp;
213 atomic_t record_disabled;
216 struct ring_buffer {
217 unsigned long size;
218 unsigned pages;
219 unsigned flags;
220 int cpus;
221 cpumask_t cpumask;
222 atomic_t record_disabled;
224 struct mutex mutex;
226 struct ring_buffer_per_cpu **buffers;
229 struct ring_buffer_iter {
230 struct ring_buffer_per_cpu *cpu_buffer;
231 unsigned long head;
232 struct buffer_page *head_page;
233 u64 read_stamp;
236 #define RB_WARN_ON(buffer, cond) \
237 do { \
238 if (unlikely(cond)) { \
239 atomic_inc(&buffer->record_disabled); \
240 WARN_ON(1); \
242 } while (0)
244 #define RB_WARN_ON_RET(buffer, cond) \
245 do { \
246 if (unlikely(cond)) { \
247 atomic_inc(&buffer->record_disabled); \
248 WARN_ON(1); \
249 return -1; \
251 } while (0)
253 #define RB_WARN_ON_ONCE(buffer, cond) \
254 do { \
255 static int once; \
256 if (unlikely(cond) && !once) { \
257 once++; \
258 atomic_inc(&buffer->record_disabled); \
259 WARN_ON(1); \
261 } while (0)
264 * check_pages - integrity check of buffer pages
265 * @cpu_buffer: CPU buffer with pages to test
267 * As a safty measure we check to make sure the data pages have not
268 * been corrupted.
270 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
272 struct list_head *head = &cpu_buffer->pages;
273 struct buffer_page *page, *tmp;
275 RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
276 RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
278 list_for_each_entry_safe(page, tmp, head, list) {
279 RB_WARN_ON_RET(cpu_buffer,
280 page->list.next->prev != &page->list);
281 RB_WARN_ON_RET(cpu_buffer,
282 page->list.prev->next != &page->list);
285 return 0;
288 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
289 unsigned nr_pages)
291 struct list_head *head = &cpu_buffer->pages;
292 struct buffer_page *page, *tmp;
293 unsigned long addr;
294 LIST_HEAD(pages);
295 unsigned i;
297 for (i = 0; i < nr_pages; i++) {
298 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
299 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
300 if (!page)
301 goto free_pages;
302 list_add(&page->list, &pages);
304 addr = __get_free_page(GFP_KERNEL);
305 if (!addr)
306 goto free_pages;
307 page->page = (void *)addr;
310 list_splice(&pages, head);
312 rb_check_pages(cpu_buffer);
314 return 0;
316 free_pages:
317 list_for_each_entry_safe(page, tmp, &pages, list) {
318 list_del_init(&page->list);
319 free_buffer_page(page);
321 return -ENOMEM;
324 static struct ring_buffer_per_cpu *
325 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
327 struct ring_buffer_per_cpu *cpu_buffer;
328 struct buffer_page *page;
329 unsigned long addr;
330 int ret;
332 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
333 GFP_KERNEL, cpu_to_node(cpu));
334 if (!cpu_buffer)
335 return NULL;
337 cpu_buffer->cpu = cpu;
338 cpu_buffer->buffer = buffer;
339 spin_lock_init(&cpu_buffer->lock);
340 INIT_LIST_HEAD(&cpu_buffer->pages);
342 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
343 GFP_KERNEL, cpu_to_node(cpu));
344 if (!page)
345 goto fail_free_buffer;
347 cpu_buffer->reader_page = page;
348 addr = __get_free_page(GFP_KERNEL);
349 if (!addr)
350 goto fail_free_reader;
351 page->page = (void *)addr;
353 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
355 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
356 if (ret < 0)
357 goto fail_free_reader;
359 cpu_buffer->head_page
360 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
361 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
363 return cpu_buffer;
365 fail_free_reader:
366 free_buffer_page(cpu_buffer->reader_page);
368 fail_free_buffer:
369 kfree(cpu_buffer);
370 return NULL;
373 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
375 struct list_head *head = &cpu_buffer->pages;
376 struct buffer_page *page, *tmp;
378 list_del_init(&cpu_buffer->reader_page->list);
379 free_buffer_page(cpu_buffer->reader_page);
381 list_for_each_entry_safe(page, tmp, head, list) {
382 list_del_init(&page->list);
383 free_buffer_page(page);
385 kfree(cpu_buffer);
389 * Causes compile errors if the struct buffer_page gets bigger
390 * than the struct page.
392 extern int ring_buffer_page_too_big(void);
395 * ring_buffer_alloc - allocate a new ring_buffer
396 * @size: the size in bytes per cpu that is needed.
397 * @flags: attributes to set for the ring buffer.
399 * Currently the only flag that is available is the RB_FL_OVERWRITE
400 * flag. This flag means that the buffer will overwrite old data
401 * when the buffer wraps. If this flag is not set, the buffer will
402 * drop data when the tail hits the head.
404 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
406 struct ring_buffer *buffer;
407 int bsize;
408 int cpu;
410 /* Paranoid! Optimizes out when all is well */
411 if (sizeof(struct buffer_page) > sizeof(struct page))
412 ring_buffer_page_too_big();
415 /* keep it in its own cache line */
416 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
417 GFP_KERNEL);
418 if (!buffer)
419 return NULL;
421 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
422 buffer->flags = flags;
424 /* need at least two pages */
425 if (buffer->pages == 1)
426 buffer->pages++;
428 buffer->cpumask = cpu_possible_map;
429 buffer->cpus = nr_cpu_ids;
431 bsize = sizeof(void *) * nr_cpu_ids;
432 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
433 GFP_KERNEL);
434 if (!buffer->buffers)
435 goto fail_free_buffer;
437 for_each_buffer_cpu(buffer, cpu) {
438 buffer->buffers[cpu] =
439 rb_allocate_cpu_buffer(buffer, cpu);
440 if (!buffer->buffers[cpu])
441 goto fail_free_buffers;
444 mutex_init(&buffer->mutex);
446 return buffer;
448 fail_free_buffers:
449 for_each_buffer_cpu(buffer, cpu) {
450 if (buffer->buffers[cpu])
451 rb_free_cpu_buffer(buffer->buffers[cpu]);
453 kfree(buffer->buffers);
455 fail_free_buffer:
456 kfree(buffer);
457 return NULL;
459 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
462 * ring_buffer_free - free a ring buffer.
463 * @buffer: the buffer to free.
465 void
466 ring_buffer_free(struct ring_buffer *buffer)
468 int cpu;
470 for_each_buffer_cpu(buffer, cpu)
471 rb_free_cpu_buffer(buffer->buffers[cpu]);
473 kfree(buffer);
475 EXPORT_SYMBOL_GPL(ring_buffer_free);
477 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
479 static void
480 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
482 struct buffer_page *page;
483 struct list_head *p;
484 unsigned i;
486 atomic_inc(&cpu_buffer->record_disabled);
487 synchronize_sched();
489 for (i = 0; i < nr_pages; i++) {
490 BUG_ON(list_empty(&cpu_buffer->pages));
491 p = cpu_buffer->pages.next;
492 page = list_entry(p, struct buffer_page, list);
493 list_del_init(&page->list);
494 free_buffer_page(page);
496 BUG_ON(list_empty(&cpu_buffer->pages));
498 rb_reset_cpu(cpu_buffer);
500 rb_check_pages(cpu_buffer);
502 atomic_dec(&cpu_buffer->record_disabled);
506 static void
507 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
508 struct list_head *pages, unsigned nr_pages)
510 struct buffer_page *page;
511 struct list_head *p;
512 unsigned i;
514 atomic_inc(&cpu_buffer->record_disabled);
515 synchronize_sched();
517 for (i = 0; i < nr_pages; i++) {
518 BUG_ON(list_empty(pages));
519 p = pages->next;
520 page = list_entry(p, struct buffer_page, list);
521 list_del_init(&page->list);
522 list_add_tail(&page->list, &cpu_buffer->pages);
524 rb_reset_cpu(cpu_buffer);
526 rb_check_pages(cpu_buffer);
528 atomic_dec(&cpu_buffer->record_disabled);
532 * ring_buffer_resize - resize the ring buffer
533 * @buffer: the buffer to resize.
534 * @size: the new size.
536 * The tracer is responsible for making sure that the buffer is
537 * not being used while changing the size.
538 * Note: We may be able to change the above requirement by using
539 * RCU synchronizations.
541 * Minimum size is 2 * BUF_PAGE_SIZE.
543 * Returns -1 on failure.
545 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
547 struct ring_buffer_per_cpu *cpu_buffer;
548 unsigned nr_pages, rm_pages, new_pages;
549 struct buffer_page *page, *tmp;
550 unsigned long buffer_size;
551 unsigned long addr;
552 LIST_HEAD(pages);
553 int i, cpu;
556 * Always succeed at resizing a non-existent buffer:
558 if (!buffer)
559 return size;
561 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
562 size *= BUF_PAGE_SIZE;
563 buffer_size = buffer->pages * BUF_PAGE_SIZE;
565 /* we need a minimum of two pages */
566 if (size < BUF_PAGE_SIZE * 2)
567 size = BUF_PAGE_SIZE * 2;
569 if (size == buffer_size)
570 return size;
572 mutex_lock(&buffer->mutex);
574 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
576 if (size < buffer_size) {
578 /* easy case, just free pages */
579 BUG_ON(nr_pages >= buffer->pages);
581 rm_pages = buffer->pages - nr_pages;
583 for_each_buffer_cpu(buffer, cpu) {
584 cpu_buffer = buffer->buffers[cpu];
585 rb_remove_pages(cpu_buffer, rm_pages);
587 goto out;
591 * This is a bit more difficult. We only want to add pages
592 * when we can allocate enough for all CPUs. We do this
593 * by allocating all the pages and storing them on a local
594 * link list. If we succeed in our allocation, then we
595 * add these pages to the cpu_buffers. Otherwise we just free
596 * them all and return -ENOMEM;
598 BUG_ON(nr_pages <= buffer->pages);
599 new_pages = nr_pages - buffer->pages;
601 for_each_buffer_cpu(buffer, cpu) {
602 for (i = 0; i < new_pages; i++) {
603 page = kzalloc_node(ALIGN(sizeof(*page),
604 cache_line_size()),
605 GFP_KERNEL, cpu_to_node(cpu));
606 if (!page)
607 goto free_pages;
608 list_add(&page->list, &pages);
609 addr = __get_free_page(GFP_KERNEL);
610 if (!addr)
611 goto free_pages;
612 page->page = (void *)addr;
616 for_each_buffer_cpu(buffer, cpu) {
617 cpu_buffer = buffer->buffers[cpu];
618 rb_insert_pages(cpu_buffer, &pages, new_pages);
621 BUG_ON(!list_empty(&pages));
623 out:
624 buffer->pages = nr_pages;
625 mutex_unlock(&buffer->mutex);
627 return size;
629 free_pages:
630 list_for_each_entry_safe(page, tmp, &pages, list) {
631 list_del_init(&page->list);
632 free_buffer_page(page);
634 mutex_unlock(&buffer->mutex);
635 return -ENOMEM;
637 EXPORT_SYMBOL_GPL(ring_buffer_resize);
639 static inline int rb_null_event(struct ring_buffer_event *event)
641 return event->type == RINGBUF_TYPE_PADDING;
644 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
646 return page->page + index;
649 static inline struct ring_buffer_event *
650 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
652 return __rb_page_index(cpu_buffer->reader_page,
653 cpu_buffer->reader_page->read);
656 static inline struct ring_buffer_event *
657 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
659 return __rb_page_index(cpu_buffer->head_page,
660 cpu_buffer->head_page->read);
663 static inline struct ring_buffer_event *
664 rb_iter_head_event(struct ring_buffer_iter *iter)
666 return __rb_page_index(iter->head_page, iter->head);
669 static inline unsigned rb_page_write(struct buffer_page *bpage)
671 return local_read(&bpage->write);
674 static inline unsigned rb_page_commit(struct buffer_page *bpage)
676 return local_read(&bpage->commit);
679 /* Size is determined by what has been commited */
680 static inline unsigned rb_page_size(struct buffer_page *bpage)
682 return rb_page_commit(bpage);
685 static inline unsigned
686 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
688 return rb_page_commit(cpu_buffer->commit_page);
691 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
693 return rb_page_commit(cpu_buffer->head_page);
697 * When the tail hits the head and the buffer is in overwrite mode,
698 * the head jumps to the next page and all content on the previous
699 * page is discarded. But before doing so, we update the overrun
700 * variable of the buffer.
702 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
704 struct ring_buffer_event *event;
705 unsigned long head;
707 for (head = 0; head < rb_head_size(cpu_buffer);
708 head += rb_event_length(event)) {
710 event = __rb_page_index(cpu_buffer->head_page, head);
711 BUG_ON(rb_null_event(event));
712 /* Only count data entries */
713 if (event->type != RINGBUF_TYPE_DATA)
714 continue;
715 cpu_buffer->overrun++;
716 cpu_buffer->entries--;
720 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
721 struct buffer_page **page)
723 struct list_head *p = (*page)->list.next;
725 if (p == &cpu_buffer->pages)
726 p = p->next;
728 *page = list_entry(p, struct buffer_page, list);
731 static inline unsigned
732 rb_event_index(struct ring_buffer_event *event)
734 unsigned long addr = (unsigned long)event;
736 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
739 static inline int
740 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
741 struct ring_buffer_event *event)
743 unsigned long addr = (unsigned long)event;
744 unsigned long index;
746 index = rb_event_index(event);
747 addr &= PAGE_MASK;
749 return cpu_buffer->commit_page->page == (void *)addr &&
750 rb_commit_index(cpu_buffer) == index;
753 static inline void
754 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
755 struct ring_buffer_event *event)
757 unsigned long addr = (unsigned long)event;
758 unsigned long index;
760 index = rb_event_index(event);
761 addr &= PAGE_MASK;
763 while (cpu_buffer->commit_page->page != (void *)addr) {
764 RB_WARN_ON(cpu_buffer,
765 cpu_buffer->commit_page == cpu_buffer->tail_page);
766 cpu_buffer->commit_page->commit =
767 cpu_buffer->commit_page->write;
768 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
769 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
772 /* Now set the commit to the event's index */
773 local_set(&cpu_buffer->commit_page->commit, index);
776 static inline void
777 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
780 * We only race with interrupts and NMIs on this CPU.
781 * If we own the commit event, then we can commit
782 * all others that interrupted us, since the interruptions
783 * are in stack format (they finish before they come
784 * back to us). This allows us to do a simple loop to
785 * assign the commit to the tail.
787 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
788 cpu_buffer->commit_page->commit =
789 cpu_buffer->commit_page->write;
790 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
791 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
792 /* add barrier to keep gcc from optimizing too much */
793 barrier();
795 while (rb_commit_index(cpu_buffer) !=
796 rb_page_write(cpu_buffer->commit_page)) {
797 cpu_buffer->commit_page->commit =
798 cpu_buffer->commit_page->write;
799 barrier();
803 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
805 cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
806 cpu_buffer->reader_page->read = 0;
809 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
811 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
814 * The iterator could be on the reader page (it starts there).
815 * But the head could have moved, since the reader was
816 * found. Check for this case and assign the iterator
817 * to the head page instead of next.
819 if (iter->head_page == cpu_buffer->reader_page)
820 iter->head_page = cpu_buffer->head_page;
821 else
822 rb_inc_page(cpu_buffer, &iter->head_page);
824 iter->read_stamp = iter->head_page->time_stamp;
825 iter->head = 0;
829 * ring_buffer_update_event - update event type and data
830 * @event: the even to update
831 * @type: the type of event
832 * @length: the size of the event field in the ring buffer
834 * Update the type and data fields of the event. The length
835 * is the actual size that is written to the ring buffer,
836 * and with this, we can determine what to place into the
837 * data field.
839 static inline void
840 rb_update_event(struct ring_buffer_event *event,
841 unsigned type, unsigned length)
843 event->type = type;
845 switch (type) {
847 case RINGBUF_TYPE_PADDING:
848 break;
850 case RINGBUF_TYPE_TIME_EXTEND:
851 event->len =
852 (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
853 >> RB_ALIGNMENT_SHIFT;
854 break;
856 case RINGBUF_TYPE_TIME_STAMP:
857 event->len =
858 (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
859 >> RB_ALIGNMENT_SHIFT;
860 break;
862 case RINGBUF_TYPE_DATA:
863 length -= RB_EVNT_HDR_SIZE;
864 if (length > RB_MAX_SMALL_DATA) {
865 event->len = 0;
866 event->array[0] = length;
867 } else
868 event->len =
869 (length + (RB_ALIGNMENT-1))
870 >> RB_ALIGNMENT_SHIFT;
871 break;
872 default:
873 BUG();
877 static inline unsigned rb_calculate_event_length(unsigned length)
879 struct ring_buffer_event event; /* Used only for sizeof array */
881 /* zero length can cause confusions */
882 if (!length)
883 length = 1;
885 if (length > RB_MAX_SMALL_DATA)
886 length += sizeof(event.array[0]);
888 length += RB_EVNT_HDR_SIZE;
889 length = ALIGN(length, RB_ALIGNMENT);
891 return length;
894 static struct ring_buffer_event *
895 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
896 unsigned type, unsigned long length, u64 *ts)
898 struct buffer_page *tail_page, *head_page, *reader_page;
899 unsigned long tail, write;
900 struct ring_buffer *buffer = cpu_buffer->buffer;
901 struct ring_buffer_event *event;
902 unsigned long flags;
904 tail_page = cpu_buffer->tail_page;
905 write = local_add_return(length, &tail_page->write);
906 tail = write - length;
908 /* See if we shot pass the end of this buffer page */
909 if (write > BUF_PAGE_SIZE) {
910 struct buffer_page *next_page = tail_page;
912 spin_lock_irqsave(&cpu_buffer->lock, flags);
914 rb_inc_page(cpu_buffer, &next_page);
916 head_page = cpu_buffer->head_page;
917 reader_page = cpu_buffer->reader_page;
919 /* we grabbed the lock before incrementing */
920 RB_WARN_ON(cpu_buffer, next_page == reader_page);
923 * If for some reason, we had an interrupt storm that made
924 * it all the way around the buffer, bail, and warn
925 * about it.
927 if (unlikely(next_page == cpu_buffer->commit_page)) {
928 WARN_ON_ONCE(1);
929 goto out_unlock;
932 if (next_page == head_page) {
933 if (!(buffer->flags & RB_FL_OVERWRITE)) {
934 /* reset write */
935 if (tail <= BUF_PAGE_SIZE)
936 local_set(&tail_page->write, tail);
937 goto out_unlock;
940 /* tail_page has not moved yet? */
941 if (tail_page == cpu_buffer->tail_page) {
942 /* count overflows */
943 rb_update_overflow(cpu_buffer);
945 rb_inc_page(cpu_buffer, &head_page);
946 cpu_buffer->head_page = head_page;
947 cpu_buffer->head_page->read = 0;
952 * If the tail page is still the same as what we think
953 * it is, then it is up to us to update the tail
954 * pointer.
956 if (tail_page == cpu_buffer->tail_page) {
957 local_set(&next_page->write, 0);
958 local_set(&next_page->commit, 0);
959 cpu_buffer->tail_page = next_page;
961 /* reread the time stamp */
962 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
963 cpu_buffer->tail_page->time_stamp = *ts;
967 * The actual tail page has moved forward.
969 if (tail < BUF_PAGE_SIZE) {
970 /* Mark the rest of the page with padding */
971 event = __rb_page_index(tail_page, tail);
972 event->type = RINGBUF_TYPE_PADDING;
975 if (tail <= BUF_PAGE_SIZE)
976 /* Set the write back to the previous setting */
977 local_set(&tail_page->write, tail);
980 * If this was a commit entry that failed,
981 * increment that too
983 if (tail_page == cpu_buffer->commit_page &&
984 tail == rb_commit_index(cpu_buffer)) {
985 rb_set_commit_to_write(cpu_buffer);
988 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
990 /* fail and let the caller try again */
991 return ERR_PTR(-EAGAIN);
994 /* We reserved something on the buffer */
996 BUG_ON(write > BUF_PAGE_SIZE);
998 event = __rb_page_index(tail_page, tail);
999 rb_update_event(event, type, length);
1002 * If this is a commit and the tail is zero, then update
1003 * this page's time stamp.
1005 if (!tail && rb_is_commit(cpu_buffer, event))
1006 cpu_buffer->commit_page->time_stamp = *ts;
1008 return event;
1010 out_unlock:
1011 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1012 return NULL;
1015 static int
1016 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1017 u64 *ts, u64 *delta)
1019 struct ring_buffer_event *event;
1020 static int once;
1021 int ret;
1023 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1024 printk(KERN_WARNING "Delta way too big! %llu"
1025 " ts=%llu write stamp = %llu\n",
1026 (unsigned long long)*delta,
1027 (unsigned long long)*ts,
1028 (unsigned long long)cpu_buffer->write_stamp);
1029 WARN_ON(1);
1033 * The delta is too big, we to add a
1034 * new timestamp.
1036 event = __rb_reserve_next(cpu_buffer,
1037 RINGBUF_TYPE_TIME_EXTEND,
1038 RB_LEN_TIME_EXTEND,
1039 ts);
1040 if (!event)
1041 return -EBUSY;
1043 if (PTR_ERR(event) == -EAGAIN)
1044 return -EAGAIN;
1046 /* Only a commited time event can update the write stamp */
1047 if (rb_is_commit(cpu_buffer, event)) {
1049 * If this is the first on the page, then we need to
1050 * update the page itself, and just put in a zero.
1052 if (rb_event_index(event)) {
1053 event->time_delta = *delta & TS_MASK;
1054 event->array[0] = *delta >> TS_SHIFT;
1055 } else {
1056 cpu_buffer->commit_page->time_stamp = *ts;
1057 event->time_delta = 0;
1058 event->array[0] = 0;
1060 cpu_buffer->write_stamp = *ts;
1061 /* let the caller know this was the commit */
1062 ret = 1;
1063 } else {
1064 /* Darn, this is just wasted space */
1065 event->time_delta = 0;
1066 event->array[0] = 0;
1067 ret = 0;
1070 *delta = 0;
1072 return ret;
1075 static struct ring_buffer_event *
1076 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1077 unsigned type, unsigned long length)
1079 struct ring_buffer_event *event;
1080 u64 ts, delta;
1081 int commit = 0;
1082 int nr_loops = 0;
1084 again:
1086 * We allow for interrupts to reenter here and do a trace.
1087 * If one does, it will cause this original code to loop
1088 * back here. Even with heavy interrupts happening, this
1089 * should only happen a few times in a row. If this happens
1090 * 1000 times in a row, there must be either an interrupt
1091 * storm or we have something buggy.
1092 * Bail!
1094 if (unlikely(++nr_loops > 1000)) {
1095 RB_WARN_ON(cpu_buffer, 1);
1096 return NULL;
1099 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1102 * Only the first commit can update the timestamp.
1103 * Yes there is a race here. If an interrupt comes in
1104 * just after the conditional and it traces too, then it
1105 * will also check the deltas. More than one timestamp may
1106 * also be made. But only the entry that did the actual
1107 * commit will be something other than zero.
1109 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1110 rb_page_write(cpu_buffer->tail_page) ==
1111 rb_commit_index(cpu_buffer)) {
1113 delta = ts - cpu_buffer->write_stamp;
1115 /* make sure this delta is calculated here */
1116 barrier();
1118 /* Did the write stamp get updated already? */
1119 if (unlikely(ts < cpu_buffer->write_stamp))
1120 delta = 0;
1122 if (test_time_stamp(delta)) {
1124 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1126 if (commit == -EBUSY)
1127 return NULL;
1129 if (commit == -EAGAIN)
1130 goto again;
1132 RB_WARN_ON(cpu_buffer, commit < 0);
1134 } else
1135 /* Non commits have zero deltas */
1136 delta = 0;
1138 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1139 if (PTR_ERR(event) == -EAGAIN)
1140 goto again;
1142 if (!event) {
1143 if (unlikely(commit))
1145 * Ouch! We needed a timestamp and it was commited. But
1146 * we didn't get our event reserved.
1148 rb_set_commit_to_write(cpu_buffer);
1149 return NULL;
1153 * If the timestamp was commited, make the commit our entry
1154 * now so that we will update it when needed.
1156 if (commit)
1157 rb_set_commit_event(cpu_buffer, event);
1158 else if (!rb_is_commit(cpu_buffer, event))
1159 delta = 0;
1161 event->time_delta = delta;
1163 return event;
1166 static DEFINE_PER_CPU(int, rb_need_resched);
1169 * ring_buffer_lock_reserve - reserve a part of the buffer
1170 * @buffer: the ring buffer to reserve from
1171 * @length: the length of the data to reserve (excluding event header)
1172 * @flags: a pointer to save the interrupt flags
1174 * Returns a reseverd event on the ring buffer to copy directly to.
1175 * The user of this interface will need to get the body to write into
1176 * and can use the ring_buffer_event_data() interface.
1178 * The length is the length of the data needed, not the event length
1179 * which also includes the event header.
1181 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1182 * If NULL is returned, then nothing has been allocated or locked.
1184 struct ring_buffer_event *
1185 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1186 unsigned long length,
1187 unsigned long *flags)
1189 struct ring_buffer_per_cpu *cpu_buffer;
1190 struct ring_buffer_event *event;
1191 int cpu, resched;
1193 if (ring_buffers_off)
1194 return NULL;
1196 if (atomic_read(&buffer->record_disabled))
1197 return NULL;
1199 /* If we are tracing schedule, we don't want to recurse */
1200 resched = need_resched();
1201 preempt_disable_notrace();
1203 cpu = raw_smp_processor_id();
1205 if (!cpu_isset(cpu, buffer->cpumask))
1206 goto out;
1208 cpu_buffer = buffer->buffers[cpu];
1210 if (atomic_read(&cpu_buffer->record_disabled))
1211 goto out;
1213 length = rb_calculate_event_length(length);
1214 if (length > BUF_PAGE_SIZE)
1215 goto out;
1217 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1218 if (!event)
1219 goto out;
1222 * Need to store resched state on this cpu.
1223 * Only the first needs to.
1226 if (preempt_count() == 1)
1227 per_cpu(rb_need_resched, cpu) = resched;
1229 return event;
1231 out:
1232 if (resched)
1233 preempt_enable_no_resched_notrace();
1234 else
1235 preempt_enable_notrace();
1236 return NULL;
1238 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1240 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1241 struct ring_buffer_event *event)
1243 cpu_buffer->entries++;
1245 /* Only process further if we own the commit */
1246 if (!rb_is_commit(cpu_buffer, event))
1247 return;
1249 cpu_buffer->write_stamp += event->time_delta;
1251 rb_set_commit_to_write(cpu_buffer);
1255 * ring_buffer_unlock_commit - commit a reserved
1256 * @buffer: The buffer to commit to
1257 * @event: The event pointer to commit.
1258 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1260 * This commits the data to the ring buffer, and releases any locks held.
1262 * Must be paired with ring_buffer_lock_reserve.
1264 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1265 struct ring_buffer_event *event,
1266 unsigned long flags)
1268 struct ring_buffer_per_cpu *cpu_buffer;
1269 int cpu = raw_smp_processor_id();
1271 cpu_buffer = buffer->buffers[cpu];
1273 rb_commit(cpu_buffer, event);
1276 * Only the last preempt count needs to restore preemption.
1278 if (preempt_count() == 1) {
1279 if (per_cpu(rb_need_resched, cpu))
1280 preempt_enable_no_resched_notrace();
1281 else
1282 preempt_enable_notrace();
1283 } else
1284 preempt_enable_no_resched_notrace();
1286 return 0;
1288 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1291 * ring_buffer_write - write data to the buffer without reserving
1292 * @buffer: The ring buffer to write to.
1293 * @length: The length of the data being written (excluding the event header)
1294 * @data: The data to write to the buffer.
1296 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1297 * one function. If you already have the data to write to the buffer, it
1298 * may be easier to simply call this function.
1300 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1301 * and not the length of the event which would hold the header.
1303 int ring_buffer_write(struct ring_buffer *buffer,
1304 unsigned long length,
1305 void *data)
1307 struct ring_buffer_per_cpu *cpu_buffer;
1308 struct ring_buffer_event *event;
1309 unsigned long event_length;
1310 void *body;
1311 int ret = -EBUSY;
1312 int cpu, resched;
1314 if (ring_buffers_off)
1315 return -EBUSY;
1317 if (atomic_read(&buffer->record_disabled))
1318 return -EBUSY;
1320 resched = need_resched();
1321 preempt_disable_notrace();
1323 cpu = raw_smp_processor_id();
1325 if (!cpu_isset(cpu, buffer->cpumask))
1326 goto out;
1328 cpu_buffer = buffer->buffers[cpu];
1330 if (atomic_read(&cpu_buffer->record_disabled))
1331 goto out;
1333 event_length = rb_calculate_event_length(length);
1334 event = rb_reserve_next_event(cpu_buffer,
1335 RINGBUF_TYPE_DATA, event_length);
1336 if (!event)
1337 goto out;
1339 body = rb_event_data(event);
1341 memcpy(body, data, length);
1343 rb_commit(cpu_buffer, event);
1345 ret = 0;
1346 out:
1347 if (resched)
1348 preempt_enable_no_resched_notrace();
1349 else
1350 preempt_enable_notrace();
1352 return ret;
1354 EXPORT_SYMBOL_GPL(ring_buffer_write);
1356 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1358 struct buffer_page *reader = cpu_buffer->reader_page;
1359 struct buffer_page *head = cpu_buffer->head_page;
1360 struct buffer_page *commit = cpu_buffer->commit_page;
1362 return reader->read == rb_page_commit(reader) &&
1363 (commit == reader ||
1364 (commit == head &&
1365 head->read == rb_page_commit(commit)));
1369 * ring_buffer_record_disable - stop all writes into the buffer
1370 * @buffer: The ring buffer to stop writes to.
1372 * This prevents all writes to the buffer. Any attempt to write
1373 * to the buffer after this will fail and return NULL.
1375 * The caller should call synchronize_sched() after this.
1377 void ring_buffer_record_disable(struct ring_buffer *buffer)
1379 atomic_inc(&buffer->record_disabled);
1381 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1384 * ring_buffer_record_enable - enable writes to the buffer
1385 * @buffer: The ring buffer to enable writes
1387 * Note, multiple disables will need the same number of enables
1388 * to truely enable the writing (much like preempt_disable).
1390 void ring_buffer_record_enable(struct ring_buffer *buffer)
1392 atomic_dec(&buffer->record_disabled);
1394 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1397 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1398 * @buffer: The ring buffer to stop writes to.
1399 * @cpu: The CPU buffer to stop
1401 * This prevents all writes to the buffer. Any attempt to write
1402 * to the buffer after this will fail and return NULL.
1404 * The caller should call synchronize_sched() after this.
1406 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1408 struct ring_buffer_per_cpu *cpu_buffer;
1410 if (!cpu_isset(cpu, buffer->cpumask))
1411 return;
1413 cpu_buffer = buffer->buffers[cpu];
1414 atomic_inc(&cpu_buffer->record_disabled);
1416 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1419 * ring_buffer_record_enable_cpu - enable writes to the buffer
1420 * @buffer: The ring buffer to enable writes
1421 * @cpu: The CPU to enable.
1423 * Note, multiple disables will need the same number of enables
1424 * to truely enable the writing (much like preempt_disable).
1426 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1428 struct ring_buffer_per_cpu *cpu_buffer;
1430 if (!cpu_isset(cpu, buffer->cpumask))
1431 return;
1433 cpu_buffer = buffer->buffers[cpu];
1434 atomic_dec(&cpu_buffer->record_disabled);
1436 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1439 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1440 * @buffer: The ring buffer
1441 * @cpu: The per CPU buffer to get the entries from.
1443 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1445 struct ring_buffer_per_cpu *cpu_buffer;
1447 if (!cpu_isset(cpu, buffer->cpumask))
1448 return 0;
1450 cpu_buffer = buffer->buffers[cpu];
1451 return cpu_buffer->entries;
1453 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1456 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1457 * @buffer: The ring buffer
1458 * @cpu: The per CPU buffer to get the number of overruns from
1460 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1462 struct ring_buffer_per_cpu *cpu_buffer;
1464 if (!cpu_isset(cpu, buffer->cpumask))
1465 return 0;
1467 cpu_buffer = buffer->buffers[cpu];
1468 return cpu_buffer->overrun;
1470 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1473 * ring_buffer_entries - get the number of entries in a buffer
1474 * @buffer: The ring buffer
1476 * Returns the total number of entries in the ring buffer
1477 * (all CPU entries)
1479 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1481 struct ring_buffer_per_cpu *cpu_buffer;
1482 unsigned long entries = 0;
1483 int cpu;
1485 /* if you care about this being correct, lock the buffer */
1486 for_each_buffer_cpu(buffer, cpu) {
1487 cpu_buffer = buffer->buffers[cpu];
1488 entries += cpu_buffer->entries;
1491 return entries;
1493 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1496 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1497 * @buffer: The ring buffer
1499 * Returns the total number of overruns in the ring buffer
1500 * (all CPU entries)
1502 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1504 struct ring_buffer_per_cpu *cpu_buffer;
1505 unsigned long overruns = 0;
1506 int cpu;
1508 /* if you care about this being correct, lock the buffer */
1509 for_each_buffer_cpu(buffer, cpu) {
1510 cpu_buffer = buffer->buffers[cpu];
1511 overruns += cpu_buffer->overrun;
1514 return overruns;
1516 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1519 * ring_buffer_iter_reset - reset an iterator
1520 * @iter: The iterator to reset
1522 * Resets the iterator, so that it will start from the beginning
1523 * again.
1525 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1527 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1529 /* Iterator usage is expected to have record disabled */
1530 if (list_empty(&cpu_buffer->reader_page->list)) {
1531 iter->head_page = cpu_buffer->head_page;
1532 iter->head = cpu_buffer->head_page->read;
1533 } else {
1534 iter->head_page = cpu_buffer->reader_page;
1535 iter->head = cpu_buffer->reader_page->read;
1537 if (iter->head)
1538 iter->read_stamp = cpu_buffer->read_stamp;
1539 else
1540 iter->read_stamp = iter->head_page->time_stamp;
1542 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1545 * ring_buffer_iter_empty - check if an iterator has no more to read
1546 * @iter: The iterator to check
1548 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1550 struct ring_buffer_per_cpu *cpu_buffer;
1552 cpu_buffer = iter->cpu_buffer;
1554 return iter->head_page == cpu_buffer->commit_page &&
1555 iter->head == rb_commit_index(cpu_buffer);
1557 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1559 static void
1560 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1561 struct ring_buffer_event *event)
1563 u64 delta;
1565 switch (event->type) {
1566 case RINGBUF_TYPE_PADDING:
1567 return;
1569 case RINGBUF_TYPE_TIME_EXTEND:
1570 delta = event->array[0];
1571 delta <<= TS_SHIFT;
1572 delta += event->time_delta;
1573 cpu_buffer->read_stamp += delta;
1574 return;
1576 case RINGBUF_TYPE_TIME_STAMP:
1577 /* FIXME: not implemented */
1578 return;
1580 case RINGBUF_TYPE_DATA:
1581 cpu_buffer->read_stamp += event->time_delta;
1582 return;
1584 default:
1585 BUG();
1587 return;
1590 static void
1591 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1592 struct ring_buffer_event *event)
1594 u64 delta;
1596 switch (event->type) {
1597 case RINGBUF_TYPE_PADDING:
1598 return;
1600 case RINGBUF_TYPE_TIME_EXTEND:
1601 delta = event->array[0];
1602 delta <<= TS_SHIFT;
1603 delta += event->time_delta;
1604 iter->read_stamp += delta;
1605 return;
1607 case RINGBUF_TYPE_TIME_STAMP:
1608 /* FIXME: not implemented */
1609 return;
1611 case RINGBUF_TYPE_DATA:
1612 iter->read_stamp += event->time_delta;
1613 return;
1615 default:
1616 BUG();
1618 return;
1621 static struct buffer_page *
1622 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1624 struct buffer_page *reader = NULL;
1625 unsigned long flags;
1626 int nr_loops = 0;
1628 spin_lock_irqsave(&cpu_buffer->lock, flags);
1630 again:
1632 * This should normally only loop twice. But because the
1633 * start of the reader inserts an empty page, it causes
1634 * a case where we will loop three times. There should be no
1635 * reason to loop four times (that I know of).
1637 if (unlikely(++nr_loops > 3)) {
1638 RB_WARN_ON(cpu_buffer, 1);
1639 reader = NULL;
1640 goto out;
1643 reader = cpu_buffer->reader_page;
1645 /* If there's more to read, return this page */
1646 if (cpu_buffer->reader_page->read < rb_page_size(reader))
1647 goto out;
1649 /* Never should we have an index greater than the size */
1650 RB_WARN_ON(cpu_buffer,
1651 cpu_buffer->reader_page->read > rb_page_size(reader));
1653 /* check if we caught up to the tail */
1654 reader = NULL;
1655 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1656 goto out;
1659 * Splice the empty reader page into the list around the head.
1660 * Reset the reader page to size zero.
1663 reader = cpu_buffer->head_page;
1664 cpu_buffer->reader_page->list.next = reader->list.next;
1665 cpu_buffer->reader_page->list.prev = reader->list.prev;
1667 local_set(&cpu_buffer->reader_page->write, 0);
1668 local_set(&cpu_buffer->reader_page->commit, 0);
1670 /* Make the reader page now replace the head */
1671 reader->list.prev->next = &cpu_buffer->reader_page->list;
1672 reader->list.next->prev = &cpu_buffer->reader_page->list;
1675 * If the tail is on the reader, then we must set the head
1676 * to the inserted page, otherwise we set it one before.
1678 cpu_buffer->head_page = cpu_buffer->reader_page;
1680 if (cpu_buffer->commit_page != reader)
1681 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1683 /* Finally update the reader page to the new head */
1684 cpu_buffer->reader_page = reader;
1685 rb_reset_reader_page(cpu_buffer);
1687 goto again;
1689 out:
1690 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1692 return reader;
1695 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1697 struct ring_buffer_event *event;
1698 struct buffer_page *reader;
1699 unsigned length;
1701 reader = rb_get_reader_page(cpu_buffer);
1703 /* This function should not be called when buffer is empty */
1704 BUG_ON(!reader);
1706 event = rb_reader_event(cpu_buffer);
1708 if (event->type == RINGBUF_TYPE_DATA)
1709 cpu_buffer->entries--;
1711 rb_update_read_stamp(cpu_buffer, event);
1713 length = rb_event_length(event);
1714 cpu_buffer->reader_page->read += length;
1717 static void rb_advance_iter(struct ring_buffer_iter *iter)
1719 struct ring_buffer *buffer;
1720 struct ring_buffer_per_cpu *cpu_buffer;
1721 struct ring_buffer_event *event;
1722 unsigned length;
1724 cpu_buffer = iter->cpu_buffer;
1725 buffer = cpu_buffer->buffer;
1728 * Check if we are at the end of the buffer.
1730 if (iter->head >= rb_page_size(iter->head_page)) {
1731 BUG_ON(iter->head_page == cpu_buffer->commit_page);
1732 rb_inc_iter(iter);
1733 return;
1736 event = rb_iter_head_event(iter);
1738 length = rb_event_length(event);
1741 * This should not be called to advance the header if we are
1742 * at the tail of the buffer.
1744 BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1745 (iter->head + length > rb_commit_index(cpu_buffer)));
1747 rb_update_iter_read_stamp(iter, event);
1749 iter->head += length;
1751 /* check for end of page padding */
1752 if ((iter->head >= rb_page_size(iter->head_page)) &&
1753 (iter->head_page != cpu_buffer->commit_page))
1754 rb_advance_iter(iter);
1758 * ring_buffer_peek - peek at the next event to be read
1759 * @buffer: The ring buffer to read
1760 * @cpu: The cpu to peak at
1761 * @ts: The timestamp counter of this event.
1763 * This will return the event that will be read next, but does
1764 * not consume the data.
1766 struct ring_buffer_event *
1767 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1769 struct ring_buffer_per_cpu *cpu_buffer;
1770 struct ring_buffer_event *event;
1771 struct buffer_page *reader;
1772 int nr_loops = 0;
1774 if (!cpu_isset(cpu, buffer->cpumask))
1775 return NULL;
1777 cpu_buffer = buffer->buffers[cpu];
1779 again:
1781 * We repeat when a timestamp is encountered. It is possible
1782 * to get multiple timestamps from an interrupt entering just
1783 * as one timestamp is about to be written. The max times
1784 * that this can happen is the number of nested interrupts we
1785 * can have. Nesting 10 deep of interrupts is clearly
1786 * an anomaly.
1788 if (unlikely(++nr_loops > 10)) {
1789 RB_WARN_ON(cpu_buffer, 1);
1790 return NULL;
1793 reader = rb_get_reader_page(cpu_buffer);
1794 if (!reader)
1795 return NULL;
1797 event = rb_reader_event(cpu_buffer);
1799 switch (event->type) {
1800 case RINGBUF_TYPE_PADDING:
1801 RB_WARN_ON(cpu_buffer, 1);
1802 rb_advance_reader(cpu_buffer);
1803 return NULL;
1805 case RINGBUF_TYPE_TIME_EXTEND:
1806 /* Internal data, OK to advance */
1807 rb_advance_reader(cpu_buffer);
1808 goto again;
1810 case RINGBUF_TYPE_TIME_STAMP:
1811 /* FIXME: not implemented */
1812 rb_advance_reader(cpu_buffer);
1813 goto again;
1815 case RINGBUF_TYPE_DATA:
1816 if (ts) {
1817 *ts = cpu_buffer->read_stamp + event->time_delta;
1818 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1820 return event;
1822 default:
1823 BUG();
1826 return NULL;
1828 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1831 * ring_buffer_iter_peek - peek at the next event to be read
1832 * @iter: The ring buffer iterator
1833 * @ts: The timestamp counter of this event.
1835 * This will return the event that will be read next, but does
1836 * not increment the iterator.
1838 struct ring_buffer_event *
1839 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1841 struct ring_buffer *buffer;
1842 struct ring_buffer_per_cpu *cpu_buffer;
1843 struct ring_buffer_event *event;
1844 int nr_loops = 0;
1846 if (ring_buffer_iter_empty(iter))
1847 return NULL;
1849 cpu_buffer = iter->cpu_buffer;
1850 buffer = cpu_buffer->buffer;
1852 again:
1854 * We repeat when a timestamp is encountered. It is possible
1855 * to get multiple timestamps from an interrupt entering just
1856 * as one timestamp is about to be written. The max times
1857 * that this can happen is the number of nested interrupts we
1858 * can have. Nesting 10 deep of interrupts is clearly
1859 * an anomaly.
1861 if (unlikely(++nr_loops > 10)) {
1862 RB_WARN_ON(cpu_buffer, 1);
1863 return NULL;
1866 if (rb_per_cpu_empty(cpu_buffer))
1867 return NULL;
1869 event = rb_iter_head_event(iter);
1871 switch (event->type) {
1872 case RINGBUF_TYPE_PADDING:
1873 rb_inc_iter(iter);
1874 goto again;
1876 case RINGBUF_TYPE_TIME_EXTEND:
1877 /* Internal data, OK to advance */
1878 rb_advance_iter(iter);
1879 goto again;
1881 case RINGBUF_TYPE_TIME_STAMP:
1882 /* FIXME: not implemented */
1883 rb_advance_iter(iter);
1884 goto again;
1886 case RINGBUF_TYPE_DATA:
1887 if (ts) {
1888 *ts = iter->read_stamp + event->time_delta;
1889 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1891 return event;
1893 default:
1894 BUG();
1897 return NULL;
1899 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
1902 * ring_buffer_consume - return an event and consume it
1903 * @buffer: The ring buffer to get the next event from
1905 * Returns the next event in the ring buffer, and that event is consumed.
1906 * Meaning, that sequential reads will keep returning a different event,
1907 * and eventually empty the ring buffer if the producer is slower.
1909 struct ring_buffer_event *
1910 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1912 struct ring_buffer_per_cpu *cpu_buffer;
1913 struct ring_buffer_event *event;
1915 if (!cpu_isset(cpu, buffer->cpumask))
1916 return NULL;
1918 event = ring_buffer_peek(buffer, cpu, ts);
1919 if (!event)
1920 return NULL;
1922 cpu_buffer = buffer->buffers[cpu];
1923 rb_advance_reader(cpu_buffer);
1925 return event;
1927 EXPORT_SYMBOL_GPL(ring_buffer_consume);
1930 * ring_buffer_read_start - start a non consuming read of the buffer
1931 * @buffer: The ring buffer to read from
1932 * @cpu: The cpu buffer to iterate over
1934 * This starts up an iteration through the buffer. It also disables
1935 * the recording to the buffer until the reading is finished.
1936 * This prevents the reading from being corrupted. This is not
1937 * a consuming read, so a producer is not expected.
1939 * Must be paired with ring_buffer_finish.
1941 struct ring_buffer_iter *
1942 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1944 struct ring_buffer_per_cpu *cpu_buffer;
1945 struct ring_buffer_iter *iter;
1946 unsigned long flags;
1948 if (!cpu_isset(cpu, buffer->cpumask))
1949 return NULL;
1951 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1952 if (!iter)
1953 return NULL;
1955 cpu_buffer = buffer->buffers[cpu];
1957 iter->cpu_buffer = cpu_buffer;
1959 atomic_inc(&cpu_buffer->record_disabled);
1960 synchronize_sched();
1962 spin_lock_irqsave(&cpu_buffer->lock, flags);
1963 ring_buffer_iter_reset(iter);
1964 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1966 return iter;
1968 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
1971 * ring_buffer_finish - finish reading the iterator of the buffer
1972 * @iter: The iterator retrieved by ring_buffer_start
1974 * This re-enables the recording to the buffer, and frees the
1975 * iterator.
1977 void
1978 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1980 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1982 atomic_dec(&cpu_buffer->record_disabled);
1983 kfree(iter);
1985 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
1988 * ring_buffer_read - read the next item in the ring buffer by the iterator
1989 * @iter: The ring buffer iterator
1990 * @ts: The time stamp of the event read.
1992 * This reads the next event in the ring buffer and increments the iterator.
1994 struct ring_buffer_event *
1995 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1997 struct ring_buffer_event *event;
1999 event = ring_buffer_iter_peek(iter, ts);
2000 if (!event)
2001 return NULL;
2003 rb_advance_iter(iter);
2005 return event;
2007 EXPORT_SYMBOL_GPL(ring_buffer_read);
2010 * ring_buffer_size - return the size of the ring buffer (in bytes)
2011 * @buffer: The ring buffer.
2013 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2015 return BUF_PAGE_SIZE * buffer->pages;
2017 EXPORT_SYMBOL_GPL(ring_buffer_size);
2019 static void
2020 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2022 cpu_buffer->head_page
2023 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2024 local_set(&cpu_buffer->head_page->write, 0);
2025 local_set(&cpu_buffer->head_page->commit, 0);
2027 cpu_buffer->head_page->read = 0;
2029 cpu_buffer->tail_page = cpu_buffer->head_page;
2030 cpu_buffer->commit_page = cpu_buffer->head_page;
2032 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2033 local_set(&cpu_buffer->reader_page->write, 0);
2034 local_set(&cpu_buffer->reader_page->commit, 0);
2035 cpu_buffer->reader_page->read = 0;
2037 cpu_buffer->overrun = 0;
2038 cpu_buffer->entries = 0;
2042 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2043 * @buffer: The ring buffer to reset a per cpu buffer of
2044 * @cpu: The CPU buffer to be reset
2046 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2048 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2049 unsigned long flags;
2051 if (!cpu_isset(cpu, buffer->cpumask))
2052 return;
2054 spin_lock_irqsave(&cpu_buffer->lock, flags);
2056 rb_reset_cpu(cpu_buffer);
2058 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
2060 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2063 * ring_buffer_reset - reset a ring buffer
2064 * @buffer: The ring buffer to reset all cpu buffers
2066 void ring_buffer_reset(struct ring_buffer *buffer)
2068 int cpu;
2070 for_each_buffer_cpu(buffer, cpu)
2071 ring_buffer_reset_cpu(buffer, cpu);
2073 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2076 * rind_buffer_empty - is the ring buffer empty?
2077 * @buffer: The ring buffer to test
2079 int ring_buffer_empty(struct ring_buffer *buffer)
2081 struct ring_buffer_per_cpu *cpu_buffer;
2082 int cpu;
2084 /* yes this is racy, but if you don't like the race, lock the buffer */
2085 for_each_buffer_cpu(buffer, cpu) {
2086 cpu_buffer = buffer->buffers[cpu];
2087 if (!rb_per_cpu_empty(cpu_buffer))
2088 return 0;
2090 return 1;
2092 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2095 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2096 * @buffer: The ring buffer
2097 * @cpu: The CPU buffer to test
2099 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2101 struct ring_buffer_per_cpu *cpu_buffer;
2103 if (!cpu_isset(cpu, buffer->cpumask))
2104 return 1;
2106 cpu_buffer = buffer->buffers[cpu];
2107 return rb_per_cpu_empty(cpu_buffer);
2109 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2112 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2113 * @buffer_a: One buffer to swap with
2114 * @buffer_b: The other buffer to swap with
2116 * This function is useful for tracers that want to take a "snapshot"
2117 * of a CPU buffer and has another back up buffer lying around.
2118 * it is expected that the tracer handles the cpu buffer not being
2119 * used at the moment.
2121 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2122 struct ring_buffer *buffer_b, int cpu)
2124 struct ring_buffer_per_cpu *cpu_buffer_a;
2125 struct ring_buffer_per_cpu *cpu_buffer_b;
2127 if (!cpu_isset(cpu, buffer_a->cpumask) ||
2128 !cpu_isset(cpu, buffer_b->cpumask))
2129 return -EINVAL;
2131 /* At least make sure the two buffers are somewhat the same */
2132 if (buffer_a->size != buffer_b->size ||
2133 buffer_a->pages != buffer_b->pages)
2134 return -EINVAL;
2136 cpu_buffer_a = buffer_a->buffers[cpu];
2137 cpu_buffer_b = buffer_b->buffers[cpu];
2140 * We can't do a synchronize_sched here because this
2141 * function can be called in atomic context.
2142 * Normally this will be called from the same CPU as cpu.
2143 * If not it's up to the caller to protect this.
2145 atomic_inc(&cpu_buffer_a->record_disabled);
2146 atomic_inc(&cpu_buffer_b->record_disabled);
2148 buffer_a->buffers[cpu] = cpu_buffer_b;
2149 buffer_b->buffers[cpu] = cpu_buffer_a;
2151 cpu_buffer_b->buffer = buffer_a;
2152 cpu_buffer_a->buffer = buffer_b;
2154 atomic_dec(&cpu_buffer_a->record_disabled);
2155 atomic_dec(&cpu_buffer_b->record_disabled);
2157 return 0;
2159 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2161 static ssize_t
2162 rb_simple_read(struct file *filp, char __user *ubuf,
2163 size_t cnt, loff_t *ppos)
2165 int *p = filp->private_data;
2166 char buf[64];
2167 int r;
2169 /* !ring_buffers_off == tracing_on */
2170 r = sprintf(buf, "%d\n", !*p);
2172 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2175 static ssize_t
2176 rb_simple_write(struct file *filp, const char __user *ubuf,
2177 size_t cnt, loff_t *ppos)
2179 int *p = filp->private_data;
2180 char buf[64];
2181 long val;
2182 int ret;
2184 if (cnt >= sizeof(buf))
2185 return -EINVAL;
2187 if (copy_from_user(&buf, ubuf, cnt))
2188 return -EFAULT;
2190 buf[cnt] = 0;
2192 ret = strict_strtoul(buf, 10, &val);
2193 if (ret < 0)
2194 return ret;
2196 /* !ring_buffers_off == tracing_on */
2197 *p = !val;
2199 (*ppos)++;
2201 return cnt;
2204 static struct file_operations rb_simple_fops = {
2205 .open = tracing_open_generic,
2206 .read = rb_simple_read,
2207 .write = rb_simple_write,
2211 static __init int rb_init_debugfs(void)
2213 struct dentry *d_tracer;
2214 struct dentry *entry;
2216 d_tracer = tracing_init_dentry();
2218 entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2219 &ring_buffers_off, &rb_simple_fops);
2220 if (!entry)
2221 pr_warning("Could not create debugfs 'tracing_on' entry\n");
2223 return 0;
2226 fs_initcall(rb_init_debugfs);