2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2006
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
32 * Design Document: http://lwn.net/Articles/253651/
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/init.h>
41 #include <linux/spinlock.h>
42 #include <linux/smp.h>
43 #include <linux/rcupdate.h>
44 #include <linux/interrupt.h>
45 #include <linux/sched.h>
46 #include <asm/atomic.h>
47 #include <linux/bitops.h>
48 #include <linux/module.h>
49 #include <linux/kthread.h>
50 #include <linux/completion.h>
51 #include <linux/moduleparam.h>
52 #include <linux/percpu.h>
53 #include <linux/notifier.h>
54 #include <linux/cpu.h>
55 #include <linux/random.h>
56 #include <linux/delay.h>
57 #include <linux/byteorder/swabb.h>
58 #include <linux/cpumask.h>
59 #include <linux/rcupreempt_trace.h>
62 * Macro that prevents the compiler from reordering accesses, but does
63 * absolutely -nothing- to prevent CPUs from reordering. This is used
64 * only to mediate communication between mainline code and hardware
65 * interrupt and NMI handlers.
67 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
70 * PREEMPT_RCU data structures.
74 * GP_STAGES specifies the number of times the state machine has
75 * to go through the all the rcu_try_flip_states (see below)
76 * in a single Grace Period.
78 * GP in GP_STAGES stands for Grace Period ;)
82 spinlock_t lock
; /* Protect rcu_data fields. */
83 long completed
; /* Number of last completed batch. */
85 struct rcu_head
*nextlist
;
86 struct rcu_head
**nexttail
;
87 struct rcu_head
*waitlist
[GP_STAGES
];
88 struct rcu_head
**waittail
[GP_STAGES
];
89 struct rcu_head
*donelist
; /* from waitlist & waitschedlist */
90 struct rcu_head
**donetail
;
92 struct rcu_head
*nextschedlist
;
93 struct rcu_head
**nextschedtail
;
94 struct rcu_head
*waitschedlist
;
95 struct rcu_head
**waitschedtail
;
96 int rcu_sched_sleeping
;
97 #ifdef CONFIG_RCU_TRACE
98 struct rcupreempt_trace trace
;
99 #endif /* #ifdef CONFIG_RCU_TRACE */
103 * States for rcu_try_flip() and friends.
106 enum rcu_try_flip_states
{
109 * Stay here if nothing is happening. Flip the counter if somthing
110 * starts happening. Denoted by "I"
112 rcu_try_flip_idle_state
,
115 * Wait here for all CPUs to notice that the counter has flipped. This
116 * prevents the old set of counters from ever being incremented once
117 * we leave this state, which in turn is necessary because we cannot
118 * test any individual counter for zero -- we can only check the sum.
121 rcu_try_flip_waitack_state
,
124 * Wait here for the sum of the old per-CPU counters to reach zero.
127 rcu_try_flip_waitzero_state
,
130 * Wait here for each of the other CPUs to execute a memory barrier.
131 * This is necessary to ensure that these other CPUs really have
132 * completed executing their RCU read-side critical sections, despite
133 * their CPUs wildly reordering memory. Denoted by "M".
135 rcu_try_flip_waitmb_state
,
139 * States for rcu_ctrlblk.rcu_sched_sleep.
142 enum rcu_sched_sleep_states
{
143 rcu_sched_not_sleeping
, /* Not sleeping, callbacks need GP. */
144 rcu_sched_sleep_prep
, /* Thinking of sleeping, rechecking. */
145 rcu_sched_sleeping
, /* Sleeping, awaken if GP needed. */
149 spinlock_t fliplock
; /* Protect state-machine transitions. */
150 long completed
; /* Number of last completed batch. */
151 enum rcu_try_flip_states rcu_try_flip_state
; /* The current state of
152 the rcu state machine */
153 spinlock_t schedlock
; /* Protect rcu_sched sleep state. */
154 enum rcu_sched_sleep_states sched_sleep
; /* rcu_sched state. */
155 wait_queue_head_t sched_wq
; /* Place for rcu_sched to sleep. */
158 static DEFINE_PER_CPU(struct rcu_data
, rcu_data
);
159 static struct rcu_ctrlblk rcu_ctrlblk
= {
160 .fliplock
= __SPIN_LOCK_UNLOCKED(rcu_ctrlblk
.fliplock
),
162 .rcu_try_flip_state
= rcu_try_flip_idle_state
,
163 .schedlock
= __SPIN_LOCK_UNLOCKED(rcu_ctrlblk
.schedlock
),
164 .sched_sleep
= rcu_sched_not_sleeping
,
165 .sched_wq
= __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk
.sched_wq
),
168 static struct task_struct
*rcu_sched_grace_period_task
;
170 #ifdef CONFIG_RCU_TRACE
171 static char *rcu_try_flip_state_names
[] =
172 { "idle", "waitack", "waitzero", "waitmb" };
173 #endif /* #ifdef CONFIG_RCU_TRACE */
175 static cpumask_t rcu_cpu_online_map __read_mostly
= CPU_MASK_NONE
;
178 * Enum and per-CPU flag to determine when each CPU has seen
179 * the most recent counter flip.
182 enum rcu_flip_flag_values
{
183 rcu_flip_seen
, /* Steady/initial state, last flip seen. */
184 /* Only GP detector can update. */
185 rcu_flipped
/* Flip just completed, need confirmation. */
186 /* Only corresponding CPU can update. */
188 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values
, rcu_flip_flag
)
192 * Enum and per-CPU flag to determine when each CPU has executed the
193 * needed memory barrier to fence in memory references from its last RCU
194 * read-side critical section in the just-completed grace period.
197 enum rcu_mb_flag_values
{
198 rcu_mb_done
, /* Steady/initial state, no mb()s required. */
199 /* Only GP detector can update. */
200 rcu_mb_needed
/* Flip just completed, need an mb(). */
201 /* Only corresponding CPU can update. */
203 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values
, rcu_mb_flag
)
207 * RCU_DATA_ME: find the current CPU's rcu_data structure.
208 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
210 #define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
211 #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
214 * Helper macro for tracing when the appropriate rcu_data is not
215 * cached in a local variable, but where the CPU number is so cached.
217 #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
220 * Helper macro for tracing when the appropriate rcu_data is not
221 * cached in a local variable.
223 #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
226 * Helper macro for tracing when the appropriate rcu_data is pointed
227 * to by a local variable.
229 #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
231 #define RCU_SCHED_BATCH_TIME (HZ / 50)
234 * Return the number of RCU batches processed thus far. Useful
235 * for debug and statistics.
237 long rcu_batches_completed(void)
239 return rcu_ctrlblk
.completed
;
241 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
243 void __rcu_read_lock(void)
246 struct task_struct
*t
= current
;
249 nesting
= ACCESS_ONCE(t
->rcu_read_lock_nesting
);
252 /* An earlier rcu_read_lock() covers us, just count it. */
254 t
->rcu_read_lock_nesting
= nesting
+ 1;
260 * We disable interrupts for the following reasons:
261 * - If we get scheduling clock interrupt here, and we
262 * end up acking the counter flip, it's like a promise
263 * that we will never increment the old counter again.
264 * Thus we will break that promise if that
265 * scheduling clock interrupt happens between the time
266 * we pick the .completed field and the time that we
267 * increment our counter.
269 * - We don't want to be preempted out here.
271 * NMIs can still occur, of course, and might themselves
272 * contain rcu_read_lock().
275 local_irq_save(flags
);
278 * Outermost nesting of rcu_read_lock(), so increment
279 * the current counter for the current CPU. Use volatile
280 * casts to prevent the compiler from reordering.
283 idx
= ACCESS_ONCE(rcu_ctrlblk
.completed
) & 0x1;
284 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr
[idx
])++;
287 * Now that the per-CPU counter has been incremented, we
288 * are protected from races with rcu_read_lock() invoked
289 * from NMI handlers on this CPU. We can therefore safely
290 * increment the nesting counter, relieving further NMIs
291 * of the need to increment the per-CPU counter.
294 ACCESS_ONCE(t
->rcu_read_lock_nesting
) = nesting
+ 1;
297 * Now that we have preventing any NMIs from storing
298 * to the ->rcu_flipctr_idx, we can safely use it to
299 * remember which counter to decrement in the matching
303 ACCESS_ONCE(t
->rcu_flipctr_idx
) = idx
;
304 local_irq_restore(flags
);
307 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
309 void __rcu_read_unlock(void)
312 struct task_struct
*t
= current
;
315 nesting
= ACCESS_ONCE(t
->rcu_read_lock_nesting
);
319 * We are still protected by the enclosing rcu_read_lock(),
320 * so simply decrement the counter.
323 t
->rcu_read_lock_nesting
= nesting
- 1;
329 * Disable local interrupts to prevent the grace-period
330 * detection state machine from seeing us half-done.
331 * NMIs can still occur, of course, and might themselves
332 * contain rcu_read_lock() and rcu_read_unlock().
335 local_irq_save(flags
);
338 * Outermost nesting of rcu_read_unlock(), so we must
339 * decrement the current counter for the current CPU.
340 * This must be done carefully, because NMIs can
341 * occur at any point in this code, and any rcu_read_lock()
342 * and rcu_read_unlock() pairs in the NMI handlers
343 * must interact non-destructively with this code.
344 * Lots of volatile casts, and -very- careful ordering.
346 * Changes to this code, including this one, must be
347 * inspected, validated, and tested extremely carefully!!!
351 * First, pick up the index.
354 idx
= ACCESS_ONCE(t
->rcu_flipctr_idx
);
357 * Now that we have fetched the counter index, it is
358 * safe to decrement the per-task RCU nesting counter.
359 * After this, any interrupts or NMIs will increment and
360 * decrement the per-CPU counters.
362 ACCESS_ONCE(t
->rcu_read_lock_nesting
) = nesting
- 1;
365 * It is now safe to decrement this task's nesting count.
366 * NMIs that occur after this statement will route their
367 * rcu_read_lock() calls through this "else" clause, and
368 * will thus start incrementing the per-CPU counter on
369 * their own. They will also clobber ->rcu_flipctr_idx,
370 * but that is OK, since we have already fetched it.
373 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr
[idx
])--;
374 local_irq_restore(flags
);
377 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
380 * If a global counter flip has occurred since the last time that we
381 * advanced callbacks, advance them. Hardware interrupts must be
382 * disabled when calling this function.
384 static void __rcu_advance_callbacks(struct rcu_data
*rdp
)
390 if (rdp
->completed
!= rcu_ctrlblk
.completed
) {
391 if (rdp
->waitlist
[GP_STAGES
- 1] != NULL
) {
392 *rdp
->donetail
= rdp
->waitlist
[GP_STAGES
- 1];
393 rdp
->donetail
= rdp
->waittail
[GP_STAGES
- 1];
394 RCU_TRACE_RDP(rcupreempt_trace_move2done
, rdp
);
396 for (i
= GP_STAGES
- 2; i
>= 0; i
--) {
397 if (rdp
->waitlist
[i
] != NULL
) {
398 rdp
->waitlist
[i
+ 1] = rdp
->waitlist
[i
];
399 rdp
->waittail
[i
+ 1] = rdp
->waittail
[i
];
402 rdp
->waitlist
[i
+ 1] = NULL
;
403 rdp
->waittail
[i
+ 1] =
404 &rdp
->waitlist
[i
+ 1];
407 if (rdp
->nextlist
!= NULL
) {
408 rdp
->waitlist
[0] = rdp
->nextlist
;
409 rdp
->waittail
[0] = rdp
->nexttail
;
411 rdp
->nextlist
= NULL
;
412 rdp
->nexttail
= &rdp
->nextlist
;
413 RCU_TRACE_RDP(rcupreempt_trace_move2wait
, rdp
);
415 rdp
->waitlist
[0] = NULL
;
416 rdp
->waittail
[0] = &rdp
->waitlist
[0];
418 rdp
->waitlistcount
= wlc
;
419 rdp
->completed
= rcu_ctrlblk
.completed
;
423 * Check to see if this CPU needs to report that it has seen
424 * the most recent counter flip, thereby declaring that all
425 * subsequent rcu_read_lock() invocations will respect this flip.
428 cpu
= raw_smp_processor_id();
429 if (per_cpu(rcu_flip_flag
, cpu
) == rcu_flipped
) {
430 smp_mb(); /* Subsequent counter accesses must see new value */
431 per_cpu(rcu_flip_flag
, cpu
) = rcu_flip_seen
;
432 smp_mb(); /* Subsequent RCU read-side critical sections */
433 /* seen -after- acknowledgement. */
437 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched
, rcu_dyntick_sched
) = {
442 static DEFINE_PER_CPU(int, rcu_update_flag
);
445 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
447 * If the CPU was idle with dynamic ticks active, this updates the
448 * rcu_dyntick_sched.dynticks to let the RCU handling know that the
451 void rcu_irq_enter(void)
453 int cpu
= smp_processor_id();
454 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
456 if (per_cpu(rcu_update_flag
, cpu
))
457 per_cpu(rcu_update_flag
, cpu
)++;
460 * Only update if we are coming from a stopped ticks mode
461 * (rcu_dyntick_sched.dynticks is even).
463 if (!in_interrupt() &&
464 (rdssp
->dynticks
& 0x1) == 0) {
466 * The following might seem like we could have a race
467 * with NMI/SMIs. But this really isn't a problem.
468 * Here we do a read/modify/write, and the race happens
469 * when an NMI/SMI comes in after the read and before
470 * the write. But NMI/SMIs will increment this counter
471 * twice before returning, so the zero bit will not
472 * be corrupted by the NMI/SMI which is the most important
475 * The only thing is that we would bring back the counter
476 * to a postion that it was in during the NMI/SMI.
477 * But the zero bit would be set, so the rest of the
478 * counter would again be ignored.
480 * On return from the IRQ, the counter may have the zero
481 * bit be 0 and the counter the same as the return from
482 * the NMI/SMI. If the state machine was so unlucky to
483 * see that, it still doesn't matter, since all
484 * RCU read-side critical sections on this CPU would
485 * have already completed.
489 * The following memory barrier ensures that any
490 * rcu_read_lock() primitives in the irq handler
491 * are seen by other CPUs to follow the above
492 * increment to rcu_dyntick_sched.dynticks. This is
493 * required in order for other CPUs to correctly
494 * determine when it is safe to advance the RCU
495 * grace-period state machine.
497 smp_mb(); /* see above block comment. */
499 * Since we can't determine the dynamic tick mode from
500 * the rcu_dyntick_sched.dynticks after this routine,
501 * we use a second flag to acknowledge that we came
502 * from an idle state with ticks stopped.
504 per_cpu(rcu_update_flag
, cpu
)++;
506 * If we take an NMI/SMI now, they will also increment
507 * the rcu_update_flag, and will not update the
508 * rcu_dyntick_sched.dynticks on exit. That is for
515 * rcu_irq_exit - Called from exiting Hard irq context.
517 * If the CPU was idle with dynamic ticks active, update the
518 * rcu_dyntick_sched.dynticks to put let the RCU handling be
519 * aware that the CPU is going back to idle with no ticks.
521 void rcu_irq_exit(void)
523 int cpu
= smp_processor_id();
524 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
527 * rcu_update_flag is set if we interrupted the CPU
528 * when it was idle with ticks stopped.
529 * Once this occurs, we keep track of interrupt nesting
530 * because a NMI/SMI could also come in, and we still
531 * only want the IRQ that started the increment of the
532 * rcu_dyntick_sched.dynticks to be the one that modifies
535 if (per_cpu(rcu_update_flag
, cpu
)) {
536 if (--per_cpu(rcu_update_flag
, cpu
))
539 /* This must match the interrupt nesting */
540 WARN_ON(in_interrupt());
543 * If an NMI/SMI happens now we are still
544 * protected by the rcu_dyntick_sched.dynticks being odd.
548 * The following memory barrier ensures that any
549 * rcu_read_unlock() primitives in the irq handler
550 * are seen by other CPUs to preceed the following
551 * increment to rcu_dyntick_sched.dynticks. This
552 * is required in order for other CPUs to determine
553 * when it is safe to advance the RCU grace-period
556 smp_mb(); /* see above block comment. */
558 WARN_ON(rdssp
->dynticks
& 0x1);
562 static void dyntick_save_progress_counter(int cpu
)
564 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
566 rdssp
->dynticks_snap
= rdssp
->dynticks
;
570 rcu_try_flip_waitack_needed(int cpu
)
574 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
576 curr
= rdssp
->dynticks
;
577 snap
= rdssp
->dynticks_snap
;
578 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
581 * If the CPU remained in dynticks mode for the entire time
582 * and didn't take any interrupts, NMIs, SMIs, or whatever,
583 * then it cannot be in the middle of an rcu_read_lock(), so
584 * the next rcu_read_lock() it executes must use the new value
585 * of the counter. So we can safely pretend that this CPU
586 * already acknowledged the counter.
589 if ((curr
== snap
) && ((curr
& 0x1) == 0))
593 * If the CPU passed through or entered a dynticks idle phase with
594 * no active irq handlers, then, as above, we can safely pretend
595 * that this CPU already acknowledged the counter.
598 if ((curr
- snap
) > 2 || (curr
& 0x1) == 0)
601 /* We need this CPU to explicitly acknowledge the counter flip. */
607 rcu_try_flip_waitmb_needed(int cpu
)
611 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
613 curr
= rdssp
->dynticks
;
614 snap
= rdssp
->dynticks_snap
;
615 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
618 * If the CPU remained in dynticks mode for the entire time
619 * and didn't take any interrupts, NMIs, SMIs, or whatever,
620 * then it cannot have executed an RCU read-side critical section
621 * during that time, so there is no need for it to execute a
625 if ((curr
== snap
) && ((curr
& 0x1) == 0))
629 * If the CPU either entered or exited an outermost interrupt,
630 * SMI, NMI, or whatever handler, then we know that it executed
631 * a memory barrier when doing so. So we don't need another one.
636 /* We need the CPU to execute a memory barrier. */
641 static void dyntick_save_progress_counter_sched(int cpu
)
643 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
645 rdssp
->sched_dynticks_snap
= rdssp
->dynticks
;
648 static int rcu_qsctr_inc_needed_dyntick(int cpu
)
652 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
654 curr
= rdssp
->dynticks
;
655 snap
= rdssp
->sched_dynticks_snap
;
656 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
659 * If the CPU remained in dynticks mode for the entire time
660 * and didn't take any interrupts, NMIs, SMIs, or whatever,
661 * then it cannot be in the middle of an rcu_read_lock(), so
662 * the next rcu_read_lock() it executes must use the new value
663 * of the counter. Therefore, this CPU has been in a quiescent
664 * state the entire time, and we don't need to wait for it.
667 if ((curr
== snap
) && ((curr
& 0x1) == 0))
671 * If the CPU passed through or entered a dynticks idle phase with
672 * no active irq handlers, then, as above, this CPU has already
673 * passed through a quiescent state.
676 if ((curr
- snap
) > 2 || (snap
& 0x1) == 0)
679 /* We need this CPU to go through a quiescent state. */
684 #else /* !CONFIG_NO_HZ */
686 # define dyntick_save_progress_counter(cpu) do { } while (0)
687 # define rcu_try_flip_waitack_needed(cpu) (1)
688 # define rcu_try_flip_waitmb_needed(cpu) (1)
690 # define dyntick_save_progress_counter_sched(cpu) do { } while (0)
691 # define rcu_qsctr_inc_needed_dyntick(cpu) (1)
693 #endif /* CONFIG_NO_HZ */
695 static void save_qsctr_sched(int cpu
)
697 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
699 rdssp
->sched_qs_snap
= rdssp
->sched_qs
;
702 static inline int rcu_qsctr_inc_needed(int cpu
)
704 struct rcu_dyntick_sched
*rdssp
= &per_cpu(rcu_dyntick_sched
, cpu
);
707 * If there has been a quiescent state, no more need to wait
711 if (rdssp
->sched_qs
!= rdssp
->sched_qs_snap
) {
712 smp_mb(); /* force ordering with cpu entering schedule(). */
716 /* We need this CPU to go through a quiescent state. */
722 * Get here when RCU is idle. Decide whether we need to
723 * move out of idle state, and return non-zero if so.
724 * "Straightforward" approach for the moment, might later
725 * use callback-list lengths, grace-period duration, or
726 * some such to determine when to exit idle state.
727 * Might also need a pre-idle test that does not acquire
728 * the lock, but let's get the simple case working first...
732 rcu_try_flip_idle(void)
736 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1
);
737 if (!rcu_pending(smp_processor_id())) {
738 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1
);
746 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1
);
747 rcu_ctrlblk
.completed
++; /* stands in for rcu_try_flip_g2 */
750 * Need a memory barrier so that other CPUs see the new
751 * counter value before they see the subsequent change of all
752 * the rcu_flip_flag instances to rcu_flipped.
755 smp_mb(); /* see above block comment. */
757 /* Now ask each CPU for acknowledgement of the flip. */
759 for_each_cpu_mask_nr(cpu
, rcu_cpu_online_map
) {
760 per_cpu(rcu_flip_flag
, cpu
) = rcu_flipped
;
761 dyntick_save_progress_counter(cpu
);
768 * Wait for CPUs to acknowledge the flip.
772 rcu_try_flip_waitack(void)
776 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1
);
777 for_each_cpu_mask_nr(cpu
, rcu_cpu_online_map
)
778 if (rcu_try_flip_waitack_needed(cpu
) &&
779 per_cpu(rcu_flip_flag
, cpu
) != rcu_flip_seen
) {
780 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1
);
785 * Make sure our checks above don't bleed into subsequent
786 * waiting for the sum of the counters to reach zero.
789 smp_mb(); /* see above block comment. */
790 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2
);
795 * Wait for collective ``last'' counter to reach zero,
796 * then tell all CPUs to do an end-of-grace-period memory barrier.
800 rcu_try_flip_waitzero(void)
803 int lastidx
= !(rcu_ctrlblk
.completed
& 0x1);
806 /* Check to see if the sum of the "last" counters is zero. */
808 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1
);
809 for_each_cpu_mask_nr(cpu
, rcu_cpu_online_map
)
810 sum
+= RCU_DATA_CPU(cpu
)->rcu_flipctr
[lastidx
];
812 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1
);
817 * This ensures that the other CPUs see the call for
818 * memory barriers -after- the sum to zero has been
821 smp_mb(); /* ^^^^^^^^^^^^ */
823 /* Call for a memory barrier from each CPU. */
824 for_each_cpu_mask_nr(cpu
, rcu_cpu_online_map
) {
825 per_cpu(rcu_mb_flag
, cpu
) = rcu_mb_needed
;
826 dyntick_save_progress_counter(cpu
);
829 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2
);
834 * Wait for all CPUs to do their end-of-grace-period memory barrier.
835 * Return 0 once all CPUs have done so.
839 rcu_try_flip_waitmb(void)
843 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1
);
844 for_each_cpu_mask_nr(cpu
, rcu_cpu_online_map
)
845 if (rcu_try_flip_waitmb_needed(cpu
) &&
846 per_cpu(rcu_mb_flag
, cpu
) != rcu_mb_done
) {
847 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1
);
851 smp_mb(); /* Ensure that the above checks precede any following flip. */
852 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2
);
857 * Attempt a single flip of the counters. Remember, a single flip does
858 * -not- constitute a grace period. Instead, the interval between
859 * at least GP_STAGES consecutive flips is a grace period.
861 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
862 * on a large SMP, they might want to use a hierarchical organization of
863 * the per-CPU-counter pairs.
865 static void rcu_try_flip(void)
869 RCU_TRACE_ME(rcupreempt_trace_try_flip_1
);
870 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk
.fliplock
, flags
))) {
871 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1
);
876 * Take the next transition(s) through the RCU grace-period
877 * flip-counter state machine.
880 switch (rcu_ctrlblk
.rcu_try_flip_state
) {
881 case rcu_try_flip_idle_state
:
882 if (rcu_try_flip_idle())
883 rcu_ctrlblk
.rcu_try_flip_state
=
884 rcu_try_flip_waitack_state
;
886 case rcu_try_flip_waitack_state
:
887 if (rcu_try_flip_waitack())
888 rcu_ctrlblk
.rcu_try_flip_state
=
889 rcu_try_flip_waitzero_state
;
891 case rcu_try_flip_waitzero_state
:
892 if (rcu_try_flip_waitzero())
893 rcu_ctrlblk
.rcu_try_flip_state
=
894 rcu_try_flip_waitmb_state
;
896 case rcu_try_flip_waitmb_state
:
897 if (rcu_try_flip_waitmb())
898 rcu_ctrlblk
.rcu_try_flip_state
=
899 rcu_try_flip_idle_state
;
901 spin_unlock_irqrestore(&rcu_ctrlblk
.fliplock
, flags
);
905 * Check to see if this CPU needs to do a memory barrier in order to
906 * ensure that any prior RCU read-side critical sections have committed
907 * their counter manipulations and critical-section memory references
908 * before declaring the grace period to be completed.
910 static void rcu_check_mb(int cpu
)
912 if (per_cpu(rcu_mb_flag
, cpu
) == rcu_mb_needed
) {
913 smp_mb(); /* Ensure RCU read-side accesses are visible. */
914 per_cpu(rcu_mb_flag
, cpu
) = rcu_mb_done
;
918 void rcu_check_callbacks(int cpu
, int user
)
921 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
924 * If this CPU took its interrupt from user mode or from the
925 * idle loop, and this is not a nested interrupt, then
926 * this CPU has to have exited all prior preept-disable
927 * sections of code. So increment the counter to note this.
929 * The memory barrier is needed to handle the case where
930 * writes from a preempt-disable section of code get reordered
931 * into schedule() by this CPU's write buffer. So the memory
932 * barrier makes sure that the rcu_qsctr_inc() is seen by other
933 * CPUs to happen after any such write.
937 (idle_cpu(cpu
) && !in_softirq() &&
938 hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
939 smp_mb(); /* Guard against aggressive schedule(). */
944 if (rcu_ctrlblk
.completed
== rdp
->completed
)
946 spin_lock_irqsave(&rdp
->lock
, flags
);
947 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks
, rdp
);
948 __rcu_advance_callbacks(rdp
);
949 if (rdp
->donelist
== NULL
) {
950 spin_unlock_irqrestore(&rdp
->lock
, flags
);
952 spin_unlock_irqrestore(&rdp
->lock
, flags
);
953 raise_softirq(RCU_SOFTIRQ
);
958 * Needed by dynticks, to make sure all RCU processing has finished
961 void rcu_advance_callbacks(int cpu
, int user
)
964 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
966 if (rcu_ctrlblk
.completed
== rdp
->completed
) {
968 if (rcu_ctrlblk
.completed
== rdp
->completed
)
971 spin_lock_irqsave(&rdp
->lock
, flags
);
972 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks
, rdp
);
973 __rcu_advance_callbacks(rdp
);
974 spin_unlock_irqrestore(&rdp
->lock
, flags
);
977 #ifdef CONFIG_HOTPLUG_CPU
978 #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
979 *dsttail = srclist; \
980 if (srclist != NULL) { \
987 void rcu_offline_cpu(int cpu
)
990 struct rcu_head
*list
= NULL
;
992 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
993 struct rcu_head
*schedlist
= NULL
;
994 struct rcu_head
**schedtail
= &schedlist
;
995 struct rcu_head
**tail
= &list
;
998 * Remove all callbacks from the newly dead CPU, retaining order.
999 * Otherwise rcu_barrier() will fail
1002 spin_lock_irqsave(&rdp
->lock
, flags
);
1003 rcu_offline_cpu_enqueue(rdp
->donelist
, rdp
->donetail
, list
, tail
);
1004 for (i
= GP_STAGES
- 1; i
>= 0; i
--)
1005 rcu_offline_cpu_enqueue(rdp
->waitlist
[i
], rdp
->waittail
[i
],
1007 rcu_offline_cpu_enqueue(rdp
->nextlist
, rdp
->nexttail
, list
, tail
);
1008 rcu_offline_cpu_enqueue(rdp
->waitschedlist
, rdp
->waitschedtail
,
1009 schedlist
, schedtail
);
1010 rcu_offline_cpu_enqueue(rdp
->nextschedlist
, rdp
->nextschedtail
,
1011 schedlist
, schedtail
);
1012 rdp
->rcu_sched_sleeping
= 0;
1013 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1014 rdp
->waitlistcount
= 0;
1016 /* Disengage the newly dead CPU from the grace-period computation. */
1018 spin_lock_irqsave(&rcu_ctrlblk
.fliplock
, flags
);
1020 if (per_cpu(rcu_flip_flag
, cpu
) == rcu_flipped
) {
1021 smp_mb(); /* Subsequent counter accesses must see new value */
1022 per_cpu(rcu_flip_flag
, cpu
) = rcu_flip_seen
;
1023 smp_mb(); /* Subsequent RCU read-side critical sections */
1024 /* seen -after- acknowledgement. */
1027 RCU_DATA_ME()->rcu_flipctr
[0] += RCU_DATA_CPU(cpu
)->rcu_flipctr
[0];
1028 RCU_DATA_ME()->rcu_flipctr
[1] += RCU_DATA_CPU(cpu
)->rcu_flipctr
[1];
1030 RCU_DATA_CPU(cpu
)->rcu_flipctr
[0] = 0;
1031 RCU_DATA_CPU(cpu
)->rcu_flipctr
[1] = 0;
1033 cpu_clear(cpu
, rcu_cpu_online_map
);
1035 spin_unlock_irqrestore(&rcu_ctrlblk
.fliplock
, flags
);
1038 * Place the removed callbacks on the current CPU's queue.
1039 * Make them all start a new grace period: simple approach,
1040 * in theory could starve a given set of callbacks, but
1041 * you would need to be doing some serious CPU hotplugging
1042 * to make this happen. If this becomes a problem, adding
1043 * a synchronize_rcu() to the hotplug path would be a simple
1047 local_irq_save(flags
); /* disable preempt till we know what lock. */
1048 rdp
= RCU_DATA_ME();
1049 spin_lock(&rdp
->lock
);
1050 *rdp
->nexttail
= list
;
1052 rdp
->nexttail
= tail
;
1053 *rdp
->nextschedtail
= schedlist
;
1055 rdp
->nextschedtail
= schedtail
;
1056 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1059 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1061 void rcu_offline_cpu(int cpu
)
1065 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1067 void __cpuinit
rcu_online_cpu(int cpu
)
1069 unsigned long flags
;
1070 struct rcu_data
*rdp
;
1072 spin_lock_irqsave(&rcu_ctrlblk
.fliplock
, flags
);
1073 cpu_set(cpu
, rcu_cpu_online_map
);
1074 spin_unlock_irqrestore(&rcu_ctrlblk
.fliplock
, flags
);
1077 * The rcu_sched grace-period processing might have bypassed
1078 * this CPU, given that it was not in the rcu_cpu_online_map
1079 * when the grace-period scan started. This means that the
1080 * grace-period task might sleep. So make sure that if this
1081 * should happen, the first callback posted to this CPU will
1082 * wake up the grace-period task if need be.
1085 rdp
= RCU_DATA_CPU(cpu
);
1086 spin_lock_irqsave(&rdp
->lock
, flags
);
1087 rdp
->rcu_sched_sleeping
= 1;
1088 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1091 static void rcu_process_callbacks(struct softirq_action
*unused
)
1093 unsigned long flags
;
1094 struct rcu_head
*next
, *list
;
1095 struct rcu_data
*rdp
;
1097 local_irq_save(flags
);
1098 rdp
= RCU_DATA_ME();
1099 spin_lock(&rdp
->lock
);
1100 list
= rdp
->donelist
;
1102 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1105 rdp
->donelist
= NULL
;
1106 rdp
->donetail
= &rdp
->donelist
;
1107 RCU_TRACE_RDP(rcupreempt_trace_done_remove
, rdp
);
1108 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1113 RCU_TRACE_ME(rcupreempt_trace_invoke
);
1117 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1119 unsigned long flags
;
1120 struct rcu_data
*rdp
;
1124 local_irq_save(flags
);
1125 rdp
= RCU_DATA_ME();
1126 spin_lock(&rdp
->lock
);
1127 __rcu_advance_callbacks(rdp
);
1128 *rdp
->nexttail
= head
;
1129 rdp
->nexttail
= &head
->next
;
1130 RCU_TRACE_RDP(rcupreempt_trace_next_add
, rdp
);
1131 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1133 EXPORT_SYMBOL_GPL(call_rcu
);
1135 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1137 unsigned long flags
;
1138 struct rcu_data
*rdp
;
1143 local_irq_save(flags
);
1144 rdp
= RCU_DATA_ME();
1145 spin_lock(&rdp
->lock
);
1146 *rdp
->nextschedtail
= head
;
1147 rdp
->nextschedtail
= &head
->next
;
1148 if (rdp
->rcu_sched_sleeping
) {
1150 /* Grace-period processing might be sleeping... */
1152 rdp
->rcu_sched_sleeping
= 0;
1155 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1158 /* Wake up grace-period processing, unless someone beat us. */
1160 spin_lock_irqsave(&rcu_ctrlblk
.schedlock
, flags
);
1161 if (rcu_ctrlblk
.sched_sleep
!= rcu_sched_sleeping
)
1163 rcu_ctrlblk
.sched_sleep
= rcu_sched_not_sleeping
;
1164 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1166 wake_up_interruptible(&rcu_ctrlblk
.sched_wq
);
1169 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1172 * Wait until all currently running preempt_disable() code segments
1173 * (including hardware-irq-disable segments) complete. Note that
1174 * in -rt this does -not- necessarily result in all currently executing
1175 * interrupt -handlers- having completed.
1177 synchronize_rcu_xxx(__synchronize_sched
, call_rcu_sched
)
1178 EXPORT_SYMBOL_GPL(__synchronize_sched
);
1181 * kthread function that manages call_rcu_sched grace periods.
1183 static int rcu_sched_grace_period(void *arg
)
1185 int couldsleep
; /* might sleep after current pass. */
1186 int couldsleepnext
= 0; /* might sleep after next pass. */
1188 unsigned long flags
;
1189 struct rcu_data
*rdp
;
1193 * Each pass through the following loop handles one
1194 * rcu_sched grace period cycle.
1197 /* Save each CPU's current state. */
1199 for_each_online_cpu(cpu
) {
1200 dyntick_save_progress_counter_sched(cpu
);
1201 save_qsctr_sched(cpu
);
1205 * Sleep for about an RCU grace-period's worth to
1206 * allow better batching and to consume less CPU.
1208 schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME
);
1211 * If there was nothing to do last time, prepare to
1212 * sleep at the end of the current grace period cycle.
1214 couldsleep
= couldsleepnext
;
1217 spin_lock_irqsave(&rcu_ctrlblk
.schedlock
, flags
);
1218 rcu_ctrlblk
.sched_sleep
= rcu_sched_sleep_prep
;
1219 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1223 * Wait on each CPU in turn to have either visited
1224 * a quiescent state or been in dynticks-idle mode.
1226 for_each_online_cpu(cpu
) {
1227 while (rcu_qsctr_inc_needed(cpu
) &&
1228 rcu_qsctr_inc_needed_dyntick(cpu
)) {
1229 /* resched_cpu(cpu); @@@ */
1230 schedule_timeout_interruptible(1);
1234 /* Advance callbacks for each CPU. */
1236 for_each_online_cpu(cpu
) {
1238 rdp
= RCU_DATA_CPU(cpu
);
1239 spin_lock_irqsave(&rdp
->lock
, flags
);
1242 * We are running on this CPU irq-disabled, so no
1243 * CPU can go offline until we re-enable irqs.
1244 * The current CPU might have already gone
1245 * offline (between the for_each_offline_cpu and
1246 * the spin_lock_irqsave), but in that case all its
1247 * callback lists will be empty, so no harm done.
1249 * Advance the callbacks! We share normal RCU's
1250 * donelist, since callbacks are invoked the
1251 * same way in either case.
1253 if (rdp
->waitschedlist
!= NULL
) {
1254 *rdp
->donetail
= rdp
->waitschedlist
;
1255 rdp
->donetail
= rdp
->waitschedtail
;
1258 * Next rcu_check_callbacks() will
1259 * do the required raise_softirq().
1262 if (rdp
->nextschedlist
!= NULL
) {
1263 rdp
->waitschedlist
= rdp
->nextschedlist
;
1264 rdp
->waitschedtail
= rdp
->nextschedtail
;
1268 rdp
->waitschedlist
= NULL
;
1269 rdp
->waitschedtail
= &rdp
->waitschedlist
;
1271 rdp
->nextschedlist
= NULL
;
1272 rdp
->nextschedtail
= &rdp
->nextschedlist
;
1274 /* Mark sleep intention. */
1276 rdp
->rcu_sched_sleeping
= couldsleep
;
1278 spin_unlock_irqrestore(&rdp
->lock
, flags
);
1281 /* If we saw callbacks on the last scan, go deal with them. */
1286 /* Attempt to block... */
1288 spin_lock_irqsave(&rcu_ctrlblk
.schedlock
, flags
);
1289 if (rcu_ctrlblk
.sched_sleep
!= rcu_sched_sleep_prep
) {
1292 * Someone posted a callback after we scanned.
1293 * Go take care of it.
1295 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1300 /* Block until the next person posts a callback. */
1302 rcu_ctrlblk
.sched_sleep
= rcu_sched_sleeping
;
1303 spin_unlock_irqrestore(&rcu_ctrlblk
.schedlock
, flags
);
1305 __wait_event_interruptible(rcu_ctrlblk
.sched_wq
,
1306 rcu_ctrlblk
.sched_sleep
!= rcu_sched_sleeping
,
1310 * Signals would prevent us from sleeping, and we cannot
1311 * do much with them in any case. So flush them.
1314 flush_signals(current
);
1317 } while (!kthread_should_stop());
1323 * Check to see if any future RCU-related work will need to be done
1324 * by the current CPU, even if none need be done immediately, returning
1325 * 1 if so. Assumes that notifiers would take care of handling any
1326 * outstanding requests from the RCU core.
1328 * This function is part of the RCU implementation; it is -not-
1329 * an exported member of the RCU API.
1331 int rcu_needs_cpu(int cpu
)
1333 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
1335 return (rdp
->donelist
!= NULL
||
1336 !!rdp
->waitlistcount
||
1337 rdp
->nextlist
!= NULL
||
1338 rdp
->nextschedlist
!= NULL
||
1339 rdp
->waitschedlist
!= NULL
);
1342 int rcu_pending(int cpu
)
1344 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
1346 /* The CPU has at least one callback queued somewhere. */
1348 if (rdp
->donelist
!= NULL
||
1349 !!rdp
->waitlistcount
||
1350 rdp
->nextlist
!= NULL
||
1351 rdp
->nextschedlist
!= NULL
||
1352 rdp
->waitschedlist
!= NULL
)
1355 /* The RCU core needs an acknowledgement from this CPU. */
1357 if ((per_cpu(rcu_flip_flag
, cpu
) == rcu_flipped
) ||
1358 (per_cpu(rcu_mb_flag
, cpu
) == rcu_mb_needed
))
1361 /* This CPU has fallen behind the global grace-period number. */
1363 if (rdp
->completed
!= rcu_ctrlblk
.completed
)
1366 /* Nothing needed from this CPU. */
1371 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1372 unsigned long action
, void *hcpu
)
1374 long cpu
= (long)hcpu
;
1377 case CPU_UP_PREPARE
:
1378 case CPU_UP_PREPARE_FROZEN
:
1379 rcu_online_cpu(cpu
);
1381 case CPU_UP_CANCELED
:
1382 case CPU_UP_CANCELED_FROZEN
:
1384 case CPU_DEAD_FROZEN
:
1385 rcu_offline_cpu(cpu
);
1393 static struct notifier_block __cpuinitdata rcu_nb
= {
1394 .notifier_call
= rcu_cpu_notify
,
1397 void __init
__rcu_init(void)
1401 struct rcu_data
*rdp
;
1403 printk(KERN_NOTICE
"Preemptible RCU implementation.\n");
1404 for_each_possible_cpu(cpu
) {
1405 rdp
= RCU_DATA_CPU(cpu
);
1406 spin_lock_init(&rdp
->lock
);
1408 rdp
->waitlistcount
= 0;
1409 rdp
->nextlist
= NULL
;
1410 rdp
->nexttail
= &rdp
->nextlist
;
1411 for (i
= 0; i
< GP_STAGES
; i
++) {
1412 rdp
->waitlist
[i
] = NULL
;
1413 rdp
->waittail
[i
] = &rdp
->waitlist
[i
];
1415 rdp
->donelist
= NULL
;
1416 rdp
->donetail
= &rdp
->donelist
;
1417 rdp
->rcu_flipctr
[0] = 0;
1418 rdp
->rcu_flipctr
[1] = 0;
1419 rdp
->nextschedlist
= NULL
;
1420 rdp
->nextschedtail
= &rdp
->nextschedlist
;
1421 rdp
->waitschedlist
= NULL
;
1422 rdp
->waitschedtail
= &rdp
->waitschedlist
;
1423 rdp
->rcu_sched_sleeping
= 0;
1425 register_cpu_notifier(&rcu_nb
);
1428 * We don't need protection against CPU-Hotplug here
1430 * a) If a CPU comes online while we are iterating over the
1431 * cpu_online_map below, we would only end up making a
1432 * duplicate call to rcu_online_cpu() which sets the corresponding
1433 * CPU's mask in the rcu_cpu_online_map.
1435 * b) A CPU cannot go offline at this point in time since the user
1436 * does not have access to the sysfs interface, nor do we
1437 * suspend the system.
1439 for_each_online_cpu(cpu
)
1440 rcu_cpu_notify(&rcu_nb
, CPU_UP_PREPARE
, (void *)(long) cpu
);
1442 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
1446 * Late-boot-time RCU initialization that must wait until after scheduler
1447 * has been initialized.
1449 void __init
rcu_init_sched(void)
1451 rcu_sched_grace_period_task
= kthread_run(rcu_sched_grace_period
,
1453 "rcu_sched_grace_period");
1454 WARN_ON(IS_ERR(rcu_sched_grace_period_task
));
1457 #ifdef CONFIG_RCU_TRACE
1458 long *rcupreempt_flipctr(int cpu
)
1460 return &RCU_DATA_CPU(cpu
)->rcu_flipctr
[0];
1462 EXPORT_SYMBOL_GPL(rcupreempt_flipctr
);
1464 int rcupreempt_flip_flag(int cpu
)
1466 return per_cpu(rcu_flip_flag
, cpu
);
1468 EXPORT_SYMBOL_GPL(rcupreempt_flip_flag
);
1470 int rcupreempt_mb_flag(int cpu
)
1472 return per_cpu(rcu_mb_flag
, cpu
);
1474 EXPORT_SYMBOL_GPL(rcupreempt_mb_flag
);
1476 char *rcupreempt_try_flip_state_name(void)
1478 return rcu_try_flip_state_names
[rcu_ctrlblk
.rcu_try_flip_state
];
1480 EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name
);
1482 struct rcupreempt_trace
*rcupreempt_trace_cpu(int cpu
)
1484 struct rcu_data
*rdp
= RCU_DATA_CPU(cpu
);
1488 EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu
);
1490 #endif /* #ifdef RCU_TRACE */