2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
40 #include "free-space-cache.h"
42 static struct extent_io_ops btree_extent_io_ops
;
43 static void end_workqueue_fn(struct btrfs_work
*work
);
45 static atomic_t btrfs_bdi_num
= ATOMIC_INIT(0);
48 * end_io_wq structs are used to do processing in task context when an IO is
49 * complete. This is used during reads to verify checksums, and it is used
50 * by writes to insert metadata for new file extents after IO is complete.
56 struct btrfs_fs_info
*info
;
59 struct list_head list
;
60 struct btrfs_work work
;
64 * async submit bios are used to offload expensive checksumming
65 * onto the worker threads. They checksum file and metadata bios
66 * just before they are sent down the IO stack.
68 struct async_submit_bio
{
71 struct list_head list
;
72 extent_submit_bio_hook_t
*submit_bio_start
;
73 extent_submit_bio_hook_t
*submit_bio_done
;
76 unsigned long bio_flags
;
77 struct btrfs_work work
;
80 /* These are used to set the lockdep class on the extent buffer locks.
81 * The class is set by the readpage_end_io_hook after the buffer has
82 * passed csum validation but before the pages are unlocked.
84 * The lockdep class is also set by btrfs_init_new_buffer on freshly
87 * The class is based on the level in the tree block, which allows lockdep
88 * to know that lower nodes nest inside the locks of higher nodes.
90 * We also add a check to make sure the highest level of the tree is
91 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
92 * code needs update as well.
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
98 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
99 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
109 /* highest possible level */
115 * extents on the btree inode are pretty simple, there's one extent
116 * that covers the entire device
118 static struct extent_map
*btree_get_extent(struct inode
*inode
,
119 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
122 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
123 struct extent_map
*em
;
126 spin_lock(&em_tree
->lock
);
127 em
= lookup_extent_mapping(em_tree
, start
, len
);
130 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
131 spin_unlock(&em_tree
->lock
);
134 spin_unlock(&em_tree
->lock
);
136 em
= alloc_extent_map(GFP_NOFS
);
138 em
= ERR_PTR(-ENOMEM
);
143 em
->block_len
= (u64
)-1;
145 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
147 spin_lock(&em_tree
->lock
);
148 ret
= add_extent_mapping(em_tree
, em
);
149 if (ret
== -EEXIST
) {
150 u64 failed_start
= em
->start
;
151 u64 failed_len
= em
->len
;
154 em
= lookup_extent_mapping(em_tree
, start
, len
);
158 em
= lookup_extent_mapping(em_tree
, failed_start
,
166 spin_unlock(&em_tree
->lock
);
174 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
176 return crc32c(seed
, data
, len
);
179 void btrfs_csum_final(u32 crc
, char *result
)
181 *(__le32
*)result
= ~cpu_to_le32(crc
);
185 * compute the csum for a btree block, and either verify it or write it
186 * into the csum field of the block.
188 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
192 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
195 unsigned long cur_len
;
196 unsigned long offset
= BTRFS_CSUM_SIZE
;
197 char *map_token
= NULL
;
199 unsigned long map_start
;
200 unsigned long map_len
;
203 unsigned long inline_result
;
205 len
= buf
->len
- offset
;
207 err
= map_private_extent_buffer(buf
, offset
, 32,
209 &map_start
, &map_len
, KM_USER0
);
212 cur_len
= min(len
, map_len
- (offset
- map_start
));
213 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
217 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
219 if (csum_size
> sizeof(inline_result
)) {
220 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
224 result
= (char *)&inline_result
;
227 btrfs_csum_final(crc
, result
);
230 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
233 memcpy(&found
, result
, csum_size
);
235 read_extent_buffer(buf
, &val
, 0, csum_size
);
236 if (printk_ratelimit()) {
237 printk(KERN_INFO
"btrfs: %s checksum verify "
238 "failed on %llu wanted %X found %X "
240 root
->fs_info
->sb
->s_id
,
241 (unsigned long long)buf
->start
, val
, found
,
242 btrfs_header_level(buf
));
244 if (result
!= (char *)&inline_result
)
249 write_extent_buffer(buf
, result
, 0, csum_size
);
251 if (result
!= (char *)&inline_result
)
257 * we can't consider a given block up to date unless the transid of the
258 * block matches the transid in the parent node's pointer. This is how we
259 * detect blocks that either didn't get written at all or got written
260 * in the wrong place.
262 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
263 struct extent_buffer
*eb
, u64 parent_transid
)
267 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
270 lock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1, GFP_NOFS
);
271 if (extent_buffer_uptodate(io_tree
, eb
) &&
272 btrfs_header_generation(eb
) == parent_transid
) {
276 if (printk_ratelimit()) {
277 printk("parent transid verify failed on %llu wanted %llu "
279 (unsigned long long)eb
->start
,
280 (unsigned long long)parent_transid
,
281 (unsigned long long)btrfs_header_generation(eb
));
284 clear_extent_buffer_uptodate(io_tree
, eb
);
286 unlock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
292 * helper to read a given tree block, doing retries as required when
293 * the checksums don't match and we have alternate mirrors to try.
295 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
296 struct extent_buffer
*eb
,
297 u64 start
, u64 parent_transid
)
299 struct extent_io_tree
*io_tree
;
304 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
306 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
307 btree_get_extent
, mirror_num
);
309 !verify_parent_transid(io_tree
, eb
, parent_transid
))
312 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
318 if (mirror_num
> num_copies
)
325 * checksum a dirty tree block before IO. This has extra checks to make sure
326 * we only fill in the checksum field in the first page of a multi-page block
329 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
331 struct extent_io_tree
*tree
;
332 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
336 struct extent_buffer
*eb
;
339 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
341 if (page
->private == EXTENT_PAGE_PRIVATE
)
345 len
= page
->private >> 2;
348 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
349 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
350 btrfs_header_generation(eb
));
352 found_start
= btrfs_header_bytenr(eb
);
353 if (found_start
!= start
) {
357 if (eb
->first_page
!= page
) {
361 if (!PageUptodate(page
)) {
365 found_level
= btrfs_header_level(eb
);
367 csum_tree_block(root
, eb
, 0);
369 free_extent_buffer(eb
);
374 static int check_tree_block_fsid(struct btrfs_root
*root
,
375 struct extent_buffer
*eb
)
377 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
378 u8 fsid
[BTRFS_UUID_SIZE
];
381 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
384 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
388 fs_devices
= fs_devices
->seed
;
393 #ifdef CONFIG_DEBUG_LOCK_ALLOC
394 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
396 lockdep_set_class_and_name(&eb
->lock
,
397 &btrfs_eb_class
[level
],
398 btrfs_eb_name
[level
]);
402 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
403 struct extent_state
*state
)
405 struct extent_io_tree
*tree
;
409 struct extent_buffer
*eb
;
410 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
413 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
414 if (page
->private == EXTENT_PAGE_PRIVATE
)
419 len
= page
->private >> 2;
422 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
424 found_start
= btrfs_header_bytenr(eb
);
425 if (found_start
!= start
) {
426 if (printk_ratelimit()) {
427 printk(KERN_INFO
"btrfs bad tree block start "
429 (unsigned long long)found_start
,
430 (unsigned long long)eb
->start
);
435 if (eb
->first_page
!= page
) {
436 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
437 eb
->first_page
->index
, page
->index
);
442 if (check_tree_block_fsid(root
, eb
)) {
443 if (printk_ratelimit()) {
444 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
445 (unsigned long long)eb
->start
);
450 found_level
= btrfs_header_level(eb
);
452 btrfs_set_buffer_lockdep_class(eb
, found_level
);
454 ret
= csum_tree_block(root
, eb
, 1);
458 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
459 end
= eb
->start
+ end
- 1;
461 free_extent_buffer(eb
);
466 static void end_workqueue_bio(struct bio
*bio
, int err
)
468 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
469 struct btrfs_fs_info
*fs_info
;
471 fs_info
= end_io_wq
->info
;
472 end_io_wq
->error
= err
;
473 end_io_wq
->work
.func
= end_workqueue_fn
;
474 end_io_wq
->work
.flags
= 0;
476 if (bio
->bi_rw
& (1 << BIO_RW
)) {
477 if (end_io_wq
->metadata
)
478 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
481 btrfs_queue_worker(&fs_info
->endio_write_workers
,
484 if (end_io_wq
->metadata
)
485 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
488 btrfs_queue_worker(&fs_info
->endio_workers
,
493 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
496 struct end_io_wq
*end_io_wq
;
497 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
501 end_io_wq
->private = bio
->bi_private
;
502 end_io_wq
->end_io
= bio
->bi_end_io
;
503 end_io_wq
->info
= info
;
504 end_io_wq
->error
= 0;
505 end_io_wq
->bio
= bio
;
506 end_io_wq
->metadata
= metadata
;
508 bio
->bi_private
= end_io_wq
;
509 bio
->bi_end_io
= end_workqueue_bio
;
513 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
515 unsigned long limit
= min_t(unsigned long,
516 info
->workers
.max_workers
,
517 info
->fs_devices
->open_devices
);
521 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
523 return atomic_read(&info
->nr_async_bios
) >
524 btrfs_async_submit_limit(info
);
527 static void run_one_async_start(struct btrfs_work
*work
)
529 struct btrfs_fs_info
*fs_info
;
530 struct async_submit_bio
*async
;
532 async
= container_of(work
, struct async_submit_bio
, work
);
533 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
534 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
535 async
->mirror_num
, async
->bio_flags
);
538 static void run_one_async_done(struct btrfs_work
*work
)
540 struct btrfs_fs_info
*fs_info
;
541 struct async_submit_bio
*async
;
544 async
= container_of(work
, struct async_submit_bio
, work
);
545 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
547 limit
= btrfs_async_submit_limit(fs_info
);
548 limit
= limit
* 2 / 3;
550 atomic_dec(&fs_info
->nr_async_submits
);
552 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
553 waitqueue_active(&fs_info
->async_submit_wait
))
554 wake_up(&fs_info
->async_submit_wait
);
556 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
557 async
->mirror_num
, async
->bio_flags
);
560 static void run_one_async_free(struct btrfs_work
*work
)
562 struct async_submit_bio
*async
;
564 async
= container_of(work
, struct async_submit_bio
, work
);
568 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
569 int rw
, struct bio
*bio
, int mirror_num
,
570 unsigned long bio_flags
,
571 extent_submit_bio_hook_t
*submit_bio_start
,
572 extent_submit_bio_hook_t
*submit_bio_done
)
574 struct async_submit_bio
*async
;
576 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
580 async
->inode
= inode
;
583 async
->mirror_num
= mirror_num
;
584 async
->submit_bio_start
= submit_bio_start
;
585 async
->submit_bio_done
= submit_bio_done
;
587 async
->work
.func
= run_one_async_start
;
588 async
->work
.ordered_func
= run_one_async_done
;
589 async
->work
.ordered_free
= run_one_async_free
;
591 async
->work
.flags
= 0;
592 async
->bio_flags
= bio_flags
;
594 atomic_inc(&fs_info
->nr_async_submits
);
596 if (rw
& (1 << BIO_RW_SYNCIO
))
597 btrfs_set_work_high_prio(&async
->work
);
599 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
601 while (atomic_read(&fs_info
->async_submit_draining
) &&
602 atomic_read(&fs_info
->nr_async_submits
)) {
603 wait_event(fs_info
->async_submit_wait
,
604 (atomic_read(&fs_info
->nr_async_submits
) == 0));
610 static int btree_csum_one_bio(struct bio
*bio
)
612 struct bio_vec
*bvec
= bio
->bi_io_vec
;
614 struct btrfs_root
*root
;
616 WARN_ON(bio
->bi_vcnt
<= 0);
617 while (bio_index
< bio
->bi_vcnt
) {
618 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
619 csum_dirty_buffer(root
, bvec
->bv_page
);
626 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
627 struct bio
*bio
, int mirror_num
,
628 unsigned long bio_flags
)
631 * when we're called for a write, we're already in the async
632 * submission context. Just jump into btrfs_map_bio
634 btree_csum_one_bio(bio
);
638 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
639 int mirror_num
, unsigned long bio_flags
)
642 * when we're called for a write, we're already in the async
643 * submission context. Just jump into btrfs_map_bio
645 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
648 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
649 int mirror_num
, unsigned long bio_flags
)
653 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
657 if (!(rw
& (1 << BIO_RW
))) {
659 * called for a read, do the setup so that checksum validation
660 * can happen in the async kernel threads
662 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
667 * kthread helpers are used to submit writes so that checksumming
668 * can happen in parallel across all CPUs
670 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
671 inode
, rw
, bio
, mirror_num
, 0,
672 __btree_submit_bio_start
,
673 __btree_submit_bio_done
);
676 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
678 struct extent_io_tree
*tree
;
679 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
680 struct extent_buffer
*eb
;
683 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
684 if (!(current
->flags
& PF_MEMALLOC
)) {
685 return extent_write_full_page(tree
, page
,
686 btree_get_extent
, wbc
);
689 redirty_page_for_writepage(wbc
, page
);
690 eb
= btrfs_find_tree_block(root
, page_offset(page
),
694 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
696 spin_lock(&root
->fs_info
->delalloc_lock
);
697 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
698 spin_unlock(&root
->fs_info
->delalloc_lock
);
700 free_extent_buffer(eb
);
706 static int btree_writepages(struct address_space
*mapping
,
707 struct writeback_control
*wbc
)
709 struct extent_io_tree
*tree
;
710 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
711 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
712 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
714 unsigned long thresh
= 32 * 1024 * 1024;
716 if (wbc
->for_kupdate
)
719 /* this is a bit racy, but that's ok */
720 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
721 if (num_dirty
< thresh
)
724 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
727 static int btree_readpage(struct file
*file
, struct page
*page
)
729 struct extent_io_tree
*tree
;
730 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
731 return extent_read_full_page(tree
, page
, btree_get_extent
);
734 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
736 struct extent_io_tree
*tree
;
737 struct extent_map_tree
*map
;
740 if (PageWriteback(page
) || PageDirty(page
))
743 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
744 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
746 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
750 ret
= try_release_extent_buffer(tree
, page
);
752 ClearPagePrivate(page
);
753 set_page_private(page
, 0);
754 page_cache_release(page
);
760 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
762 struct extent_io_tree
*tree
;
763 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
764 extent_invalidatepage(tree
, page
, offset
);
765 btree_releasepage(page
, GFP_NOFS
);
766 if (PagePrivate(page
)) {
767 printk(KERN_WARNING
"btrfs warning page private not zero "
768 "on page %llu\n", (unsigned long long)page_offset(page
));
769 ClearPagePrivate(page
);
770 set_page_private(page
, 0);
771 page_cache_release(page
);
775 static struct address_space_operations btree_aops
= {
776 .readpage
= btree_readpage
,
777 .writepage
= btree_writepage
,
778 .writepages
= btree_writepages
,
779 .releasepage
= btree_releasepage
,
780 .invalidatepage
= btree_invalidatepage
,
781 .sync_page
= block_sync_page
,
784 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
787 struct extent_buffer
*buf
= NULL
;
788 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
791 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
794 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
795 buf
, 0, 0, btree_get_extent
, 0);
796 free_extent_buffer(buf
);
800 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
801 u64 bytenr
, u32 blocksize
)
803 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
804 struct extent_buffer
*eb
;
805 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
806 bytenr
, blocksize
, GFP_NOFS
);
810 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
811 u64 bytenr
, u32 blocksize
)
813 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
814 struct extent_buffer
*eb
;
816 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
817 bytenr
, blocksize
, NULL
, GFP_NOFS
);
822 int btrfs_write_tree_block(struct extent_buffer
*buf
)
824 return btrfs_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
825 buf
->start
+ buf
->len
- 1, WB_SYNC_ALL
);
828 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
830 return btrfs_wait_on_page_writeback_range(buf
->first_page
->mapping
,
831 buf
->start
, buf
->start
+ buf
->len
- 1);
834 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
835 u32 blocksize
, u64 parent_transid
)
837 struct extent_buffer
*buf
= NULL
;
838 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
839 struct extent_io_tree
*io_tree
;
842 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
844 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
848 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
851 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
856 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
857 struct extent_buffer
*buf
)
859 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
860 if (btrfs_header_generation(buf
) ==
861 root
->fs_info
->running_transaction
->transid
) {
862 btrfs_assert_tree_locked(buf
);
864 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
865 spin_lock(&root
->fs_info
->delalloc_lock
);
866 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
867 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
870 spin_unlock(&root
->fs_info
->delalloc_lock
);
873 /* ugh, clear_extent_buffer_dirty needs to lock the page */
874 btrfs_set_lock_blocking(buf
);
875 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
881 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
882 u32 stripesize
, struct btrfs_root
*root
,
883 struct btrfs_fs_info
*fs_info
,
887 root
->commit_root
= NULL
;
888 root
->sectorsize
= sectorsize
;
889 root
->nodesize
= nodesize
;
890 root
->leafsize
= leafsize
;
891 root
->stripesize
= stripesize
;
893 root
->track_dirty
= 0;
895 root
->fs_info
= fs_info
;
896 root
->objectid
= objectid
;
897 root
->last_trans
= 0;
898 root
->highest_inode
= 0;
899 root
->last_inode_alloc
= 0;
902 root
->inode_tree
.rb_node
= NULL
;
904 INIT_LIST_HEAD(&root
->dirty_list
);
905 INIT_LIST_HEAD(&root
->orphan_list
);
906 INIT_LIST_HEAD(&root
->root_list
);
907 spin_lock_init(&root
->node_lock
);
908 spin_lock_init(&root
->list_lock
);
909 spin_lock_init(&root
->inode_lock
);
910 mutex_init(&root
->objectid_mutex
);
911 mutex_init(&root
->log_mutex
);
912 init_waitqueue_head(&root
->log_writer_wait
);
913 init_waitqueue_head(&root
->log_commit_wait
[0]);
914 init_waitqueue_head(&root
->log_commit_wait
[1]);
915 atomic_set(&root
->log_commit
[0], 0);
916 atomic_set(&root
->log_commit
[1], 0);
917 atomic_set(&root
->log_writers
, 0);
919 root
->log_transid
= 0;
920 extent_io_tree_init(&root
->dirty_log_pages
,
921 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
923 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
924 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
925 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
926 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
927 root
->defrag_trans_start
= fs_info
->generation
;
928 init_completion(&root
->kobj_unregister
);
929 root
->defrag_running
= 0;
930 root
->defrag_level
= 0;
931 root
->root_key
.objectid
= objectid
;
932 root
->anon_super
.s_root
= NULL
;
933 root
->anon_super
.s_dev
= 0;
934 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
935 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
936 init_rwsem(&root
->anon_super
.s_umount
);
941 static int find_and_setup_root(struct btrfs_root
*tree_root
,
942 struct btrfs_fs_info
*fs_info
,
944 struct btrfs_root
*root
)
950 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
951 tree_root
->sectorsize
, tree_root
->stripesize
,
952 root
, fs_info
, objectid
);
953 ret
= btrfs_find_last_root(tree_root
, objectid
,
954 &root
->root_item
, &root
->root_key
);
957 generation
= btrfs_root_generation(&root
->root_item
);
958 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
959 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
960 blocksize
, generation
);
961 root
->commit_root
= btrfs_root_node(root
);
966 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
967 struct btrfs_fs_info
*fs_info
)
969 struct extent_buffer
*eb
;
970 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
979 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
980 0, &start
, &end
, EXTENT_DIRTY
);
984 clear_extent_dirty(&log_root_tree
->dirty_log_pages
,
985 start
, end
, GFP_NOFS
);
987 eb
= fs_info
->log_root_tree
->node
;
989 WARN_ON(btrfs_header_level(eb
) != 0);
990 WARN_ON(btrfs_header_nritems(eb
) != 0);
992 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
996 free_extent_buffer(eb
);
997 kfree(fs_info
->log_root_tree
);
998 fs_info
->log_root_tree
= NULL
;
1002 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1003 struct btrfs_fs_info
*fs_info
)
1005 struct btrfs_root
*root
;
1006 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1007 struct extent_buffer
*leaf
;
1009 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1011 return ERR_PTR(-ENOMEM
);
1013 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1014 tree_root
->sectorsize
, tree_root
->stripesize
,
1015 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1017 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1018 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1019 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1021 * log trees do not get reference counted because they go away
1022 * before a real commit is actually done. They do store pointers
1023 * to file data extents, and those reference counts still get
1024 * updated (along with back refs to the log tree).
1028 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1029 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1032 return ERR_CAST(leaf
);
1035 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1036 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1037 btrfs_set_header_generation(leaf
, trans
->transid
);
1038 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1039 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1042 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1043 (unsigned long)btrfs_header_fsid(root
->node
),
1045 btrfs_mark_buffer_dirty(root
->node
);
1046 btrfs_tree_unlock(root
->node
);
1050 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1051 struct btrfs_fs_info
*fs_info
)
1053 struct btrfs_root
*log_root
;
1055 log_root
= alloc_log_tree(trans
, fs_info
);
1056 if (IS_ERR(log_root
))
1057 return PTR_ERR(log_root
);
1058 WARN_ON(fs_info
->log_root_tree
);
1059 fs_info
->log_root_tree
= log_root
;
1063 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1064 struct btrfs_root
*root
)
1066 struct btrfs_root
*log_root
;
1067 struct btrfs_inode_item
*inode_item
;
1069 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1070 if (IS_ERR(log_root
))
1071 return PTR_ERR(log_root
);
1073 log_root
->last_trans
= trans
->transid
;
1074 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1076 inode_item
= &log_root
->root_item
.inode
;
1077 inode_item
->generation
= cpu_to_le64(1);
1078 inode_item
->size
= cpu_to_le64(3);
1079 inode_item
->nlink
= cpu_to_le32(1);
1080 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1081 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1083 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1085 WARN_ON(root
->log_root
);
1086 root
->log_root
= log_root
;
1087 root
->log_transid
= 0;
1091 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1092 struct btrfs_key
*location
)
1094 struct btrfs_root
*root
;
1095 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1096 struct btrfs_path
*path
;
1097 struct extent_buffer
*l
;
1103 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1105 return ERR_PTR(-ENOMEM
);
1106 if (location
->offset
== (u64
)-1) {
1107 ret
= find_and_setup_root(tree_root
, fs_info
,
1108 location
->objectid
, root
);
1111 return ERR_PTR(ret
);
1116 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1117 tree_root
->sectorsize
, tree_root
->stripesize
,
1118 root
, fs_info
, location
->objectid
);
1120 path
= btrfs_alloc_path();
1122 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1129 read_extent_buffer(l
, &root
->root_item
,
1130 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1131 sizeof(root
->root_item
));
1132 memcpy(&root
->root_key
, location
, sizeof(*location
));
1135 btrfs_release_path(root
, path
);
1136 btrfs_free_path(path
);
1139 return ERR_PTR(ret
);
1141 generation
= btrfs_root_generation(&root
->root_item
);
1142 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1143 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1144 blocksize
, generation
);
1145 root
->commit_root
= btrfs_root_node(root
);
1146 BUG_ON(!root
->node
);
1148 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1150 ret
= btrfs_find_highest_inode(root
, &highest_inode
);
1152 root
->highest_inode
= highest_inode
;
1153 root
->last_inode_alloc
= highest_inode
;
1159 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1162 struct btrfs_root
*root
;
1164 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1165 return fs_info
->tree_root
;
1166 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1167 return fs_info
->extent_root
;
1169 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1170 (unsigned long)root_objectid
);
1174 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1175 struct btrfs_key
*location
)
1177 struct btrfs_root
*root
;
1180 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1181 return fs_info
->tree_root
;
1182 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1183 return fs_info
->extent_root
;
1184 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1185 return fs_info
->chunk_root
;
1186 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1187 return fs_info
->dev_root
;
1188 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1189 return fs_info
->csum_root
;
1191 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1192 (unsigned long)location
->objectid
);
1196 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1200 set_anon_super(&root
->anon_super
, NULL
);
1202 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1203 (unsigned long)root
->root_key
.objectid
,
1206 free_extent_buffer(root
->node
);
1208 return ERR_PTR(ret
);
1210 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
1211 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1212 root
->root_key
.objectid
);
1214 btrfs_orphan_cleanup(root
);
1219 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1220 struct btrfs_key
*location
,
1221 const char *name
, int namelen
)
1223 struct btrfs_root
*root
;
1226 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1233 ret
= btrfs_set_root_name(root
, name
, namelen
);
1235 free_extent_buffer(root
->node
);
1237 return ERR_PTR(ret
);
1240 ret
= btrfs_sysfs_add_root(root
);
1242 free_extent_buffer(root
->node
);
1245 return ERR_PTR(ret
);
1252 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1254 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1256 struct btrfs_device
*device
;
1257 struct backing_dev_info
*bdi
;
1259 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1262 bdi
= blk_get_backing_dev_info(device
->bdev
);
1263 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1272 * this unplugs every device on the box, and it is only used when page
1275 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1277 struct btrfs_device
*device
;
1278 struct btrfs_fs_info
*info
;
1280 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1281 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1285 bdi
= blk_get_backing_dev_info(device
->bdev
);
1286 if (bdi
->unplug_io_fn
)
1287 bdi
->unplug_io_fn(bdi
, page
);
1291 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1293 struct inode
*inode
;
1294 struct extent_map_tree
*em_tree
;
1295 struct extent_map
*em
;
1296 struct address_space
*mapping
;
1299 /* the generic O_DIRECT read code does this */
1301 __unplug_io_fn(bdi
, page
);
1306 * page->mapping may change at any time. Get a consistent copy
1307 * and use that for everything below
1310 mapping
= page
->mapping
;
1314 inode
= mapping
->host
;
1317 * don't do the expensive searching for a small number of
1320 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1321 __unplug_io_fn(bdi
, page
);
1325 offset
= page_offset(page
);
1327 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1328 spin_lock(&em_tree
->lock
);
1329 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1330 spin_unlock(&em_tree
->lock
);
1332 __unplug_io_fn(bdi
, page
);
1336 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1337 free_extent_map(em
);
1338 __unplug_io_fn(bdi
, page
);
1341 offset
= offset
- em
->start
;
1342 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1343 em
->block_start
+ offset
, page
);
1344 free_extent_map(em
);
1348 * If this fails, caller must call bdi_destroy() to get rid of the
1351 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1355 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1356 err
= bdi_init(bdi
);
1360 err
= bdi_register(bdi
, NULL
, "btrfs-%d",
1361 atomic_inc_return(&btrfs_bdi_num
));
1365 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1366 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1367 bdi
->unplug_io_data
= info
;
1368 bdi
->congested_fn
= btrfs_congested_fn
;
1369 bdi
->congested_data
= info
;
1373 static int bio_ready_for_csum(struct bio
*bio
)
1379 struct extent_io_tree
*io_tree
= NULL
;
1380 struct btrfs_fs_info
*info
= NULL
;
1381 struct bio_vec
*bvec
;
1385 bio_for_each_segment(bvec
, bio
, i
) {
1386 page
= bvec
->bv_page
;
1387 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1388 length
+= bvec
->bv_len
;
1391 if (!page
->private) {
1392 length
+= bvec
->bv_len
;
1395 length
= bvec
->bv_len
;
1396 buf_len
= page
->private >> 2;
1397 start
= page_offset(page
) + bvec
->bv_offset
;
1398 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1399 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1401 /* are we fully contained in this bio? */
1402 if (buf_len
<= length
)
1405 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1406 start
+ buf_len
- 1);
1411 * called by the kthread helper functions to finally call the bio end_io
1412 * functions. This is where read checksum verification actually happens
1414 static void end_workqueue_fn(struct btrfs_work
*work
)
1417 struct end_io_wq
*end_io_wq
;
1418 struct btrfs_fs_info
*fs_info
;
1421 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1422 bio
= end_io_wq
->bio
;
1423 fs_info
= end_io_wq
->info
;
1425 /* metadata bio reads are special because the whole tree block must
1426 * be checksummed at once. This makes sure the entire block is in
1427 * ram and up to date before trying to verify things. For
1428 * blocksize <= pagesize, it is basically a noop
1430 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1431 !bio_ready_for_csum(bio
)) {
1432 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1436 error
= end_io_wq
->error
;
1437 bio
->bi_private
= end_io_wq
->private;
1438 bio
->bi_end_io
= end_io_wq
->end_io
;
1440 bio_endio(bio
, error
);
1443 static int cleaner_kthread(void *arg
)
1445 struct btrfs_root
*root
= arg
;
1449 if (root
->fs_info
->closing
)
1452 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1453 mutex_lock(&root
->fs_info
->cleaner_mutex
);
1454 btrfs_clean_old_snapshots(root
);
1455 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1457 if (freezing(current
)) {
1461 if (root
->fs_info
->closing
)
1463 set_current_state(TASK_INTERRUPTIBLE
);
1465 __set_current_state(TASK_RUNNING
);
1467 } while (!kthread_should_stop());
1471 static int transaction_kthread(void *arg
)
1473 struct btrfs_root
*root
= arg
;
1474 struct btrfs_trans_handle
*trans
;
1475 struct btrfs_transaction
*cur
;
1477 unsigned long delay
;
1482 if (root
->fs_info
->closing
)
1486 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1487 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1489 mutex_lock(&root
->fs_info
->trans_mutex
);
1490 cur
= root
->fs_info
->running_transaction
;
1492 mutex_unlock(&root
->fs_info
->trans_mutex
);
1496 now
= get_seconds();
1497 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1498 mutex_unlock(&root
->fs_info
->trans_mutex
);
1502 mutex_unlock(&root
->fs_info
->trans_mutex
);
1503 trans
= btrfs_start_transaction(root
, 1);
1504 ret
= btrfs_commit_transaction(trans
, root
);
1507 wake_up_process(root
->fs_info
->cleaner_kthread
);
1508 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1510 if (freezing(current
)) {
1513 if (root
->fs_info
->closing
)
1515 set_current_state(TASK_INTERRUPTIBLE
);
1516 schedule_timeout(delay
);
1517 __set_current_state(TASK_RUNNING
);
1519 } while (!kthread_should_stop());
1523 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1524 struct btrfs_fs_devices
*fs_devices
,
1534 struct btrfs_key location
;
1535 struct buffer_head
*bh
;
1536 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1538 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1540 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1542 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1544 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1546 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1548 struct btrfs_root
*log_tree_root
;
1553 struct btrfs_super_block
*disk_super
;
1555 if (!extent_root
|| !tree_root
|| !fs_info
||
1556 !chunk_root
|| !dev_root
|| !csum_root
) {
1560 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_NOFS
);
1561 INIT_LIST_HEAD(&fs_info
->trans_list
);
1562 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1563 INIT_LIST_HEAD(&fs_info
->hashers
);
1564 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1565 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1566 spin_lock_init(&fs_info
->delalloc_lock
);
1567 spin_lock_init(&fs_info
->new_trans_lock
);
1568 spin_lock_init(&fs_info
->ref_cache_lock
);
1570 init_completion(&fs_info
->kobj_unregister
);
1571 fs_info
->tree_root
= tree_root
;
1572 fs_info
->extent_root
= extent_root
;
1573 fs_info
->csum_root
= csum_root
;
1574 fs_info
->chunk_root
= chunk_root
;
1575 fs_info
->dev_root
= dev_root
;
1576 fs_info
->fs_devices
= fs_devices
;
1577 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1578 INIT_LIST_HEAD(&fs_info
->space_info
);
1579 btrfs_mapping_init(&fs_info
->mapping_tree
);
1580 atomic_set(&fs_info
->nr_async_submits
, 0);
1581 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1582 atomic_set(&fs_info
->async_submit_draining
, 0);
1583 atomic_set(&fs_info
->nr_async_bios
, 0);
1585 fs_info
->max_extent
= (u64
)-1;
1586 fs_info
->max_inline
= 8192 * 1024;
1587 if (setup_bdi(fs_info
, &fs_info
->bdi
))
1589 fs_info
->btree_inode
= new_inode(sb
);
1590 fs_info
->btree_inode
->i_ino
= 1;
1591 fs_info
->btree_inode
->i_nlink
= 1;
1592 fs_info
->metadata_ratio
= 8;
1594 fs_info
->thread_pool_size
= min_t(unsigned long,
1595 num_online_cpus() + 2, 8);
1597 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1598 spin_lock_init(&fs_info
->ordered_extent_lock
);
1600 sb
->s_blocksize
= 4096;
1601 sb
->s_blocksize_bits
= blksize_bits(4096);
1604 * we set the i_size on the btree inode to the max possible int.
1605 * the real end of the address space is determined by all of
1606 * the devices in the system
1608 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1609 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1610 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1612 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1613 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1614 fs_info
->btree_inode
->i_mapping
,
1616 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1619 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1621 spin_lock_init(&fs_info
->block_group_cache_lock
);
1622 fs_info
->block_group_cache_tree
.rb_node
= NULL
;
1624 extent_io_tree_init(&fs_info
->pinned_extents
,
1625 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1626 fs_info
->do_barriers
= 1;
1628 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1629 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1630 sizeof(struct btrfs_key
));
1631 insert_inode_hash(fs_info
->btree_inode
);
1633 mutex_init(&fs_info
->trans_mutex
);
1634 mutex_init(&fs_info
->ordered_operations_mutex
);
1635 mutex_init(&fs_info
->tree_log_mutex
);
1636 mutex_init(&fs_info
->drop_mutex
);
1637 mutex_init(&fs_info
->chunk_mutex
);
1638 mutex_init(&fs_info
->transaction_kthread_mutex
);
1639 mutex_init(&fs_info
->cleaner_mutex
);
1640 mutex_init(&fs_info
->volume_mutex
);
1641 mutex_init(&fs_info
->tree_reloc_mutex
);
1642 init_rwsem(&fs_info
->extent_commit_sem
);
1644 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1645 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1647 init_waitqueue_head(&fs_info
->transaction_throttle
);
1648 init_waitqueue_head(&fs_info
->transaction_wait
);
1649 init_waitqueue_head(&fs_info
->async_submit_wait
);
1651 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1652 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1655 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1659 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1660 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1661 sizeof(fs_info
->super_for_commit
));
1664 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1666 disk_super
= &fs_info
->super_copy
;
1667 if (!btrfs_super_root(disk_super
))
1670 ret
= btrfs_parse_options(tree_root
, options
);
1676 features
= btrfs_super_incompat_flags(disk_super
) &
1677 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1679 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1680 "unsupported optional features (%Lx).\n",
1681 (unsigned long long)features
);
1686 features
= btrfs_super_incompat_flags(disk_super
);
1687 if (!(features
& BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
)) {
1688 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1689 btrfs_set_super_incompat_flags(disk_super
, features
);
1692 features
= btrfs_super_compat_ro_flags(disk_super
) &
1693 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1694 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1695 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1696 "unsupported option features (%Lx).\n",
1697 (unsigned long long)features
);
1703 * we need to start all the end_io workers up front because the
1704 * queue work function gets called at interrupt time, and so it
1705 * cannot dynamically grow.
1707 btrfs_init_workers(&fs_info
->workers
, "worker",
1708 fs_info
->thread_pool_size
);
1710 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1711 fs_info
->thread_pool_size
);
1713 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1714 min_t(u64
, fs_devices
->num_devices
,
1715 fs_info
->thread_pool_size
));
1717 /* a higher idle thresh on the submit workers makes it much more
1718 * likely that bios will be send down in a sane order to the
1721 fs_info
->submit_workers
.idle_thresh
= 64;
1723 fs_info
->workers
.idle_thresh
= 16;
1724 fs_info
->workers
.ordered
= 1;
1726 fs_info
->delalloc_workers
.idle_thresh
= 2;
1727 fs_info
->delalloc_workers
.ordered
= 1;
1729 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1);
1730 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1731 fs_info
->thread_pool_size
);
1732 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1733 fs_info
->thread_pool_size
);
1734 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1735 "endio-meta-write", fs_info
->thread_pool_size
);
1736 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1737 fs_info
->thread_pool_size
);
1740 * endios are largely parallel and should have a very
1743 fs_info
->endio_workers
.idle_thresh
= 4;
1744 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1746 fs_info
->endio_write_workers
.idle_thresh
= 64;
1747 fs_info
->endio_meta_write_workers
.idle_thresh
= 64;
1749 btrfs_start_workers(&fs_info
->workers
, 1);
1750 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1751 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1752 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1753 btrfs_start_workers(&fs_info
->endio_workers
, fs_info
->thread_pool_size
);
1754 btrfs_start_workers(&fs_info
->endio_meta_workers
,
1755 fs_info
->thread_pool_size
);
1756 btrfs_start_workers(&fs_info
->endio_meta_write_workers
,
1757 fs_info
->thread_pool_size
);
1758 btrfs_start_workers(&fs_info
->endio_write_workers
,
1759 fs_info
->thread_pool_size
);
1761 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1762 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1763 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1765 nodesize
= btrfs_super_nodesize(disk_super
);
1766 leafsize
= btrfs_super_leafsize(disk_super
);
1767 sectorsize
= btrfs_super_sectorsize(disk_super
);
1768 stripesize
= btrfs_super_stripesize(disk_super
);
1769 tree_root
->nodesize
= nodesize
;
1770 tree_root
->leafsize
= leafsize
;
1771 tree_root
->sectorsize
= sectorsize
;
1772 tree_root
->stripesize
= stripesize
;
1774 sb
->s_blocksize
= sectorsize
;
1775 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1777 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1778 sizeof(disk_super
->magic
))) {
1779 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1780 goto fail_sb_buffer
;
1783 mutex_lock(&fs_info
->chunk_mutex
);
1784 ret
= btrfs_read_sys_array(tree_root
);
1785 mutex_unlock(&fs_info
->chunk_mutex
);
1787 printk(KERN_WARNING
"btrfs: failed to read the system "
1788 "array on %s\n", sb
->s_id
);
1789 goto fail_sb_buffer
;
1792 blocksize
= btrfs_level_size(tree_root
,
1793 btrfs_super_chunk_root_level(disk_super
));
1794 generation
= btrfs_super_chunk_root_generation(disk_super
);
1796 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1797 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1799 chunk_root
->node
= read_tree_block(chunk_root
,
1800 btrfs_super_chunk_root(disk_super
),
1801 blocksize
, generation
);
1802 BUG_ON(!chunk_root
->node
);
1803 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1804 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1806 goto fail_chunk_root
;
1808 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1809 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1811 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1812 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1815 mutex_lock(&fs_info
->chunk_mutex
);
1816 ret
= btrfs_read_chunk_tree(chunk_root
);
1817 mutex_unlock(&fs_info
->chunk_mutex
);
1819 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1821 goto fail_chunk_root
;
1824 btrfs_close_extra_devices(fs_devices
);
1826 blocksize
= btrfs_level_size(tree_root
,
1827 btrfs_super_root_level(disk_super
));
1828 generation
= btrfs_super_generation(disk_super
);
1830 tree_root
->node
= read_tree_block(tree_root
,
1831 btrfs_super_root(disk_super
),
1832 blocksize
, generation
);
1833 if (!tree_root
->node
)
1834 goto fail_chunk_root
;
1835 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1836 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1838 goto fail_tree_root
;
1840 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1841 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1843 ret
= find_and_setup_root(tree_root
, fs_info
,
1844 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1846 goto fail_tree_root
;
1847 extent_root
->track_dirty
= 1;
1849 ret
= find_and_setup_root(tree_root
, fs_info
,
1850 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1852 goto fail_extent_root
;
1853 dev_root
->track_dirty
= 1;
1855 ret
= find_and_setup_root(tree_root
, fs_info
,
1856 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1860 csum_root
->track_dirty
= 1;
1862 btrfs_read_block_groups(extent_root
);
1864 fs_info
->generation
= generation
;
1865 fs_info
->last_trans_committed
= generation
;
1866 fs_info
->data_alloc_profile
= (u64
)-1;
1867 fs_info
->metadata_alloc_profile
= (u64
)-1;
1868 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1869 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1871 if (IS_ERR(fs_info
->cleaner_kthread
))
1872 goto fail_csum_root
;
1874 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1876 "btrfs-transaction");
1877 if (IS_ERR(fs_info
->transaction_kthread
))
1880 if (!btrfs_test_opt(tree_root
, SSD
) &&
1881 !btrfs_test_opt(tree_root
, NOSSD
) &&
1882 !fs_info
->fs_devices
->rotating
) {
1883 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1885 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1888 if (btrfs_super_log_root(disk_super
) != 0) {
1889 u64 bytenr
= btrfs_super_log_root(disk_super
);
1891 if (fs_devices
->rw_devices
== 0) {
1892 printk(KERN_WARNING
"Btrfs log replay required "
1895 goto fail_trans_kthread
;
1898 btrfs_level_size(tree_root
,
1899 btrfs_super_log_root_level(disk_super
));
1901 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1904 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1905 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1907 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1910 ret
= btrfs_recover_log_trees(log_tree_root
);
1913 if (sb
->s_flags
& MS_RDONLY
) {
1914 ret
= btrfs_commit_super(tree_root
);
1919 if (!(sb
->s_flags
& MS_RDONLY
)) {
1920 ret
= btrfs_recover_relocation(tree_root
);
1924 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1925 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1926 location
.offset
= (u64
)-1;
1928 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1929 if (!fs_info
->fs_root
)
1930 goto fail_trans_kthread
;
1935 kthread_stop(fs_info
->transaction_kthread
);
1937 kthread_stop(fs_info
->cleaner_kthread
);
1940 * make sure we're done with the btree inode before we stop our
1943 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
1944 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1947 free_extent_buffer(csum_root
->node
);
1948 free_extent_buffer(csum_root
->commit_root
);
1950 free_extent_buffer(dev_root
->node
);
1951 free_extent_buffer(dev_root
->commit_root
);
1953 free_extent_buffer(extent_root
->node
);
1954 free_extent_buffer(extent_root
->commit_root
);
1956 free_extent_buffer(tree_root
->node
);
1957 free_extent_buffer(tree_root
->commit_root
);
1959 free_extent_buffer(chunk_root
->node
);
1960 free_extent_buffer(chunk_root
->commit_root
);
1962 btrfs_stop_workers(&fs_info
->fixup_workers
);
1963 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1964 btrfs_stop_workers(&fs_info
->workers
);
1965 btrfs_stop_workers(&fs_info
->endio_workers
);
1966 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1967 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1968 btrfs_stop_workers(&fs_info
->endio_write_workers
);
1969 btrfs_stop_workers(&fs_info
->submit_workers
);
1971 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1972 iput(fs_info
->btree_inode
);
1974 btrfs_close_devices(fs_info
->fs_devices
);
1975 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
1977 bdi_destroy(&fs_info
->bdi
);
1985 return ERR_PTR(err
);
1988 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
1990 char b
[BDEVNAME_SIZE
];
1993 set_buffer_uptodate(bh
);
1995 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
1996 printk(KERN_WARNING
"lost page write due to "
1997 "I/O error on %s\n",
1998 bdevname(bh
->b_bdev
, b
));
2000 /* note, we dont' set_buffer_write_io_error because we have
2001 * our own ways of dealing with the IO errors
2003 clear_buffer_uptodate(bh
);
2009 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2011 struct buffer_head
*bh
;
2012 struct buffer_head
*latest
= NULL
;
2013 struct btrfs_super_block
*super
;
2018 /* we would like to check all the supers, but that would make
2019 * a btrfs mount succeed after a mkfs from a different FS.
2020 * So, we need to add a special mount option to scan for
2021 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2023 for (i
= 0; i
< 1; i
++) {
2024 bytenr
= btrfs_sb_offset(i
);
2025 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2027 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2031 super
= (struct btrfs_super_block
*)bh
->b_data
;
2032 if (btrfs_super_bytenr(super
) != bytenr
||
2033 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2034 sizeof(super
->magic
))) {
2039 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2042 transid
= btrfs_super_generation(super
);
2051 * this should be called twice, once with wait == 0 and
2052 * once with wait == 1. When wait == 0 is done, all the buffer heads
2053 * we write are pinned.
2055 * They are released when wait == 1 is done.
2056 * max_mirrors must be the same for both runs, and it indicates how
2057 * many supers on this one device should be written.
2059 * max_mirrors == 0 means to write them all.
2061 static int write_dev_supers(struct btrfs_device
*device
,
2062 struct btrfs_super_block
*sb
,
2063 int do_barriers
, int wait
, int max_mirrors
)
2065 struct buffer_head
*bh
;
2071 int last_barrier
= 0;
2073 if (max_mirrors
== 0)
2074 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2076 /* make sure only the last submit_bh does a barrier */
2078 for (i
= 0; i
< max_mirrors
; i
++) {
2079 bytenr
= btrfs_sb_offset(i
);
2080 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2081 device
->total_bytes
)
2087 for (i
= 0; i
< max_mirrors
; i
++) {
2088 bytenr
= btrfs_sb_offset(i
);
2089 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2093 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2094 BTRFS_SUPER_INFO_SIZE
);
2097 if (!buffer_uptodate(bh
))
2100 /* drop our reference */
2103 /* drop the reference from the wait == 0 run */
2107 btrfs_set_super_bytenr(sb
, bytenr
);
2110 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2111 BTRFS_CSUM_SIZE
, crc
,
2112 BTRFS_SUPER_INFO_SIZE
-
2114 btrfs_csum_final(crc
, sb
->csum
);
2117 * one reference for us, and we leave it for the
2120 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2121 BTRFS_SUPER_INFO_SIZE
);
2122 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2124 /* one reference for submit_bh */
2127 set_buffer_uptodate(bh
);
2129 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2132 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2133 ret
= submit_bh(WRITE_BARRIER
, bh
);
2134 if (ret
== -EOPNOTSUPP
) {
2135 printk("btrfs: disabling barriers on dev %s\n",
2137 set_buffer_uptodate(bh
);
2138 device
->barriers
= 0;
2139 /* one reference for submit_bh */
2142 ret
= submit_bh(WRITE_SYNC
, bh
);
2145 ret
= submit_bh(WRITE_SYNC
, bh
);
2151 return errors
< i
? 0 : -1;
2154 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2156 struct list_head
*head
;
2157 struct btrfs_device
*dev
;
2158 struct btrfs_super_block
*sb
;
2159 struct btrfs_dev_item
*dev_item
;
2163 int total_errors
= 0;
2166 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2167 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2169 sb
= &root
->fs_info
->super_for_commit
;
2170 dev_item
= &sb
->dev_item
;
2172 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2173 head
= &root
->fs_info
->fs_devices
->devices
;
2174 list_for_each_entry(dev
, head
, dev_list
) {
2179 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2182 btrfs_set_stack_device_generation(dev_item
, 0);
2183 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2184 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2185 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2186 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2187 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2188 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2189 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2190 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2191 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2193 flags
= btrfs_super_flags(sb
);
2194 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2196 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2200 if (total_errors
> max_errors
) {
2201 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2207 list_for_each_entry(dev
, head
, dev_list
) {
2210 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2213 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2217 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2218 if (total_errors
> max_errors
) {
2219 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2226 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2227 struct btrfs_root
*root
, int max_mirrors
)
2231 ret
= write_all_supers(root
, max_mirrors
);
2235 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2237 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2238 radix_tree_delete(&fs_info
->fs_roots_radix
,
2239 (unsigned long)root
->root_key
.objectid
);
2240 if (root
->anon_super
.s_dev
) {
2241 down_write(&root
->anon_super
.s_umount
);
2242 kill_anon_super(&root
->anon_super
);
2245 free_extent_buffer(root
->node
);
2246 if (root
->commit_root
)
2247 free_extent_buffer(root
->commit_root
);
2253 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2256 struct btrfs_root
*gang
[8];
2260 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2265 for (i
= 0; i
< ret
; i
++)
2266 btrfs_free_fs_root(fs_info
, gang
[i
]);
2271 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2273 u64 root_objectid
= 0;
2274 struct btrfs_root
*gang
[8];
2279 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2280 (void **)gang
, root_objectid
,
2285 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2286 for (i
= 0; i
< ret
; i
++) {
2287 root_objectid
= gang
[i
]->root_key
.objectid
;
2288 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
2291 btrfs_orphan_cleanup(gang
[i
]);
2298 int btrfs_commit_super(struct btrfs_root
*root
)
2300 struct btrfs_trans_handle
*trans
;
2303 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2304 btrfs_clean_old_snapshots(root
);
2305 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2306 trans
= btrfs_start_transaction(root
, 1);
2307 ret
= btrfs_commit_transaction(trans
, root
);
2309 /* run commit again to drop the original snapshot */
2310 trans
= btrfs_start_transaction(root
, 1);
2311 btrfs_commit_transaction(trans
, root
);
2312 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2315 ret
= write_ctree_super(NULL
, root
, 0);
2319 int close_ctree(struct btrfs_root
*root
)
2321 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2324 fs_info
->closing
= 1;
2327 kthread_stop(root
->fs_info
->transaction_kthread
);
2328 kthread_stop(root
->fs_info
->cleaner_kthread
);
2330 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2331 ret
= btrfs_commit_super(root
);
2333 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2336 fs_info
->closing
= 2;
2339 if (fs_info
->delalloc_bytes
) {
2340 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2341 (unsigned long long)fs_info
->delalloc_bytes
);
2343 if (fs_info
->total_ref_cache_size
) {
2344 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2345 (unsigned long long)fs_info
->total_ref_cache_size
);
2348 free_extent_buffer(fs_info
->extent_root
->node
);
2349 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2350 free_extent_buffer(fs_info
->tree_root
->node
);
2351 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2352 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2353 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2354 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2355 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2356 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2357 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2359 btrfs_free_block_groups(root
->fs_info
);
2360 btrfs_free_pinned_extents(root
->fs_info
);
2362 del_fs_roots(fs_info
);
2364 iput(fs_info
->btree_inode
);
2366 btrfs_stop_workers(&fs_info
->fixup_workers
);
2367 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2368 btrfs_stop_workers(&fs_info
->workers
);
2369 btrfs_stop_workers(&fs_info
->endio_workers
);
2370 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2371 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2372 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2373 btrfs_stop_workers(&fs_info
->submit_workers
);
2375 btrfs_close_devices(fs_info
->fs_devices
);
2376 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2378 bdi_destroy(&fs_info
->bdi
);
2380 kfree(fs_info
->extent_root
);
2381 kfree(fs_info
->tree_root
);
2382 kfree(fs_info
->chunk_root
);
2383 kfree(fs_info
->dev_root
);
2384 kfree(fs_info
->csum_root
);
2388 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2391 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2393 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2397 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2402 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2404 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2405 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2409 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2411 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2412 u64 transid
= btrfs_header_generation(buf
);
2413 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2416 btrfs_assert_tree_locked(buf
);
2417 if (transid
!= root
->fs_info
->generation
) {
2418 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2419 "found %llu running %llu\n",
2420 (unsigned long long)buf
->start
,
2421 (unsigned long long)transid
,
2422 (unsigned long long)root
->fs_info
->generation
);
2425 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2428 spin_lock(&root
->fs_info
->delalloc_lock
);
2429 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2430 spin_unlock(&root
->fs_info
->delalloc_lock
);
2434 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2437 * looks as though older kernels can get into trouble with
2438 * this code, they end up stuck in balance_dirty_pages forever
2441 unsigned long thresh
= 32 * 1024 * 1024;
2443 if (current
->flags
& PF_MEMALLOC
)
2446 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2448 if (num_dirty
> thresh
) {
2449 balance_dirty_pages_ratelimited_nr(
2450 root
->fs_info
->btree_inode
->i_mapping
, 1);
2455 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2457 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2459 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2461 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2465 int btree_lock_page_hook(struct page
*page
)
2467 struct inode
*inode
= page
->mapping
->host
;
2468 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2469 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2470 struct extent_buffer
*eb
;
2472 u64 bytenr
= page_offset(page
);
2474 if (page
->private == EXTENT_PAGE_PRIVATE
)
2477 len
= page
->private >> 2;
2478 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2482 btrfs_tree_lock(eb
);
2483 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2485 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2486 spin_lock(&root
->fs_info
->delalloc_lock
);
2487 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2488 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2491 spin_unlock(&root
->fs_info
->delalloc_lock
);
2494 btrfs_tree_unlock(eb
);
2495 free_extent_buffer(eb
);
2501 static struct extent_io_ops btree_extent_io_ops
= {
2502 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2503 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2504 .submit_bio_hook
= btree_submit_bio_hook
,
2505 /* note we're sharing with inode.c for the merge bio hook */
2506 .merge_bio_hook
= btrfs_merge_bio_hook
,