Staging: comedi: fix sched.h build breakage
[linux-2.6/mini2440.git] / drivers / staging / comedi / drivers / s626.c
blob80d2787d10637d0ab2bf53600d615ba5ff3206dc
1 /*
2 comedi/drivers/s626.c
3 Sensoray s626 Comedi driver
5 COMEDI - Linux Control and Measurement Device Interface
6 Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8 Based on Sensoray Model 626 Linux driver Version 0.2
9 Copyright (C) 2002-2004 Sensoray Co., Inc.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 Driver: s626
29 Description: Sensoray 626 driver
30 Devices: [Sensoray] 626 (s626)
31 Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32 Updated: Fri, 15 Feb 2008 10:28:42 +0000
33 Status: experimental
35 Configuration options:
36 [0] - PCI bus of device (optional)
37 [1] - PCI slot of device (optional)
38 If bus/slot is not specified, the first supported
39 PCI device found will be used.
41 INSN_CONFIG instructions:
42 analog input:
43 none
45 analog output:
46 none
48 digital channel:
49 s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50 supported configuration options:
51 INSN_CONFIG_DIO_QUERY
52 COMEDI_INPUT
53 COMEDI_OUTPUT
55 encoder:
56 Every channel must be configured before reading.
58 Example code
60 insn.insn=INSN_CONFIG; //configuration instruction
61 insn.n=1; //number of operation (must be 1)
62 insn.data=&initialvalue; //initial value loaded into encoder
63 //during configuration
64 insn.subdev=5; //encoder subdevice
65 insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66 //to configure
68 comedi_do_insn(cf,&insn); //executing configuration
71 #include <linux/interrupt.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
75 #include "../comedidev.h"
77 #include "comedi_pci.h"
79 #include "comedi_fc.h"
80 #include "s626.h"
82 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
83 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
84 MODULE_LICENSE("GPL");
86 struct s626_board {
87 const char *name;
88 int ai_chans;
89 int ai_bits;
90 int ao_chans;
91 int ao_bits;
92 int dio_chans;
93 int dio_banks;
94 int enc_chans;
97 static const struct s626_board s626_boards[] = {
99 .name = "s626",
100 .ai_chans = S626_ADC_CHANNELS,
101 .ai_bits = 14,
102 .ao_chans = S626_DAC_CHANNELS,
103 .ao_bits = 13,
104 .dio_chans = S626_DIO_CHANNELS,
105 .dio_banks = S626_DIO_BANKS,
106 .enc_chans = S626_ENCODER_CHANNELS,
110 #define thisboard ((const struct s626_board *)dev->board_ptr)
111 #define PCI_VENDOR_ID_S626 0x1131
112 #define PCI_DEVICE_ID_S626 0x7146
115 * For devices with vendor:device id == 0x1131:0x7146 you must specify
116 * also subvendor:subdevice ids, because otherwise it will conflict with
117 * Philips SAA7146 media/dvb based cards.
119 static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
120 {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, 0x6000, 0x0272, 0, 0, 0},
124 MODULE_DEVICE_TABLE(pci, s626_pci_table);
126 static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
127 static int s626_detach(struct comedi_device *dev);
129 static struct comedi_driver driver_s626 = {
130 .driver_name = "s626",
131 .module = THIS_MODULE,
132 .attach = s626_attach,
133 .detach = s626_detach,
136 struct s626_private {
137 struct pci_dev *pdev;
138 void *base_addr;
139 int got_regions;
140 short allocatedBuf;
141 uint8_t ai_cmd_running; /* ai_cmd is running */
142 uint8_t ai_continous; /* continous aquisition */
143 int ai_sample_count; /* number of samples to aquire */
144 unsigned int ai_sample_timer;
145 /* time between samples in units of the timer */
146 int ai_convert_count; /* conversion counter */
147 unsigned int ai_convert_timer;
148 /* time between conversion in units of the timer */
149 uint16_t CounterIntEnabs;
150 /* Counter interrupt enable mask for MISC2 register. */
151 uint8_t AdcItems; /* Number of items in ADC poll list. */
152 struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
153 struct bufferDMA ANABuf;
154 /* DMA buffer used to receive ADC data and hold DAC data. */
155 uint32_t *pDacWBuf;
156 /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
157 uint16_t Dacpol; /* Image of DAC polarity register. */
158 uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
159 uint16_t ChargeEnabled; /* Image of MISC2 Battery */
160 /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
161 uint16_t WDInterval; /* Image of MISC2 watchdog interval control bits. */
162 uint32_t I2CAdrs;
163 /* I2C device address for onboard EEPROM (board rev dependent). */
164 /* short I2Cards; */
165 unsigned int ao_readback[S626_DAC_CHANNELS];
168 struct dio_private {
169 uint16_t RDDIn;
170 uint16_t WRDOut;
171 uint16_t RDEdgSel;
172 uint16_t WREdgSel;
173 uint16_t RDCapSel;
174 uint16_t WRCapSel;
175 uint16_t RDCapFlg;
176 uint16_t RDIntSel;
177 uint16_t WRIntSel;
180 static struct dio_private dio_private_A = {
181 .RDDIn = LP_RDDINA,
182 .WRDOut = LP_WRDOUTA,
183 .RDEdgSel = LP_RDEDGSELA,
184 .WREdgSel = LP_WREDGSELA,
185 .RDCapSel = LP_RDCAPSELA,
186 .WRCapSel = LP_WRCAPSELA,
187 .RDCapFlg = LP_RDCAPFLGA,
188 .RDIntSel = LP_RDINTSELA,
189 .WRIntSel = LP_WRINTSELA,
192 static struct dio_private dio_private_B = {
193 .RDDIn = LP_RDDINB,
194 .WRDOut = LP_WRDOUTB,
195 .RDEdgSel = LP_RDEDGSELB,
196 .WREdgSel = LP_WREDGSELB,
197 .RDCapSel = LP_RDCAPSELB,
198 .WRCapSel = LP_WRCAPSELB,
199 .RDCapFlg = LP_RDCAPFLGB,
200 .RDIntSel = LP_RDINTSELB,
201 .WRIntSel = LP_WRINTSELB,
204 static struct dio_private dio_private_C = {
205 .RDDIn = LP_RDDINC,
206 .WRDOut = LP_WRDOUTC,
207 .RDEdgSel = LP_RDEDGSELC,
208 .WREdgSel = LP_WREDGSELC,
209 .RDCapSel = LP_RDCAPSELC,
210 .WRCapSel = LP_WRCAPSELC,
211 .RDCapFlg = LP_RDCAPFLGC,
212 .RDIntSel = LP_RDINTSELC,
213 .WRIntSel = LP_WRINTSELC,
216 /* to group dio devices (48 bits mask and data are not allowed ???)
217 static struct dio_private *dio_private_word[]={
218 &dio_private_A,
219 &dio_private_B,
220 &dio_private_C,
224 #define devpriv ((struct s626_private *)dev->private)
225 #define diopriv ((struct dio_private *)s->private)
227 COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
229 /* ioctl routines */
230 static int s626_ai_insn_config(struct comedi_device *dev,
231 struct comedi_subdevice *s,
232 struct comedi_insn *insn, unsigned int *data);
233 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
234 static int s626_ai_insn_read(struct comedi_device *dev,
235 struct comedi_subdevice *s,
236 struct comedi_insn *insn, unsigned int *data);
237 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
238 static int s626_ai_cmdtest(struct comedi_device *dev,
239 struct comedi_subdevice *s, struct comedi_cmd *cmd);
240 static int s626_ai_cancel(struct comedi_device *dev,
241 struct comedi_subdevice *s);
242 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
243 struct comedi_insn *insn, unsigned int *data);
244 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
245 struct comedi_insn *insn, unsigned int *data);
246 static int s626_dio_insn_bits(struct comedi_device *dev,
247 struct comedi_subdevice *s,
248 struct comedi_insn *insn, unsigned int *data);
249 static int s626_dio_insn_config(struct comedi_device *dev,
250 struct comedi_subdevice *s,
251 struct comedi_insn *insn, unsigned int *data);
252 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
253 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
254 unsigned int mask);
255 static int s626_dio_clear_irq(struct comedi_device *dev);
256 static int s626_enc_insn_config(struct comedi_device *dev,
257 struct comedi_subdevice *s,
258 struct comedi_insn *insn, unsigned int *data);
259 static int s626_enc_insn_read(struct comedi_device *dev,
260 struct comedi_subdevice *s,
261 struct comedi_insn *insn, unsigned int *data);
262 static int s626_enc_insn_write(struct comedi_device *dev,
263 struct comedi_subdevice *s,
264 struct comedi_insn *insn, unsigned int *data);
265 static int s626_ns_to_timer(int *nanosec, int round_mode);
266 static int s626_ai_load_polllist(uint8_t * ppl, struct comedi_cmd *cmd);
267 static int s626_ai_inttrig(struct comedi_device *dev,
268 struct comedi_subdevice *s, unsigned int trignum);
269 static irqreturn_t s626_irq_handler(int irq, void *d);
270 static unsigned int s626_ai_reg_to_uint(int data);
271 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
273 /* end ioctl routines */
275 /* internal routines */
276 static void s626_dio_init(struct comedi_device *dev);
277 static void ResetADC(struct comedi_device *dev, uint8_t * ppl);
278 static void LoadTrimDACs(struct comedi_device *dev);
279 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
280 uint8_t DacData);
281 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
282 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
283 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
284 static void SendDAC(struct comedi_device *dev, uint32_t val);
285 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
286 static void DEBItransfer(struct comedi_device *dev);
287 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
288 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
289 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
290 uint16_t wdata);
291 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
292 size_t bsize);
294 /* COUNTER OBJECT ------------------------------------------------ */
295 struct enc_private {
296 /* Pointers to functions that differ for A and B counters: */
297 uint16_t(*GetEnable) (struct comedi_device * dev, struct enc_private *); /* Return clock enable. */
298 uint16_t(*GetIntSrc) (struct comedi_device * dev, struct enc_private *); /* Return interrupt source. */
299 uint16_t(*GetLoadTrig) (struct comedi_device * dev, struct enc_private *); /* Return preload trigger source. */
300 uint16_t(*GetMode) (struct comedi_device * dev, struct enc_private *); /* Return standardized operating mode. */
301 void (*PulseIndex) (struct comedi_device * dev, struct enc_private *); /* Generate soft index strobe. */
302 void (*SetEnable) (struct comedi_device * dev, struct enc_private *, uint16_t enab); /* Program clock enable. */
303 void (*SetIntSrc) (struct comedi_device * dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */
304 void (*SetLoadTrig) (struct comedi_device * dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */
305 void (*SetMode) (struct comedi_device * dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
306 void (*ResetCapFlags) (struct comedi_device * dev, struct enc_private *); /* Reset event capture flags. */
308 uint16_t MyCRA; /* Address of CRA register. */
309 uint16_t MyCRB; /* Address of CRB register. */
310 uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
311 /* register. */
312 uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
315 #define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
317 /* counters routines */
318 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
319 int tick);
320 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
321 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
322 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
323 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
324 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
325 static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
326 uint16_t Setup, uint16_t DisableIntSrc);
327 static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
328 uint16_t Setup, uint16_t DisableIntSrc);
329 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
330 uint16_t enab);
331 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
332 uint16_t enab);
333 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
334 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
335 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
336 uint16_t value);
337 /* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
338 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
339 uint16_t Trig);
340 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
341 uint16_t Trig);
342 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
343 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
344 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
345 uint16_t IntSource);
346 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
347 uint16_t IntSource);
348 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
349 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
350 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
351 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
352 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
353 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
354 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
355 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ); */
356 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
357 /* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k ); */
358 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
359 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
360 static void Preload(struct comedi_device *dev, struct enc_private *k,
361 uint32_t value);
362 static void CountersInit(struct comedi_device *dev);
363 /* end internal routines */
365 /* Counter objects constructor. */
367 /* Counter overflow/index event flag masks for RDMISC2. */
368 #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
369 #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
370 #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
372 /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
373 /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
375 /* struct enc_private; */
376 static struct enc_private enc_private_data[] = {
378 .GetEnable = GetEnable_A,
379 .GetIntSrc = GetIntSrc_A,
380 .GetLoadTrig = GetLoadTrig_A,
381 .GetMode = GetMode_A,
382 .PulseIndex = PulseIndex_A,
383 .SetEnable = SetEnable_A,
384 .SetIntSrc = SetIntSrc_A,
385 .SetLoadTrig = SetLoadTrig_A,
386 .SetMode = SetMode_A,
387 .ResetCapFlags = ResetCapFlags_A,
388 .MyCRA = LP_CR0A,
389 .MyCRB = LP_CR0B,
390 .MyLatchLsw = LP_CNTR0ALSW,
391 .MyEventBits = EVBITS(0),
394 .GetEnable = GetEnable_A,
395 .GetIntSrc = GetIntSrc_A,
396 .GetLoadTrig = GetLoadTrig_A,
397 .GetMode = GetMode_A,
398 .PulseIndex = PulseIndex_A,
399 .SetEnable = SetEnable_A,
400 .SetIntSrc = SetIntSrc_A,
401 .SetLoadTrig = SetLoadTrig_A,
402 .SetMode = SetMode_A,
403 .ResetCapFlags = ResetCapFlags_A,
404 .MyCRA = LP_CR1A,
405 .MyCRB = LP_CR1B,
406 .MyLatchLsw = LP_CNTR1ALSW,
407 .MyEventBits = EVBITS(1),
410 .GetEnable = GetEnable_A,
411 .GetIntSrc = GetIntSrc_A,
412 .GetLoadTrig = GetLoadTrig_A,
413 .GetMode = GetMode_A,
414 .PulseIndex = PulseIndex_A,
415 .SetEnable = SetEnable_A,
416 .SetIntSrc = SetIntSrc_A,
417 .SetLoadTrig = SetLoadTrig_A,
418 .SetMode = SetMode_A,
419 .ResetCapFlags = ResetCapFlags_A,
420 .MyCRA = LP_CR2A,
421 .MyCRB = LP_CR2B,
422 .MyLatchLsw = LP_CNTR2ALSW,
423 .MyEventBits = EVBITS(2),
426 .GetEnable = GetEnable_B,
427 .GetIntSrc = GetIntSrc_B,
428 .GetLoadTrig = GetLoadTrig_B,
429 .GetMode = GetMode_B,
430 .PulseIndex = PulseIndex_B,
431 .SetEnable = SetEnable_B,
432 .SetIntSrc = SetIntSrc_B,
433 .SetLoadTrig = SetLoadTrig_B,
434 .SetMode = SetMode_B,
435 .ResetCapFlags = ResetCapFlags_B,
436 .MyCRA = LP_CR0A,
437 .MyCRB = LP_CR0B,
438 .MyLatchLsw = LP_CNTR0BLSW,
439 .MyEventBits = EVBITS(3),
442 .GetEnable = GetEnable_B,
443 .GetIntSrc = GetIntSrc_B,
444 .GetLoadTrig = GetLoadTrig_B,
445 .GetMode = GetMode_B,
446 .PulseIndex = PulseIndex_B,
447 .SetEnable = SetEnable_B,
448 .SetIntSrc = SetIntSrc_B,
449 .SetLoadTrig = SetLoadTrig_B,
450 .SetMode = SetMode_B,
451 .ResetCapFlags = ResetCapFlags_B,
452 .MyCRA = LP_CR1A,
453 .MyCRB = LP_CR1B,
454 .MyLatchLsw = LP_CNTR1BLSW,
455 .MyEventBits = EVBITS(4),
458 .GetEnable = GetEnable_B,
459 .GetIntSrc = GetIntSrc_B,
460 .GetLoadTrig = GetLoadTrig_B,
461 .GetMode = GetMode_B,
462 .PulseIndex = PulseIndex_B,
463 .SetEnable = SetEnable_B,
464 .SetIntSrc = SetIntSrc_B,
465 .SetLoadTrig = SetLoadTrig_B,
466 .SetMode = SetMode_B,
467 .ResetCapFlags = ResetCapFlags_B,
468 .MyCRA = LP_CR2A,
469 .MyCRB = LP_CR2B,
470 .MyLatchLsw = LP_CNTR2BLSW,
471 .MyEventBits = EVBITS(5),
475 /* enab/disable a function or test status bit(s) that are accessed */
476 /* through Main Control Registers 1 or 2. */
477 #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
479 #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
481 #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
483 /* #define WR7146(REGARDS,CTRLWORD)
484 writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
485 #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
487 /* #define RR7146(REGARDS)
488 readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
489 #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
491 #define BUGFIX_STREG(REGADRS) (REGADRS - 4)
493 /* Write a time slot control record to TSL2. */
494 #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
495 #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL))
497 /* Code macros used for constructing I2C command bytes. */
498 #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
499 #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
500 #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
502 static const struct comedi_lrange s626_range_table = { 2, {
503 RANGE(-5, 5),
504 RANGE(-10, 10),
508 static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
510 /* uint8_t PollList; */
511 /* uint16_t AdcData; */
512 /* uint16_t StartVal; */
513 /* uint16_t index; */
514 /* unsigned int data[16]; */
515 int result;
516 int i;
517 int ret;
518 resource_size_t resourceStart;
519 dma_addr_t appdma;
520 struct comedi_subdevice *s;
521 const struct pci_device_id *ids;
522 struct pci_dev *pdev = NULL;
524 if (alloc_private(dev, sizeof(struct s626_private)) < 0)
525 return -ENOMEM;
527 for (i = 0; i < (ARRAY_SIZE(s626_pci_table) - 1) && !pdev; i++) {
528 ids = &s626_pci_table[i];
529 do {
530 pdev = pci_get_subsys(ids->vendor, ids->device,
531 ids->subvendor, ids->subdevice,
532 pdev);
534 if ((it->options[0] || it->options[1]) && pdev) {
535 /* matches requested bus/slot */
536 if (pdev->bus->number == it->options[0] &&
537 PCI_SLOT(pdev->devfn) == it->options[1])
538 break;
539 } else
540 break;
541 } while (1);
543 devpriv->pdev = pdev;
545 if (pdev == NULL) {
546 printk("s626_attach: Board not present!!!\n");
547 return -ENODEV;
550 result = comedi_pci_enable(pdev, "s626");
551 if (result < 0) {
552 printk("s626_attach: comedi_pci_enable fails\n");
553 return -ENODEV;
555 devpriv->got_regions = 1;
557 resourceStart = pci_resource_start(devpriv->pdev, 0);
559 devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
560 if (devpriv->base_addr == NULL) {
561 printk("s626_attach: IOREMAP failed\n");
562 return -ENODEV;
565 if (devpriv->base_addr) {
566 /* disable master interrupt */
567 writel(0, devpriv->base_addr + P_IER);
569 /* soft reset */
570 writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
572 /* DMA FIXME DMA// */
573 DEBUG("s626_attach: DMA ALLOCATION\n");
575 /* adc buffer allocation */
576 devpriv->allocatedBuf = 0;
578 devpriv->ANABuf.LogicalBase =
579 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
581 if (devpriv->ANABuf.LogicalBase == NULL) {
582 printk("s626_attach: DMA Memory mapping error\n");
583 return -ENOMEM;
586 devpriv->ANABuf.PhysicalBase = appdma;
588 DEBUG
589 ("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n",
590 devpriv->ANABuf.LogicalBase, DMABUF_SIZE,
591 (uint32_t) devpriv->ANABuf.PhysicalBase);
593 devpriv->allocatedBuf++;
595 devpriv->RPSBuf.LogicalBase =
596 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
598 if (devpriv->RPSBuf.LogicalBase == NULL) {
599 printk("s626_attach: DMA Memory mapping error\n");
600 return -ENOMEM;
603 devpriv->RPSBuf.PhysicalBase = appdma;
605 DEBUG
606 ("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n",
607 devpriv->RPSBuf.LogicalBase, DMABUF_SIZE,
608 (uint32_t) devpriv->RPSBuf.PhysicalBase);
610 devpriv->allocatedBuf++;
614 dev->board_ptr = s626_boards;
615 dev->board_name = thisboard->name;
617 if (alloc_subdevices(dev, 6) < 0)
618 return -ENOMEM;
620 dev->iobase = (unsigned long)devpriv->base_addr;
621 dev->irq = devpriv->pdev->irq;
623 /* set up interrupt handler */
624 if (dev->irq == 0) {
625 printk(" unknown irq (bad)\n");
626 } else {
627 ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
628 "s626", dev);
630 if (ret < 0) {
631 printk(" irq not available\n");
632 dev->irq = 0;
636 DEBUG("s626_attach: -- it opts %d,%d -- \n",
637 it->options[0], it->options[1]);
639 s = dev->subdevices + 0;
640 /* analog input subdevice */
641 dev->read_subdev = s;
642 /* we support single-ended (ground) and differential */
643 s->type = COMEDI_SUBD_AI;
644 s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
645 s->n_chan = thisboard->ai_chans;
646 s->maxdata = (0xffff >> 2);
647 s->range_table = &s626_range_table;
648 s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
649 length that the board can
650 handle */
651 s->insn_config = s626_ai_insn_config;
652 s->insn_read = s626_ai_insn_read;
653 s->do_cmd = s626_ai_cmd;
654 s->do_cmdtest = s626_ai_cmdtest;
655 s->cancel = s626_ai_cancel;
657 s = dev->subdevices + 1;
658 /* analog output subdevice */
659 s->type = COMEDI_SUBD_AO;
660 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
661 s->n_chan = thisboard->ao_chans;
662 s->maxdata = (0x3fff);
663 s->range_table = &range_bipolar10;
664 s->insn_write = s626_ao_winsn;
665 s->insn_read = s626_ao_rinsn;
667 s = dev->subdevices + 2;
668 /* digital I/O subdevice */
669 s->type = COMEDI_SUBD_DIO;
670 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
671 s->n_chan = S626_DIO_CHANNELS;
672 s->maxdata = 1;
673 s->io_bits = 0xffff;
674 s->private = &dio_private_A;
675 s->range_table = &range_digital;
676 s->insn_config = s626_dio_insn_config;
677 s->insn_bits = s626_dio_insn_bits;
679 s = dev->subdevices + 3;
680 /* digital I/O subdevice */
681 s->type = COMEDI_SUBD_DIO;
682 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
683 s->n_chan = 16;
684 s->maxdata = 1;
685 s->io_bits = 0xffff;
686 s->private = &dio_private_B;
687 s->range_table = &range_digital;
688 s->insn_config = s626_dio_insn_config;
689 s->insn_bits = s626_dio_insn_bits;
691 s = dev->subdevices + 4;
692 /* digital I/O subdevice */
693 s->type = COMEDI_SUBD_DIO;
694 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
695 s->n_chan = 16;
696 s->maxdata = 1;
697 s->io_bits = 0xffff;
698 s->private = &dio_private_C;
699 s->range_table = &range_digital;
700 s->insn_config = s626_dio_insn_config;
701 s->insn_bits = s626_dio_insn_bits;
703 s = dev->subdevices + 5;
704 /* encoder (counter) subdevice */
705 s->type = COMEDI_SUBD_COUNTER;
706 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
707 s->n_chan = thisboard->enc_chans;
708 s->private = enc_private_data;
709 s->insn_config = s626_enc_insn_config;
710 s->insn_read = s626_enc_insn_read;
711 s->insn_write = s626_enc_insn_write;
712 s->maxdata = 0xffffff;
713 s->range_table = &range_unknown;
715 /* stop ai_command */
716 devpriv->ai_cmd_running = 0;
718 if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
719 dma_addr_t pPhysBuf;
720 uint16_t chan;
722 /* enab DEBI and audio pins, enable I2C interface. */
723 MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
724 /* Configure DEBI operating mode. */
725 WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */
726 /* bits wide. */
727 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT)
729 /* Declare DEBI */
730 /* transfer timeout */
731 /* interval. */
732 |DEBI_SWAP /* Set up byte lane */
733 /* steering. */
734 | DEBI_CFG_INTEL); /* Intel-compatible */
735 /* local bus (DEBI */
736 /* never times out). */
737 DEBUG("s626_attach: %d debi init -- %d\n",
738 DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
739 DEBI_SWAP | DEBI_CFG_INTEL,
740 DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
741 DEBI_CFG_16Q);
743 /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
744 /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
746 /* Paging is disabled. */
747 WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */
749 /* Init GPIO so that ADC Start* is negated. */
750 WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
752 /* IsBoardRevA is a boolean that indicates whether the board is RevA.
754 * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
755 * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
756 * is used to access the onboard serial EEPROM. The EEPROM's I2C
757 * DeviceAddress is hardwired to a value that is dependent on the
758 * 626 board revision. On all board revisions, the EEPROM stores
759 * TrimDAC calibration constants for analog I/O. On RevB and
760 * higher boards, the DeviceAddress is hardwired to 0 to enable
761 * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
762 * this is the address at which the SAA7146 expects a
763 * configuration EEPROM to reside. On RevA boards, the EEPROM
764 * device address, which is hardwired to 4, prevents the SAA7146
765 * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
766 * default values, instead.
769 /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
770 /* DeviceType (0xA0) */
771 /* and DeviceAddress<<1. */
773 devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */
774 /* eeprom(revb) */
776 /* Issue an I2C ABORT command to halt any I2C operation in */
777 /* progress and reset BUSY flag. */
778 WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
779 /* Write I2C control: abort any I2C activity. */
780 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
781 /* Invoke command upload */
782 while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ;
783 /* and wait for upload to complete. */
785 /* Per SAA7146 data sheet, write to STATUS reg twice to
786 * reset all I2C error flags. */
787 for (i = 0; i < 2; i++) {
788 WR7146(P_I2CSTAT, I2C_CLKSEL);
789 /* Write I2C control: reset error flags. */
790 MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */
791 while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
792 /* and wait for upload to complete. */
795 /* Init audio interface functional attributes: set DAC/ADC
796 * serial clock rates, invert DAC serial clock so that
797 * DAC data setup times are satisfied, enable DAC serial
798 * clock out.
801 WR7146(P_ACON2, ACON2_INIT);
803 /* Set up TSL1 slot list, which is used to control the
804 * accumulation of ADC data: RSD1 = shift data in on SD1.
805 * SIB_A1 = store data uint8_t at next available location in
806 * FB BUFFER1 register. */
807 WR7146(P_TSL1, RSD1 | SIB_A1);
808 /* Fetch ADC high data uint8_t. */
809 WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
810 /* Fetch ADC low data uint8_t; end of TSL1. */
812 /* enab TSL1 slot list so that it executes all the time. */
813 WR7146(P_ACON1, ACON1_ADCSTART);
815 /* Initialize RPS registers used for ADC. */
817 /* Physical start of RPS program. */
818 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
820 WR7146(P_RPSPAGE1, 0);
821 /* RPS program performs no explicit mem writes. */
822 WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */
824 /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
825 * to a known state by invoking ADCs until FB BUFFER 1
826 * register shows that it is correctly receiving ADC data.
827 * This is necessary because the SAA7146 ADC interface does
828 * not start up in a defined state after a PCI reset.
831 /* PollList = EOPL; // Create a simple polling */
832 /* // list for analog input */
833 /* // channel 0. */
834 /* ResetADC( dev, &PollList ); */
836 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
837 /* //Get initial ADC */
838 /* //value. */
840 /* StartVal = data[0]; */
842 /* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
843 /* // Invoke ADCs until the new ADC value differs from the initial */
844 /* // value or a timeout occurs. The timeout protects against the */
845 /* // possibility that the driver is restarting and the ADC data is a */
846 /* // fixed value resulting from the applied ADC analog input being */
847 /* // unusually quiet or at the rail. */
849 /* for ( index = 0; index < 500; index++ ) */
850 /* { */
851 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
852 /* AdcData = data[0]; //ReadADC( &AdcData ); */
853 /* if ( AdcData != StartVal ) */
854 /* break; */
855 /* } */
857 /* end initADC */
859 /* init the DAC interface */
861 /* Init Audio2's output DMAC attributes: burst length = 1
862 * DWORD, threshold = 1 DWORD.
864 WR7146(P_PCI_BT_A, 0);
866 /* Init Audio2's output DMA physical addresses. The protection
867 * address is set to 1 DWORD past the base address so that a
868 * single DWORD will be transferred each time a DMA transfer is
869 * enabled. */
871 pPhysBuf =
872 devpriv->ANABuf.PhysicalBase +
873 (DAC_WDMABUF_OS * sizeof(uint32_t));
875 WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */
876 WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */
878 /* Cache Audio2's output DMA buffer logical address. This is
879 * where DAC data is buffered for A2 output DMA transfers. */
880 devpriv->pDacWBuf =
881 (uint32_t *) devpriv->ANABuf.LogicalBase + DAC_WDMABUF_OS;
883 /* Audio2's output channels does not use paging. The protection
884 * violation handling bit is set so that the DMAC will
885 * automatically halt and its PCI address pointer will be reset
886 * when the protection address is reached. */
888 WR7146(P_PAGEA2_OUT, 8);
890 /* Initialize time slot list 2 (TSL2), which is used to control
891 * the clock generation for and serialization of data to be sent
892 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
893 * execution; this permits other slots to be safely modified
894 * without first turning off the TSL sequencer (which is
895 * apparently impossible to do). Also, SD3 (which is driven by a
896 * pull-up resistor) is shifted in and stored to the MSB of
897 * FB_BUFFER2 to be used as evidence that the slot sequence has
898 * not yet finished executing.
901 SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
902 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
904 /* Initialize slot 1, which is constant. Slot 1 causes a
905 * DWORD to be transferred from audio channel 2's output FIFO
906 * to the FIFO's output buffer so that it can be serialized
907 * and sent to the DAC during subsequent slots. All remaining
908 * slots are dynamically populated as required by the target
909 * DAC device.
911 SETVECT(1, LF_A2);
912 /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
914 /* Start DAC's audio interface (TSL2) running. */
915 WR7146(P_ACON1, ACON1_DACSTART);
917 /* end init DAC interface */
919 /* Init Trim DACs to calibrated values. Do it twice because the
920 * SAA7146 audio channel does not always reset properly and
921 * sometimes causes the first few TrimDAC writes to malfunction.
924 LoadTrimDACs(dev);
925 LoadTrimDACs(dev); /* Insurance. */
927 /* Manually init all gate array hardware in case this is a soft
928 * reset (we have no way of determining whether this is a warm
929 * or cold start). This is necessary because the gate array will
930 * reset only in response to a PCI hard reset; there is no soft
931 * reset function. */
933 /* Init all DAC outputs to 0V and init all DAC setpoint and
934 * polarity images.
936 for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
937 SetDAC(dev, chan, 0);
939 /* Init image of WRMISC2 Battery Charger Enabled control bit.
940 * This image is used when the state of the charger control bit,
941 * which has no direct hardware readback mechanism, is queried.
943 devpriv->ChargeEnabled = 0;
945 /* Init image of watchdog timer interval in WRMISC2. This image
946 * maintains the value of the control bits of MISC2 are
947 * continuously reset to zero as long as the WD timer is disabled.
949 devpriv->WDInterval = 0;
951 /* Init Counter Interrupt enab mask for RDMISC2. This mask is
952 * applied against MISC2 when testing to determine which timer
953 * events are requesting interrupt service.
955 devpriv->CounterIntEnabs = 0;
957 /* Init counters. */
958 CountersInit(dev);
960 /* Without modifying the state of the Battery Backup enab, disable
961 * the watchdog timer, set DIO channels 0-5 to operate in the
962 * standard DIO (vs. counter overflow) mode, disable the battery
963 * charger, and reset the watchdog interval selector to zero.
965 WriteMISC2(dev, (uint16_t) (DEBIread(dev,
966 LP_RDMISC2) &
967 MISC2_BATT_ENABLE));
969 /* Initialize the digital I/O subsystem. */
970 s626_dio_init(dev);
972 /* enable interrupt test */
973 /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
976 DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
977 (uint32_t) devpriv->base_addr);
979 return 1;
982 static unsigned int s626_ai_reg_to_uint(int data)
984 unsigned int tempdata;
986 tempdata = (data >> 18);
987 if (tempdata & 0x2000)
988 tempdata &= 0x1fff;
989 else
990 tempdata += (1 << 13);
992 return tempdata;
995 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
996 /* return 0; */
997 /* } */
999 static irqreturn_t s626_irq_handler(int irq, void *d)
1001 struct comedi_device *dev = d;
1002 struct comedi_subdevice *s;
1003 struct comedi_cmd *cmd;
1004 struct enc_private *k;
1005 unsigned long flags;
1006 int32_t *readaddr;
1007 uint32_t irqtype, irqstatus;
1008 int i = 0;
1009 short tempdata;
1010 uint8_t group;
1011 uint16_t irqbit;
1013 DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
1015 if (dev->attached == 0)
1016 return IRQ_NONE;
1017 /* lock to avoid race with comedi_poll */
1018 spin_lock_irqsave(&dev->spinlock, flags);
1020 /* save interrupt enable register state */
1021 irqstatus = readl(devpriv->base_addr + P_IER);
1023 /* read interrupt type */
1024 irqtype = readl(devpriv->base_addr + P_ISR);
1026 /* disable master interrupt */
1027 writel(0, devpriv->base_addr + P_IER);
1029 /* clear interrupt */
1030 writel(irqtype, devpriv->base_addr + P_ISR);
1032 /* do somethings */
1033 DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1035 switch (irqtype) {
1036 case IRQ_RPS1: /* end_of_scan occurs */
1038 DEBUG("s626_irq_handler: RPS1 irq detected\n");
1040 /* manage ai subdevice */
1041 s = dev->subdevices;
1042 cmd = &(s->async->cmd);
1044 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1045 * first uint16_t in the buffer because it contains junk data from
1046 * the final ADC of the previous poll list scan.
1048 readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1050 /* get the data and hand it over to comedi */
1051 for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1052 /* Convert ADC data to 16-bit integer values and copy to application */
1053 /* buffer. */
1054 tempdata = s626_ai_reg_to_uint((int)*readaddr);
1055 readaddr++;
1057 /* put data into read buffer */
1058 /* comedi_buf_put(s->async, tempdata); */
1059 if (cfc_write_to_buffer(s, tempdata) == 0)
1060 printk
1061 ("s626_irq_handler: cfc_write_to_buffer error!\n");
1063 DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1064 i, tempdata);
1067 /* end of scan occurs */
1068 s->async->events |= COMEDI_CB_EOS;
1070 if (!(devpriv->ai_continous))
1071 devpriv->ai_sample_count--;
1072 if (devpriv->ai_sample_count <= 0) {
1073 devpriv->ai_cmd_running = 0;
1075 /* Stop RPS program. */
1076 MC_DISABLE(P_MC1, MC1_ERPS1);
1078 /* send end of acquisition */
1079 s->async->events |= COMEDI_CB_EOA;
1081 /* disable master interrupt */
1082 irqstatus = 0;
1085 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1086 DEBUG
1087 ("s626_irq_handler: enable interrupt on dio channel %d\n",
1088 cmd->scan_begin_arg);
1090 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1092 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1094 /* tell comedi that data is there */
1095 DEBUG("s626_irq_handler: events %d\n", s->async->events);
1096 comedi_event(dev, s);
1097 break;
1098 case IRQ_GPIO3: /* check dio and conter interrupt */
1100 DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1102 /* manage ai subdevice */
1103 s = dev->subdevices;
1104 cmd = &(s->async->cmd);
1106 /* s626_dio_clear_irq(dev); */
1108 for (group = 0; group < S626_DIO_BANKS; group++) {
1109 irqbit = 0;
1110 /* read interrupt type */
1111 irqbit = DEBIread(dev,
1112 ((struct dio_private *)(dev->
1113 subdevices +
1115 group)->
1116 private)->RDCapFlg);
1118 /* check if interrupt is generated from dio channels */
1119 if (irqbit) {
1120 s626_dio_reset_irq(dev, group, irqbit);
1121 DEBUG
1122 ("s626_irq_handler: check interrupt on dio group %d %d\n",
1123 group, i);
1124 if (devpriv->ai_cmd_running) {
1125 /* check if interrupt is an ai acquisition start trigger */
1126 if ((irqbit >> (cmd->start_arg -
1127 (16 * group)))
1128 == 1 && cmd->start_src == TRIG_EXT) {
1129 DEBUG
1130 ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1131 cmd->start_arg);
1133 /* Start executing the RPS program. */
1134 MC_ENABLE(P_MC1, MC1_ERPS1);
1136 DEBUG
1137 ("s626_irq_handler: aquisition start triggered!!!\n");
1139 if (cmd->scan_begin_src ==
1140 TRIG_EXT) {
1141 DEBUG
1142 ("s626_ai_cmd: enable interrupt on dio channel %d\n",
1143 cmd->
1144 scan_begin_arg);
1146 s626_dio_set_irq(dev,
1147 cmd->scan_begin_arg);
1149 DEBUG
1150 ("s626_irq_handler: External scan trigger is set!!!\n");
1153 if ((irqbit >> (cmd->scan_begin_arg -
1154 (16 * group)))
1155 == 1
1156 && cmd->scan_begin_src ==
1157 TRIG_EXT) {
1158 DEBUG
1159 ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1160 cmd->scan_begin_arg);
1162 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1163 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1165 DEBUG
1166 ("s626_irq_handler: scan triggered!!! %d\n",
1167 devpriv->ai_sample_count);
1168 if (cmd->convert_src ==
1169 TRIG_EXT) {
1171 DEBUG
1172 ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1173 cmd->convert_arg -
1174 (16 * group),
1175 group);
1177 devpriv->ai_convert_count
1178 = cmd->chanlist_len;
1180 s626_dio_set_irq(dev,
1181 cmd->convert_arg);
1183 DEBUG
1184 ("s626_irq_handler: External convert trigger is set!!!\n");
1187 if (cmd->convert_src ==
1188 TRIG_TIMER) {
1189 k = &encpriv[5];
1190 devpriv->ai_convert_count
1191 = cmd->chanlist_len;
1192 k->SetEnable(dev, k,
1193 CLKENAB_ALWAYS);
1196 if ((irqbit >> (cmd->convert_arg -
1197 (16 * group)))
1198 == 1
1199 && cmd->convert_src == TRIG_EXT) {
1200 DEBUG
1201 ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1202 cmd->convert_arg);
1204 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1205 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1207 DEBUG
1208 ("s626_irq_handler: adc convert triggered!!!\n");
1210 devpriv->ai_convert_count--;
1212 if (devpriv->ai_convert_count >
1213 0) {
1215 DEBUG
1216 ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1217 cmd->convert_arg -
1218 (16 * group),
1219 group);
1221 s626_dio_set_irq(dev,
1222 cmd->convert_arg);
1224 DEBUG
1225 ("s626_irq_handler: External trigger is set!!!\n");
1229 break;
1233 /* read interrupt type */
1234 irqbit = DEBIread(dev, LP_RDMISC2);
1236 /* check interrupt on counters */
1237 DEBUG("s626_irq_handler: check counters interrupt %d\n",
1238 irqbit);
1240 if (irqbit & IRQ_COINT1A) {
1241 DEBUG
1242 ("s626_irq_handler: interrupt on counter 1A overflow\n");
1243 k = &encpriv[0];
1245 /* clear interrupt capture flag */
1246 k->ResetCapFlags(dev, k);
1248 if (irqbit & IRQ_COINT2A) {
1249 DEBUG
1250 ("s626_irq_handler: interrupt on counter 2A overflow\n");
1251 k = &encpriv[1];
1253 /* clear interrupt capture flag */
1254 k->ResetCapFlags(dev, k);
1256 if (irqbit & IRQ_COINT3A) {
1257 DEBUG
1258 ("s626_irq_handler: interrupt on counter 3A overflow\n");
1259 k = &encpriv[2];
1261 /* clear interrupt capture flag */
1262 k->ResetCapFlags(dev, k);
1264 if (irqbit & IRQ_COINT1B) {
1265 DEBUG
1266 ("s626_irq_handler: interrupt on counter 1B overflow\n");
1267 k = &encpriv[3];
1269 /* clear interrupt capture flag */
1270 k->ResetCapFlags(dev, k);
1272 if (irqbit & IRQ_COINT2B) {
1273 DEBUG
1274 ("s626_irq_handler: interrupt on counter 2B overflow\n");
1275 k = &encpriv[4];
1277 /* clear interrupt capture flag */
1278 k->ResetCapFlags(dev, k);
1280 if (devpriv->ai_convert_count > 0) {
1281 devpriv->ai_convert_count--;
1282 if (devpriv->ai_convert_count == 0)
1283 k->SetEnable(dev, k, CLKENAB_INDEX);
1285 if (cmd->convert_src == TRIG_TIMER) {
1286 DEBUG
1287 ("s626_irq_handler: conver timer trigger!!! %d\n",
1288 devpriv->ai_convert_count);
1290 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1291 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1295 if (irqbit & IRQ_COINT3B) {
1296 DEBUG
1297 ("s626_irq_handler: interrupt on counter 3B overflow\n");
1298 k = &encpriv[5];
1300 /* clear interrupt capture flag */
1301 k->ResetCapFlags(dev, k);
1303 if (cmd->scan_begin_src == TRIG_TIMER) {
1304 DEBUG
1305 ("s626_irq_handler: scan timer trigger!!!\n");
1307 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1308 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1311 if (cmd->convert_src == TRIG_TIMER) {
1312 DEBUG
1313 ("s626_irq_handler: convert timer trigger is set\n");
1314 k = &encpriv[4];
1315 devpriv->ai_convert_count = cmd->chanlist_len;
1316 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1321 /* enable interrupt */
1322 writel(irqstatus, devpriv->base_addr + P_IER);
1324 DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1326 spin_unlock_irqrestore(&dev->spinlock, flags);
1327 return IRQ_HANDLED;
1330 static int s626_detach(struct comedi_device *dev)
1332 if (devpriv) {
1333 /* stop ai_command */
1334 devpriv->ai_cmd_running = 0;
1336 if (devpriv->base_addr) {
1337 /* interrupt mask */
1338 WR7146(P_IER, 0); /* Disable master interrupt. */
1339 WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
1341 /* Disable the watchdog timer and battery charger. */
1342 WriteMISC2(dev, 0);
1344 /* Close all interfaces on 7146 device. */
1345 WR7146(P_MC1, MC1_SHUTDOWN);
1346 WR7146(P_ACON1, ACON1_BASE);
1348 CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1349 CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1352 if (dev->irq)
1353 free_irq(dev->irq, dev);
1355 if (devpriv->base_addr)
1356 iounmap(devpriv->base_addr);
1358 if (devpriv->pdev) {
1359 if (devpriv->got_regions)
1360 comedi_pci_disable(devpriv->pdev);
1361 pci_dev_put(devpriv->pdev);
1365 DEBUG("s626_detach: S626 detached!\n");
1367 return 0;
1371 * this functions build the RPS program for hardware driven acquistion
1373 void ResetADC(struct comedi_device *dev, uint8_t * ppl)
1375 register uint32_t *pRPS;
1376 uint32_t JmpAdrs;
1377 uint16_t i;
1378 uint16_t n;
1379 uint32_t LocalPPL;
1380 struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1382 /* Stop RPS program in case it is currently running. */
1383 MC_DISABLE(P_MC1, MC1_ERPS1);
1385 /* Set starting logical address to write RPS commands. */
1386 pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1388 /* Initialize RPS instruction pointer. */
1389 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1391 /* Construct RPS program in RPSBuf DMA buffer */
1393 if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1394 DEBUG("ResetADC: scan_begin pause inserted\n");
1395 /* Wait for Start trigger. */
1396 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1397 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1400 /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1401 * because the first RPS DEBI Write following a non-RPS DEBI write
1402 * seems to always fail. If we don't do this dummy write, the ADC
1403 * gain might not be set to the value required for the first slot in
1404 * the poll list; the ADC gain would instead remain unchanged from
1405 * the previously programmed value.
1407 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1408 /* Write DEBI Write command and address to shadow RAM. */
1410 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1411 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1412 /* Write DEBI immediate data to shadow RAM: */
1414 *pRPS++ = GSEL_BIPOLAR5V;
1415 /* arbitrary immediate data value. */
1417 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1418 /* Reset "shadow RAM uploaded" flag. */
1419 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1420 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
1422 /* Digitize all slots in the poll list. This is implemented as a
1423 * for loop to limit the slot count to 16 in case the application
1424 * forgot to set the EOPL flag in the final slot.
1426 for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1427 /* Convert application's poll list item to private board class
1428 * format. Each app poll list item is an uint8_t with form
1429 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1430 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1432 LocalPPL =
1433 (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1434 GSEL_BIPOLAR10V);
1436 /* Switch ADC analog gain. */
1437 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
1438 /* and address to */
1439 /* shadow RAM. */
1440 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1441 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
1442 /* immediate data to */
1443 /* shadow RAM. */
1444 *pRPS++ = LocalPPL;
1445 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
1446 /* flag. */
1447 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1448 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
1449 /* finish. */
1451 /* Select ADC analog input channel. */
1452 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1453 /* Write DEBI command and address to shadow RAM. */
1454 *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1455 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1456 /* Write DEBI immediate data to shadow RAM. */
1457 *pRPS++ = LocalPPL;
1458 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1459 /* Reset "shadow RAM uploaded" flag. */
1461 *pRPS++ = RPS_UPLOAD | RPS_DEBI;
1462 /* Invoke shadow RAM upload. */
1464 *pRPS++ = RPS_PAUSE | RPS_DEBI;
1465 /* Wait for shadow upload to finish. */
1467 /* Delay at least 10 microseconds for analog input settling.
1468 * Instead of padding with NOPs, we use RPS_JUMP instructions
1469 * here; this allows us to produce a longer delay than is
1470 * possible with NOPs because each RPS_JUMP flushes the RPS'
1471 * instruction prefetch pipeline.
1473 JmpAdrs =
1474 (uint32_t) devpriv->RPSBuf.PhysicalBase +
1475 (uint32_t) ((unsigned long)pRPS -
1476 (unsigned long)devpriv->RPSBuf.LogicalBase);
1477 for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1478 JmpAdrs += 8; /* Repeat to implement time delay: */
1479 *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
1480 *pRPS++ = JmpAdrs;
1483 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1484 DEBUG("ResetADC: convert pause inserted\n");
1485 /* Wait for Start trigger. */
1486 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1487 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1489 /* Start ADC by pulsing GPIO1. */
1490 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1491 *pRPS++ = GPIO_BASE | GPIO1_LO;
1492 *pRPS++ = RPS_NOP;
1493 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1494 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1495 *pRPS++ = GPIO_BASE | GPIO1_HI;
1497 /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1498 * busy) and for data from previous conversion to shift into FB
1499 * BUFFER 1 register.
1501 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1503 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1504 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1505 *pRPS++ =
1506 (uint32_t) devpriv->ANABuf.PhysicalBase +
1507 (devpriv->AdcItems << 2);
1509 /* If this slot's EndOfPollList flag is set, all channels have */
1510 /* now been processed. */
1511 if (*ppl++ & EOPL) {
1512 devpriv->AdcItems++; /* Adjust poll list item count. */
1513 break; /* Exit poll list processing loop. */
1516 DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1518 /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1519 * ADC to stabilize for 2 microseconds before starting the final
1520 * (dummy) conversion. This delay is necessary to allow sufficient
1521 * time between last conversion finished and the start of the dummy
1522 * conversion. Without this delay, the last conversion's data value
1523 * is sometimes set to the previous conversion's data value.
1525 for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1526 *pRPS++ = RPS_NOP;
1528 /* Start a dummy conversion to cause the data from the last
1529 * conversion of interest to be shifted in.
1531 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1532 *pRPS++ = GPIO_BASE | GPIO1_LO;
1533 *pRPS++ = RPS_NOP;
1534 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1535 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1536 *pRPS++ = GPIO_BASE | GPIO1_HI;
1538 /* Wait for the data from the last conversion of interest to arrive
1539 * in FB BUFFER 1 register.
1541 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1543 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1544 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
1545 *pRPS++ =
1546 (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
1548 /* Indicate ADC scan loop is finished. */
1549 /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
1551 /* invoke interrupt */
1552 if (devpriv->ai_cmd_running == 1) {
1553 DEBUG("ResetADC: insert irq in ADC RPS task\n");
1554 *pRPS++ = RPS_IRQ;
1556 /* Restart RPS program at its beginning. */
1557 *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
1558 *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1560 /* End of RPS program build */
1563 /* TO COMPLETE, IF NECESSARY */
1564 static int s626_ai_insn_config(struct comedi_device *dev,
1565 struct comedi_subdevice *s,
1566 struct comedi_insn *insn, unsigned int *data)
1569 return -EINVAL;
1572 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1573 /* { */
1574 /* register uint8_t i; */
1575 /* register int32_t *readaddr; */
1577 /* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
1579 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1580 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1582 /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1583 /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1585 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1586 * first uint16_t in the buffer because it contains junk data from
1587 * the final ADC of the previous poll list scan.
1589 /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1591 /* Convert ADC data to 16-bit integer values and copy to application buffer. */
1592 /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1593 /* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1594 /* DEBUG("s626_ai_rinsn: data %d \n",*data); */
1595 /* data++; */
1596 /* } */
1598 /* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1599 /* return i; */
1600 /* } */
1602 static int s626_ai_insn_read(struct comedi_device *dev,
1603 struct comedi_subdevice *s,
1604 struct comedi_insn *insn, unsigned int *data)
1606 uint16_t chan = CR_CHAN(insn->chanspec);
1607 uint16_t range = CR_RANGE(insn->chanspec);
1608 uint16_t AdcSpec = 0;
1609 uint32_t GpioImage;
1610 int n;
1612 /* interrupt call test */
1613 /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1614 /* Writing a logical 1 into any of the RPS_PSR bits causes the
1615 * corresponding interrupt to be generated if enabled
1618 DEBUG("s626_ai_insn_read: entering\n");
1620 /* Convert application's ADC specification into form
1621 * appropriate for register programming.
1623 if (range == 0)
1624 AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1625 else
1626 AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1628 /* Switch ADC analog gain. */
1629 DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
1631 /* Select ADC analog input channel. */
1632 DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
1634 for (n = 0; n < insn->n; n++) {
1636 /* Delay 10 microseconds for analog input settling. */
1637 udelay(10);
1639 /* Start ADC by pulsing GPIO1 low. */
1640 GpioImage = RR7146(P_GPIO);
1641 /* Assert ADC Start command */
1642 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1643 /* and stretch it out. */
1644 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1645 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1646 /* Negate ADC Start command. */
1647 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1649 /* Wait for ADC to complete (GPIO2 is asserted high when */
1650 /* ADC not busy) and for data from previous conversion to */
1651 /* shift into FB BUFFER 1 register. */
1653 /* Wait for ADC done. */
1654 while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1656 /* Fetch ADC data. */
1657 if (n != 0)
1658 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1660 /* Allow the ADC to stabilize for 4 microseconds before
1661 * starting the next (final) conversion. This delay is
1662 * necessary to allow sufficient time between last
1663 * conversion finished and the start of the next
1664 * conversion. Without this delay, the last conversion's
1665 * data value is sometimes set to the previous
1666 * conversion's data value.
1668 udelay(4);
1671 /* Start a dummy conversion to cause the data from the
1672 * previous conversion to be shifted in. */
1673 GpioImage = RR7146(P_GPIO);
1675 /* Assert ADC Start command */
1676 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1677 /* and stretch it out. */
1678 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1679 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1680 /* Negate ADC Start command. */
1681 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1683 /* Wait for the data to arrive in FB BUFFER 1 register. */
1685 /* Wait for ADC done. */
1686 while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1688 /* Fetch ADC data from audio interface's input shift register. */
1690 /* Fetch ADC data. */
1691 if (n != 0)
1692 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1694 DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1696 return n;
1699 static int s626_ai_load_polllist(uint8_t * ppl, struct comedi_cmd *cmd)
1702 int n;
1704 for (n = 0; n < cmd->chanlist_len; n++) {
1705 if (CR_RANGE((cmd->chanlist)[n]) == 0)
1706 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1707 else
1708 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1710 if (n != 0)
1711 ppl[n - 1] |= EOPL;
1713 return n;
1716 static int s626_ai_inttrig(struct comedi_device *dev,
1717 struct comedi_subdevice *s, unsigned int trignum)
1719 if (trignum != 0)
1720 return -EINVAL;
1722 DEBUG("s626_ai_inttrig: trigger adc start...");
1724 /* Start executing the RPS program. */
1725 MC_ENABLE(P_MC1, MC1_ERPS1);
1727 s->async->inttrig = NULL;
1729 DEBUG(" done\n");
1731 return 1;
1734 /* TO COMPLETE */
1735 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1738 uint8_t ppl[16];
1739 struct comedi_cmd *cmd = &s->async->cmd;
1740 struct enc_private *k;
1741 int tick;
1743 DEBUG("s626_ai_cmd: entering command function\n");
1745 if (devpriv->ai_cmd_running) {
1746 printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1747 dev->minor);
1748 return -EBUSY;
1750 /* disable interrupt */
1751 writel(0, devpriv->base_addr + P_IER);
1753 /* clear interrupt request */
1754 writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1756 /* clear any pending interrupt */
1757 s626_dio_clear_irq(dev);
1758 /* s626_enc_clear_irq(dev); */
1760 /* reset ai_cmd_running flag */
1761 devpriv->ai_cmd_running = 0;
1763 /* test if cmd is valid */
1764 if (cmd == NULL) {
1765 DEBUG("s626_ai_cmd: NULL command\n");
1766 return -EINVAL;
1767 } else {
1768 DEBUG("s626_ai_cmd: command recieved!!!\n");
1771 if (dev->irq == 0) {
1772 comedi_error(dev,
1773 "s626_ai_cmd: cannot run command without an irq");
1774 return -EIO;
1777 s626_ai_load_polllist(ppl, cmd);
1778 devpriv->ai_cmd_running = 1;
1779 devpriv->ai_convert_count = 0;
1781 switch (cmd->scan_begin_src) {
1782 case TRIG_FOLLOW:
1783 break;
1784 case TRIG_TIMER:
1785 /* set a conter to generate adc trigger at scan_begin_arg interval */
1786 k = &encpriv[5];
1787 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1788 cmd->flags & TRIG_ROUND_MASK);
1790 /* load timer value and enable interrupt */
1791 s626_timer_load(dev, k, tick);
1792 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1794 DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1795 tick);
1797 break;
1798 case TRIG_EXT:
1799 /* set the digital line and interrupt for scan trigger */
1800 if (cmd->start_src != TRIG_EXT)
1801 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1803 DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1805 break;
1808 switch (cmd->convert_src) {
1809 case TRIG_NOW:
1810 break;
1811 case TRIG_TIMER:
1812 /* set a conter to generate adc trigger at convert_arg interval */
1813 k = &encpriv[4];
1814 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1815 cmd->flags & TRIG_ROUND_MASK);
1817 /* load timer value and enable interrupt */
1818 s626_timer_load(dev, k, tick);
1819 k->SetEnable(dev, k, CLKENAB_INDEX);
1821 DEBUG
1822 ("s626_ai_cmd: convert trigger timer is set with value %d\n",
1823 tick);
1824 break;
1825 case TRIG_EXT:
1826 /* set the digital line and interrupt for convert trigger */
1827 if (cmd->scan_begin_src != TRIG_EXT
1828 && cmd->start_src == TRIG_EXT)
1829 s626_dio_set_irq(dev, cmd->convert_arg);
1831 DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1833 break;
1836 switch (cmd->stop_src) {
1837 case TRIG_COUNT:
1838 /* data arrives as one packet */
1839 devpriv->ai_sample_count = cmd->stop_arg;
1840 devpriv->ai_continous = 0;
1841 break;
1842 case TRIG_NONE:
1843 /* continous aquisition */
1844 devpriv->ai_continous = 1;
1845 devpriv->ai_sample_count = 0;
1846 break;
1849 ResetADC(dev, ppl);
1851 switch (cmd->start_src) {
1852 case TRIG_NOW:
1853 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1854 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1856 /* Start executing the RPS program. */
1857 MC_ENABLE(P_MC1, MC1_ERPS1);
1859 DEBUG("s626_ai_cmd: ADC triggered\n");
1860 s->async->inttrig = NULL;
1861 break;
1862 case TRIG_EXT:
1863 /* configure DIO channel for acquisition trigger */
1864 s626_dio_set_irq(dev, cmd->start_arg);
1866 DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1868 s->async->inttrig = NULL;
1869 break;
1870 case TRIG_INT:
1871 s->async->inttrig = s626_ai_inttrig;
1872 break;
1875 /* enable interrupt */
1876 writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1878 DEBUG("s626_ai_cmd: command function terminated\n");
1880 return 0;
1883 static int s626_ai_cmdtest(struct comedi_device *dev,
1884 struct comedi_subdevice *s, struct comedi_cmd *cmd)
1886 int err = 0;
1887 int tmp;
1889 /* cmdtest tests a particular command to see if it is valid. Using
1890 * the cmdtest ioctl, a user can create a valid cmd and then have it
1891 * executes by the cmd ioctl.
1893 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1894 * command passes. */
1896 /* step 1: make sure trigger sources are trivially valid */
1898 tmp = cmd->start_src;
1899 cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1900 if (!cmd->start_src || tmp != cmd->start_src)
1901 err++;
1903 tmp = cmd->scan_begin_src;
1904 cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1905 if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1906 err++;
1908 tmp = cmd->convert_src;
1909 cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1910 if (!cmd->convert_src || tmp != cmd->convert_src)
1911 err++;
1913 tmp = cmd->scan_end_src;
1914 cmd->scan_end_src &= TRIG_COUNT;
1915 if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1916 err++;
1918 tmp = cmd->stop_src;
1919 cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1920 if (!cmd->stop_src || tmp != cmd->stop_src)
1921 err++;
1923 if (err)
1924 return 1;
1926 /* step 2: make sure trigger sources are unique and mutually
1927 compatible */
1929 /* note that mutual compatiblity is not an issue here */
1930 if (cmd->scan_begin_src != TRIG_TIMER &&
1931 cmd->scan_begin_src != TRIG_EXT
1932 && cmd->scan_begin_src != TRIG_FOLLOW)
1933 err++;
1934 if (cmd->convert_src != TRIG_TIMER &&
1935 cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1936 err++;
1937 if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1938 err++;
1940 if (err)
1941 return 2;
1943 /* step 3: make sure arguments are trivially compatible */
1945 if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1946 cmd->start_arg = 0;
1947 err++;
1950 if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1951 cmd->start_arg = 39;
1952 err++;
1955 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1956 cmd->scan_begin_arg = 39;
1957 err++;
1960 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1961 cmd->convert_arg = 39;
1962 err++;
1964 #define MAX_SPEED 200000 /* in nanoseconds */
1965 #define MIN_SPEED 2000000000 /* in nanoseconds */
1967 if (cmd->scan_begin_src == TRIG_TIMER) {
1968 if (cmd->scan_begin_arg < MAX_SPEED) {
1969 cmd->scan_begin_arg = MAX_SPEED;
1970 err++;
1972 if (cmd->scan_begin_arg > MIN_SPEED) {
1973 cmd->scan_begin_arg = MIN_SPEED;
1974 err++;
1976 } else {
1977 /* external trigger */
1978 /* should be level/edge, hi/lo specification here */
1979 /* should specify multiple external triggers */
1980 /* if(cmd->scan_begin_arg>9){ */
1981 /* cmd->scan_begin_arg=9; */
1982 /* err++; */
1983 /* } */
1985 if (cmd->convert_src == TRIG_TIMER) {
1986 if (cmd->convert_arg < MAX_SPEED) {
1987 cmd->convert_arg = MAX_SPEED;
1988 err++;
1990 if (cmd->convert_arg > MIN_SPEED) {
1991 cmd->convert_arg = MIN_SPEED;
1992 err++;
1994 } else {
1995 /* external trigger */
1996 /* see above */
1997 /* if(cmd->convert_arg>9){ */
1998 /* cmd->convert_arg=9; */
1999 /* err++; */
2000 /* } */
2003 if (cmd->scan_end_arg != cmd->chanlist_len) {
2004 cmd->scan_end_arg = cmd->chanlist_len;
2005 err++;
2007 if (cmd->stop_src == TRIG_COUNT) {
2008 if (cmd->stop_arg > 0x00ffffff) {
2009 cmd->stop_arg = 0x00ffffff;
2010 err++;
2012 } else {
2013 /* TRIG_NONE */
2014 if (cmd->stop_arg != 0) {
2015 cmd->stop_arg = 0;
2016 err++;
2020 if (err)
2021 return 3;
2023 /* step 4: fix up any arguments */
2025 if (cmd->scan_begin_src == TRIG_TIMER) {
2026 tmp = cmd->scan_begin_arg;
2027 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
2028 cmd->flags & TRIG_ROUND_MASK);
2029 if (tmp != cmd->scan_begin_arg)
2030 err++;
2032 if (cmd->convert_src == TRIG_TIMER) {
2033 tmp = cmd->convert_arg;
2034 s626_ns_to_timer((int *)&cmd->convert_arg,
2035 cmd->flags & TRIG_ROUND_MASK);
2036 if (tmp != cmd->convert_arg)
2037 err++;
2038 if (cmd->scan_begin_src == TRIG_TIMER &&
2039 cmd->scan_begin_arg <
2040 cmd->convert_arg * cmd->scan_end_arg) {
2041 cmd->scan_begin_arg =
2042 cmd->convert_arg * cmd->scan_end_arg;
2043 err++;
2047 if (err)
2048 return 4;
2050 return 0;
2053 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
2055 /* Stop RPS program in case it is currently running. */
2056 MC_DISABLE(P_MC1, MC1_ERPS1);
2058 /* disable master interrupt */
2059 writel(0, devpriv->base_addr + P_IER);
2061 devpriv->ai_cmd_running = 0;
2063 return 0;
2066 /* This function doesn't require a particular form, this is just what
2067 * happens to be used in some of the drivers. It should convert ns
2068 * nanoseconds to a counter value suitable for programming the device.
2069 * Also, it should adjust ns so that it cooresponds to the actual time
2070 * that the device will use. */
2071 static int s626_ns_to_timer(int *nanosec, int round_mode)
2073 int divider, base;
2075 base = 500; /* 2MHz internal clock */
2077 switch (round_mode) {
2078 case TRIG_ROUND_NEAREST:
2079 default:
2080 divider = (*nanosec + base / 2) / base;
2081 break;
2082 case TRIG_ROUND_DOWN:
2083 divider = (*nanosec) / base;
2084 break;
2085 case TRIG_ROUND_UP:
2086 divider = (*nanosec + base - 1) / base;
2087 break;
2090 *nanosec = base * divider;
2091 return divider - 1;
2094 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2095 struct comedi_insn *insn, unsigned int *data)
2098 int i;
2099 uint16_t chan = CR_CHAN(insn->chanspec);
2100 int16_t dacdata;
2102 for (i = 0; i < insn->n; i++) {
2103 dacdata = (int16_t) data[i];
2104 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2105 dacdata -= (0x1fff);
2107 SetDAC(dev, chan, dacdata);
2110 return i;
2113 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2114 struct comedi_insn *insn, unsigned int *data)
2116 int i;
2118 for (i = 0; i < insn->n; i++)
2119 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2121 return i;
2124 /* *************** DIGITAL I/O FUNCTIONS ***************
2125 * All DIO functions address a group of DIO channels by means of
2126 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
2127 * ports A, B and C, respectively.
2130 static void s626_dio_init(struct comedi_device *dev)
2132 uint16_t group;
2133 struct comedi_subdevice *s;
2135 /* Prepare to treat writes to WRCapSel as capture disables. */
2136 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2138 /* For each group of sixteen channels ... */
2139 for (group = 0; group < S626_DIO_BANKS; group++) {
2140 s = dev->subdevices + 2 + group;
2141 DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
2142 DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
2143 /* captures. */
2144 DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
2145 /* default edge */
2146 /* polarity. */
2147 DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
2148 /* to inactive state. */
2150 DEBUG("s626_dio_init: DIO initialized \n");
2153 /* DIO devices are slightly special. Although it is possible to
2154 * implement the insn_read/insn_write interface, it is much more
2155 * useful to applications if you implement the insn_bits interface.
2156 * This allows packed reading/writing of the DIO channels. The comedi
2157 * core can convert between insn_bits and insn_read/write */
2159 static int s626_dio_insn_bits(struct comedi_device *dev,
2160 struct comedi_subdevice *s,
2161 struct comedi_insn *insn, unsigned int *data)
2164 /* Length of data must be 2 (mask and new data, see below) */
2165 if (insn->n == 0)
2166 return 0;
2168 if (insn->n != 2) {
2169 printk
2170 ("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n",
2171 dev->minor);
2172 return -EINVAL;
2176 * The insn data consists of a mask in data[0] and the new data in
2177 * data[1]. The mask defines which bits we are concerning about.
2178 * The new data must be anded with the mask. Each channel
2179 * corresponds to a bit.
2181 if (data[0]) {
2182 /* Check if requested ports are configured for output */
2183 if ((s->io_bits & data[0]) != data[0])
2184 return -EIO;
2186 s->state &= ~data[0];
2187 s->state |= data[0] & data[1];
2189 /* Write out the new digital output lines */
2191 DEBIwrite(dev, diopriv->WRDOut, s->state);
2193 data[1] = DEBIread(dev, diopriv->RDDIn);
2195 return 2;
2198 static int s626_dio_insn_config(struct comedi_device *dev,
2199 struct comedi_subdevice *s,
2200 struct comedi_insn *insn, unsigned int *data)
2203 switch (data[0]) {
2204 case INSN_CONFIG_DIO_QUERY:
2205 data[1] =
2206 (s->
2207 io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
2208 COMEDI_INPUT;
2209 return insn->n;
2210 break;
2211 case COMEDI_INPUT:
2212 s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2213 break;
2214 case COMEDI_OUTPUT:
2215 s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2216 break;
2217 default:
2218 return -EINVAL;
2219 break;
2221 DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2223 return 1;
2226 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2228 unsigned int group;
2229 unsigned int bitmask;
2230 unsigned int status;
2232 /* select dio bank */
2233 group = chan / 16;
2234 bitmask = 1 << (chan - (16 * group));
2235 DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2236 chan - (16 * group), group);
2238 /* set channel to capture positive edge */
2239 status = DEBIread(dev,
2240 ((struct dio_private *)(dev->subdevices + 2 +
2241 group)->private)->RDEdgSel);
2242 DEBIwrite(dev,
2243 ((struct dio_private *)(dev->subdevices + 2 +
2244 group)->private)->WREdgSel,
2245 bitmask | status);
2247 /* enable interrupt on selected channel */
2248 status = DEBIread(dev,
2249 ((struct dio_private *)(dev->subdevices + 2 +
2250 group)->private)->RDIntSel);
2251 DEBIwrite(dev,
2252 ((struct dio_private *)(dev->subdevices + 2 +
2253 group)->private)->WRIntSel,
2254 bitmask | status);
2256 /* enable edge capture write command */
2257 DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2259 /* enable edge capture on selected channel */
2260 status = DEBIread(dev,
2261 ((struct dio_private *)(dev->subdevices + 2 +
2262 group)->private)->RDCapSel);
2263 DEBIwrite(dev,
2264 ((struct dio_private *)(dev->subdevices + 2 +
2265 group)->private)->WRCapSel,
2266 bitmask | status);
2268 return 0;
2271 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2272 unsigned int mask)
2274 DEBUG
2275 ("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n",
2276 mask, group);
2278 /* disable edge capture write command */
2279 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2281 /* enable edge capture on selected channel */
2282 DEBIwrite(dev,
2283 ((struct dio_private *)(dev->subdevices + 2 +
2284 group)->private)->WRCapSel, mask);
2286 return 0;
2289 static int s626_dio_clear_irq(struct comedi_device *dev)
2291 unsigned int group;
2293 /* disable edge capture write command */
2294 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2296 for (group = 0; group < S626_DIO_BANKS; group++) {
2297 /* clear pending events and interrupt */
2298 DEBIwrite(dev,
2299 ((struct dio_private *)(dev->subdevices + 2 +
2300 group)->private)->WRCapSel,
2301 0xffff);
2304 return 0;
2307 /* Now this function initializes the value of the counter (data[0])
2308 and set the subdevice. To complete with trigger and interrupt
2309 configuration */
2310 static int s626_enc_insn_config(struct comedi_device *dev,
2311 struct comedi_subdevice *s,
2312 struct comedi_insn *insn, unsigned int *data)
2314 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2315 /* index. */
2316 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2317 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
2318 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2319 /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
2320 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2321 (CLKENAB_INDEX << BF_CLKENAB);
2322 /* uint16_t DisableIntSrc=TRUE; */
2323 /* uint32_t Preloadvalue; //Counter initial value */
2324 uint16_t valueSrclatch = LATCHSRC_AB_READ;
2325 uint16_t enab = CLKENAB_ALWAYS;
2326 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2328 DEBUG("s626_enc_insn_config: encoder config\n");
2330 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2332 k->SetMode(dev, k, Setup, TRUE);
2333 Preload(dev, k, *(insn->data));
2334 k->PulseIndex(dev, k);
2335 SetLatchSource(dev, k, valueSrclatch);
2336 k->SetEnable(dev, k, (uint16_t) (enab != 0));
2338 return insn->n;
2341 static int s626_enc_insn_read(struct comedi_device *dev,
2342 struct comedi_subdevice *s,
2343 struct comedi_insn *insn, unsigned int *data)
2346 int n;
2347 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2349 DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2350 CR_CHAN(insn->chanspec));
2352 for (n = 0; n < insn->n; n++)
2353 data[n] = ReadLatch(dev, k);
2355 DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2357 return n;
2360 static int s626_enc_insn_write(struct comedi_device *dev,
2361 struct comedi_subdevice *s,
2362 struct comedi_insn *insn, unsigned int *data)
2365 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2367 DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2368 CR_CHAN(insn->chanspec));
2370 /* Set the preload register */
2371 Preload(dev, k, data[0]);
2373 /* Software index pulse forces the preload register to load */
2374 /* into the counter */
2375 k->SetLoadTrig(dev, k, 0);
2376 k->PulseIndex(dev, k);
2377 k->SetLoadTrig(dev, k, 2);
2379 DEBUG("s626_enc_insn_write: End encoder write\n");
2381 return 1;
2384 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
2385 int tick)
2387 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2388 /* index. */
2389 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2390 (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
2391 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2392 (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
2393 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2394 (CLKENAB_INDEX << BF_CLKENAB);
2395 uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2396 /* uint16_t enab=CLKENAB_ALWAYS; */
2398 k->SetMode(dev, k, Setup, FALSE);
2400 /* Set the preload register */
2401 Preload(dev, k, tick);
2403 /* Software index pulse forces the preload register to load */
2404 /* into the counter */
2405 k->SetLoadTrig(dev, k, 0);
2406 k->PulseIndex(dev, k);
2408 /* set reload on counter overflow */
2409 k->SetLoadTrig(dev, k, 1);
2411 /* set interrupt on overflow */
2412 k->SetIntSrc(dev, k, INTSRC_OVER);
2414 SetLatchSource(dev, k, valueSrclatch);
2415 /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2418 /* *********** DAC FUNCTIONS *********** */
2420 /* Slot 0 base settings. */
2421 #define VECT0 (XSD2 | RSD3 | SIB_A2)
2422 /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
2424 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
2425 static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2427 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
2428 static uint8_t trimadrs[] =
2429 { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2431 static void LoadTrimDACs(struct comedi_device *dev)
2433 register uint8_t i;
2435 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2436 for (i = 0; i < ARRAY_SIZE(trimchan); i++)
2437 WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2440 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2441 uint8_t DacData)
2443 uint32_t chan;
2445 /* Save the new setpoint in case the application needs to read it back later. */
2446 devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2448 /* Map logical channel number to physical channel number. */
2449 chan = (uint32_t) trimchan[LogicalChan];
2451 /* Set up TSL2 records for TrimDac write operation. All slots shift
2452 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2453 * can be detected.
2456 SETVECT(2, XSD2 | XFIFO_1 | WS3);
2457 /* Slot 2: Send high uint8_t to target TrimDac. */
2458 SETVECT(3, XSD2 | XFIFO_0 | WS3);
2459 /* Slot 3: Send low uint8_t to target TrimDac. */
2460 SETVECT(4, XSD2 | XFIFO_3 | WS1);
2461 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2462 SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2463 /* Slot 5: Send NOP low uint8_t to DAC0. */
2465 /* Construct and transmit target DAC's serial packet:
2466 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2467 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
2468 * WORD value (that writes a channel 0 NOP command to a non-existent
2469 * main DAC channel) that serves to keep the clock running after the
2470 * packet has been sent to the target DAC.
2473 /* Address the DAC channel within the trimdac device. */
2474 SendDAC(dev, ((uint32_t) chan << 8)
2475 | (uint32_t) DacData); /* Include DAC setpoint data. */
2478 /* ************** EEPROM ACCESS FUNCTIONS ************** */
2479 /* Read uint8_t from EEPROM. */
2481 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2483 uint8_t rtnval;
2485 /* Send EEPROM target address. */
2486 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2487 /* Byte2 = I2C command: write to I2C EEPROM device. */
2488 | I2C_B1(I2C_ATTRSTOP, addr)
2489 /* Byte1 = EEPROM internal target address. */
2490 | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
2491 /* Abort function and declare error if handshake failed. */
2492 DEBUG("I2Cread: error handshake I2Cread a\n");
2493 return 0;
2495 /* Execute EEPROM read. */
2496 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
2498 /* Byte2 = I2C */
2499 /* command: read */
2500 /* from I2C EEPROM */
2501 /* device. */
2502 |I2C_B1(I2C_ATTRSTOP, 0)
2504 /* Byte1 receives */
2505 /* uint8_t from */
2506 /* EEPROM. */
2507 |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
2509 /* Abort function and declare error if handshake failed. */
2510 DEBUG("I2Cread: error handshake I2Cread b\n");
2511 return 0;
2513 /* Return copy of EEPROM value. */
2514 rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2515 return rtnval;
2518 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2520 /* Write I2C command to I2C Transfer Control shadow register. */
2521 WR7146(P_I2CCTRL, val);
2523 /* Upload I2C shadow registers into working registers and wait for */
2524 /* upload confirmation. */
2526 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2527 while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
2529 /* Wait until I2C bus transfer is finished or an error occurs. */
2530 while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
2532 /* Return non-zero if I2C error occured. */
2533 return RR7146(P_I2CCTRL) & I2C_ERR;
2537 /* Private helper function: Write setpoint to an application DAC channel. */
2539 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2541 register uint16_t signmask;
2542 register uint32_t WSImage;
2544 /* Adjust DAC data polarity and set up Polarity Control Register */
2545 /* image. */
2546 signmask = 1 << chan;
2547 if (dacdata < 0) {
2548 dacdata = -dacdata;
2549 devpriv->Dacpol |= signmask;
2550 } else
2551 devpriv->Dacpol &= ~signmask;
2553 /* Limit DAC setpoint value to valid range. */
2554 if ((uint16_t) dacdata > 0x1FFF)
2555 dacdata = 0x1FFF;
2557 /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
2558 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
2559 * data to a non-existent TrimDac channel just to keep the clock
2560 * running after sending data to the target DAC. This is necessary
2561 * to eliminate the clock glitch that would otherwise occur at the
2562 * end of the target DAC's serial data stream. When the sequence
2563 * restarts at V0 (after executing V5), the gate array automatically
2564 * disables gating for the DAC clock and all DAC chip selects.
2567 WSImage = (chan & 2) ? WS1 : WS2;
2568 /* Choose DAC chip select to be asserted. */
2569 SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2570 /* Slot 2: Transmit high data byte to target DAC. */
2571 SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2572 /* Slot 3: Transmit low data byte to target DAC. */
2573 SETVECT(4, XSD2 | XFIFO_3 | WS3);
2574 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2575 SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2576 /* Slot 5: running after writing target DAC's low data byte. */
2578 /* Construct and transmit target DAC's serial packet:
2579 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2580 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
2581 * to a non-existent TrimDac channel) that serves to keep the clock
2582 * running after the packet has been sent to the target DAC.
2584 SendDAC(dev, 0x0F000000
2585 /* Continue clock after target DAC data (write to non-existent trimdac). */
2586 | 0x00004000
2587 /* Address the two main dual-DAC devices (TSL's chip select enables
2588 * target device). */
2589 | ((uint32_t) (chan & 1) << 15)
2590 /* Address the DAC channel within the device. */
2591 | (uint32_t) dacdata); /* Include DAC setpoint data. */
2595 /* Private helper function: Transmit serial data to DAC via Audio
2596 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
2597 * Dacpol contains valid target image.
2600 static void SendDAC(struct comedi_device *dev, uint32_t val)
2603 /* START THE SERIAL CLOCK RUNNING ------------- */
2605 /* Assert DAC polarity control and enable gating of DAC serial clock
2606 * and audio bit stream signals. At this point in time we must be
2607 * assured of being in time slot 0. If we are not in slot 0, the
2608 * serial clock and audio stream signals will be disabled; this is
2609 * because the following DEBIwrite statement (which enables signals
2610 * to be passed through the gate array) would execute before the
2611 * trailing edge of WS1/WS3 (which turns off the signals), thus
2612 * causing the signals to be inactive during the DAC write.
2614 DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2616 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2618 /* Copy DAC setpoint value to DAC's output DMA buffer. */
2620 /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2621 *devpriv->pDacWBuf = val;
2623 /* enab the output DMA transfer. This will cause the DMAC to copy
2624 * the DAC's data value to A2's output FIFO. The DMA transfer will
2625 * then immediately terminate because the protection address is
2626 * reached upon transfer of the first DWORD value.
2628 MC_ENABLE(P_MC1, MC1_A2OUT);
2630 /* While the DMA transfer is executing ... */
2632 /* Reset Audio2 output FIFO's underflow flag (along with any other
2633 * FIFO underflow/overflow flags). When set, this flag will
2634 * indicate that we have emerged from slot 0.
2636 WR7146(P_ISR, ISR_AFOU);
2638 /* Wait for the DMA transfer to finish so that there will be data
2639 * available in the FIFO when time slot 1 tries to transfer a DWORD
2640 * from the FIFO to the output buffer register. We test for DMA
2641 * Done by polling the DMAC enable flag; this flag is automatically
2642 * cleared when the transfer has finished.
2644 while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
2646 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2648 /* FIFO data is now available, so we enable execution of time slots
2649 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
2650 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2651 * detection.
2653 SETVECT(0, XSD2 | RSD3 | SIB_A2);
2655 /* Wait for slot 1 to execute to ensure that the Packet will be
2656 * transmitted. This is detected by polling the Audio2 output FIFO
2657 * underflow flag, which will be set when slot 1 execution has
2658 * finished transferring the DAC's data DWORD from the output FIFO
2659 * to the output buffer register.
2661 while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
2663 /* Set up to trap execution at slot 0 when the TSL sequencer cycles
2664 * back to slot 0 after executing the EOS in slot 5. Also,
2665 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2666 * stored in the last byte to be shifted out of the FIFO's DWORD
2667 * buffer register.
2669 SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2671 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2673 /* Wait for the TSL to finish executing all time slots before
2674 * exiting this function. We must do this so that the next DAC
2675 * write doesn't start, thereby enabling clock/chip select signals:
2677 * 1. Before the TSL sequence cycles back to slot 0, which disables
2678 * the clock/cs signal gating and traps slot // list execution.
2679 * we have not yet finished slot 5 then the clock/cs signals are
2680 * still gated and we have not finished transmitting the stream.
2682 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
2683 * this case, the slot sequence is currently repeating, but with
2684 * clock/cs signals disabled. We must wait for slot 0 to trap
2685 * execution before setting up the next DAC setpoint DMA transfer
2686 * and enabling the clock/cs signals. To detect the end of slot 5,
2687 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
2688 * the TSL has not yet finished executing slot 5 ...
2690 if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2691 /* The trap was set on time and we are still executing somewhere
2692 * in slots 2-5, so we now wait for slot 0 to execute and trap
2693 * TSL execution. This is detected when FB_BUFFER2 MSB changes
2694 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2695 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2697 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
2699 /* Either (1) we were too late setting the slot 0 trap; the TSL
2700 * sequencer restarted slot 0 before we could set the EOS trap flag,
2701 * or (2) we were not late and execution is now trapped at slot 0.
2702 * In either case, we must now change slot 0 so that it will store
2703 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2704 * In order to do this, we reprogram slot 0 so that it will shift in
2705 * SD3, which is driven only by a pull-up resistor.
2707 SETVECT(0, RSD3 | SIB_A2 | EOS);
2709 /* Wait for slot 0 to execute, at which time the TSL is setup for
2710 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
2711 * from 0x00 to 0xFF.
2713 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
2716 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2718 DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
2719 /* MISC2 register. */
2720 DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
2721 DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
2724 /* Initialize the DEBI interface for all transfers. */
2726 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2728 uint16_t retval;
2730 /* Set up DEBI control register value in shadow RAM. */
2731 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2733 /* Execute the DEBI transfer. */
2734 DEBItransfer(dev);
2736 /* Fetch target register value. */
2737 retval = (uint16_t) RR7146(P_DEBIAD);
2739 /* Return register value. */
2740 return retval;
2743 /* Execute a DEBI transfer. This must be called from within a */
2744 /* critical section. */
2745 static void DEBItransfer(struct comedi_device *dev)
2747 /* Initiate upload of shadow RAM to DEBI control register. */
2748 MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2750 /* Wait for completion of upload from shadow RAM to DEBI control */
2751 /* register. */
2752 while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
2754 /* Wait until DEBI transfer is done. */
2755 while (RR7146(P_PSR) & PSR_DEBI_S) ;
2758 /* Write a value to a gate array register. */
2759 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2762 /* Set up DEBI control register value in shadow RAM. */
2763 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2764 WR7146(P_DEBIAD, wdata);
2766 /* Execute the DEBI transfer. */
2767 DEBItransfer(dev);
2770 /* Replace the specified bits in a gate array register. Imports: mask
2771 * specifies bits that are to be preserved, wdata is new value to be
2772 * or'd with the masked original.
2774 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2775 uint16_t wdata)
2778 /* Copy target gate array register into P_DEBIAD register. */
2779 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2780 /* Set up DEBI control reg value in shadow RAM. */
2781 DEBItransfer(dev); /* Execute the DEBI Read transfer. */
2783 /* Write back the modified image. */
2784 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2785 /* Set up DEBI control reg value in shadow RAM. */
2787 WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2788 /* Modify the register image. */
2789 DEBItransfer(dev); /* Execute the DEBI Write transfer. */
2792 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
2793 size_t bsize)
2795 void *vbptr;
2796 dma_addr_t vpptr;
2798 DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2799 if (pdma == NULL)
2800 return;
2801 /* find the matching allocation from the board struct */
2803 vbptr = pdma->LogicalBase;
2804 vpptr = pdma->PhysicalBase;
2805 if (vbptr) {
2806 pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2807 pdma->LogicalBase = 0;
2808 pdma->PhysicalBase = 0;
2810 DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2811 vbptr, bsize, (uint32_t) vpptr);
2815 /* ****** COUNTER FUNCTIONS ******* */
2816 /* All counter functions address a specific counter by means of the
2817 * "Counter" argument, which is a logical counter number. The Counter
2818 * argument may have any of the following legal values: 0=0A, 1=1A,
2819 * 2=2A, 3=0B, 4=1B, 5=2B.
2822 /* Forward declarations for functions that are common to both A and B counters: */
2824 /* ****** PRIVATE COUNTER FUNCTIONS ****** */
2826 /* Read a counter's output latch. */
2828 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2830 register uint32_t value;
2831 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2833 /* Latch counts and fetch LSW of latched counts value. */
2834 value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2836 /* Fetch MSW of latched counts and combine with LSW. */
2837 value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2839 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2841 /* Return latched counts. */
2842 return value;
2845 /* Reset a counter's index and overflow event capture flags. */
2847 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2849 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2850 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2853 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2855 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2856 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2859 /* Return counter setup in a format (COUNTER_SETUP) that is consistent */
2860 /* for both A and B counters. */
2862 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2864 register uint16_t cra;
2865 register uint16_t crb;
2866 register uint16_t setup;
2868 /* Fetch CRA and CRB register images. */
2869 cra = DEBIread(dev, k->MyCRA);
2870 crb = DEBIread(dev, k->MyCRB);
2872 /* Populate the standardized counter setup bit fields. Note: */
2873 /* IndexSrc is restricted to ENC_X or IndxPol. */
2874 setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
2875 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
2876 |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
2877 |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
2878 |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
2879 |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
2881 /* Adjust mode-dependent parameters. */
2882 if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
2883 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2884 |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
2885 |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
2887 else /* If Counter mode (ClkSrcA<1> == 0): */
2888 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
2889 |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
2890 |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
2891 (MULT_X1 << STDBIT_CLKMULT) :
2892 ((cra >> (CRABIT_CLKMULT_A -
2893 STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
2895 /* Return adjusted counter setup. */
2896 return setup;
2899 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2901 register uint16_t cra;
2902 register uint16_t crb;
2903 register uint16_t setup;
2905 /* Fetch CRA and CRB register images. */
2906 cra = DEBIread(dev, k->MyCRA);
2907 crb = DEBIread(dev, k->MyCRB);
2909 /* Populate the standardized counter setup bit fields. Note: */
2910 /* IndexSrc is restricted to ENC_X or IndxPol. */
2911 setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
2912 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
2913 |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
2914 |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
2915 |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
2916 |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
2918 /* Adjust mode-dependent parameters. */
2919 if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
2920 setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
2921 |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2922 |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2924 else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
2925 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2926 |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2927 |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2929 else /* If Counter mode (ClkSrcB<1> == 0): */
2930 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2931 |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
2932 |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
2934 /* Return adjusted counter setup. */
2935 return setup;
2939 * Set the operating mode for the specified counter. The setup
2940 * parameter is treated as a COUNTER_SETUP data type. The following
2941 * parameters are programmable (all other parms are ignored): ClkMult,
2942 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2945 static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
2946 uint16_t Setup, uint16_t DisableIntSrc)
2948 register uint16_t cra;
2949 register uint16_t crb;
2950 register uint16_t setup = Setup; /* Cache the Standard Setup. */
2952 /* Initialize CRA and CRB images. */
2953 cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
2954 |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
2956 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
2957 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
2959 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2960 if (!DisableIntSrc)
2961 cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2962 CRABIT_INTSRC_A));
2964 /* Populate all mode-dependent attributes of CRA & CRB images. */
2965 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2966 case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
2967 /* (Extender valid only for B counters). */
2969 case CLKSRC_TIMER: /* Timer Mode: */
2970 cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
2971 |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
2972 |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
2973 |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
2974 break;
2976 default: /* Counter Mode: */
2977 cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
2978 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
2979 |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
2980 (MULT_X1 << CRABIT_CLKMULT_A) :
2981 ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2982 STDBIT_CLKMULT))));
2985 /* Force positive index polarity if IndxSrc is software-driven only, */
2986 /* otherwise pass it through. */
2987 if (~setup & STDMSK_INDXSRC)
2988 cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2989 STDBIT_INDXPOL));
2991 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2992 /* enable mask to indicate the counter interrupt is disabled. */
2993 if (DisableIntSrc)
2994 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2996 /* While retaining CounterB and LatchSrc configurations, program the */
2997 /* new counter operating mode. */
2998 DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2999 DEBIreplace(dev, k->MyCRB,
3000 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
3003 static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
3004 uint16_t Setup, uint16_t DisableIntSrc)
3006 register uint16_t cra;
3007 register uint16_t crb;
3008 register uint16_t setup = Setup; /* Cache the Standard Setup. */
3010 /* Initialize CRA and CRB images. */
3011 cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
3013 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
3014 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
3015 |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
3017 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
3018 if (!DisableIntSrc)
3019 crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
3020 CRBBIT_INTSRC_B));
3022 /* Populate all mode-dependent attributes of CRA & CRB images. */
3023 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
3024 case CLKSRC_TIMER: /* Timer Mode: */
3025 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
3026 |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
3027 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
3028 |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
3029 break;
3031 case CLKSRC_EXTENDER: /* Extender Mode: */
3032 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
3033 |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
3034 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
3035 |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
3036 break;
3038 default: /* Counter Mode: */
3039 cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
3040 crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
3041 |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
3042 (MULT_X1 << CRBBIT_CLKMULT_B) :
3043 ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
3044 STDBIT_CLKMULT))));
3047 /* Force positive index polarity if IndxSrc is software-driven only, */
3048 /* otherwise pass it through. */
3049 if (~setup & STDMSK_INDXSRC)
3050 crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
3051 CRBBIT_INDXPOL_B));
3053 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
3054 /* enable mask to indicate the counter interrupt is disabled. */
3055 if (DisableIntSrc)
3056 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
3058 /* While retaining CounterA and LatchSrc configurations, program the */
3059 /* new counter operating mode. */
3060 DEBIreplace(dev, k->MyCRA,
3061 (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
3062 DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
3065 /* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
3067 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
3068 uint16_t enab)
3070 DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3071 DEBIreplace(dev, k->MyCRB,
3072 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3073 (uint16_t) (enab << CRBBIT_CLKENAB_A));
3076 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
3077 uint16_t enab)
3079 DEBIreplace(dev, k->MyCRB,
3080 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3081 (uint16_t) (enab << CRBBIT_CLKENAB_B));
3084 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3086 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3089 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3091 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3094 /* Return/set a counter pair's latch trigger source. 0: On read
3095 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3096 * latches B.
3099 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
3100 uint16_t value)
3102 DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3103 DEBIreplace(dev, k->MyCRB,
3104 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3105 (uint16_t) (value << CRBBIT_LATCHSRC));
3107 DEBUG("SetLatchSource: SetLatchSource exit \n");
3111 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3113 * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3118 * Return/set the event that will trigger transfer of the preload
3119 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
3120 * 2=OverflowA (B counters only), 3=disabled.
3123 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
3124 uint16_t Trig)
3126 DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3127 (uint16_t) (Trig << CRABIT_LOADSRC_A));
3130 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
3131 uint16_t Trig)
3133 DEBIreplace(dev, k->MyCRB,
3134 (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3135 (uint16_t) (Trig << CRBBIT_LOADSRC_B));
3138 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3140 return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3143 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3145 return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3148 /* Return/set counter interrupt source and clear any captured
3149 * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
3150 * 2=IndexOnly, 3=IndexAndOverflow.
3153 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3154 uint16_t IntSource)
3156 /* Reset any pending counter overflow or index captures. */
3157 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3158 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3160 /* Program counter interrupt source. */
3161 DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3162 (uint16_t) (IntSource << CRABIT_INTSRC_A));
3164 /* Update MISC2 interrupt enable mask. */
3165 devpriv->CounterIntEnabs =
3166 (devpriv->CounterIntEnabs & ~k->
3167 MyEventBits[3]) | k->MyEventBits[IntSource];
3170 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3171 uint16_t IntSource)
3173 uint16_t crb;
3175 /* Cache writeable CRB register image. */
3176 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3178 /* Reset any pending counter overflow or index captures. */
3179 DEBIwrite(dev, k->MyCRB,
3180 (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3182 /* Program counter interrupt source. */
3183 DEBIwrite(dev, k->MyCRB,
3184 (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3185 CRBBIT_INTSRC_B)));
3187 /* Update MISC2 interrupt enable mask. */
3188 devpriv->CounterIntEnabs =
3189 (devpriv->CounterIntEnabs & ~k->
3190 MyEventBits[3]) | k->MyEventBits[IntSource];
3193 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3195 return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3198 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3200 return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3203 /* Return/set the clock multiplier. */
3205 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3206 /* { */
3207 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3208 /* } */
3210 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
3211 /* { */
3212 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3213 /* } */
3215 /* Return/set the clock polarity. */
3217 /* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3218 /* { */
3219 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3220 /* } */
3222 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
3223 /* { */
3224 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3225 /* } */
3227 /* Return/set the clock source. */
3229 /* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3230 /* { */
3231 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3232 /* } */
3234 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
3235 /* { */
3236 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3237 /* } */
3239 /* Return/set the index polarity. */
3241 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3242 /* { */
3243 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3244 /* } */
3246 /* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
3247 /* { */
3248 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3249 /* } */
3251 /* Return/set the index source. */
3253 /* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3254 /* { */
3255 /* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3256 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3257 /* } */
3259 /* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
3260 /* { */
3261 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3262 /* } */
3264 /* Generate an index pulse. */
3266 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3268 register uint16_t cra;
3270 DEBUG("PulseIndex_A: pulse index enter\n");
3272 cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
3273 DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3274 DEBUG("PulseIndex_A: pulse index step1\n");
3275 DEBIwrite(dev, k->MyCRA, cra);
3278 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3280 register uint16_t crb;
3282 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
3283 DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3284 DEBIwrite(dev, k->MyCRB, crb);
3287 /* Write value into counter preload register. */
3289 static void Preload(struct comedi_device *dev, struct enc_private *k,
3290 uint32_t value)
3292 DEBUG("Preload: preload enter\n");
3293 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); /* Write value to preload register. */
3294 DEBUG("Preload: preload step 1\n");
3295 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3296 (uint16_t) (value >> 16));
3299 static void CountersInit(struct comedi_device *dev)
3301 int chan;
3302 struct enc_private *k;
3303 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
3304 /* index. */
3305 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
3306 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
3307 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
3308 (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
3309 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
3310 (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
3312 /* Disable all counter interrupts and clear any captured counter events. */
3313 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3314 k = &encpriv[chan];
3315 k->SetMode(dev, k, Setup, TRUE);
3316 k->SetIntSrc(dev, k, 0);
3317 k->ResetCapFlags(dev, k);
3318 k->SetEnable(dev, k, CLKENAB_ALWAYS);
3320 DEBUG("CountersInit: counters initialized \n");