4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/pfn.h>
27 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
40 pte
= pte_offset_kernel(pmd
, addr
);
42 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
43 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
44 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
47 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
52 pmd
= pmd_offset(pud
, addr
);
54 next
= pmd_addr_end(addr
, end
);
55 if (pmd_none_or_clear_bad(pmd
))
57 vunmap_pte_range(pmd
, addr
, next
);
58 } while (pmd
++, addr
= next
, addr
!= end
);
61 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
66 pud
= pud_offset(pgd
, addr
);
68 next
= pud_addr_end(addr
, end
);
69 if (pud_none_or_clear_bad(pud
))
71 vunmap_pmd_range(pud
, addr
, next
);
72 } while (pud
++, addr
= next
, addr
!= end
);
75 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
81 pgd
= pgd_offset_k(addr
);
83 next
= pgd_addr_end(addr
, end
);
84 if (pgd_none_or_clear_bad(pgd
))
86 vunmap_pud_range(pgd
, addr
, next
);
87 } while (pgd
++, addr
= next
, addr
!= end
);
90 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
91 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte
= pte_alloc_kernel(pmd
, addr
);
104 struct page
*page
= pages
[*nr
];
106 if (WARN_ON(!pte_none(*pte
)))
110 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
116 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
117 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
122 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
126 next
= pmd_addr_end(addr
, end
);
127 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
129 } while (pmd
++, addr
= next
, addr
!= end
);
133 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
134 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
139 pud
= pud_alloc(&init_mm
, pgd
, addr
);
143 next
= pud_addr_end(addr
, end
);
144 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
146 } while (pud
++, addr
= next
, addr
!= end
);
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
157 pgprot_t prot
, struct page
**pages
)
161 unsigned long addr
= start
;
166 pgd
= pgd_offset_k(addr
);
168 next
= pgd_addr_end(addr
, end
);
169 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
172 } while (pgd
++, addr
= next
, addr
!= end
);
179 static int vmap_page_range(unsigned long start
, unsigned long end
,
180 pgprot_t prot
, struct page
**pages
)
184 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
185 flush_cache_vmap(start
, end
);
189 static inline int is_vmalloc_or_module_addr(const void *x
)
192 * ARM, x86-64 and sparc64 put modules in a special place,
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr
= (unsigned long)x
;
198 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
201 return is_vmalloc_addr(x
);
205 * Walk a vmap address to the struct page it maps.
207 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
209 unsigned long addr
= (unsigned long) vmalloc_addr
;
210 struct page
*page
= NULL
;
211 pgd_t
*pgd
= pgd_offset_k(addr
);
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
219 if (!pgd_none(*pgd
)) {
220 pud_t
*pud
= pud_offset(pgd
, addr
);
221 if (!pud_none(*pud
)) {
222 pmd_t
*pmd
= pmd_offset(pud
, addr
);
223 if (!pmd_none(*pmd
)) {
226 ptep
= pte_offset_map(pmd
, addr
);
228 if (pte_present(pte
))
229 page
= pte_page(pte
);
236 EXPORT_SYMBOL(vmalloc_to_page
);
239 * Map a vmalloc()-space virtual address to the physical page frame number.
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
245 EXPORT_SYMBOL(vmalloc_to_pfn
);
248 /*** Global kva allocator ***/
250 #define VM_LAZY_FREE 0x01
251 #define VM_LAZY_FREEING 0x02
252 #define VM_VM_AREA 0x04
255 unsigned long va_start
;
256 unsigned long va_end
;
258 struct rb_node rb_node
; /* address sorted rbtree */
259 struct list_head list
; /* address sorted list */
260 struct list_head purge_list
; /* "lazy purge" list */
262 struct rcu_head rcu_head
;
265 static DEFINE_SPINLOCK(vmap_area_lock
);
266 static struct rb_root vmap_area_root
= RB_ROOT
;
267 static LIST_HEAD(vmap_area_list
);
268 static unsigned long vmap_area_pcpu_hole
;
270 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
272 struct rb_node
*n
= vmap_area_root
.rb_node
;
275 struct vmap_area
*va
;
277 va
= rb_entry(n
, struct vmap_area
, rb_node
);
278 if (addr
< va
->va_start
)
280 else if (addr
> va
->va_start
)
289 static void __insert_vmap_area(struct vmap_area
*va
)
291 struct rb_node
**p
= &vmap_area_root
.rb_node
;
292 struct rb_node
*parent
= NULL
;
296 struct vmap_area
*tmp
;
299 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
300 if (va
->va_start
< tmp
->va_end
)
302 else if (va
->va_end
> tmp
->va_start
)
308 rb_link_node(&va
->rb_node
, parent
, p
);
309 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
311 /* address-sort this list so it is usable like the vmlist */
312 tmp
= rb_prev(&va
->rb_node
);
314 struct vmap_area
*prev
;
315 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
316 list_add_rcu(&va
->list
, &prev
->list
);
318 list_add_rcu(&va
->list
, &vmap_area_list
);
321 static void purge_vmap_area_lazy(void);
324 * Allocate a region of KVA of the specified size and alignment, within the
327 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
329 unsigned long vstart
, unsigned long vend
,
330 int node
, gfp_t gfp_mask
)
332 struct vmap_area
*va
;
338 BUG_ON(size
& ~PAGE_MASK
);
340 va
= kmalloc_node(sizeof(struct vmap_area
),
341 gfp_mask
& GFP_RECLAIM_MASK
, node
);
343 return ERR_PTR(-ENOMEM
);
346 addr
= ALIGN(vstart
, align
);
348 spin_lock(&vmap_area_lock
);
349 if (addr
+ size
- 1 < addr
)
352 /* XXX: could have a last_hole cache */
353 n
= vmap_area_root
.rb_node
;
355 struct vmap_area
*first
= NULL
;
358 struct vmap_area
*tmp
;
359 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
360 if (tmp
->va_end
>= addr
) {
361 if (!first
&& tmp
->va_start
< addr
+ size
)
373 if (first
->va_end
< addr
) {
374 n
= rb_next(&first
->rb_node
);
376 first
= rb_entry(n
, struct vmap_area
, rb_node
);
381 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
382 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
383 if (addr
+ size
- 1 < addr
)
386 n
= rb_next(&first
->rb_node
);
388 first
= rb_entry(n
, struct vmap_area
, rb_node
);
394 if (addr
+ size
> vend
) {
396 spin_unlock(&vmap_area_lock
);
398 purge_vmap_area_lazy();
402 if (printk_ratelimit())
404 "vmap allocation for size %lu failed: "
405 "use vmalloc=<size> to increase size.\n", size
);
407 return ERR_PTR(-EBUSY
);
410 BUG_ON(addr
& (align
-1));
413 va
->va_end
= addr
+ size
;
415 __insert_vmap_area(va
);
416 spin_unlock(&vmap_area_lock
);
421 static void rcu_free_va(struct rcu_head
*head
)
423 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
428 static void __free_vmap_area(struct vmap_area
*va
)
430 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
431 rb_erase(&va
->rb_node
, &vmap_area_root
);
432 RB_CLEAR_NODE(&va
->rb_node
);
433 list_del_rcu(&va
->list
);
436 * Track the highest possible candidate for pcpu area
437 * allocation. Areas outside of vmalloc area can be returned
438 * here too, consider only end addresses which fall inside
439 * vmalloc area proper.
441 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
442 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
444 call_rcu(&va
->rcu_head
, rcu_free_va
);
448 * Free a region of KVA allocated by alloc_vmap_area
450 static void free_vmap_area(struct vmap_area
*va
)
452 spin_lock(&vmap_area_lock
);
453 __free_vmap_area(va
);
454 spin_unlock(&vmap_area_lock
);
458 * Clear the pagetable entries of a given vmap_area
460 static void unmap_vmap_area(struct vmap_area
*va
)
462 vunmap_page_range(va
->va_start
, va
->va_end
);
465 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
468 * Unmap page tables and force a TLB flush immediately if
469 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470 * bugs similarly to those in linear kernel virtual address
471 * space after a page has been freed.
473 * All the lazy freeing logic is still retained, in order to
474 * minimise intrusiveness of this debugging feature.
476 * This is going to be *slow* (linear kernel virtual address
477 * debugging doesn't do a broadcast TLB flush so it is a lot
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 vunmap_page_range(start
, end
);
482 flush_tlb_kernel_range(start
, end
);
487 * lazy_max_pages is the maximum amount of virtual address space we gather up
488 * before attempting to purge with a TLB flush.
490 * There is a tradeoff here: a larger number will cover more kernel page tables
491 * and take slightly longer to purge, but it will linearly reduce the number of
492 * global TLB flushes that must be performed. It would seem natural to scale
493 * this number up linearly with the number of CPUs (because vmapping activity
494 * could also scale linearly with the number of CPUs), however it is likely
495 * that in practice, workloads might be constrained in other ways that mean
496 * vmap activity will not scale linearly with CPUs. Also, I want to be
497 * conservative and not introduce a big latency on huge systems, so go with
498 * a less aggressive log scale. It will still be an improvement over the old
499 * code, and it will be simple to change the scale factor if we find that it
500 * becomes a problem on bigger systems.
502 static unsigned long lazy_max_pages(void)
506 log
= fls(num_online_cpus());
508 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
511 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
514 * Purges all lazily-freed vmap areas.
516 * If sync is 0 then don't purge if there is already a purge in progress.
517 * If force_flush is 1, then flush kernel TLBs between *start and *end even
518 * if we found no lazy vmap areas to unmap (callers can use this to optimise
519 * their own TLB flushing).
520 * Returns with *start = min(*start, lowest purged address)
521 * *end = max(*end, highest purged address)
523 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
524 int sync
, int force_flush
)
526 static DEFINE_SPINLOCK(purge_lock
);
528 struct vmap_area
*va
;
529 struct vmap_area
*n_va
;
533 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
534 * should not expect such behaviour. This just simplifies locking for
535 * the case that isn't actually used at the moment anyway.
537 if (!sync
&& !force_flush
) {
538 if (!spin_trylock(&purge_lock
))
541 spin_lock(&purge_lock
);
544 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
545 if (va
->flags
& VM_LAZY_FREE
) {
546 if (va
->va_start
< *start
)
547 *start
= va
->va_start
;
548 if (va
->va_end
> *end
)
550 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
552 list_add_tail(&va
->purge_list
, &valist
);
553 va
->flags
|= VM_LAZY_FREEING
;
554 va
->flags
&= ~VM_LAZY_FREE
;
560 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
561 atomic_sub(nr
, &vmap_lazy_nr
);
564 if (nr
|| force_flush
)
565 flush_tlb_kernel_range(*start
, *end
);
568 spin_lock(&vmap_area_lock
);
569 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
570 __free_vmap_area(va
);
571 spin_unlock(&vmap_area_lock
);
573 spin_unlock(&purge_lock
);
577 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
578 * is already purging.
580 static void try_purge_vmap_area_lazy(void)
582 unsigned long start
= ULONG_MAX
, end
= 0;
584 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
588 * Kick off a purge of the outstanding lazy areas.
590 static void purge_vmap_area_lazy(void)
592 unsigned long start
= ULONG_MAX
, end
= 0;
594 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
598 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
599 * called for the correct range previously.
601 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
603 va
->flags
|= VM_LAZY_FREE
;
604 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
605 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
606 try_purge_vmap_area_lazy();
610 * Free and unmap a vmap area
612 static void free_unmap_vmap_area(struct vmap_area
*va
)
614 flush_cache_vunmap(va
->va_start
, va
->va_end
);
615 free_unmap_vmap_area_noflush(va
);
618 static struct vmap_area
*find_vmap_area(unsigned long addr
)
620 struct vmap_area
*va
;
622 spin_lock(&vmap_area_lock
);
623 va
= __find_vmap_area(addr
);
624 spin_unlock(&vmap_area_lock
);
629 static void free_unmap_vmap_area_addr(unsigned long addr
)
631 struct vmap_area
*va
;
633 va
= find_vmap_area(addr
);
635 free_unmap_vmap_area(va
);
639 /*** Per cpu kva allocator ***/
642 * vmap space is limited especially on 32 bit architectures. Ensure there is
643 * room for at least 16 percpu vmap blocks per CPU.
646 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
647 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
648 * instead (we just need a rough idea)
650 #if BITS_PER_LONG == 32
651 #define VMALLOC_SPACE (128UL*1024*1024)
653 #define VMALLOC_SPACE (128UL*1024*1024*1024)
656 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
657 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
658 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
659 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
660 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
661 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
662 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
663 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
664 VMALLOC_PAGES / NR_CPUS / 16))
666 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
668 static bool vmap_initialized __read_mostly
= false;
670 struct vmap_block_queue
{
672 struct list_head free
;
673 struct list_head dirty
;
674 unsigned int nr_dirty
;
679 struct vmap_area
*va
;
680 struct vmap_block_queue
*vbq
;
681 unsigned long free
, dirty
;
682 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
683 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
685 struct list_head free_list
;
686 struct rcu_head rcu_head
;
690 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
691 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
694 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
695 * in the free path. Could get rid of this if we change the API to return a
696 * "cookie" from alloc, to be passed to free. But no big deal yet.
698 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
699 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
702 * We should probably have a fallback mechanism to allocate virtual memory
703 * out of partially filled vmap blocks. However vmap block sizing should be
704 * fairly reasonable according to the vmalloc size, so it shouldn't be a
708 static unsigned long addr_to_vb_idx(unsigned long addr
)
710 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
711 addr
/= VMAP_BLOCK_SIZE
;
715 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
717 struct vmap_block_queue
*vbq
;
718 struct vmap_block
*vb
;
719 struct vmap_area
*va
;
720 unsigned long vb_idx
;
723 node
= numa_node_id();
725 vb
= kmalloc_node(sizeof(struct vmap_block
),
726 gfp_mask
& GFP_RECLAIM_MASK
, node
);
728 return ERR_PTR(-ENOMEM
);
730 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
731 VMALLOC_START
, VMALLOC_END
,
733 if (unlikely(IS_ERR(va
))) {
735 return ERR_PTR(PTR_ERR(va
));
738 err
= radix_tree_preload(gfp_mask
);
745 spin_lock_init(&vb
->lock
);
747 vb
->free
= VMAP_BBMAP_BITS
;
749 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
750 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
751 INIT_LIST_HEAD(&vb
->free_list
);
753 vb_idx
= addr_to_vb_idx(va
->va_start
);
754 spin_lock(&vmap_block_tree_lock
);
755 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
756 spin_unlock(&vmap_block_tree_lock
);
758 radix_tree_preload_end();
760 vbq
= &get_cpu_var(vmap_block_queue
);
762 spin_lock(&vbq
->lock
);
763 list_add(&vb
->free_list
, &vbq
->free
);
764 spin_unlock(&vbq
->lock
);
765 put_cpu_var(vmap_cpu_blocks
);
770 static void rcu_free_vb(struct rcu_head
*head
)
772 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
777 static void free_vmap_block(struct vmap_block
*vb
)
779 struct vmap_block
*tmp
;
780 unsigned long vb_idx
;
782 BUG_ON(!list_empty(&vb
->free_list
));
784 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
785 spin_lock(&vmap_block_tree_lock
);
786 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
787 spin_unlock(&vmap_block_tree_lock
);
790 free_unmap_vmap_area_noflush(vb
->va
);
791 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
794 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
796 struct vmap_block_queue
*vbq
;
797 struct vmap_block
*vb
;
798 unsigned long addr
= 0;
801 BUG_ON(size
& ~PAGE_MASK
);
802 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
803 order
= get_order(size
);
807 vbq
= &get_cpu_var(vmap_block_queue
);
808 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
811 spin_lock(&vb
->lock
);
812 i
= bitmap_find_free_region(vb
->alloc_map
,
813 VMAP_BBMAP_BITS
, order
);
816 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
817 BUG_ON(addr_to_vb_idx(addr
) !=
818 addr_to_vb_idx(vb
->va
->va_start
));
819 vb
->free
-= 1UL << order
;
821 spin_lock(&vbq
->lock
);
822 list_del_init(&vb
->free_list
);
823 spin_unlock(&vbq
->lock
);
825 spin_unlock(&vb
->lock
);
828 spin_unlock(&vb
->lock
);
830 put_cpu_var(vmap_cpu_blocks
);
834 vb
= new_vmap_block(gfp_mask
);
843 static void vb_free(const void *addr
, unsigned long size
)
845 unsigned long offset
;
846 unsigned long vb_idx
;
848 struct vmap_block
*vb
;
850 BUG_ON(size
& ~PAGE_MASK
);
851 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
853 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
855 order
= get_order(size
);
857 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
859 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
861 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
865 spin_lock(&vb
->lock
);
866 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
868 vb
->dirty
+= 1UL << order
;
869 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
870 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
871 spin_unlock(&vb
->lock
);
874 spin_unlock(&vb
->lock
);
878 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
880 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
881 * to amortize TLB flushing overheads. What this means is that any page you
882 * have now, may, in a former life, have been mapped into kernel virtual
883 * address by the vmap layer and so there might be some CPUs with TLB entries
884 * still referencing that page (additional to the regular 1:1 kernel mapping).
886 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
887 * be sure that none of the pages we have control over will have any aliases
888 * from the vmap layer.
890 void vm_unmap_aliases(void)
892 unsigned long start
= ULONG_MAX
, end
= 0;
896 if (unlikely(!vmap_initialized
))
899 for_each_possible_cpu(cpu
) {
900 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
901 struct vmap_block
*vb
;
904 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
907 spin_lock(&vb
->lock
);
908 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
909 while (i
< VMAP_BBMAP_BITS
) {
912 j
= find_next_zero_bit(vb
->dirty_map
,
915 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
916 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
917 vunmap_page_range(s
, e
);
926 i
= find_next_bit(vb
->dirty_map
,
929 spin_unlock(&vb
->lock
);
934 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
936 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
939 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
940 * @mem: the pointer returned by vm_map_ram
941 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
943 void vm_unmap_ram(const void *mem
, unsigned int count
)
945 unsigned long size
= count
<< PAGE_SHIFT
;
946 unsigned long addr
= (unsigned long)mem
;
949 BUG_ON(addr
< VMALLOC_START
);
950 BUG_ON(addr
> VMALLOC_END
);
951 BUG_ON(addr
& (PAGE_SIZE
-1));
953 debug_check_no_locks_freed(mem
, size
);
954 vmap_debug_free_range(addr
, addr
+size
);
956 if (likely(count
<= VMAP_MAX_ALLOC
))
959 free_unmap_vmap_area_addr(addr
);
961 EXPORT_SYMBOL(vm_unmap_ram
);
964 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
965 * @pages: an array of pointers to the pages to be mapped
966 * @count: number of pages
967 * @node: prefer to allocate data structures on this node
968 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
970 * Returns: a pointer to the address that has been mapped, or %NULL on failure
972 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
974 unsigned long size
= count
<< PAGE_SHIFT
;
978 if (likely(count
<= VMAP_MAX_ALLOC
)) {
979 mem
= vb_alloc(size
, GFP_KERNEL
);
982 addr
= (unsigned long)mem
;
984 struct vmap_area
*va
;
985 va
= alloc_vmap_area(size
, PAGE_SIZE
,
986 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
993 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
994 vm_unmap_ram(mem
, count
);
999 EXPORT_SYMBOL(vm_map_ram
);
1002 * vm_area_register_early - register vmap area early during boot
1003 * @vm: vm_struct to register
1004 * @align: requested alignment
1006 * This function is used to register kernel vm area before
1007 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1008 * proper values on entry and other fields should be zero. On return,
1009 * vm->addr contains the allocated address.
1011 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1013 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1015 static size_t vm_init_off __initdata
;
1018 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1019 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1021 vm
->addr
= (void *)addr
;
1027 void __init
vmalloc_init(void)
1029 struct vmap_area
*va
;
1030 struct vm_struct
*tmp
;
1033 for_each_possible_cpu(i
) {
1034 struct vmap_block_queue
*vbq
;
1036 vbq
= &per_cpu(vmap_block_queue
, i
);
1037 spin_lock_init(&vbq
->lock
);
1038 INIT_LIST_HEAD(&vbq
->free
);
1039 INIT_LIST_HEAD(&vbq
->dirty
);
1043 /* Import existing vmlist entries. */
1044 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1045 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1046 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1047 va
->va_start
= (unsigned long)tmp
->addr
;
1048 va
->va_end
= va
->va_start
+ tmp
->size
;
1049 __insert_vmap_area(va
);
1052 vmap_area_pcpu_hole
= VMALLOC_END
;
1054 vmap_initialized
= true;
1058 * map_kernel_range_noflush - map kernel VM area with the specified pages
1059 * @addr: start of the VM area to map
1060 * @size: size of the VM area to map
1061 * @prot: page protection flags to use
1062 * @pages: pages to map
1064 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1065 * specify should have been allocated using get_vm_area() and its
1069 * This function does NOT do any cache flushing. The caller is
1070 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1071 * before calling this function.
1074 * The number of pages mapped on success, -errno on failure.
1076 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1077 pgprot_t prot
, struct page
**pages
)
1079 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1083 * unmap_kernel_range_noflush - unmap kernel VM area
1084 * @addr: start of the VM area to unmap
1085 * @size: size of the VM area to unmap
1087 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1088 * specify should have been allocated using get_vm_area() and its
1092 * This function does NOT do any cache flushing. The caller is
1093 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1094 * before calling this function and flush_tlb_kernel_range() after.
1096 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1098 vunmap_page_range(addr
, addr
+ size
);
1102 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1103 * @addr: start of the VM area to unmap
1104 * @size: size of the VM area to unmap
1106 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1107 * the unmapping and tlb after.
1109 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1111 unsigned long end
= addr
+ size
;
1113 flush_cache_vunmap(addr
, end
);
1114 vunmap_page_range(addr
, end
);
1115 flush_tlb_kernel_range(addr
, end
);
1118 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1120 unsigned long addr
= (unsigned long)area
->addr
;
1121 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1124 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1132 EXPORT_SYMBOL_GPL(map_vm_area
);
1134 /*** Old vmalloc interfaces ***/
1135 DEFINE_RWLOCK(vmlist_lock
);
1136 struct vm_struct
*vmlist
;
1138 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1139 unsigned long flags
, void *caller
)
1141 struct vm_struct
*tmp
, **p
;
1144 vm
->addr
= (void *)va
->va_start
;
1145 vm
->size
= va
->va_end
- va
->va_start
;
1146 vm
->caller
= caller
;
1148 va
->flags
|= VM_VM_AREA
;
1150 write_lock(&vmlist_lock
);
1151 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1152 if (tmp
->addr
>= vm
->addr
)
1157 write_unlock(&vmlist_lock
);
1160 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1161 unsigned long flags
, unsigned long start
, unsigned long end
,
1162 int node
, gfp_t gfp_mask
, void *caller
)
1164 static struct vmap_area
*va
;
1165 struct vm_struct
*area
;
1166 unsigned long align
= 1;
1168 BUG_ON(in_interrupt());
1169 if (flags
& VM_IOREMAP
) {
1170 int bit
= fls(size
);
1172 if (bit
> IOREMAP_MAX_ORDER
)
1173 bit
= IOREMAP_MAX_ORDER
;
1174 else if (bit
< PAGE_SHIFT
)
1180 size
= PAGE_ALIGN(size
);
1181 if (unlikely(!size
))
1184 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1185 if (unlikely(!area
))
1189 * We always allocate a guard page.
1193 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1199 insert_vmalloc_vm(area
, va
, flags
, caller
);
1203 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1204 unsigned long start
, unsigned long end
)
1206 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1207 __builtin_return_address(0));
1209 EXPORT_SYMBOL_GPL(__get_vm_area
);
1211 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1212 unsigned long start
, unsigned long end
,
1215 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1220 * get_vm_area - reserve a contiguous kernel virtual area
1221 * @size: size of the area
1222 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1224 * Search an area of @size in the kernel virtual mapping area,
1225 * and reserved it for out purposes. Returns the area descriptor
1226 * on success or %NULL on failure.
1228 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1230 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1231 -1, GFP_KERNEL
, __builtin_return_address(0));
1234 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1237 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1238 -1, GFP_KERNEL
, caller
);
1241 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1242 int node
, gfp_t gfp_mask
)
1244 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1245 gfp_mask
, __builtin_return_address(0));
1248 static struct vm_struct
*find_vm_area(const void *addr
)
1250 struct vmap_area
*va
;
1252 va
= find_vmap_area((unsigned long)addr
);
1253 if (va
&& va
->flags
& VM_VM_AREA
)
1260 * remove_vm_area - find and remove a continuous kernel virtual area
1261 * @addr: base address
1263 * Search for the kernel VM area starting at @addr, and remove it.
1264 * This function returns the found VM area, but using it is NOT safe
1265 * on SMP machines, except for its size or flags.
1267 struct vm_struct
*remove_vm_area(const void *addr
)
1269 struct vmap_area
*va
;
1271 va
= find_vmap_area((unsigned long)addr
);
1272 if (va
&& va
->flags
& VM_VM_AREA
) {
1273 struct vm_struct
*vm
= va
->private;
1274 struct vm_struct
*tmp
, **p
;
1276 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1277 free_unmap_vmap_area(va
);
1278 vm
->size
-= PAGE_SIZE
;
1280 write_lock(&vmlist_lock
);
1281 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1284 write_unlock(&vmlist_lock
);
1291 static void __vunmap(const void *addr
, int deallocate_pages
)
1293 struct vm_struct
*area
;
1298 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1299 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1303 area
= remove_vm_area(addr
);
1304 if (unlikely(!area
)) {
1305 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1310 debug_check_no_locks_freed(addr
, area
->size
);
1311 debug_check_no_obj_freed(addr
, area
->size
);
1313 if (deallocate_pages
) {
1316 for (i
= 0; i
< area
->nr_pages
; i
++) {
1317 struct page
*page
= area
->pages
[i
];
1323 if (area
->flags
& VM_VPAGES
)
1334 * vfree - release memory allocated by vmalloc()
1335 * @addr: memory base address
1337 * Free the virtually continuous memory area starting at @addr, as
1338 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1339 * NULL, no operation is performed.
1341 * Must not be called in interrupt context.
1343 void vfree(const void *addr
)
1345 BUG_ON(in_interrupt());
1347 kmemleak_free(addr
);
1351 EXPORT_SYMBOL(vfree
);
1354 * vunmap - release virtual mapping obtained by vmap()
1355 * @addr: memory base address
1357 * Free the virtually contiguous memory area starting at @addr,
1358 * which was created from the page array passed to vmap().
1360 * Must not be called in interrupt context.
1362 void vunmap(const void *addr
)
1364 BUG_ON(in_interrupt());
1368 EXPORT_SYMBOL(vunmap
);
1371 * vmap - map an array of pages into virtually contiguous space
1372 * @pages: array of page pointers
1373 * @count: number of pages to map
1374 * @flags: vm_area->flags
1375 * @prot: page protection for the mapping
1377 * Maps @count pages from @pages into contiguous kernel virtual
1380 void *vmap(struct page
**pages
, unsigned int count
,
1381 unsigned long flags
, pgprot_t prot
)
1383 struct vm_struct
*area
;
1387 if (count
> num_physpages
)
1390 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1391 __builtin_return_address(0));
1395 if (map_vm_area(area
, prot
, &pages
)) {
1402 EXPORT_SYMBOL(vmap
);
1404 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1405 int node
, void *caller
);
1406 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1407 pgprot_t prot
, int node
, void *caller
)
1409 struct page
**pages
;
1410 unsigned int nr_pages
, array_size
, i
;
1412 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1413 array_size
= (nr_pages
* sizeof(struct page
*));
1415 area
->nr_pages
= nr_pages
;
1416 /* Please note that the recursion is strictly bounded. */
1417 if (array_size
> PAGE_SIZE
) {
1418 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1419 PAGE_KERNEL
, node
, caller
);
1420 area
->flags
|= VM_VPAGES
;
1422 pages
= kmalloc_node(array_size
,
1423 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1426 area
->pages
= pages
;
1427 area
->caller
= caller
;
1429 remove_vm_area(area
->addr
);
1434 for (i
= 0; i
< area
->nr_pages
; i
++) {
1438 page
= alloc_page(gfp_mask
);
1440 page
= alloc_pages_node(node
, gfp_mask
, 0);
1442 if (unlikely(!page
)) {
1443 /* Successfully allocated i pages, free them in __vunmap() */
1447 area
->pages
[i
] = page
;
1450 if (map_vm_area(area
, prot
, &pages
))
1459 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1461 void *addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1462 __builtin_return_address(0));
1465 * A ref_count = 3 is needed because the vm_struct and vmap_area
1466 * structures allocated in the __get_vm_area_node() function contain
1467 * references to the virtual address of the vmalloc'ed block.
1469 kmemleak_alloc(addr
, area
->size
- PAGE_SIZE
, 3, gfp_mask
);
1475 * __vmalloc_node - allocate virtually contiguous memory
1476 * @size: allocation size
1477 * @gfp_mask: flags for the page level allocator
1478 * @prot: protection mask for the allocated pages
1479 * @node: node to use for allocation or -1
1480 * @caller: caller's return address
1482 * Allocate enough pages to cover @size from the page level
1483 * allocator with @gfp_mask flags. Map them into contiguous
1484 * kernel virtual space, using a pagetable protection of @prot.
1486 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1487 int node
, void *caller
)
1489 struct vm_struct
*area
;
1491 unsigned long real_size
= size
;
1493 size
= PAGE_ALIGN(size
);
1494 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1497 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1498 node
, gfp_mask
, caller
);
1503 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1506 * A ref_count = 3 is needed because the vm_struct and vmap_area
1507 * structures allocated in the __get_vm_area_node() function contain
1508 * references to the virtual address of the vmalloc'ed block.
1510 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1515 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1517 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1518 __builtin_return_address(0));
1520 EXPORT_SYMBOL(__vmalloc
);
1523 * vmalloc - allocate virtually contiguous memory
1524 * @size: allocation size
1525 * Allocate enough pages to cover @size from the page level
1526 * allocator and map them into contiguous kernel virtual space.
1528 * For tight control over page level allocator and protection flags
1529 * use __vmalloc() instead.
1531 void *vmalloc(unsigned long size
)
1533 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1534 -1, __builtin_return_address(0));
1536 EXPORT_SYMBOL(vmalloc
);
1539 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1540 * @size: allocation size
1542 * The resulting memory area is zeroed so it can be mapped to userspace
1543 * without leaking data.
1545 void *vmalloc_user(unsigned long size
)
1547 struct vm_struct
*area
;
1550 ret
= __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1551 PAGE_KERNEL
, -1, __builtin_return_address(0));
1553 area
= find_vm_area(ret
);
1554 area
->flags
|= VM_USERMAP
;
1558 EXPORT_SYMBOL(vmalloc_user
);
1561 * vmalloc_node - allocate memory on a specific node
1562 * @size: allocation size
1565 * Allocate enough pages to cover @size from the page level
1566 * allocator and map them into contiguous kernel virtual space.
1568 * For tight control over page level allocator and protection flags
1569 * use __vmalloc() instead.
1571 void *vmalloc_node(unsigned long size
, int node
)
1573 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1574 node
, __builtin_return_address(0));
1576 EXPORT_SYMBOL(vmalloc_node
);
1578 #ifndef PAGE_KERNEL_EXEC
1579 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1583 * vmalloc_exec - allocate virtually contiguous, executable memory
1584 * @size: allocation size
1586 * Kernel-internal function to allocate enough pages to cover @size
1587 * the page level allocator and map them into contiguous and
1588 * executable kernel virtual space.
1590 * For tight control over page level allocator and protection flags
1591 * use __vmalloc() instead.
1594 void *vmalloc_exec(unsigned long size
)
1596 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1597 -1, __builtin_return_address(0));
1600 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1601 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1602 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1603 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1605 #define GFP_VMALLOC32 GFP_KERNEL
1609 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1610 * @size: allocation size
1612 * Allocate enough 32bit PA addressable pages to cover @size from the
1613 * page level allocator and map them into contiguous kernel virtual space.
1615 void *vmalloc_32(unsigned long size
)
1617 return __vmalloc_node(size
, GFP_VMALLOC32
, PAGE_KERNEL
,
1618 -1, __builtin_return_address(0));
1620 EXPORT_SYMBOL(vmalloc_32
);
1623 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1624 * @size: allocation size
1626 * The resulting memory area is 32bit addressable and zeroed so it can be
1627 * mapped to userspace without leaking data.
1629 void *vmalloc_32_user(unsigned long size
)
1631 struct vm_struct
*area
;
1634 ret
= __vmalloc_node(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1635 -1, __builtin_return_address(0));
1637 area
= find_vm_area(ret
);
1638 area
->flags
|= VM_USERMAP
;
1642 EXPORT_SYMBOL(vmalloc_32_user
);
1644 long vread(char *buf
, char *addr
, unsigned long count
)
1646 struct vm_struct
*tmp
;
1647 char *vaddr
, *buf_start
= buf
;
1650 /* Don't allow overflow */
1651 if ((unsigned long) addr
+ count
< count
)
1652 count
= -(unsigned long) addr
;
1654 read_lock(&vmlist_lock
);
1655 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1656 vaddr
= (char *) tmp
->addr
;
1657 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1659 while (addr
< vaddr
) {
1667 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1678 read_unlock(&vmlist_lock
);
1679 return buf
- buf_start
;
1682 long vwrite(char *buf
, char *addr
, unsigned long count
)
1684 struct vm_struct
*tmp
;
1685 char *vaddr
, *buf_start
= buf
;
1688 /* Don't allow overflow */
1689 if ((unsigned long) addr
+ count
< count
)
1690 count
= -(unsigned long) addr
;
1692 read_lock(&vmlist_lock
);
1693 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1694 vaddr
= (char *) tmp
->addr
;
1695 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1697 while (addr
< vaddr
) {
1704 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1715 read_unlock(&vmlist_lock
);
1716 return buf
- buf_start
;
1720 * remap_vmalloc_range - map vmalloc pages to userspace
1721 * @vma: vma to cover (map full range of vma)
1722 * @addr: vmalloc memory
1723 * @pgoff: number of pages into addr before first page to map
1725 * Returns: 0 for success, -Exxx on failure
1727 * This function checks that addr is a valid vmalloc'ed area, and
1728 * that it is big enough to cover the vma. Will return failure if
1729 * that criteria isn't met.
1731 * Similar to remap_pfn_range() (see mm/memory.c)
1733 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1734 unsigned long pgoff
)
1736 struct vm_struct
*area
;
1737 unsigned long uaddr
= vma
->vm_start
;
1738 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1740 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1743 area
= find_vm_area(addr
);
1747 if (!(area
->flags
& VM_USERMAP
))
1750 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1753 addr
+= pgoff
<< PAGE_SHIFT
;
1755 struct page
*page
= vmalloc_to_page(addr
);
1758 ret
= vm_insert_page(vma
, uaddr
, page
);
1765 } while (usize
> 0);
1767 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1768 vma
->vm_flags
|= VM_RESERVED
;
1772 EXPORT_SYMBOL(remap_vmalloc_range
);
1775 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1778 void __attribute__((weak
)) vmalloc_sync_all(void)
1783 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1785 /* apply_to_page_range() does all the hard work. */
1790 * alloc_vm_area - allocate a range of kernel address space
1791 * @size: size of the area
1793 * Returns: NULL on failure, vm_struct on success
1795 * This function reserves a range of kernel address space, and
1796 * allocates pagetables to map that range. No actual mappings
1797 * are created. If the kernel address space is not shared
1798 * between processes, it syncs the pagetable across all
1801 struct vm_struct
*alloc_vm_area(size_t size
)
1803 struct vm_struct
*area
;
1805 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1806 __builtin_return_address(0));
1811 * This ensures that page tables are constructed for this region
1812 * of kernel virtual address space and mapped into init_mm.
1814 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1815 area
->size
, f
, NULL
)) {
1820 /* Make sure the pagetables are constructed in process kernel
1826 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1828 void free_vm_area(struct vm_struct
*area
)
1830 struct vm_struct
*ret
;
1831 ret
= remove_vm_area(area
->addr
);
1832 BUG_ON(ret
!= area
);
1835 EXPORT_SYMBOL_GPL(free_vm_area
);
1837 static struct vmap_area
*node_to_va(struct rb_node
*n
)
1839 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
1843 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
1844 * @end: target address
1845 * @pnext: out arg for the next vmap_area
1846 * @pprev: out arg for the previous vmap_area
1848 * Returns: %true if either or both of next and prev are found,
1849 * %false if no vmap_area exists
1851 * Find vmap_areas end addresses of which enclose @end. ie. if not
1852 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
1854 static bool pvm_find_next_prev(unsigned long end
,
1855 struct vmap_area
**pnext
,
1856 struct vmap_area
**pprev
)
1858 struct rb_node
*n
= vmap_area_root
.rb_node
;
1859 struct vmap_area
*va
= NULL
;
1862 va
= rb_entry(n
, struct vmap_area
, rb_node
);
1863 if (end
< va
->va_end
)
1865 else if (end
> va
->va_end
)
1874 if (va
->va_end
> end
) {
1876 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
1879 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
1885 * pvm_determine_end - find the highest aligned address between two vmap_areas
1886 * @pnext: in/out arg for the next vmap_area
1887 * @pprev: in/out arg for the previous vmap_area
1890 * Returns: determined end address
1892 * Find the highest aligned address between *@pnext and *@pprev below
1893 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
1894 * down address is between the end addresses of the two vmap_areas.
1896 * Please note that the address returned by this function may fall
1897 * inside *@pnext vmap_area. The caller is responsible for checking
1900 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
1901 struct vmap_area
**pprev
,
1902 unsigned long align
)
1904 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
1908 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
1912 while (*pprev
&& (*pprev
)->va_end
> addr
) {
1914 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
1921 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
1922 * @offsets: array containing offset of each area
1923 * @sizes: array containing size of each area
1924 * @nr_vms: the number of areas to allocate
1925 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
1926 * @gfp_mask: allocation mask
1928 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
1929 * vm_structs on success, %NULL on failure
1931 * Percpu allocator wants to use congruent vm areas so that it can
1932 * maintain the offsets among percpu areas. This function allocates
1933 * congruent vmalloc areas for it. These areas tend to be scattered
1934 * pretty far, distance between two areas easily going up to
1935 * gigabytes. To avoid interacting with regular vmallocs, these areas
1936 * are allocated from top.
1938 * Despite its complicated look, this allocator is rather simple. It
1939 * does everything top-down and scans areas from the end looking for
1940 * matching slot. While scanning, if any of the areas overlaps with
1941 * existing vmap_area, the base address is pulled down to fit the
1942 * area. Scanning is repeated till all the areas fit and then all
1943 * necessary data structres are inserted and the result is returned.
1945 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
1946 const size_t *sizes
, int nr_vms
,
1947 size_t align
, gfp_t gfp_mask
)
1949 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
1950 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
1951 struct vmap_area
**vas
, *prev
, *next
;
1952 struct vm_struct
**vms
;
1953 int area
, area2
, last_area
, term_area
;
1954 unsigned long base
, start
, end
, last_end
;
1955 bool purged
= false;
1957 gfp_mask
&= GFP_RECLAIM_MASK
;
1959 /* verify parameters and allocate data structures */
1960 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
1961 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
1962 start
= offsets
[area
];
1963 end
= start
+ sizes
[area
];
1965 /* is everything aligned properly? */
1966 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
1967 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
1969 /* detect the area with the highest address */
1970 if (start
> offsets
[last_area
])
1973 for (area2
= 0; area2
< nr_vms
; area2
++) {
1974 unsigned long start2
= offsets
[area2
];
1975 unsigned long end2
= start2
+ sizes
[area2
];
1980 BUG_ON(start2
>= start
&& start2
< end
);
1981 BUG_ON(end2
<= end
&& end2
> start
);
1984 last_end
= offsets
[last_area
] + sizes
[last_area
];
1986 if (vmalloc_end
- vmalloc_start
< last_end
) {
1991 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, gfp_mask
);
1992 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, gfp_mask
);
1996 for (area
= 0; area
< nr_vms
; area
++) {
1997 vas
[area
] = kzalloc(sizeof(struct vmap_area
), gfp_mask
);
1998 vms
[area
] = kzalloc(sizeof(struct vm_struct
), gfp_mask
);
1999 if (!vas
[area
] || !vms
[area
])
2003 spin_lock(&vmap_area_lock
);
2005 /* start scanning - we scan from the top, begin with the last area */
2006 area
= term_area
= last_area
;
2007 start
= offsets
[area
];
2008 end
= start
+ sizes
[area
];
2010 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2011 base
= vmalloc_end
- last_end
;
2014 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2017 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2018 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2021 * base might have underflowed, add last_end before
2024 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2025 spin_unlock(&vmap_area_lock
);
2027 purge_vmap_area_lazy();
2035 * If next overlaps, move base downwards so that it's
2036 * right below next and then recheck.
2038 if (next
&& next
->va_start
< base
+ end
) {
2039 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2045 * If prev overlaps, shift down next and prev and move
2046 * base so that it's right below new next and then
2049 if (prev
&& prev
->va_end
> base
+ start
) {
2051 prev
= node_to_va(rb_prev(&next
->rb_node
));
2052 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2058 * This area fits, move on to the previous one. If
2059 * the previous one is the terminal one, we're done.
2061 area
= (area
+ nr_vms
- 1) % nr_vms
;
2062 if (area
== term_area
)
2064 start
= offsets
[area
];
2065 end
= start
+ sizes
[area
];
2066 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2069 /* we've found a fitting base, insert all va's */
2070 for (area
= 0; area
< nr_vms
; area
++) {
2071 struct vmap_area
*va
= vas
[area
];
2073 va
->va_start
= base
+ offsets
[area
];
2074 va
->va_end
= va
->va_start
+ sizes
[area
];
2075 __insert_vmap_area(va
);
2078 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2080 spin_unlock(&vmap_area_lock
);
2082 /* insert all vm's */
2083 for (area
= 0; area
< nr_vms
; area
++)
2084 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2091 for (area
= 0; area
< nr_vms
; area
++) {
2103 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2104 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2105 * @nr_vms: the number of allocated areas
2107 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2109 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2113 for (i
= 0; i
< nr_vms
; i
++)
2114 free_vm_area(vms
[i
]);
2118 #ifdef CONFIG_PROC_FS
2119 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2122 struct vm_struct
*v
;
2124 read_lock(&vmlist_lock
);
2126 while (n
> 0 && v
) {
2137 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2139 struct vm_struct
*v
= p
;
2145 static void s_stop(struct seq_file
*m
, void *p
)
2147 read_unlock(&vmlist_lock
);
2150 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2153 unsigned int nr
, *counters
= m
->private;
2158 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2160 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2161 counters
[page_to_nid(v
->pages
[nr
])]++;
2163 for_each_node_state(nr
, N_HIGH_MEMORY
)
2165 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2169 static int s_show(struct seq_file
*m
, void *p
)
2171 struct vm_struct
*v
= p
;
2173 seq_printf(m
, "0x%p-0x%p %7ld",
2174 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2177 char buff
[KSYM_SYMBOL_LEN
];
2180 sprint_symbol(buff
, (unsigned long)v
->caller
);
2185 seq_printf(m
, " pages=%d", v
->nr_pages
);
2188 seq_printf(m
, " phys=%lx", v
->phys_addr
);
2190 if (v
->flags
& VM_IOREMAP
)
2191 seq_printf(m
, " ioremap");
2193 if (v
->flags
& VM_ALLOC
)
2194 seq_printf(m
, " vmalloc");
2196 if (v
->flags
& VM_MAP
)
2197 seq_printf(m
, " vmap");
2199 if (v
->flags
& VM_USERMAP
)
2200 seq_printf(m
, " user");
2202 if (v
->flags
& VM_VPAGES
)
2203 seq_printf(m
, " vpages");
2205 show_numa_info(m
, v
);
2210 static const struct seq_operations vmalloc_op
= {
2217 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2219 unsigned int *ptr
= NULL
;
2223 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2224 ret
= seq_open(file
, &vmalloc_op
);
2226 struct seq_file
*m
= file
->private_data
;
2233 static const struct file_operations proc_vmalloc_operations
= {
2234 .open
= vmalloc_open
,
2236 .llseek
= seq_lseek
,
2237 .release
= seq_release_private
,
2240 static int __init
proc_vmalloc_init(void)
2242 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2245 module_init(proc_vmalloc_init
);