wait_task_zombie: don't fight with non-existing race with a dying ptracee
[linux-2.6/mini2440.git] / kernel / signal.c
blobb7aa492e16adf513d8917daacbbd230da9454dc3
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 (freezing(t)) ||
103 PENDING(&t->pending, &t->blocked) ||
104 PENDING(&t->signal->shared_pending, &t->blocked)) {
105 set_tsk_thread_flag(t, TIF_SIGPENDING);
106 return 1;
109 * We must never clear the flag in another thread, or in current
110 * when it's possible the current syscall is returning -ERESTART*.
111 * So we don't clear it here, and only callers who know they should do.
113 return 0;
117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
118 * This is superfluous when called on current, the wakeup is a harmless no-op.
120 void recalc_sigpending_and_wake(struct task_struct *t)
122 if (recalc_sigpending_tsk(t))
123 signal_wake_up(t, 0);
126 void recalc_sigpending(void)
128 if (!recalc_sigpending_tsk(current))
129 clear_thread_flag(TIF_SIGPENDING);
133 /* Given the mask, find the first available signal that should be serviced. */
135 int next_signal(struct sigpending *pending, sigset_t *mask)
137 unsigned long i, *s, *m, x;
138 int sig = 0;
140 s = pending->signal.sig;
141 m = mask->sig;
142 switch (_NSIG_WORDS) {
143 default:
144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
145 if ((x = *s &~ *m) != 0) {
146 sig = ffz(~x) + i*_NSIG_BPW + 1;
147 break;
149 break;
151 case 2: if ((x = s[0] &~ m[0]) != 0)
152 sig = 1;
153 else if ((x = s[1] &~ m[1]) != 0)
154 sig = _NSIG_BPW + 1;
155 else
156 break;
157 sig += ffz(~x);
158 break;
160 case 1: if ((x = *s &~ *m) != 0)
161 sig = ffz(~x) + 1;
162 break;
165 return sig;
168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
169 int override_rlimit)
171 struct sigqueue *q = NULL;
172 struct user_struct *user;
175 * In order to avoid problems with "switch_user()", we want to make
176 * sure that the compiler doesn't re-load "t->user"
178 user = t->user;
179 barrier();
180 atomic_inc(&user->sigpending);
181 if (override_rlimit ||
182 atomic_read(&user->sigpending) <=
183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
184 q = kmem_cache_alloc(sigqueue_cachep, flags);
185 if (unlikely(q == NULL)) {
186 atomic_dec(&user->sigpending);
187 } else {
188 INIT_LIST_HEAD(&q->list);
189 q->flags = 0;
190 q->user = get_uid(user);
192 return(q);
195 static void __sigqueue_free(struct sigqueue *q)
197 if (q->flags & SIGQUEUE_PREALLOC)
198 return;
199 atomic_dec(&q->user->sigpending);
200 free_uid(q->user);
201 kmem_cache_free(sigqueue_cachep, q);
204 void flush_sigqueue(struct sigpending *queue)
206 struct sigqueue *q;
208 sigemptyset(&queue->signal);
209 while (!list_empty(&queue->list)) {
210 q = list_entry(queue->list.next, struct sigqueue , list);
211 list_del_init(&q->list);
212 __sigqueue_free(q);
217 * Flush all pending signals for a task.
219 void flush_signals(struct task_struct *t)
221 unsigned long flags;
223 spin_lock_irqsave(&t->sighand->siglock, flags);
224 clear_tsk_thread_flag(t,TIF_SIGPENDING);
225 flush_sigqueue(&t->pending);
226 flush_sigqueue(&t->signal->shared_pending);
227 spin_unlock_irqrestore(&t->sighand->siglock, flags);
230 void ignore_signals(struct task_struct *t)
232 int i;
234 for (i = 0; i < _NSIG; ++i)
235 t->sighand->action[i].sa.sa_handler = SIG_IGN;
237 flush_signals(t);
241 * Flush all handlers for a task.
244 void
245 flush_signal_handlers(struct task_struct *t, int force_default)
247 int i;
248 struct k_sigaction *ka = &t->sighand->action[0];
249 for (i = _NSIG ; i != 0 ; i--) {
250 if (force_default || ka->sa.sa_handler != SIG_IGN)
251 ka->sa.sa_handler = SIG_DFL;
252 ka->sa.sa_flags = 0;
253 sigemptyset(&ka->sa.sa_mask);
254 ka++;
258 int unhandled_signal(struct task_struct *tsk, int sig)
260 if (is_init(tsk))
261 return 1;
262 if (tsk->ptrace & PT_PTRACED)
263 return 0;
264 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
265 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
269 /* Notify the system that a driver wants to block all signals for this
270 * process, and wants to be notified if any signals at all were to be
271 * sent/acted upon. If the notifier routine returns non-zero, then the
272 * signal will be acted upon after all. If the notifier routine returns 0,
273 * then then signal will be blocked. Only one block per process is
274 * allowed. priv is a pointer to private data that the notifier routine
275 * can use to determine if the signal should be blocked or not. */
277 void
278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
280 unsigned long flags;
282 spin_lock_irqsave(&current->sighand->siglock, flags);
283 current->notifier_mask = mask;
284 current->notifier_data = priv;
285 current->notifier = notifier;
286 spin_unlock_irqrestore(&current->sighand->siglock, flags);
289 /* Notify the system that blocking has ended. */
291 void
292 unblock_all_signals(void)
294 unsigned long flags;
296 spin_lock_irqsave(&current->sighand->siglock, flags);
297 current->notifier = NULL;
298 current->notifier_data = NULL;
299 recalc_sigpending();
300 spin_unlock_irqrestore(&current->sighand->siglock, flags);
303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
305 struct sigqueue *q, *first = NULL;
306 int still_pending = 0;
308 if (unlikely(!sigismember(&list->signal, sig)))
309 return 0;
312 * Collect the siginfo appropriate to this signal. Check if
313 * there is another siginfo for the same signal.
315 list_for_each_entry(q, &list->list, list) {
316 if (q->info.si_signo == sig) {
317 if (first) {
318 still_pending = 1;
319 break;
321 first = q;
324 if (first) {
325 list_del_init(&first->list);
326 copy_siginfo(info, &first->info);
327 __sigqueue_free(first);
328 if (!still_pending)
329 sigdelset(&list->signal, sig);
330 } else {
332 /* Ok, it wasn't in the queue. This must be
333 a fast-pathed signal or we must have been
334 out of queue space. So zero out the info.
336 sigdelset(&list->signal, sig);
337 info->si_signo = sig;
338 info->si_errno = 0;
339 info->si_code = 0;
340 info->si_pid = 0;
341 info->si_uid = 0;
343 return 1;
346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
347 siginfo_t *info)
349 int sig = next_signal(pending, mask);
351 if (sig) {
352 if (current->notifier) {
353 if (sigismember(current->notifier_mask, sig)) {
354 if (!(current->notifier)(current->notifier_data)) {
355 clear_thread_flag(TIF_SIGPENDING);
356 return 0;
361 if (!collect_signal(sig, pending, info))
362 sig = 0;
365 return sig;
369 * Dequeue a signal and return the element to the caller, which is
370 * expected to free it.
372 * All callers have to hold the siglock.
374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
376 int signr = 0;
378 /* We only dequeue private signals from ourselves, we don't let
379 * signalfd steal them
381 signr = __dequeue_signal(&tsk->pending, mask, info);
382 if (!signr) {
383 signr = __dequeue_signal(&tsk->signal->shared_pending,
384 mask, info);
386 * itimer signal ?
388 * itimers are process shared and we restart periodic
389 * itimers in the signal delivery path to prevent DoS
390 * attacks in the high resolution timer case. This is
391 * compliant with the old way of self restarting
392 * itimers, as the SIGALRM is a legacy signal and only
393 * queued once. Changing the restart behaviour to
394 * restart the timer in the signal dequeue path is
395 * reducing the timer noise on heavy loaded !highres
396 * systems too.
398 if (unlikely(signr == SIGALRM)) {
399 struct hrtimer *tmr = &tsk->signal->real_timer;
401 if (!hrtimer_is_queued(tmr) &&
402 tsk->signal->it_real_incr.tv64 != 0) {
403 hrtimer_forward(tmr, tmr->base->get_time(),
404 tsk->signal->it_real_incr);
405 hrtimer_restart(tmr);
409 recalc_sigpending();
410 if (signr && unlikely(sig_kernel_stop(signr))) {
412 * Set a marker that we have dequeued a stop signal. Our
413 * caller might release the siglock and then the pending
414 * stop signal it is about to process is no longer in the
415 * pending bitmasks, but must still be cleared by a SIGCONT
416 * (and overruled by a SIGKILL). So those cases clear this
417 * shared flag after we've set it. Note that this flag may
418 * remain set after the signal we return is ignored or
419 * handled. That doesn't matter because its only purpose
420 * is to alert stop-signal processing code when another
421 * processor has come along and cleared the flag.
423 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
424 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
426 if (signr &&
427 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
428 info->si_sys_private){
430 * Release the siglock to ensure proper locking order
431 * of timer locks outside of siglocks. Note, we leave
432 * irqs disabled here, since the posix-timers code is
433 * about to disable them again anyway.
435 spin_unlock(&tsk->sighand->siglock);
436 do_schedule_next_timer(info);
437 spin_lock(&tsk->sighand->siglock);
439 return signr;
443 * Tell a process that it has a new active signal..
445 * NOTE! we rely on the previous spin_lock to
446 * lock interrupts for us! We can only be called with
447 * "siglock" held, and the local interrupt must
448 * have been disabled when that got acquired!
450 * No need to set need_resched since signal event passing
451 * goes through ->blocked
453 void signal_wake_up(struct task_struct *t, int resume)
455 unsigned int mask;
457 set_tsk_thread_flag(t, TIF_SIGPENDING);
460 * For SIGKILL, we want to wake it up in the stopped/traced case.
461 * We don't check t->state here because there is a race with it
462 * executing another processor and just now entering stopped state.
463 * By using wake_up_state, we ensure the process will wake up and
464 * handle its death signal.
466 mask = TASK_INTERRUPTIBLE;
467 if (resume)
468 mask |= TASK_STOPPED | TASK_TRACED;
469 if (!wake_up_state(t, mask))
470 kick_process(t);
474 * Remove signals in mask from the pending set and queue.
475 * Returns 1 if any signals were found.
477 * All callers must be holding the siglock.
479 * This version takes a sigset mask and looks at all signals,
480 * not just those in the first mask word.
482 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
484 struct sigqueue *q, *n;
485 sigset_t m;
487 sigandsets(&m, mask, &s->signal);
488 if (sigisemptyset(&m))
489 return 0;
491 signandsets(&s->signal, &s->signal, mask);
492 list_for_each_entry_safe(q, n, &s->list, list) {
493 if (sigismember(mask, q->info.si_signo)) {
494 list_del_init(&q->list);
495 __sigqueue_free(q);
498 return 1;
501 * Remove signals in mask from the pending set and queue.
502 * Returns 1 if any signals were found.
504 * All callers must be holding the siglock.
506 static int rm_from_queue(unsigned long mask, struct sigpending *s)
508 struct sigqueue *q, *n;
510 if (!sigtestsetmask(&s->signal, mask))
511 return 0;
513 sigdelsetmask(&s->signal, mask);
514 list_for_each_entry_safe(q, n, &s->list, list) {
515 if (q->info.si_signo < SIGRTMIN &&
516 (mask & sigmask(q->info.si_signo))) {
517 list_del_init(&q->list);
518 __sigqueue_free(q);
521 return 1;
525 * Bad permissions for sending the signal
527 static int check_kill_permission(int sig, struct siginfo *info,
528 struct task_struct *t)
530 int error = -EINVAL;
531 if (!valid_signal(sig))
532 return error;
534 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
535 error = audit_signal_info(sig, t); /* Let audit system see the signal */
536 if (error)
537 return error;
538 error = -EPERM;
539 if (((sig != SIGCONT) ||
540 (process_session(current) != process_session(t)))
541 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
542 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
543 && !capable(CAP_KILL))
544 return error;
547 return security_task_kill(t, info, sig, 0);
550 /* forward decl */
551 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
554 * Handle magic process-wide effects of stop/continue signals.
555 * Unlike the signal actions, these happen immediately at signal-generation
556 * time regardless of blocking, ignoring, or handling. This does the
557 * actual continuing for SIGCONT, but not the actual stopping for stop
558 * signals. The process stop is done as a signal action for SIG_DFL.
560 static void handle_stop_signal(int sig, struct task_struct *p)
562 struct task_struct *t;
564 if (p->signal->flags & SIGNAL_GROUP_EXIT)
566 * The process is in the middle of dying already.
568 return;
570 if (sig_kernel_stop(sig)) {
572 * This is a stop signal. Remove SIGCONT from all queues.
574 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
575 t = p;
576 do {
577 rm_from_queue(sigmask(SIGCONT), &t->pending);
578 t = next_thread(t);
579 } while (t != p);
580 } else if (sig == SIGCONT) {
582 * Remove all stop signals from all queues,
583 * and wake all threads.
585 if (unlikely(p->signal->group_stop_count > 0)) {
587 * There was a group stop in progress. We'll
588 * pretend it finished before we got here. We are
589 * obliged to report it to the parent: if the
590 * SIGSTOP happened "after" this SIGCONT, then it
591 * would have cleared this pending SIGCONT. If it
592 * happened "before" this SIGCONT, then the parent
593 * got the SIGCHLD about the stop finishing before
594 * the continue happened. We do the notification
595 * now, and it's as if the stop had finished and
596 * the SIGCHLD was pending on entry to this kill.
598 p->signal->group_stop_count = 0;
599 p->signal->flags = SIGNAL_STOP_CONTINUED;
600 spin_unlock(&p->sighand->siglock);
601 do_notify_parent_cldstop(p, CLD_STOPPED);
602 spin_lock(&p->sighand->siglock);
604 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
605 t = p;
606 do {
607 unsigned int state;
608 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
611 * If there is a handler for SIGCONT, we must make
612 * sure that no thread returns to user mode before
613 * we post the signal, in case it was the only
614 * thread eligible to run the signal handler--then
615 * it must not do anything between resuming and
616 * running the handler. With the TIF_SIGPENDING
617 * flag set, the thread will pause and acquire the
618 * siglock that we hold now and until we've queued
619 * the pending signal.
621 * Wake up the stopped thread _after_ setting
622 * TIF_SIGPENDING
624 state = TASK_STOPPED;
625 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
626 set_tsk_thread_flag(t, TIF_SIGPENDING);
627 state |= TASK_INTERRUPTIBLE;
629 wake_up_state(t, state);
631 t = next_thread(t);
632 } while (t != p);
634 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
636 * We were in fact stopped, and are now continued.
637 * Notify the parent with CLD_CONTINUED.
639 p->signal->flags = SIGNAL_STOP_CONTINUED;
640 p->signal->group_exit_code = 0;
641 spin_unlock(&p->sighand->siglock);
642 do_notify_parent_cldstop(p, CLD_CONTINUED);
643 spin_lock(&p->sighand->siglock);
644 } else {
646 * We are not stopped, but there could be a stop
647 * signal in the middle of being processed after
648 * being removed from the queue. Clear that too.
650 p->signal->flags = 0;
652 } else if (sig == SIGKILL) {
654 * Make sure that any pending stop signal already dequeued
655 * is undone by the wakeup for SIGKILL.
657 p->signal->flags = 0;
661 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
662 struct sigpending *signals)
664 struct sigqueue * q = NULL;
665 int ret = 0;
668 * Deliver the signal to listening signalfds. This must be called
669 * with the sighand lock held.
671 signalfd_notify(t, sig);
674 * fast-pathed signals for kernel-internal things like SIGSTOP
675 * or SIGKILL.
677 if (info == SEND_SIG_FORCED)
678 goto out_set;
680 /* Real-time signals must be queued if sent by sigqueue, or
681 some other real-time mechanism. It is implementation
682 defined whether kill() does so. We attempt to do so, on
683 the principle of least surprise, but since kill is not
684 allowed to fail with EAGAIN when low on memory we just
685 make sure at least one signal gets delivered and don't
686 pass on the info struct. */
688 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
689 (is_si_special(info) ||
690 info->si_code >= 0)));
691 if (q) {
692 list_add_tail(&q->list, &signals->list);
693 switch ((unsigned long) info) {
694 case (unsigned long) SEND_SIG_NOINFO:
695 q->info.si_signo = sig;
696 q->info.si_errno = 0;
697 q->info.si_code = SI_USER;
698 q->info.si_pid = current->pid;
699 q->info.si_uid = current->uid;
700 break;
701 case (unsigned long) SEND_SIG_PRIV:
702 q->info.si_signo = sig;
703 q->info.si_errno = 0;
704 q->info.si_code = SI_KERNEL;
705 q->info.si_pid = 0;
706 q->info.si_uid = 0;
707 break;
708 default:
709 copy_siginfo(&q->info, info);
710 break;
712 } else if (!is_si_special(info)) {
713 if (sig >= SIGRTMIN && info->si_code != SI_USER)
715 * Queue overflow, abort. We may abort if the signal was rt
716 * and sent by user using something other than kill().
718 return -EAGAIN;
721 out_set:
722 sigaddset(&signals->signal, sig);
723 return ret;
726 #define LEGACY_QUEUE(sigptr, sig) \
727 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
729 int print_fatal_signals;
731 static void print_fatal_signal(struct pt_regs *regs, int signr)
733 printk("%s/%d: potentially unexpected fatal signal %d.\n",
734 current->comm, current->pid, signr);
736 #ifdef __i386__
737 printk("code at %08lx: ", regs->eip);
739 int i;
740 for (i = 0; i < 16; i++) {
741 unsigned char insn;
743 __get_user(insn, (unsigned char *)(regs->eip + i));
744 printk("%02x ", insn);
747 #endif
748 printk("\n");
749 show_regs(regs);
752 static int __init setup_print_fatal_signals(char *str)
754 get_option (&str, &print_fatal_signals);
756 return 1;
759 __setup("print-fatal-signals=", setup_print_fatal_signals);
761 static int
762 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
764 int ret = 0;
766 BUG_ON(!irqs_disabled());
767 assert_spin_locked(&t->sighand->siglock);
769 /* Short-circuit ignored signals. */
770 if (sig_ignored(t, sig))
771 goto out;
773 /* Support queueing exactly one non-rt signal, so that we
774 can get more detailed information about the cause of
775 the signal. */
776 if (LEGACY_QUEUE(&t->pending, sig))
777 goto out;
779 ret = send_signal(sig, info, t, &t->pending);
780 if (!ret && !sigismember(&t->blocked, sig))
781 signal_wake_up(t, sig == SIGKILL);
782 out:
783 return ret;
787 * Force a signal that the process can't ignore: if necessary
788 * we unblock the signal and change any SIG_IGN to SIG_DFL.
790 * Note: If we unblock the signal, we always reset it to SIG_DFL,
791 * since we do not want to have a signal handler that was blocked
792 * be invoked when user space had explicitly blocked it.
794 * We don't want to have recursive SIGSEGV's etc, for example.
797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
799 unsigned long int flags;
800 int ret, blocked, ignored;
801 struct k_sigaction *action;
803 spin_lock_irqsave(&t->sighand->siglock, flags);
804 action = &t->sighand->action[sig-1];
805 ignored = action->sa.sa_handler == SIG_IGN;
806 blocked = sigismember(&t->blocked, sig);
807 if (blocked || ignored) {
808 action->sa.sa_handler = SIG_DFL;
809 if (blocked) {
810 sigdelset(&t->blocked, sig);
811 recalc_sigpending_and_wake(t);
814 ret = specific_send_sig_info(sig, info, t);
815 spin_unlock_irqrestore(&t->sighand->siglock, flags);
817 return ret;
820 void
821 force_sig_specific(int sig, struct task_struct *t)
823 force_sig_info(sig, SEND_SIG_FORCED, t);
827 * Test if P wants to take SIG. After we've checked all threads with this,
828 * it's equivalent to finding no threads not blocking SIG. Any threads not
829 * blocking SIG were ruled out because they are not running and already
830 * have pending signals. Such threads will dequeue from the shared queue
831 * as soon as they're available, so putting the signal on the shared queue
832 * will be equivalent to sending it to one such thread.
834 static inline int wants_signal(int sig, struct task_struct *p)
836 if (sigismember(&p->blocked, sig))
837 return 0;
838 if (p->flags & PF_EXITING)
839 return 0;
840 if (sig == SIGKILL)
841 return 1;
842 if (p->state & (TASK_STOPPED | TASK_TRACED))
843 return 0;
844 return task_curr(p) || !signal_pending(p);
847 static void
848 __group_complete_signal(int sig, struct task_struct *p)
850 struct task_struct *t;
853 * Now find a thread we can wake up to take the signal off the queue.
855 * If the main thread wants the signal, it gets first crack.
856 * Probably the least surprising to the average bear.
858 if (wants_signal(sig, p))
859 t = p;
860 else if (thread_group_empty(p))
862 * There is just one thread and it does not need to be woken.
863 * It will dequeue unblocked signals before it runs again.
865 return;
866 else {
868 * Otherwise try to find a suitable thread.
870 t = p->signal->curr_target;
871 if (t == NULL)
872 /* restart balancing at this thread */
873 t = p->signal->curr_target = p;
875 while (!wants_signal(sig, t)) {
876 t = next_thread(t);
877 if (t == p->signal->curr_target)
879 * No thread needs to be woken.
880 * Any eligible threads will see
881 * the signal in the queue soon.
883 return;
885 p->signal->curr_target = t;
889 * Found a killable thread. If the signal will be fatal,
890 * then start taking the whole group down immediately.
892 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
893 !sigismember(&t->real_blocked, sig) &&
894 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
896 * This signal will be fatal to the whole group.
898 if (!sig_kernel_coredump(sig)) {
900 * Start a group exit and wake everybody up.
901 * This way we don't have other threads
902 * running and doing things after a slower
903 * thread has the fatal signal pending.
905 p->signal->flags = SIGNAL_GROUP_EXIT;
906 p->signal->group_exit_code = sig;
907 p->signal->group_stop_count = 0;
908 t = p;
909 do {
910 sigaddset(&t->pending.signal, SIGKILL);
911 signal_wake_up(t, 1);
912 t = next_thread(t);
913 } while (t != p);
914 return;
918 * There will be a core dump. We make all threads other
919 * than the chosen one go into a group stop so that nothing
920 * happens until it gets scheduled, takes the signal off
921 * the shared queue, and does the core dump. This is a
922 * little more complicated than strictly necessary, but it
923 * keeps the signal state that winds up in the core dump
924 * unchanged from the death state, e.g. which thread had
925 * the core-dump signal unblocked.
927 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
928 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
929 p->signal->group_stop_count = 0;
930 p->signal->group_exit_task = t;
931 t = p;
932 do {
933 p->signal->group_stop_count++;
934 signal_wake_up(t, 0);
935 t = next_thread(t);
936 } while (t != p);
937 wake_up_process(p->signal->group_exit_task);
938 return;
942 * The signal is already in the shared-pending queue.
943 * Tell the chosen thread to wake up and dequeue it.
945 signal_wake_up(t, sig == SIGKILL);
946 return;
950 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
952 int ret = 0;
954 assert_spin_locked(&p->sighand->siglock);
955 handle_stop_signal(sig, p);
957 /* Short-circuit ignored signals. */
958 if (sig_ignored(p, sig))
959 return ret;
961 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
962 /* This is a non-RT signal and we already have one queued. */
963 return ret;
966 * Put this signal on the shared-pending queue, or fail with EAGAIN.
967 * We always use the shared queue for process-wide signals,
968 * to avoid several races.
970 ret = send_signal(sig, info, p, &p->signal->shared_pending);
971 if (unlikely(ret))
972 return ret;
974 __group_complete_signal(sig, p);
975 return 0;
979 * Nuke all other threads in the group.
981 void zap_other_threads(struct task_struct *p)
983 struct task_struct *t;
985 p->signal->flags = SIGNAL_GROUP_EXIT;
986 p->signal->group_stop_count = 0;
988 for (t = next_thread(p); t != p; t = next_thread(t)) {
990 * Don't bother with already dead threads
992 if (t->exit_state)
993 continue;
995 /* SIGKILL will be handled before any pending SIGSTOP */
996 sigaddset(&t->pending.signal, SIGKILL);
997 signal_wake_up(t, 1);
1002 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1004 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1006 struct sighand_struct *sighand;
1008 for (;;) {
1009 sighand = rcu_dereference(tsk->sighand);
1010 if (unlikely(sighand == NULL))
1011 break;
1013 spin_lock_irqsave(&sighand->siglock, *flags);
1014 if (likely(sighand == tsk->sighand))
1015 break;
1016 spin_unlock_irqrestore(&sighand->siglock, *flags);
1019 return sighand;
1022 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1024 unsigned long flags;
1025 int ret;
1027 ret = check_kill_permission(sig, info, p);
1029 if (!ret && sig) {
1030 ret = -ESRCH;
1031 if (lock_task_sighand(p, &flags)) {
1032 ret = __group_send_sig_info(sig, info, p);
1033 unlock_task_sighand(p, &flags);
1037 return ret;
1041 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1042 * control characters do (^C, ^Z etc)
1045 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1047 struct task_struct *p = NULL;
1048 int retval, success;
1050 success = 0;
1051 retval = -ESRCH;
1052 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1053 int err = group_send_sig_info(sig, info, p);
1054 success |= !err;
1055 retval = err;
1056 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1057 return success ? 0 : retval;
1060 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1062 int retval;
1064 read_lock(&tasklist_lock);
1065 retval = __kill_pgrp_info(sig, info, pgrp);
1066 read_unlock(&tasklist_lock);
1068 return retval;
1071 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1073 int error;
1074 struct task_struct *p;
1076 rcu_read_lock();
1077 if (unlikely(sig_needs_tasklist(sig)))
1078 read_lock(&tasklist_lock);
1080 p = pid_task(pid, PIDTYPE_PID);
1081 error = -ESRCH;
1082 if (p)
1083 error = group_send_sig_info(sig, info, p);
1085 if (unlikely(sig_needs_tasklist(sig)))
1086 read_unlock(&tasklist_lock);
1087 rcu_read_unlock();
1088 return error;
1092 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1094 int error;
1095 rcu_read_lock();
1096 error = kill_pid_info(sig, info, find_pid(pid));
1097 rcu_read_unlock();
1098 return error;
1101 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1102 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1103 uid_t uid, uid_t euid, u32 secid)
1105 int ret = -EINVAL;
1106 struct task_struct *p;
1108 if (!valid_signal(sig))
1109 return ret;
1111 read_lock(&tasklist_lock);
1112 p = pid_task(pid, PIDTYPE_PID);
1113 if (!p) {
1114 ret = -ESRCH;
1115 goto out_unlock;
1117 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1118 && (euid != p->suid) && (euid != p->uid)
1119 && (uid != p->suid) && (uid != p->uid)) {
1120 ret = -EPERM;
1121 goto out_unlock;
1123 ret = security_task_kill(p, info, sig, secid);
1124 if (ret)
1125 goto out_unlock;
1126 if (sig && p->sighand) {
1127 unsigned long flags;
1128 spin_lock_irqsave(&p->sighand->siglock, flags);
1129 ret = __group_send_sig_info(sig, info, p);
1130 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1132 out_unlock:
1133 read_unlock(&tasklist_lock);
1134 return ret;
1136 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1139 * kill_something_info() interprets pid in interesting ways just like kill(2).
1141 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1142 * is probably wrong. Should make it like BSD or SYSV.
1145 static int kill_something_info(int sig, struct siginfo *info, int pid)
1147 int ret;
1148 rcu_read_lock();
1149 if (!pid) {
1150 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1151 } else if (pid == -1) {
1152 int retval = 0, count = 0;
1153 struct task_struct * p;
1155 read_lock(&tasklist_lock);
1156 for_each_process(p) {
1157 if (p->pid > 1 && p->tgid != current->tgid) {
1158 int err = group_send_sig_info(sig, info, p);
1159 ++count;
1160 if (err != -EPERM)
1161 retval = err;
1164 read_unlock(&tasklist_lock);
1165 ret = count ? retval : -ESRCH;
1166 } else if (pid < 0) {
1167 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1168 } else {
1169 ret = kill_pid_info(sig, info, find_pid(pid));
1171 rcu_read_unlock();
1172 return ret;
1176 * These are for backward compatibility with the rest of the kernel source.
1180 * These two are the most common entry points. They send a signal
1181 * just to the specific thread.
1184 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1186 int ret;
1187 unsigned long flags;
1190 * Make sure legacy kernel users don't send in bad values
1191 * (normal paths check this in check_kill_permission).
1193 if (!valid_signal(sig))
1194 return -EINVAL;
1197 * We need the tasklist lock even for the specific
1198 * thread case (when we don't need to follow the group
1199 * lists) in order to avoid races with "p->sighand"
1200 * going away or changing from under us.
1202 read_lock(&tasklist_lock);
1203 spin_lock_irqsave(&p->sighand->siglock, flags);
1204 ret = specific_send_sig_info(sig, info, p);
1205 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1206 read_unlock(&tasklist_lock);
1207 return ret;
1210 #define __si_special(priv) \
1211 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1214 send_sig(int sig, struct task_struct *p, int priv)
1216 return send_sig_info(sig, __si_special(priv), p);
1220 * This is the entry point for "process-wide" signals.
1221 * They will go to an appropriate thread in the thread group.
1224 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1226 int ret;
1227 read_lock(&tasklist_lock);
1228 ret = group_send_sig_info(sig, info, p);
1229 read_unlock(&tasklist_lock);
1230 return ret;
1233 void
1234 force_sig(int sig, struct task_struct *p)
1236 force_sig_info(sig, SEND_SIG_PRIV, p);
1240 * When things go south during signal handling, we
1241 * will force a SIGSEGV. And if the signal that caused
1242 * the problem was already a SIGSEGV, we'll want to
1243 * make sure we don't even try to deliver the signal..
1246 force_sigsegv(int sig, struct task_struct *p)
1248 if (sig == SIGSEGV) {
1249 unsigned long flags;
1250 spin_lock_irqsave(&p->sighand->siglock, flags);
1251 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1252 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1254 force_sig(SIGSEGV, p);
1255 return 0;
1258 int kill_pgrp(struct pid *pid, int sig, int priv)
1260 return kill_pgrp_info(sig, __si_special(priv), pid);
1262 EXPORT_SYMBOL(kill_pgrp);
1264 int kill_pid(struct pid *pid, int sig, int priv)
1266 return kill_pid_info(sig, __si_special(priv), pid);
1268 EXPORT_SYMBOL(kill_pid);
1271 kill_proc(pid_t pid, int sig, int priv)
1273 return kill_proc_info(sig, __si_special(priv), pid);
1277 * These functions support sending signals using preallocated sigqueue
1278 * structures. This is needed "because realtime applications cannot
1279 * afford to lose notifications of asynchronous events, like timer
1280 * expirations or I/O completions". In the case of Posix Timers
1281 * we allocate the sigqueue structure from the timer_create. If this
1282 * allocation fails we are able to report the failure to the application
1283 * with an EAGAIN error.
1286 struct sigqueue *sigqueue_alloc(void)
1288 struct sigqueue *q;
1290 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1291 q->flags |= SIGQUEUE_PREALLOC;
1292 return(q);
1295 void sigqueue_free(struct sigqueue *q)
1297 unsigned long flags;
1298 spinlock_t *lock = &current->sighand->siglock;
1300 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1302 * If the signal is still pending remove it from the
1303 * pending queue. We must hold ->siglock while testing
1304 * q->list to serialize with collect_signal().
1306 spin_lock_irqsave(lock, flags);
1307 if (!list_empty(&q->list))
1308 list_del_init(&q->list);
1309 spin_unlock_irqrestore(lock, flags);
1311 q->flags &= ~SIGQUEUE_PREALLOC;
1312 __sigqueue_free(q);
1315 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1317 unsigned long flags;
1318 int ret = 0;
1320 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1323 * The rcu based delayed sighand destroy makes it possible to
1324 * run this without tasklist lock held. The task struct itself
1325 * cannot go away as create_timer did get_task_struct().
1327 * We return -1, when the task is marked exiting, so
1328 * posix_timer_event can redirect it to the group leader
1330 rcu_read_lock();
1332 if (!likely(lock_task_sighand(p, &flags))) {
1333 ret = -1;
1334 goto out_err;
1337 if (unlikely(!list_empty(&q->list))) {
1339 * If an SI_TIMER entry is already queue just increment
1340 * the overrun count.
1342 BUG_ON(q->info.si_code != SI_TIMER);
1343 q->info.si_overrun++;
1344 goto out;
1346 /* Short-circuit ignored signals. */
1347 if (sig_ignored(p, sig)) {
1348 ret = 1;
1349 goto out;
1352 * Deliver the signal to listening signalfds. This must be called
1353 * with the sighand lock held.
1355 signalfd_notify(p, sig);
1357 list_add_tail(&q->list, &p->pending.list);
1358 sigaddset(&p->pending.signal, sig);
1359 if (!sigismember(&p->blocked, sig))
1360 signal_wake_up(p, sig == SIGKILL);
1362 out:
1363 unlock_task_sighand(p, &flags);
1364 out_err:
1365 rcu_read_unlock();
1367 return ret;
1371 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1373 unsigned long flags;
1374 int ret = 0;
1376 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1378 read_lock(&tasklist_lock);
1379 /* Since it_lock is held, p->sighand cannot be NULL. */
1380 spin_lock_irqsave(&p->sighand->siglock, flags);
1381 handle_stop_signal(sig, p);
1383 /* Short-circuit ignored signals. */
1384 if (sig_ignored(p, sig)) {
1385 ret = 1;
1386 goto out;
1389 if (unlikely(!list_empty(&q->list))) {
1391 * If an SI_TIMER entry is already queue just increment
1392 * the overrun count. Other uses should not try to
1393 * send the signal multiple times.
1395 BUG_ON(q->info.si_code != SI_TIMER);
1396 q->info.si_overrun++;
1397 goto out;
1400 * Deliver the signal to listening signalfds. This must be called
1401 * with the sighand lock held.
1403 signalfd_notify(p, sig);
1406 * Put this signal on the shared-pending queue.
1407 * We always use the shared queue for process-wide signals,
1408 * to avoid several races.
1410 list_add_tail(&q->list, &p->signal->shared_pending.list);
1411 sigaddset(&p->signal->shared_pending.signal, sig);
1413 __group_complete_signal(sig, p);
1414 out:
1415 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1416 read_unlock(&tasklist_lock);
1417 return ret;
1421 * Wake up any threads in the parent blocked in wait* syscalls.
1423 static inline void __wake_up_parent(struct task_struct *p,
1424 struct task_struct *parent)
1426 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1430 * Let a parent know about the death of a child.
1431 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1434 void do_notify_parent(struct task_struct *tsk, int sig)
1436 struct siginfo info;
1437 unsigned long flags;
1438 struct sighand_struct *psig;
1440 BUG_ON(sig == -1);
1442 /* do_notify_parent_cldstop should have been called instead. */
1443 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1445 BUG_ON(!tsk->ptrace &&
1446 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1448 info.si_signo = sig;
1449 info.si_errno = 0;
1450 info.si_pid = tsk->pid;
1451 info.si_uid = tsk->uid;
1453 /* FIXME: find out whether or not this is supposed to be c*time. */
1454 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1455 tsk->signal->utime));
1456 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1457 tsk->signal->stime));
1459 info.si_status = tsk->exit_code & 0x7f;
1460 if (tsk->exit_code & 0x80)
1461 info.si_code = CLD_DUMPED;
1462 else if (tsk->exit_code & 0x7f)
1463 info.si_code = CLD_KILLED;
1464 else {
1465 info.si_code = CLD_EXITED;
1466 info.si_status = tsk->exit_code >> 8;
1469 psig = tsk->parent->sighand;
1470 spin_lock_irqsave(&psig->siglock, flags);
1471 if (!tsk->ptrace && sig == SIGCHLD &&
1472 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1473 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1475 * We are exiting and our parent doesn't care. POSIX.1
1476 * defines special semantics for setting SIGCHLD to SIG_IGN
1477 * or setting the SA_NOCLDWAIT flag: we should be reaped
1478 * automatically and not left for our parent's wait4 call.
1479 * Rather than having the parent do it as a magic kind of
1480 * signal handler, we just set this to tell do_exit that we
1481 * can be cleaned up without becoming a zombie. Note that
1482 * we still call __wake_up_parent in this case, because a
1483 * blocked sys_wait4 might now return -ECHILD.
1485 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1486 * is implementation-defined: we do (if you don't want
1487 * it, just use SIG_IGN instead).
1489 tsk->exit_signal = -1;
1490 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1491 sig = 0;
1493 if (valid_signal(sig) && sig > 0)
1494 __group_send_sig_info(sig, &info, tsk->parent);
1495 __wake_up_parent(tsk, tsk->parent);
1496 spin_unlock_irqrestore(&psig->siglock, flags);
1499 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1501 struct siginfo info;
1502 unsigned long flags;
1503 struct task_struct *parent;
1504 struct sighand_struct *sighand;
1506 if (tsk->ptrace & PT_PTRACED)
1507 parent = tsk->parent;
1508 else {
1509 tsk = tsk->group_leader;
1510 parent = tsk->real_parent;
1513 info.si_signo = SIGCHLD;
1514 info.si_errno = 0;
1515 info.si_pid = tsk->pid;
1516 info.si_uid = tsk->uid;
1518 /* FIXME: find out whether or not this is supposed to be c*time. */
1519 info.si_utime = cputime_to_jiffies(tsk->utime);
1520 info.si_stime = cputime_to_jiffies(tsk->stime);
1522 info.si_code = why;
1523 switch (why) {
1524 case CLD_CONTINUED:
1525 info.si_status = SIGCONT;
1526 break;
1527 case CLD_STOPPED:
1528 info.si_status = tsk->signal->group_exit_code & 0x7f;
1529 break;
1530 case CLD_TRAPPED:
1531 info.si_status = tsk->exit_code & 0x7f;
1532 break;
1533 default:
1534 BUG();
1537 sighand = parent->sighand;
1538 spin_lock_irqsave(&sighand->siglock, flags);
1539 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1540 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1541 __group_send_sig_info(SIGCHLD, &info, parent);
1543 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1545 __wake_up_parent(tsk, parent);
1546 spin_unlock_irqrestore(&sighand->siglock, flags);
1549 static inline int may_ptrace_stop(void)
1551 if (!likely(current->ptrace & PT_PTRACED))
1552 return 0;
1554 if (unlikely(current->parent == current->real_parent &&
1555 (current->ptrace & PT_ATTACHED)))
1556 return 0;
1559 * Are we in the middle of do_coredump?
1560 * If so and our tracer is also part of the coredump stopping
1561 * is a deadlock situation, and pointless because our tracer
1562 * is dead so don't allow us to stop.
1563 * If SIGKILL was already sent before the caller unlocked
1564 * ->siglock we must see ->core_waiters != 0. Otherwise it
1565 * is safe to enter schedule().
1567 if (unlikely(current->mm->core_waiters) &&
1568 unlikely(current->mm == current->parent->mm))
1569 return 0;
1571 return 1;
1575 * This must be called with current->sighand->siglock held.
1577 * This should be the path for all ptrace stops.
1578 * We always set current->last_siginfo while stopped here.
1579 * That makes it a way to test a stopped process for
1580 * being ptrace-stopped vs being job-control-stopped.
1582 * If we actually decide not to stop at all because the tracer is gone,
1583 * we leave nostop_code in current->exit_code.
1585 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1588 * If there is a group stop in progress,
1589 * we must participate in the bookkeeping.
1591 if (current->signal->group_stop_count > 0)
1592 --current->signal->group_stop_count;
1594 current->last_siginfo = info;
1595 current->exit_code = exit_code;
1597 /* Let the debugger run. */
1598 set_current_state(TASK_TRACED);
1599 spin_unlock_irq(&current->sighand->siglock);
1600 try_to_freeze();
1601 read_lock(&tasklist_lock);
1602 if (may_ptrace_stop()) {
1603 do_notify_parent_cldstop(current, CLD_TRAPPED);
1604 read_unlock(&tasklist_lock);
1605 schedule();
1606 } else {
1608 * By the time we got the lock, our tracer went away.
1609 * Don't stop here.
1611 read_unlock(&tasklist_lock);
1612 set_current_state(TASK_RUNNING);
1613 current->exit_code = nostop_code;
1617 * We are back. Now reacquire the siglock before touching
1618 * last_siginfo, so that we are sure to have synchronized with
1619 * any signal-sending on another CPU that wants to examine it.
1621 spin_lock_irq(&current->sighand->siglock);
1622 current->last_siginfo = NULL;
1625 * Queued signals ignored us while we were stopped for tracing.
1626 * So check for any that we should take before resuming user mode.
1627 * This sets TIF_SIGPENDING, but never clears it.
1629 recalc_sigpending_tsk(current);
1632 void ptrace_notify(int exit_code)
1634 siginfo_t info;
1636 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1638 memset(&info, 0, sizeof info);
1639 info.si_signo = SIGTRAP;
1640 info.si_code = exit_code;
1641 info.si_pid = current->pid;
1642 info.si_uid = current->uid;
1644 /* Let the debugger run. */
1645 spin_lock_irq(&current->sighand->siglock);
1646 ptrace_stop(exit_code, 0, &info);
1647 spin_unlock_irq(&current->sighand->siglock);
1650 static void
1651 finish_stop(int stop_count)
1654 * If there are no other threads in the group, or if there is
1655 * a group stop in progress and we are the last to stop,
1656 * report to the parent. When ptraced, every thread reports itself.
1658 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1659 read_lock(&tasklist_lock);
1660 do_notify_parent_cldstop(current, CLD_STOPPED);
1661 read_unlock(&tasklist_lock);
1664 do {
1665 schedule();
1666 } while (try_to_freeze());
1668 * Now we don't run again until continued.
1670 current->exit_code = 0;
1674 * This performs the stopping for SIGSTOP and other stop signals.
1675 * We have to stop all threads in the thread group.
1676 * Returns nonzero if we've actually stopped and released the siglock.
1677 * Returns zero if we didn't stop and still hold the siglock.
1679 static int do_signal_stop(int signr)
1681 struct signal_struct *sig = current->signal;
1682 int stop_count;
1684 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1685 return 0;
1687 if (sig->group_stop_count > 0) {
1689 * There is a group stop in progress. We don't need to
1690 * start another one.
1692 stop_count = --sig->group_stop_count;
1693 } else {
1695 * There is no group stop already in progress.
1696 * We must initiate one now.
1698 struct task_struct *t;
1700 sig->group_exit_code = signr;
1702 stop_count = 0;
1703 for (t = next_thread(current); t != current; t = next_thread(t))
1705 * Setting state to TASK_STOPPED for a group
1706 * stop is always done with the siglock held,
1707 * so this check has no races.
1709 if (!t->exit_state &&
1710 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1711 stop_count++;
1712 signal_wake_up(t, 0);
1714 sig->group_stop_count = stop_count;
1717 if (stop_count == 0)
1718 sig->flags = SIGNAL_STOP_STOPPED;
1719 current->exit_code = sig->group_exit_code;
1720 __set_current_state(TASK_STOPPED);
1722 spin_unlock_irq(&current->sighand->siglock);
1723 finish_stop(stop_count);
1724 return 1;
1728 * Do appropriate magic when group_stop_count > 0.
1729 * We return nonzero if we stopped, after releasing the siglock.
1730 * We return zero if we still hold the siglock and should look
1731 * for another signal without checking group_stop_count again.
1733 static int handle_group_stop(void)
1735 int stop_count;
1737 if (current->signal->group_exit_task == current) {
1739 * Group stop is so we can do a core dump,
1740 * We are the initiating thread, so get on with it.
1742 current->signal->group_exit_task = NULL;
1743 return 0;
1746 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1748 * Group stop is so another thread can do a core dump,
1749 * or else we are racing against a death signal.
1750 * Just punt the stop so we can get the next signal.
1752 return 0;
1755 * There is a group stop in progress. We stop
1756 * without any associated signal being in our queue.
1758 stop_count = --current->signal->group_stop_count;
1759 if (stop_count == 0)
1760 current->signal->flags = SIGNAL_STOP_STOPPED;
1761 current->exit_code = current->signal->group_exit_code;
1762 set_current_state(TASK_STOPPED);
1763 spin_unlock_irq(&current->sighand->siglock);
1764 finish_stop(stop_count);
1765 return 1;
1768 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1769 struct pt_regs *regs, void *cookie)
1771 sigset_t *mask = &current->blocked;
1772 int signr = 0;
1774 try_to_freeze();
1776 relock:
1777 spin_lock_irq(&current->sighand->siglock);
1778 for (;;) {
1779 struct k_sigaction *ka;
1781 if (unlikely(current->signal->group_stop_count > 0) &&
1782 handle_group_stop())
1783 goto relock;
1785 signr = dequeue_signal(current, mask, info);
1787 if (!signr)
1788 break; /* will return 0 */
1790 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1791 ptrace_signal_deliver(regs, cookie);
1793 /* Let the debugger run. */
1794 ptrace_stop(signr, signr, info);
1796 /* We're back. Did the debugger cancel the sig? */
1797 signr = current->exit_code;
1798 if (signr == 0)
1799 continue;
1801 current->exit_code = 0;
1803 /* Update the siginfo structure if the signal has
1804 changed. If the debugger wanted something
1805 specific in the siginfo structure then it should
1806 have updated *info via PTRACE_SETSIGINFO. */
1807 if (signr != info->si_signo) {
1808 info->si_signo = signr;
1809 info->si_errno = 0;
1810 info->si_code = SI_USER;
1811 info->si_pid = current->parent->pid;
1812 info->si_uid = current->parent->uid;
1815 /* If the (new) signal is now blocked, requeue it. */
1816 if (sigismember(&current->blocked, signr)) {
1817 specific_send_sig_info(signr, info, current);
1818 continue;
1822 ka = &current->sighand->action[signr-1];
1823 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1824 continue;
1825 if (ka->sa.sa_handler != SIG_DFL) {
1826 /* Run the handler. */
1827 *return_ka = *ka;
1829 if (ka->sa.sa_flags & SA_ONESHOT)
1830 ka->sa.sa_handler = SIG_DFL;
1832 break; /* will return non-zero "signr" value */
1836 * Now we are doing the default action for this signal.
1838 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1839 continue;
1842 * Init of a pid space gets no signals it doesn't want from
1843 * within that pid space. It can of course get signals from
1844 * its parent pid space.
1846 if (current == child_reaper(current))
1847 continue;
1849 if (sig_kernel_stop(signr)) {
1851 * The default action is to stop all threads in
1852 * the thread group. The job control signals
1853 * do nothing in an orphaned pgrp, but SIGSTOP
1854 * always works. Note that siglock needs to be
1855 * dropped during the call to is_orphaned_pgrp()
1856 * because of lock ordering with tasklist_lock.
1857 * This allows an intervening SIGCONT to be posted.
1858 * We need to check for that and bail out if necessary.
1860 if (signr != SIGSTOP) {
1861 spin_unlock_irq(&current->sighand->siglock);
1863 /* signals can be posted during this window */
1865 if (is_current_pgrp_orphaned())
1866 goto relock;
1868 spin_lock_irq(&current->sighand->siglock);
1871 if (likely(do_signal_stop(signr))) {
1872 /* It released the siglock. */
1873 goto relock;
1877 * We didn't actually stop, due to a race
1878 * with SIGCONT or something like that.
1880 continue;
1883 spin_unlock_irq(&current->sighand->siglock);
1886 * Anything else is fatal, maybe with a core dump.
1888 current->flags |= PF_SIGNALED;
1889 if ((signr != SIGKILL) && print_fatal_signals)
1890 print_fatal_signal(regs, signr);
1891 if (sig_kernel_coredump(signr)) {
1893 * If it was able to dump core, this kills all
1894 * other threads in the group and synchronizes with
1895 * their demise. If we lost the race with another
1896 * thread getting here, it set group_exit_code
1897 * first and our do_group_exit call below will use
1898 * that value and ignore the one we pass it.
1900 do_coredump((long)signr, signr, regs);
1904 * Death signals, no core dump.
1906 do_group_exit(signr);
1907 /* NOTREACHED */
1909 spin_unlock_irq(&current->sighand->siglock);
1910 return signr;
1913 EXPORT_SYMBOL(recalc_sigpending);
1914 EXPORT_SYMBOL_GPL(dequeue_signal);
1915 EXPORT_SYMBOL(flush_signals);
1916 EXPORT_SYMBOL(force_sig);
1917 EXPORT_SYMBOL(kill_proc);
1918 EXPORT_SYMBOL(ptrace_notify);
1919 EXPORT_SYMBOL(send_sig);
1920 EXPORT_SYMBOL(send_sig_info);
1921 EXPORT_SYMBOL(sigprocmask);
1922 EXPORT_SYMBOL(block_all_signals);
1923 EXPORT_SYMBOL(unblock_all_signals);
1927 * System call entry points.
1930 asmlinkage long sys_restart_syscall(void)
1932 struct restart_block *restart = &current_thread_info()->restart_block;
1933 return restart->fn(restart);
1936 long do_no_restart_syscall(struct restart_block *param)
1938 return -EINTR;
1942 * We don't need to get the kernel lock - this is all local to this
1943 * particular thread.. (and that's good, because this is _heavily_
1944 * used by various programs)
1948 * This is also useful for kernel threads that want to temporarily
1949 * (or permanently) block certain signals.
1951 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1952 * interface happily blocks "unblockable" signals like SIGKILL
1953 * and friends.
1955 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1957 int error;
1959 spin_lock_irq(&current->sighand->siglock);
1960 if (oldset)
1961 *oldset = current->blocked;
1963 error = 0;
1964 switch (how) {
1965 case SIG_BLOCK:
1966 sigorsets(&current->blocked, &current->blocked, set);
1967 break;
1968 case SIG_UNBLOCK:
1969 signandsets(&current->blocked, &current->blocked, set);
1970 break;
1971 case SIG_SETMASK:
1972 current->blocked = *set;
1973 break;
1974 default:
1975 error = -EINVAL;
1977 recalc_sigpending();
1978 spin_unlock_irq(&current->sighand->siglock);
1980 return error;
1983 asmlinkage long
1984 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1986 int error = -EINVAL;
1987 sigset_t old_set, new_set;
1989 /* XXX: Don't preclude handling different sized sigset_t's. */
1990 if (sigsetsize != sizeof(sigset_t))
1991 goto out;
1993 if (set) {
1994 error = -EFAULT;
1995 if (copy_from_user(&new_set, set, sizeof(*set)))
1996 goto out;
1997 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1999 error = sigprocmask(how, &new_set, &old_set);
2000 if (error)
2001 goto out;
2002 if (oset)
2003 goto set_old;
2004 } else if (oset) {
2005 spin_lock_irq(&current->sighand->siglock);
2006 old_set = current->blocked;
2007 spin_unlock_irq(&current->sighand->siglock);
2009 set_old:
2010 error = -EFAULT;
2011 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2012 goto out;
2014 error = 0;
2015 out:
2016 return error;
2019 long do_sigpending(void __user *set, unsigned long sigsetsize)
2021 long error = -EINVAL;
2022 sigset_t pending;
2024 if (sigsetsize > sizeof(sigset_t))
2025 goto out;
2027 spin_lock_irq(&current->sighand->siglock);
2028 sigorsets(&pending, &current->pending.signal,
2029 &current->signal->shared_pending.signal);
2030 spin_unlock_irq(&current->sighand->siglock);
2032 /* Outside the lock because only this thread touches it. */
2033 sigandsets(&pending, &current->blocked, &pending);
2035 error = -EFAULT;
2036 if (!copy_to_user(set, &pending, sigsetsize))
2037 error = 0;
2039 out:
2040 return error;
2043 asmlinkage long
2044 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2046 return do_sigpending(set, sigsetsize);
2049 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2051 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2053 int err;
2055 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2056 return -EFAULT;
2057 if (from->si_code < 0)
2058 return __copy_to_user(to, from, sizeof(siginfo_t))
2059 ? -EFAULT : 0;
2061 * If you change siginfo_t structure, please be sure
2062 * this code is fixed accordingly.
2063 * Please remember to update the signalfd_copyinfo() function
2064 * inside fs/signalfd.c too, in case siginfo_t changes.
2065 * It should never copy any pad contained in the structure
2066 * to avoid security leaks, but must copy the generic
2067 * 3 ints plus the relevant union member.
2069 err = __put_user(from->si_signo, &to->si_signo);
2070 err |= __put_user(from->si_errno, &to->si_errno);
2071 err |= __put_user((short)from->si_code, &to->si_code);
2072 switch (from->si_code & __SI_MASK) {
2073 case __SI_KILL:
2074 err |= __put_user(from->si_pid, &to->si_pid);
2075 err |= __put_user(from->si_uid, &to->si_uid);
2076 break;
2077 case __SI_TIMER:
2078 err |= __put_user(from->si_tid, &to->si_tid);
2079 err |= __put_user(from->si_overrun, &to->si_overrun);
2080 err |= __put_user(from->si_ptr, &to->si_ptr);
2081 break;
2082 case __SI_POLL:
2083 err |= __put_user(from->si_band, &to->si_band);
2084 err |= __put_user(from->si_fd, &to->si_fd);
2085 break;
2086 case __SI_FAULT:
2087 err |= __put_user(from->si_addr, &to->si_addr);
2088 #ifdef __ARCH_SI_TRAPNO
2089 err |= __put_user(from->si_trapno, &to->si_trapno);
2090 #endif
2091 break;
2092 case __SI_CHLD:
2093 err |= __put_user(from->si_pid, &to->si_pid);
2094 err |= __put_user(from->si_uid, &to->si_uid);
2095 err |= __put_user(from->si_status, &to->si_status);
2096 err |= __put_user(from->si_utime, &to->si_utime);
2097 err |= __put_user(from->si_stime, &to->si_stime);
2098 break;
2099 case __SI_RT: /* This is not generated by the kernel as of now. */
2100 case __SI_MESGQ: /* But this is */
2101 err |= __put_user(from->si_pid, &to->si_pid);
2102 err |= __put_user(from->si_uid, &to->si_uid);
2103 err |= __put_user(from->si_ptr, &to->si_ptr);
2104 break;
2105 default: /* this is just in case for now ... */
2106 err |= __put_user(from->si_pid, &to->si_pid);
2107 err |= __put_user(from->si_uid, &to->si_uid);
2108 break;
2110 return err;
2113 #endif
2115 asmlinkage long
2116 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2117 siginfo_t __user *uinfo,
2118 const struct timespec __user *uts,
2119 size_t sigsetsize)
2121 int ret, sig;
2122 sigset_t these;
2123 struct timespec ts;
2124 siginfo_t info;
2125 long timeout = 0;
2127 /* XXX: Don't preclude handling different sized sigset_t's. */
2128 if (sigsetsize != sizeof(sigset_t))
2129 return -EINVAL;
2131 if (copy_from_user(&these, uthese, sizeof(these)))
2132 return -EFAULT;
2135 * Invert the set of allowed signals to get those we
2136 * want to block.
2138 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2139 signotset(&these);
2141 if (uts) {
2142 if (copy_from_user(&ts, uts, sizeof(ts)))
2143 return -EFAULT;
2144 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2145 || ts.tv_sec < 0)
2146 return -EINVAL;
2149 spin_lock_irq(&current->sighand->siglock);
2150 sig = dequeue_signal(current, &these, &info);
2151 if (!sig) {
2152 timeout = MAX_SCHEDULE_TIMEOUT;
2153 if (uts)
2154 timeout = (timespec_to_jiffies(&ts)
2155 + (ts.tv_sec || ts.tv_nsec));
2157 if (timeout) {
2158 /* None ready -- temporarily unblock those we're
2159 * interested while we are sleeping in so that we'll
2160 * be awakened when they arrive. */
2161 current->real_blocked = current->blocked;
2162 sigandsets(&current->blocked, &current->blocked, &these);
2163 recalc_sigpending();
2164 spin_unlock_irq(&current->sighand->siglock);
2166 timeout = schedule_timeout_interruptible(timeout);
2168 spin_lock_irq(&current->sighand->siglock);
2169 sig = dequeue_signal(current, &these, &info);
2170 current->blocked = current->real_blocked;
2171 siginitset(&current->real_blocked, 0);
2172 recalc_sigpending();
2175 spin_unlock_irq(&current->sighand->siglock);
2177 if (sig) {
2178 ret = sig;
2179 if (uinfo) {
2180 if (copy_siginfo_to_user(uinfo, &info))
2181 ret = -EFAULT;
2183 } else {
2184 ret = -EAGAIN;
2185 if (timeout)
2186 ret = -EINTR;
2189 return ret;
2192 asmlinkage long
2193 sys_kill(int pid, int sig)
2195 struct siginfo info;
2197 info.si_signo = sig;
2198 info.si_errno = 0;
2199 info.si_code = SI_USER;
2200 info.si_pid = current->tgid;
2201 info.si_uid = current->uid;
2203 return kill_something_info(sig, &info, pid);
2206 static int do_tkill(int tgid, int pid, int sig)
2208 int error;
2209 struct siginfo info;
2210 struct task_struct *p;
2212 error = -ESRCH;
2213 info.si_signo = sig;
2214 info.si_errno = 0;
2215 info.si_code = SI_TKILL;
2216 info.si_pid = current->tgid;
2217 info.si_uid = current->uid;
2219 read_lock(&tasklist_lock);
2220 p = find_task_by_pid(pid);
2221 if (p && (tgid <= 0 || p->tgid == tgid)) {
2222 error = check_kill_permission(sig, &info, p);
2224 * The null signal is a permissions and process existence
2225 * probe. No signal is actually delivered.
2227 if (!error && sig && p->sighand) {
2228 spin_lock_irq(&p->sighand->siglock);
2229 handle_stop_signal(sig, p);
2230 error = specific_send_sig_info(sig, &info, p);
2231 spin_unlock_irq(&p->sighand->siglock);
2234 read_unlock(&tasklist_lock);
2236 return error;
2240 * sys_tgkill - send signal to one specific thread
2241 * @tgid: the thread group ID of the thread
2242 * @pid: the PID of the thread
2243 * @sig: signal to be sent
2245 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2246 * exists but it's not belonging to the target process anymore. This
2247 * method solves the problem of threads exiting and PIDs getting reused.
2249 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2251 /* This is only valid for single tasks */
2252 if (pid <= 0 || tgid <= 0)
2253 return -EINVAL;
2255 return do_tkill(tgid, pid, sig);
2259 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2261 asmlinkage long
2262 sys_tkill(int pid, int sig)
2264 /* This is only valid for single tasks */
2265 if (pid <= 0)
2266 return -EINVAL;
2268 return do_tkill(0, pid, sig);
2271 asmlinkage long
2272 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2274 siginfo_t info;
2276 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2277 return -EFAULT;
2279 /* Not even root can pretend to send signals from the kernel.
2280 Nor can they impersonate a kill(), which adds source info. */
2281 if (info.si_code >= 0)
2282 return -EPERM;
2283 info.si_signo = sig;
2285 /* POSIX.1b doesn't mention process groups. */
2286 return kill_proc_info(sig, &info, pid);
2289 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2291 struct k_sigaction *k;
2292 sigset_t mask;
2294 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2295 return -EINVAL;
2297 k = &current->sighand->action[sig-1];
2299 spin_lock_irq(&current->sighand->siglock);
2300 if (signal_pending(current)) {
2302 * If there might be a fatal signal pending on multiple
2303 * threads, make sure we take it before changing the action.
2305 spin_unlock_irq(&current->sighand->siglock);
2306 return -ERESTARTNOINTR;
2309 if (oact)
2310 *oact = *k;
2312 if (act) {
2313 sigdelsetmask(&act->sa.sa_mask,
2314 sigmask(SIGKILL) | sigmask(SIGSTOP));
2315 *k = *act;
2317 * POSIX 3.3.1.3:
2318 * "Setting a signal action to SIG_IGN for a signal that is
2319 * pending shall cause the pending signal to be discarded,
2320 * whether or not it is blocked."
2322 * "Setting a signal action to SIG_DFL for a signal that is
2323 * pending and whose default action is to ignore the signal
2324 * (for example, SIGCHLD), shall cause the pending signal to
2325 * be discarded, whether or not it is blocked"
2327 if (act->sa.sa_handler == SIG_IGN ||
2328 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2329 struct task_struct *t = current;
2330 sigemptyset(&mask);
2331 sigaddset(&mask, sig);
2332 rm_from_queue_full(&mask, &t->signal->shared_pending);
2333 do {
2334 rm_from_queue_full(&mask, &t->pending);
2335 t = next_thread(t);
2336 } while (t != current);
2340 spin_unlock_irq(&current->sighand->siglock);
2341 return 0;
2344 int
2345 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2347 stack_t oss;
2348 int error;
2350 if (uoss) {
2351 oss.ss_sp = (void __user *) current->sas_ss_sp;
2352 oss.ss_size = current->sas_ss_size;
2353 oss.ss_flags = sas_ss_flags(sp);
2356 if (uss) {
2357 void __user *ss_sp;
2358 size_t ss_size;
2359 int ss_flags;
2361 error = -EFAULT;
2362 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2363 || __get_user(ss_sp, &uss->ss_sp)
2364 || __get_user(ss_flags, &uss->ss_flags)
2365 || __get_user(ss_size, &uss->ss_size))
2366 goto out;
2368 error = -EPERM;
2369 if (on_sig_stack(sp))
2370 goto out;
2372 error = -EINVAL;
2375 * Note - this code used to test ss_flags incorrectly
2376 * old code may have been written using ss_flags==0
2377 * to mean ss_flags==SS_ONSTACK (as this was the only
2378 * way that worked) - this fix preserves that older
2379 * mechanism
2381 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2382 goto out;
2384 if (ss_flags == SS_DISABLE) {
2385 ss_size = 0;
2386 ss_sp = NULL;
2387 } else {
2388 error = -ENOMEM;
2389 if (ss_size < MINSIGSTKSZ)
2390 goto out;
2393 current->sas_ss_sp = (unsigned long) ss_sp;
2394 current->sas_ss_size = ss_size;
2397 if (uoss) {
2398 error = -EFAULT;
2399 if (copy_to_user(uoss, &oss, sizeof(oss)))
2400 goto out;
2403 error = 0;
2404 out:
2405 return error;
2408 #ifdef __ARCH_WANT_SYS_SIGPENDING
2410 asmlinkage long
2411 sys_sigpending(old_sigset_t __user *set)
2413 return do_sigpending(set, sizeof(*set));
2416 #endif
2418 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2419 /* Some platforms have their own version with special arguments others
2420 support only sys_rt_sigprocmask. */
2422 asmlinkage long
2423 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2425 int error;
2426 old_sigset_t old_set, new_set;
2428 if (set) {
2429 error = -EFAULT;
2430 if (copy_from_user(&new_set, set, sizeof(*set)))
2431 goto out;
2432 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2434 spin_lock_irq(&current->sighand->siglock);
2435 old_set = current->blocked.sig[0];
2437 error = 0;
2438 switch (how) {
2439 default:
2440 error = -EINVAL;
2441 break;
2442 case SIG_BLOCK:
2443 sigaddsetmask(&current->blocked, new_set);
2444 break;
2445 case SIG_UNBLOCK:
2446 sigdelsetmask(&current->blocked, new_set);
2447 break;
2448 case SIG_SETMASK:
2449 current->blocked.sig[0] = new_set;
2450 break;
2453 recalc_sigpending();
2454 spin_unlock_irq(&current->sighand->siglock);
2455 if (error)
2456 goto out;
2457 if (oset)
2458 goto set_old;
2459 } else if (oset) {
2460 old_set = current->blocked.sig[0];
2461 set_old:
2462 error = -EFAULT;
2463 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2464 goto out;
2466 error = 0;
2467 out:
2468 return error;
2470 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2472 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2473 asmlinkage long
2474 sys_rt_sigaction(int sig,
2475 const struct sigaction __user *act,
2476 struct sigaction __user *oact,
2477 size_t sigsetsize)
2479 struct k_sigaction new_sa, old_sa;
2480 int ret = -EINVAL;
2482 /* XXX: Don't preclude handling different sized sigset_t's. */
2483 if (sigsetsize != sizeof(sigset_t))
2484 goto out;
2486 if (act) {
2487 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2488 return -EFAULT;
2491 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2493 if (!ret && oact) {
2494 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2495 return -EFAULT;
2497 out:
2498 return ret;
2500 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2502 #ifdef __ARCH_WANT_SYS_SGETMASK
2505 * For backwards compatibility. Functionality superseded by sigprocmask.
2507 asmlinkage long
2508 sys_sgetmask(void)
2510 /* SMP safe */
2511 return current->blocked.sig[0];
2514 asmlinkage long
2515 sys_ssetmask(int newmask)
2517 int old;
2519 spin_lock_irq(&current->sighand->siglock);
2520 old = current->blocked.sig[0];
2522 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2523 sigmask(SIGSTOP)));
2524 recalc_sigpending();
2525 spin_unlock_irq(&current->sighand->siglock);
2527 return old;
2529 #endif /* __ARCH_WANT_SGETMASK */
2531 #ifdef __ARCH_WANT_SYS_SIGNAL
2533 * For backwards compatibility. Functionality superseded by sigaction.
2535 asmlinkage unsigned long
2536 sys_signal(int sig, __sighandler_t handler)
2538 struct k_sigaction new_sa, old_sa;
2539 int ret;
2541 new_sa.sa.sa_handler = handler;
2542 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2543 sigemptyset(&new_sa.sa.sa_mask);
2545 ret = do_sigaction(sig, &new_sa, &old_sa);
2547 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2549 #endif /* __ARCH_WANT_SYS_SIGNAL */
2551 #ifdef __ARCH_WANT_SYS_PAUSE
2553 asmlinkage long
2554 sys_pause(void)
2556 current->state = TASK_INTERRUPTIBLE;
2557 schedule();
2558 return -ERESTARTNOHAND;
2561 #endif
2563 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2564 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2566 sigset_t newset;
2568 /* XXX: Don't preclude handling different sized sigset_t's. */
2569 if (sigsetsize != sizeof(sigset_t))
2570 return -EINVAL;
2572 if (copy_from_user(&newset, unewset, sizeof(newset)))
2573 return -EFAULT;
2574 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2576 spin_lock_irq(&current->sighand->siglock);
2577 current->saved_sigmask = current->blocked;
2578 current->blocked = newset;
2579 recalc_sigpending();
2580 spin_unlock_irq(&current->sighand->siglock);
2582 current->state = TASK_INTERRUPTIBLE;
2583 schedule();
2584 set_thread_flag(TIF_RESTORE_SIGMASK);
2585 return -ERESTARTNOHAND;
2587 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2589 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2591 return NULL;
2594 void __init signals_init(void)
2596 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);