4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/mutex.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/bootmem.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
40 pte
= pte_offset_kernel(pmd
, addr
);
42 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
43 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
44 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
47 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
52 pmd
= pmd_offset(pud
, addr
);
54 next
= pmd_addr_end(addr
, end
);
55 if (pmd_none_or_clear_bad(pmd
))
57 vunmap_pte_range(pmd
, addr
, next
);
58 } while (pmd
++, addr
= next
, addr
!= end
);
61 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
66 pud
= pud_offset(pgd
, addr
);
68 next
= pud_addr_end(addr
, end
);
69 if (pud_none_or_clear_bad(pud
))
71 vunmap_pmd_range(pud
, addr
, next
);
72 } while (pud
++, addr
= next
, addr
!= end
);
75 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
81 pgd
= pgd_offset_k(addr
);
83 next
= pgd_addr_end(addr
, end
);
84 if (pgd_none_or_clear_bad(pgd
))
86 vunmap_pud_range(pgd
, addr
, next
);
87 } while (pgd
++, addr
= next
, addr
!= end
);
90 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
91 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte
= pte_alloc_kernel(pmd
, addr
);
104 struct page
*page
= pages
[*nr
];
106 if (WARN_ON(!pte_none(*pte
)))
110 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
116 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
117 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
122 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
126 next
= pmd_addr_end(addr
, end
);
127 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
129 } while (pmd
++, addr
= next
, addr
!= end
);
133 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
134 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
139 pud
= pud_alloc(&init_mm
, pgd
, addr
);
143 next
= pud_addr_end(addr
, end
);
144 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
146 } while (pud
++, addr
= next
, addr
!= end
);
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range(unsigned long start
, unsigned long end
,
157 pgprot_t prot
, struct page
**pages
)
161 unsigned long addr
= start
;
166 pgd
= pgd_offset_k(addr
);
168 next
= pgd_addr_end(addr
, end
);
169 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
172 } while (pgd
++, addr
= next
, addr
!= end
);
173 flush_cache_vmap(start
, end
);
180 static inline int is_vmalloc_or_module_addr(const void *x
)
183 * ARM, x86-64 and sparc64 put modules in a special place,
184 * and fall back on vmalloc() if that fails. Others
185 * just put it in the vmalloc space.
187 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
188 unsigned long addr
= (unsigned long)x
;
189 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
192 return is_vmalloc_addr(x
);
196 * Walk a vmap address to the struct page it maps.
198 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
200 unsigned long addr
= (unsigned long) vmalloc_addr
;
201 struct page
*page
= NULL
;
202 pgd_t
*pgd
= pgd_offset_k(addr
);
205 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
206 * architectures that do not vmalloc module space
208 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
210 if (!pgd_none(*pgd
)) {
211 pud_t
*pud
= pud_offset(pgd
, addr
);
212 if (!pud_none(*pud
)) {
213 pmd_t
*pmd
= pmd_offset(pud
, addr
);
214 if (!pmd_none(*pmd
)) {
217 ptep
= pte_offset_map(pmd
, addr
);
219 if (pte_present(pte
))
220 page
= pte_page(pte
);
227 EXPORT_SYMBOL(vmalloc_to_page
);
230 * Map a vmalloc()-space virtual address to the physical page frame number.
232 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
234 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
236 EXPORT_SYMBOL(vmalloc_to_pfn
);
239 /*** Global kva allocator ***/
241 #define VM_LAZY_FREE 0x01
242 #define VM_LAZY_FREEING 0x02
243 #define VM_VM_AREA 0x04
246 unsigned long va_start
;
247 unsigned long va_end
;
249 struct rb_node rb_node
; /* address sorted rbtree */
250 struct list_head list
; /* address sorted list */
251 struct list_head purge_list
; /* "lazy purge" list */
253 struct rcu_head rcu_head
;
256 static DEFINE_SPINLOCK(vmap_area_lock
);
257 static struct rb_root vmap_area_root
= RB_ROOT
;
258 static LIST_HEAD(vmap_area_list
);
260 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
262 struct rb_node
*n
= vmap_area_root
.rb_node
;
265 struct vmap_area
*va
;
267 va
= rb_entry(n
, struct vmap_area
, rb_node
);
268 if (addr
< va
->va_start
)
270 else if (addr
> va
->va_start
)
279 static void __insert_vmap_area(struct vmap_area
*va
)
281 struct rb_node
**p
= &vmap_area_root
.rb_node
;
282 struct rb_node
*parent
= NULL
;
286 struct vmap_area
*tmp
;
289 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
290 if (va
->va_start
< tmp
->va_end
)
292 else if (va
->va_end
> tmp
->va_start
)
298 rb_link_node(&va
->rb_node
, parent
, p
);
299 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
301 /* address-sort this list so it is usable like the vmlist */
302 tmp
= rb_prev(&va
->rb_node
);
304 struct vmap_area
*prev
;
305 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
306 list_add_rcu(&va
->list
, &prev
->list
);
308 list_add_rcu(&va
->list
, &vmap_area_list
);
311 static void purge_vmap_area_lazy(void);
314 * Allocate a region of KVA of the specified size and alignment, within the
317 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
319 unsigned long vstart
, unsigned long vend
,
320 int node
, gfp_t gfp_mask
)
322 struct vmap_area
*va
;
327 BUG_ON(size
& ~PAGE_MASK
);
329 va
= kmalloc_node(sizeof(struct vmap_area
),
330 gfp_mask
& GFP_RECLAIM_MASK
, node
);
332 return ERR_PTR(-ENOMEM
);
335 addr
= ALIGN(vstart
, align
);
337 spin_lock(&vmap_area_lock
);
338 /* XXX: could have a last_hole cache */
339 n
= vmap_area_root
.rb_node
;
341 struct vmap_area
*first
= NULL
;
344 struct vmap_area
*tmp
;
345 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
346 if (tmp
->va_end
>= addr
) {
347 if (!first
&& tmp
->va_start
< addr
+ size
)
359 if (first
->va_end
< addr
) {
360 n
= rb_next(&first
->rb_node
);
362 first
= rb_entry(n
, struct vmap_area
, rb_node
);
367 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
368 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
370 n
= rb_next(&first
->rb_node
);
372 first
= rb_entry(n
, struct vmap_area
, rb_node
);
378 if (addr
+ size
> vend
) {
379 spin_unlock(&vmap_area_lock
);
381 purge_vmap_area_lazy();
385 if (printk_ratelimit())
387 "vmap allocation for size %lu failed: "
388 "use vmalloc=<size> to increase size.\n", size
);
389 return ERR_PTR(-EBUSY
);
392 BUG_ON(addr
& (align
-1));
395 va
->va_end
= addr
+ size
;
397 __insert_vmap_area(va
);
398 spin_unlock(&vmap_area_lock
);
403 static void rcu_free_va(struct rcu_head
*head
)
405 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
410 static void __free_vmap_area(struct vmap_area
*va
)
412 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
413 rb_erase(&va
->rb_node
, &vmap_area_root
);
414 RB_CLEAR_NODE(&va
->rb_node
);
415 list_del_rcu(&va
->list
);
417 call_rcu(&va
->rcu_head
, rcu_free_va
);
421 * Free a region of KVA allocated by alloc_vmap_area
423 static void free_vmap_area(struct vmap_area
*va
)
425 spin_lock(&vmap_area_lock
);
426 __free_vmap_area(va
);
427 spin_unlock(&vmap_area_lock
);
431 * Clear the pagetable entries of a given vmap_area
433 static void unmap_vmap_area(struct vmap_area
*va
)
435 vunmap_page_range(va
->va_start
, va
->va_end
);
438 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
441 * Unmap page tables and force a TLB flush immediately if
442 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
443 * bugs similarly to those in linear kernel virtual address
444 * space after a page has been freed.
446 * All the lazy freeing logic is still retained, in order to
447 * minimise intrusiveness of this debugging feature.
449 * This is going to be *slow* (linear kernel virtual address
450 * debugging doesn't do a broadcast TLB flush so it is a lot
453 #ifdef CONFIG_DEBUG_PAGEALLOC
454 vunmap_page_range(start
, end
);
455 flush_tlb_kernel_range(start
, end
);
460 * lazy_max_pages is the maximum amount of virtual address space we gather up
461 * before attempting to purge with a TLB flush.
463 * There is a tradeoff here: a larger number will cover more kernel page tables
464 * and take slightly longer to purge, but it will linearly reduce the number of
465 * global TLB flushes that must be performed. It would seem natural to scale
466 * this number up linearly with the number of CPUs (because vmapping activity
467 * could also scale linearly with the number of CPUs), however it is likely
468 * that in practice, workloads might be constrained in other ways that mean
469 * vmap activity will not scale linearly with CPUs. Also, I want to be
470 * conservative and not introduce a big latency on huge systems, so go with
471 * a less aggressive log scale. It will still be an improvement over the old
472 * code, and it will be simple to change the scale factor if we find that it
473 * becomes a problem on bigger systems.
475 static unsigned long lazy_max_pages(void)
479 log
= fls(num_online_cpus());
481 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
484 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
487 * Purges all lazily-freed vmap areas.
489 * If sync is 0 then don't purge if there is already a purge in progress.
490 * If force_flush is 1, then flush kernel TLBs between *start and *end even
491 * if we found no lazy vmap areas to unmap (callers can use this to optimise
492 * their own TLB flushing).
493 * Returns with *start = min(*start, lowest purged address)
494 * *end = max(*end, highest purged address)
496 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
497 int sync
, int force_flush
)
499 static DEFINE_MUTEX(purge_lock
);
501 struct vmap_area
*va
;
505 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
506 * should not expect such behaviour. This just simplifies locking for
507 * the case that isn't actually used at the moment anyway.
509 if (!sync
&& !force_flush
) {
510 if (!mutex_trylock(&purge_lock
))
513 mutex_lock(&purge_lock
);
516 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
517 if (va
->flags
& VM_LAZY_FREE
) {
518 if (va
->va_start
< *start
)
519 *start
= va
->va_start
;
520 if (va
->va_end
> *end
)
522 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
524 list_add_tail(&va
->purge_list
, &valist
);
525 va
->flags
|= VM_LAZY_FREEING
;
526 va
->flags
&= ~VM_LAZY_FREE
;
532 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
533 atomic_sub(nr
, &vmap_lazy_nr
);
536 if (nr
|| force_flush
)
537 flush_tlb_kernel_range(*start
, *end
);
540 spin_lock(&vmap_area_lock
);
541 list_for_each_entry(va
, &valist
, purge_list
)
542 __free_vmap_area(va
);
543 spin_unlock(&vmap_area_lock
);
545 mutex_unlock(&purge_lock
);
549 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
550 * is already purging.
552 static void try_purge_vmap_area_lazy(void)
554 unsigned long start
= ULONG_MAX
, end
= 0;
556 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
560 * Kick off a purge of the outstanding lazy areas.
562 static void purge_vmap_area_lazy(void)
564 unsigned long start
= ULONG_MAX
, end
= 0;
566 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
570 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
571 * called for the correct range previously.
573 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
575 va
->flags
|= VM_LAZY_FREE
;
576 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
577 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
578 try_purge_vmap_area_lazy();
582 * Free and unmap a vmap area
584 static void free_unmap_vmap_area(struct vmap_area
*va
)
586 flush_cache_vunmap(va
->va_start
, va
->va_end
);
587 free_unmap_vmap_area_noflush(va
);
590 static struct vmap_area
*find_vmap_area(unsigned long addr
)
592 struct vmap_area
*va
;
594 spin_lock(&vmap_area_lock
);
595 va
= __find_vmap_area(addr
);
596 spin_unlock(&vmap_area_lock
);
601 static void free_unmap_vmap_area_addr(unsigned long addr
)
603 struct vmap_area
*va
;
605 va
= find_vmap_area(addr
);
607 free_unmap_vmap_area(va
);
611 /*** Per cpu kva allocator ***/
614 * vmap space is limited especially on 32 bit architectures. Ensure there is
615 * room for at least 16 percpu vmap blocks per CPU.
618 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
619 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
620 * instead (we just need a rough idea)
622 #if BITS_PER_LONG == 32
623 #define VMALLOC_SPACE (128UL*1024*1024)
625 #define VMALLOC_SPACE (128UL*1024*1024*1024)
628 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
629 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
630 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
631 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
632 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
633 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
634 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
635 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
636 VMALLOC_PAGES / NR_CPUS / 16))
638 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
640 static bool vmap_initialized __read_mostly
= false;
642 struct vmap_block_queue
{
644 struct list_head free
;
645 struct list_head dirty
;
646 unsigned int nr_dirty
;
651 struct vmap_area
*va
;
652 struct vmap_block_queue
*vbq
;
653 unsigned long free
, dirty
;
654 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
655 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
658 struct list_head free_list
;
659 struct list_head dirty_list
;
661 struct rcu_head rcu_head
;
665 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
666 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
669 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
670 * in the free path. Could get rid of this if we change the API to return a
671 * "cookie" from alloc, to be passed to free. But no big deal yet.
673 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
674 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
677 * We should probably have a fallback mechanism to allocate virtual memory
678 * out of partially filled vmap blocks. However vmap block sizing should be
679 * fairly reasonable according to the vmalloc size, so it shouldn't be a
683 static unsigned long addr_to_vb_idx(unsigned long addr
)
685 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
686 addr
/= VMAP_BLOCK_SIZE
;
690 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
692 struct vmap_block_queue
*vbq
;
693 struct vmap_block
*vb
;
694 struct vmap_area
*va
;
695 unsigned long vb_idx
;
698 node
= numa_node_id();
700 vb
= kmalloc_node(sizeof(struct vmap_block
),
701 gfp_mask
& GFP_RECLAIM_MASK
, node
);
703 return ERR_PTR(-ENOMEM
);
705 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
706 VMALLOC_START
, VMALLOC_END
,
708 if (unlikely(IS_ERR(va
))) {
710 return ERR_PTR(PTR_ERR(va
));
713 err
= radix_tree_preload(gfp_mask
);
720 spin_lock_init(&vb
->lock
);
722 vb
->free
= VMAP_BBMAP_BITS
;
724 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
725 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
726 INIT_LIST_HEAD(&vb
->free_list
);
727 INIT_LIST_HEAD(&vb
->dirty_list
);
729 vb_idx
= addr_to_vb_idx(va
->va_start
);
730 spin_lock(&vmap_block_tree_lock
);
731 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
732 spin_unlock(&vmap_block_tree_lock
);
734 radix_tree_preload_end();
736 vbq
= &get_cpu_var(vmap_block_queue
);
738 spin_lock(&vbq
->lock
);
739 list_add(&vb
->free_list
, &vbq
->free
);
740 spin_unlock(&vbq
->lock
);
741 put_cpu_var(vmap_cpu_blocks
);
746 static void rcu_free_vb(struct rcu_head
*head
)
748 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
753 static void free_vmap_block(struct vmap_block
*vb
)
755 struct vmap_block
*tmp
;
756 unsigned long vb_idx
;
758 spin_lock(&vb
->vbq
->lock
);
759 if (!list_empty(&vb
->free_list
))
760 list_del(&vb
->free_list
);
761 if (!list_empty(&vb
->dirty_list
))
762 list_del(&vb
->dirty_list
);
763 spin_unlock(&vb
->vbq
->lock
);
765 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
766 spin_lock(&vmap_block_tree_lock
);
767 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
768 spin_unlock(&vmap_block_tree_lock
);
771 free_unmap_vmap_area_noflush(vb
->va
);
772 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
775 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
777 struct vmap_block_queue
*vbq
;
778 struct vmap_block
*vb
;
779 unsigned long addr
= 0;
782 BUG_ON(size
& ~PAGE_MASK
);
783 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
784 order
= get_order(size
);
788 vbq
= &get_cpu_var(vmap_block_queue
);
789 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
792 spin_lock(&vb
->lock
);
793 i
= bitmap_find_free_region(vb
->alloc_map
,
794 VMAP_BBMAP_BITS
, order
);
797 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
798 BUG_ON(addr_to_vb_idx(addr
) !=
799 addr_to_vb_idx(vb
->va
->va_start
));
800 vb
->free
-= 1UL << order
;
802 spin_lock(&vbq
->lock
);
803 list_del_init(&vb
->free_list
);
804 spin_unlock(&vbq
->lock
);
806 spin_unlock(&vb
->lock
);
809 spin_unlock(&vb
->lock
);
811 put_cpu_var(vmap_cpu_blocks
);
815 vb
= new_vmap_block(gfp_mask
);
824 static void vb_free(const void *addr
, unsigned long size
)
826 unsigned long offset
;
827 unsigned long vb_idx
;
829 struct vmap_block
*vb
;
831 BUG_ON(size
& ~PAGE_MASK
);
832 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
834 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
836 order
= get_order(size
);
838 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
840 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
842 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
846 spin_lock(&vb
->lock
);
847 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
849 spin_lock(&vb
->vbq
->lock
);
850 list_add(&vb
->dirty_list
, &vb
->vbq
->dirty
);
851 spin_unlock(&vb
->vbq
->lock
);
853 vb
->dirty
+= 1UL << order
;
854 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
855 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
856 spin_unlock(&vb
->lock
);
859 spin_unlock(&vb
->lock
);
863 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
865 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
866 * to amortize TLB flushing overheads. What this means is that any page you
867 * have now, may, in a former life, have been mapped into kernel virtual
868 * address by the vmap layer and so there might be some CPUs with TLB entries
869 * still referencing that page (additional to the regular 1:1 kernel mapping).
871 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
872 * be sure that none of the pages we have control over will have any aliases
873 * from the vmap layer.
875 void vm_unmap_aliases(void)
877 unsigned long start
= ULONG_MAX
, end
= 0;
881 if (unlikely(!vmap_initialized
))
884 for_each_possible_cpu(cpu
) {
885 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
886 struct vmap_block
*vb
;
889 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
892 spin_lock(&vb
->lock
);
893 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
894 while (i
< VMAP_BBMAP_BITS
) {
897 j
= find_next_zero_bit(vb
->dirty_map
,
900 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
901 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
902 vunmap_page_range(s
, e
);
911 i
= find_next_bit(vb
->dirty_map
,
914 spin_unlock(&vb
->lock
);
919 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
921 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
924 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
925 * @mem: the pointer returned by vm_map_ram
926 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
928 void vm_unmap_ram(const void *mem
, unsigned int count
)
930 unsigned long size
= count
<< PAGE_SHIFT
;
931 unsigned long addr
= (unsigned long)mem
;
934 BUG_ON(addr
< VMALLOC_START
);
935 BUG_ON(addr
> VMALLOC_END
);
936 BUG_ON(addr
& (PAGE_SIZE
-1));
938 debug_check_no_locks_freed(mem
, size
);
939 vmap_debug_free_range(addr
, addr
+size
);
941 if (likely(count
<= VMAP_MAX_ALLOC
))
944 free_unmap_vmap_area_addr(addr
);
946 EXPORT_SYMBOL(vm_unmap_ram
);
949 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
950 * @pages: an array of pointers to the pages to be mapped
951 * @count: number of pages
952 * @node: prefer to allocate data structures on this node
953 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
955 * Returns: a pointer to the address that has been mapped, or %NULL on failure
957 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
959 unsigned long size
= count
<< PAGE_SHIFT
;
963 if (likely(count
<= VMAP_MAX_ALLOC
)) {
964 mem
= vb_alloc(size
, GFP_KERNEL
);
967 addr
= (unsigned long)mem
;
969 struct vmap_area
*va
;
970 va
= alloc_vmap_area(size
, PAGE_SIZE
,
971 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
978 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
979 vm_unmap_ram(mem
, count
);
984 EXPORT_SYMBOL(vm_map_ram
);
986 void __init
vmalloc_init(void)
988 struct vmap_area
*va
;
989 struct vm_struct
*tmp
;
992 for_each_possible_cpu(i
) {
993 struct vmap_block_queue
*vbq
;
995 vbq
= &per_cpu(vmap_block_queue
, i
);
996 spin_lock_init(&vbq
->lock
);
997 INIT_LIST_HEAD(&vbq
->free
);
998 INIT_LIST_HEAD(&vbq
->dirty
);
1002 /* Import existing vmlist entries. */
1003 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1004 va
= alloc_bootmem(sizeof(struct vmap_area
));
1005 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1006 va
->va_start
= (unsigned long)tmp
->addr
;
1007 va
->va_end
= va
->va_start
+ tmp
->size
;
1008 __insert_vmap_area(va
);
1010 vmap_initialized
= true;
1013 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1015 unsigned long end
= addr
+ size
;
1016 vunmap_page_range(addr
, end
);
1017 flush_tlb_kernel_range(addr
, end
);
1020 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1022 unsigned long addr
= (unsigned long)area
->addr
;
1023 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1026 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1034 EXPORT_SYMBOL_GPL(map_vm_area
);
1036 /*** Old vmalloc interfaces ***/
1037 DEFINE_RWLOCK(vmlist_lock
);
1038 struct vm_struct
*vmlist
;
1040 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1041 unsigned long flags
, unsigned long start
, unsigned long end
,
1042 int node
, gfp_t gfp_mask
, void *caller
)
1044 static struct vmap_area
*va
;
1045 struct vm_struct
*area
;
1046 struct vm_struct
*tmp
, **p
;
1047 unsigned long align
= 1;
1049 BUG_ON(in_interrupt());
1050 if (flags
& VM_IOREMAP
) {
1051 int bit
= fls(size
);
1053 if (bit
> IOREMAP_MAX_ORDER
)
1054 bit
= IOREMAP_MAX_ORDER
;
1055 else if (bit
< PAGE_SHIFT
)
1061 size
= PAGE_ALIGN(size
);
1062 if (unlikely(!size
))
1065 area
= kmalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1066 if (unlikely(!area
))
1070 * We always allocate a guard page.
1074 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1080 area
->flags
= flags
;
1081 area
->addr
= (void *)va
->va_start
;
1085 area
->phys_addr
= 0;
1086 area
->caller
= caller
;
1088 va
->flags
|= VM_VM_AREA
;
1090 write_lock(&vmlist_lock
);
1091 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1092 if (tmp
->addr
>= area
->addr
)
1097 write_unlock(&vmlist_lock
);
1102 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1103 unsigned long start
, unsigned long end
)
1105 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1106 __builtin_return_address(0));
1108 EXPORT_SYMBOL_GPL(__get_vm_area
);
1111 * get_vm_area - reserve a contiguous kernel virtual area
1112 * @size: size of the area
1113 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1115 * Search an area of @size in the kernel virtual mapping area,
1116 * and reserved it for out purposes. Returns the area descriptor
1117 * on success or %NULL on failure.
1119 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1121 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1122 -1, GFP_KERNEL
, __builtin_return_address(0));
1125 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1128 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1129 -1, GFP_KERNEL
, caller
);
1132 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1133 int node
, gfp_t gfp_mask
)
1135 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1136 gfp_mask
, __builtin_return_address(0));
1139 static struct vm_struct
*find_vm_area(const void *addr
)
1141 struct vmap_area
*va
;
1143 va
= find_vmap_area((unsigned long)addr
);
1144 if (va
&& va
->flags
& VM_VM_AREA
)
1151 * remove_vm_area - find and remove a continuous kernel virtual area
1152 * @addr: base address
1154 * Search for the kernel VM area starting at @addr, and remove it.
1155 * This function returns the found VM area, but using it is NOT safe
1156 * on SMP machines, except for its size or flags.
1158 struct vm_struct
*remove_vm_area(const void *addr
)
1160 struct vmap_area
*va
;
1162 va
= find_vmap_area((unsigned long)addr
);
1163 if (va
&& va
->flags
& VM_VM_AREA
) {
1164 struct vm_struct
*vm
= va
->private;
1165 struct vm_struct
*tmp
, **p
;
1167 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1168 free_unmap_vmap_area(va
);
1169 vm
->size
-= PAGE_SIZE
;
1171 write_lock(&vmlist_lock
);
1172 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1175 write_unlock(&vmlist_lock
);
1182 static void __vunmap(const void *addr
, int deallocate_pages
)
1184 struct vm_struct
*area
;
1189 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1190 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1194 area
= remove_vm_area(addr
);
1195 if (unlikely(!area
)) {
1196 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1201 debug_check_no_locks_freed(addr
, area
->size
);
1202 debug_check_no_obj_freed(addr
, area
->size
);
1204 if (deallocate_pages
) {
1207 for (i
= 0; i
< area
->nr_pages
; i
++) {
1208 struct page
*page
= area
->pages
[i
];
1214 if (area
->flags
& VM_VPAGES
)
1225 * vfree - release memory allocated by vmalloc()
1226 * @addr: memory base address
1228 * Free the virtually continuous memory area starting at @addr, as
1229 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1230 * NULL, no operation is performed.
1232 * Must not be called in interrupt context.
1234 void vfree(const void *addr
)
1236 BUG_ON(in_interrupt());
1239 EXPORT_SYMBOL(vfree
);
1242 * vunmap - release virtual mapping obtained by vmap()
1243 * @addr: memory base address
1245 * Free the virtually contiguous memory area starting at @addr,
1246 * which was created from the page array passed to vmap().
1248 * Must not be called in interrupt context.
1250 void vunmap(const void *addr
)
1252 BUG_ON(in_interrupt());
1255 EXPORT_SYMBOL(vunmap
);
1258 * vmap - map an array of pages into virtually contiguous space
1259 * @pages: array of page pointers
1260 * @count: number of pages to map
1261 * @flags: vm_area->flags
1262 * @prot: page protection for the mapping
1264 * Maps @count pages from @pages into contiguous kernel virtual
1267 void *vmap(struct page
**pages
, unsigned int count
,
1268 unsigned long flags
, pgprot_t prot
)
1270 struct vm_struct
*area
;
1272 if (count
> num_physpages
)
1275 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1276 __builtin_return_address(0));
1280 if (map_vm_area(area
, prot
, &pages
)) {
1287 EXPORT_SYMBOL(vmap
);
1289 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1290 int node
, void *caller
);
1291 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1292 pgprot_t prot
, int node
, void *caller
)
1294 struct page
**pages
;
1295 unsigned int nr_pages
, array_size
, i
;
1297 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1298 array_size
= (nr_pages
* sizeof(struct page
*));
1300 area
->nr_pages
= nr_pages
;
1301 /* Please note that the recursion is strictly bounded. */
1302 if (array_size
> PAGE_SIZE
) {
1303 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1304 PAGE_KERNEL
, node
, caller
);
1305 area
->flags
|= VM_VPAGES
;
1307 pages
= kmalloc_node(array_size
,
1308 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1311 area
->pages
= pages
;
1312 area
->caller
= caller
;
1314 remove_vm_area(area
->addr
);
1319 for (i
= 0; i
< area
->nr_pages
; i
++) {
1323 page
= alloc_page(gfp_mask
);
1325 page
= alloc_pages_node(node
, gfp_mask
, 0);
1327 if (unlikely(!page
)) {
1328 /* Successfully allocated i pages, free them in __vunmap() */
1332 area
->pages
[i
] = page
;
1335 if (map_vm_area(area
, prot
, &pages
))
1344 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1346 return __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1347 __builtin_return_address(0));
1351 * __vmalloc_node - allocate virtually contiguous memory
1352 * @size: allocation size
1353 * @gfp_mask: flags for the page level allocator
1354 * @prot: protection mask for the allocated pages
1355 * @node: node to use for allocation or -1
1356 * @caller: caller's return address
1358 * Allocate enough pages to cover @size from the page level
1359 * allocator with @gfp_mask flags. Map them into contiguous
1360 * kernel virtual space, using a pagetable protection of @prot.
1362 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1363 int node
, void *caller
)
1365 struct vm_struct
*area
;
1367 size
= PAGE_ALIGN(size
);
1368 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1371 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1372 node
, gfp_mask
, caller
);
1377 return __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1380 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1382 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1383 __builtin_return_address(0));
1385 EXPORT_SYMBOL(__vmalloc
);
1388 * vmalloc - allocate virtually contiguous memory
1389 * @size: allocation size
1390 * Allocate enough pages to cover @size from the page level
1391 * allocator and map them into contiguous kernel virtual space.
1393 * For tight control over page level allocator and protection flags
1394 * use __vmalloc() instead.
1396 void *vmalloc(unsigned long size
)
1398 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1399 -1, __builtin_return_address(0));
1401 EXPORT_SYMBOL(vmalloc
);
1404 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1405 * @size: allocation size
1407 * The resulting memory area is zeroed so it can be mapped to userspace
1408 * without leaking data.
1410 void *vmalloc_user(unsigned long size
)
1412 struct vm_struct
*area
;
1415 ret
= __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1416 PAGE_KERNEL
, -1, __builtin_return_address(0));
1418 area
= find_vm_area(ret
);
1419 area
->flags
|= VM_USERMAP
;
1423 EXPORT_SYMBOL(vmalloc_user
);
1426 * vmalloc_node - allocate memory on a specific node
1427 * @size: allocation size
1430 * Allocate enough pages to cover @size from the page level
1431 * allocator and map them into contiguous kernel virtual space.
1433 * For tight control over page level allocator and protection flags
1434 * use __vmalloc() instead.
1436 void *vmalloc_node(unsigned long size
, int node
)
1438 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1439 node
, __builtin_return_address(0));
1441 EXPORT_SYMBOL(vmalloc_node
);
1443 #ifndef PAGE_KERNEL_EXEC
1444 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1448 * vmalloc_exec - allocate virtually contiguous, executable memory
1449 * @size: allocation size
1451 * Kernel-internal function to allocate enough pages to cover @size
1452 * the page level allocator and map them into contiguous and
1453 * executable kernel virtual space.
1455 * For tight control over page level allocator and protection flags
1456 * use __vmalloc() instead.
1459 void *vmalloc_exec(unsigned long size
)
1461 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1462 -1, __builtin_return_address(0));
1465 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1466 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1467 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1468 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1470 #define GFP_VMALLOC32 GFP_KERNEL
1474 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1475 * @size: allocation size
1477 * Allocate enough 32bit PA addressable pages to cover @size from the
1478 * page level allocator and map them into contiguous kernel virtual space.
1480 void *vmalloc_32(unsigned long size
)
1482 return __vmalloc_node(size
, GFP_VMALLOC32
, PAGE_KERNEL
,
1483 -1, __builtin_return_address(0));
1485 EXPORT_SYMBOL(vmalloc_32
);
1488 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1489 * @size: allocation size
1491 * The resulting memory area is 32bit addressable and zeroed so it can be
1492 * mapped to userspace without leaking data.
1494 void *vmalloc_32_user(unsigned long size
)
1496 struct vm_struct
*area
;
1499 ret
= __vmalloc_node(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1500 -1, __builtin_return_address(0));
1502 area
= find_vm_area(ret
);
1503 area
->flags
|= VM_USERMAP
;
1507 EXPORT_SYMBOL(vmalloc_32_user
);
1509 long vread(char *buf
, char *addr
, unsigned long count
)
1511 struct vm_struct
*tmp
;
1512 char *vaddr
, *buf_start
= buf
;
1515 /* Don't allow overflow */
1516 if ((unsigned long) addr
+ count
< count
)
1517 count
= -(unsigned long) addr
;
1519 read_lock(&vmlist_lock
);
1520 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1521 vaddr
= (char *) tmp
->addr
;
1522 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1524 while (addr
< vaddr
) {
1532 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1543 read_unlock(&vmlist_lock
);
1544 return buf
- buf_start
;
1547 long vwrite(char *buf
, char *addr
, unsigned long count
)
1549 struct vm_struct
*tmp
;
1550 char *vaddr
, *buf_start
= buf
;
1553 /* Don't allow overflow */
1554 if ((unsigned long) addr
+ count
< count
)
1555 count
= -(unsigned long) addr
;
1557 read_lock(&vmlist_lock
);
1558 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1559 vaddr
= (char *) tmp
->addr
;
1560 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1562 while (addr
< vaddr
) {
1569 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1580 read_unlock(&vmlist_lock
);
1581 return buf
- buf_start
;
1585 * remap_vmalloc_range - map vmalloc pages to userspace
1586 * @vma: vma to cover (map full range of vma)
1587 * @addr: vmalloc memory
1588 * @pgoff: number of pages into addr before first page to map
1590 * Returns: 0 for success, -Exxx on failure
1592 * This function checks that addr is a valid vmalloc'ed area, and
1593 * that it is big enough to cover the vma. Will return failure if
1594 * that criteria isn't met.
1596 * Similar to remap_pfn_range() (see mm/memory.c)
1598 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1599 unsigned long pgoff
)
1601 struct vm_struct
*area
;
1602 unsigned long uaddr
= vma
->vm_start
;
1603 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1605 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1608 area
= find_vm_area(addr
);
1612 if (!(area
->flags
& VM_USERMAP
))
1615 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1618 addr
+= pgoff
<< PAGE_SHIFT
;
1620 struct page
*page
= vmalloc_to_page(addr
);
1623 ret
= vm_insert_page(vma
, uaddr
, page
);
1630 } while (usize
> 0);
1632 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1633 vma
->vm_flags
|= VM_RESERVED
;
1637 EXPORT_SYMBOL(remap_vmalloc_range
);
1640 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1643 void __attribute__((weak
)) vmalloc_sync_all(void)
1648 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1650 /* apply_to_page_range() does all the hard work. */
1655 * alloc_vm_area - allocate a range of kernel address space
1656 * @size: size of the area
1658 * Returns: NULL on failure, vm_struct on success
1660 * This function reserves a range of kernel address space, and
1661 * allocates pagetables to map that range. No actual mappings
1662 * are created. If the kernel address space is not shared
1663 * between processes, it syncs the pagetable across all
1666 struct vm_struct
*alloc_vm_area(size_t size
)
1668 struct vm_struct
*area
;
1670 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1671 __builtin_return_address(0));
1676 * This ensures that page tables are constructed for this region
1677 * of kernel virtual address space and mapped into init_mm.
1679 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1680 area
->size
, f
, NULL
)) {
1685 /* Make sure the pagetables are constructed in process kernel
1691 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1693 void free_vm_area(struct vm_struct
*area
)
1695 struct vm_struct
*ret
;
1696 ret
= remove_vm_area(area
->addr
);
1697 BUG_ON(ret
!= area
);
1700 EXPORT_SYMBOL_GPL(free_vm_area
);
1703 #ifdef CONFIG_PROC_FS
1704 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
1707 struct vm_struct
*v
;
1709 read_lock(&vmlist_lock
);
1711 while (n
> 0 && v
) {
1722 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1724 struct vm_struct
*v
= p
;
1730 static void s_stop(struct seq_file
*m
, void *p
)
1732 read_unlock(&vmlist_lock
);
1735 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
1738 unsigned int nr
, *counters
= m
->private;
1743 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
1745 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
1746 counters
[page_to_nid(v
->pages
[nr
])]++;
1748 for_each_node_state(nr
, N_HIGH_MEMORY
)
1750 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
1754 static int s_show(struct seq_file
*m
, void *p
)
1756 struct vm_struct
*v
= p
;
1758 seq_printf(m
, "0x%p-0x%p %7ld",
1759 v
->addr
, v
->addr
+ v
->size
, v
->size
);
1762 char buff
[KSYM_SYMBOL_LEN
];
1765 sprint_symbol(buff
, (unsigned long)v
->caller
);
1770 seq_printf(m
, " pages=%d", v
->nr_pages
);
1773 seq_printf(m
, " phys=%lx", v
->phys_addr
);
1775 if (v
->flags
& VM_IOREMAP
)
1776 seq_printf(m
, " ioremap");
1778 if (v
->flags
& VM_ALLOC
)
1779 seq_printf(m
, " vmalloc");
1781 if (v
->flags
& VM_MAP
)
1782 seq_printf(m
, " vmap");
1784 if (v
->flags
& VM_USERMAP
)
1785 seq_printf(m
, " user");
1787 if (v
->flags
& VM_VPAGES
)
1788 seq_printf(m
, " vpages");
1790 show_numa_info(m
, v
);
1795 static const struct seq_operations vmalloc_op
= {
1802 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
1804 unsigned int *ptr
= NULL
;
1808 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
1809 ret
= seq_open(file
, &vmalloc_op
);
1811 struct seq_file
*m
= file
->private_data
;
1818 static const struct file_operations proc_vmalloc_operations
= {
1819 .open
= vmalloc_open
,
1821 .llseek
= seq_lseek
,
1822 .release
= seq_release_private
,
1825 static int __init
proc_vmalloc_init(void)
1827 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
1830 module_init(proc_vmalloc_init
);