2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC 0x01021994
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
64 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN VM_READ
71 #define SHMEM_TRUNCATE VM_WRITE
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT 64
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 SGP_READ
, /* don't exceed i_size, don't allocate page */
82 SGP_CACHE
, /* don't exceed i_size, may allocate page */
83 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
84 SGP_WRITE
, /* may exceed i_size, may allocate page */
87 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
88 struct page
**pagep
, enum sgp_type sgp
, int *type
);
90 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
93 * The above definition of ENTRIES_PER_PAGE, and the use of
94 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
95 * might be reconsidered if it ever diverges from PAGE_SIZE.
97 * Mobility flags are masked out as swap vectors cannot move
99 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
100 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
103 static inline void shmem_dir_free(struct page
*page
)
105 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
108 static struct page
**shmem_dir_map(struct page
*page
)
110 return (struct page
**)kmap_atomic(page
, KM_USER0
);
113 static inline void shmem_dir_unmap(struct page
**dir
)
115 kunmap_atomic(dir
, KM_USER0
);
118 static swp_entry_t
*shmem_swp_map(struct page
*page
)
120 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
123 static inline void shmem_swp_balance_unmap(void)
126 * When passing a pointer to an i_direct entry, to code which
127 * also handles indirect entries and so will shmem_swp_unmap,
128 * we must arrange for the preempt count to remain in balance.
129 * What kmap_atomic of a lowmem page does depends on config
130 * and architecture, so pretend to kmap_atomic some lowmem page.
132 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
135 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
137 kunmap_atomic(entry
, KM_USER1
);
140 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
142 return sb
->s_fs_info
;
146 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
147 * for shared memory and for shared anonymous (/dev/zero) mappings
148 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
149 * consistent with the pre-accounting of private mappings ...
151 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
153 return (flags
& VM_ACCOUNT
)?
154 security_vm_enough_memory(VM_ACCT(size
)): 0;
157 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
159 if (flags
& VM_ACCOUNT
)
160 vm_unacct_memory(VM_ACCT(size
));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow huge sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags
)
171 return (flags
& VM_ACCOUNT
)?
172 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE
));
175 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
177 if (!(flags
& VM_ACCOUNT
))
178 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
181 static const struct super_operations shmem_ops
;
182 static const struct address_space_operations shmem_aops
;
183 static const struct file_operations shmem_file_operations
;
184 static const struct inode_operations shmem_inode_operations
;
185 static const struct inode_operations shmem_dir_inode_operations
;
186 static const struct inode_operations shmem_special_inode_operations
;
187 static struct vm_operations_struct shmem_vm_ops
;
189 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
190 .ra_pages
= 0, /* No readahead */
191 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
,
192 .unplug_io_fn
= default_unplug_io_fn
,
195 static LIST_HEAD(shmem_swaplist
);
196 static DEFINE_MUTEX(shmem_swaplist_mutex
);
198 static void shmem_free_blocks(struct inode
*inode
, long pages
)
200 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
201 if (sbinfo
->max_blocks
) {
202 spin_lock(&sbinfo
->stat_lock
);
203 sbinfo
->free_blocks
+= pages
;
204 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
205 spin_unlock(&sbinfo
->stat_lock
);
209 static int shmem_reserve_inode(struct super_block
*sb
)
211 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
212 if (sbinfo
->max_inodes
) {
213 spin_lock(&sbinfo
->stat_lock
);
214 if (!sbinfo
->free_inodes
) {
215 spin_unlock(&sbinfo
->stat_lock
);
218 sbinfo
->free_inodes
--;
219 spin_unlock(&sbinfo
->stat_lock
);
224 static void shmem_free_inode(struct super_block
*sb
)
226 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
227 if (sbinfo
->max_inodes
) {
228 spin_lock(&sbinfo
->stat_lock
);
229 sbinfo
->free_inodes
++;
230 spin_unlock(&sbinfo
->stat_lock
);
235 * shmem_recalc_inode - recalculate the size of an inode
237 * @inode: inode to recalc
239 * We have to calculate the free blocks since the mm can drop
240 * undirtied hole pages behind our back.
242 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
243 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
245 * It has to be called with the spinlock held.
247 static void shmem_recalc_inode(struct inode
*inode
)
249 struct shmem_inode_info
*info
= SHMEM_I(inode
);
252 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
254 info
->alloced
-= freed
;
255 shmem_unacct_blocks(info
->flags
, freed
);
256 shmem_free_blocks(inode
, freed
);
261 * shmem_swp_entry - find the swap vector position in the info structure
263 * @info: info structure for the inode
264 * @index: index of the page to find
265 * @page: optional page to add to the structure. Has to be preset to
268 * If there is no space allocated yet it will return NULL when
269 * page is NULL, else it will use the page for the needed block,
270 * setting it to NULL on return to indicate that it has been used.
272 * The swap vector is organized the following way:
274 * There are SHMEM_NR_DIRECT entries directly stored in the
275 * shmem_inode_info structure. So small files do not need an addional
278 * For pages with index > SHMEM_NR_DIRECT there is the pointer
279 * i_indirect which points to a page which holds in the first half
280 * doubly indirect blocks, in the second half triple indirect blocks:
282 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
283 * following layout (for SHMEM_NR_DIRECT == 16):
285 * i_indirect -> dir --> 16-19
298 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
300 unsigned long offset
;
304 if (index
< SHMEM_NR_DIRECT
) {
305 shmem_swp_balance_unmap();
306 return info
->i_direct
+index
;
308 if (!info
->i_indirect
) {
310 info
->i_indirect
= *page
;
313 return NULL
; /* need another page */
316 index
-= SHMEM_NR_DIRECT
;
317 offset
= index
% ENTRIES_PER_PAGE
;
318 index
/= ENTRIES_PER_PAGE
;
319 dir
= shmem_dir_map(info
->i_indirect
);
321 if (index
>= ENTRIES_PER_PAGE
/2) {
322 index
-= ENTRIES_PER_PAGE
/2;
323 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
324 index
%= ENTRIES_PER_PAGE
;
331 shmem_dir_unmap(dir
);
332 return NULL
; /* need another page */
334 shmem_dir_unmap(dir
);
335 dir
= shmem_dir_map(subdir
);
341 if (!page
|| !(subdir
= *page
)) {
342 shmem_dir_unmap(dir
);
343 return NULL
; /* need a page */
348 shmem_dir_unmap(dir
);
349 return shmem_swp_map(subdir
) + offset
;
352 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
354 long incdec
= value
? 1: -1;
357 info
->swapped
+= incdec
;
358 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
359 struct page
*page
= kmap_atomic_to_page(entry
);
360 set_page_private(page
, page_private(page
) + incdec
);
365 * shmem_swp_alloc - get the position of the swap entry for the page.
366 * If it does not exist allocate the entry.
368 * @info: info structure for the inode
369 * @index: index of the page to find
370 * @sgp: check and recheck i_size? skip allocation?
372 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
374 struct inode
*inode
= &info
->vfs_inode
;
375 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
376 struct page
*page
= NULL
;
379 if (sgp
!= SGP_WRITE
&&
380 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
381 return ERR_PTR(-EINVAL
);
383 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
385 return shmem_swp_map(ZERO_PAGE(0));
387 * Test free_blocks against 1 not 0, since we have 1 data
388 * page (and perhaps indirect index pages) yet to allocate:
389 * a waste to allocate index if we cannot allocate data.
391 if (sbinfo
->max_blocks
) {
392 spin_lock(&sbinfo
->stat_lock
);
393 if (sbinfo
->free_blocks
<= 1) {
394 spin_unlock(&sbinfo
->stat_lock
);
395 return ERR_PTR(-ENOSPC
);
397 sbinfo
->free_blocks
--;
398 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
399 spin_unlock(&sbinfo
->stat_lock
);
402 spin_unlock(&info
->lock
);
403 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
405 set_page_private(page
, 0);
406 spin_lock(&info
->lock
);
409 shmem_free_blocks(inode
, 1);
410 return ERR_PTR(-ENOMEM
);
412 if (sgp
!= SGP_WRITE
&&
413 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
414 entry
= ERR_PTR(-EINVAL
);
417 if (info
->next_index
<= index
)
418 info
->next_index
= index
+ 1;
421 /* another task gave its page, or truncated the file */
422 shmem_free_blocks(inode
, 1);
423 shmem_dir_free(page
);
425 if (info
->next_index
<= index
&& !IS_ERR(entry
))
426 info
->next_index
= index
+ 1;
431 * shmem_free_swp - free some swap entries in a directory
433 * @dir: pointer to the directory
434 * @edir: pointer after last entry of the directory
435 * @punch_lock: pointer to spinlock when needed for the holepunch case
437 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
438 spinlock_t
*punch_lock
)
440 spinlock_t
*punch_unlock
= NULL
;
444 for (ptr
= dir
; ptr
< edir
; ptr
++) {
446 if (unlikely(punch_lock
)) {
447 punch_unlock
= punch_lock
;
449 spin_lock(punch_unlock
);
453 free_swap_and_cache(*ptr
);
454 *ptr
= (swp_entry_t
){0};
459 spin_unlock(punch_unlock
);
463 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
464 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
469 ptr
= shmem_swp_map(subdir
);
470 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
471 int size
= limit
- offset
;
472 if (size
> LATENCY_LIMIT
)
473 size
= LATENCY_LIMIT
;
474 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
476 if (need_resched()) {
477 shmem_swp_unmap(ptr
);
479 shmem_dir_unmap(*dir
);
483 ptr
= shmem_swp_map(subdir
);
486 shmem_swp_unmap(ptr
);
490 static void shmem_free_pages(struct list_head
*next
)
496 page
= container_of(next
, struct page
, lru
);
498 shmem_dir_free(page
);
500 if (freed
>= LATENCY_LIMIT
) {
507 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
509 struct shmem_inode_info
*info
= SHMEM_I(inode
);
514 unsigned long diroff
;
520 LIST_HEAD(pages_to_free
);
521 long nr_pages_to_free
= 0;
522 long nr_swaps_freed
= 0;
526 spinlock_t
*needs_lock
;
527 spinlock_t
*punch_lock
;
528 unsigned long upper_limit
;
530 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
531 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
532 if (idx
>= info
->next_index
)
535 spin_lock(&info
->lock
);
536 info
->flags
|= SHMEM_TRUNCATE
;
537 if (likely(end
== (loff_t
) -1)) {
538 limit
= info
->next_index
;
539 upper_limit
= SHMEM_MAX_INDEX
;
540 info
->next_index
= idx
;
544 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
545 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
547 upper_limit
= SHMEM_MAX_INDEX
;
549 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
552 needs_lock
= &info
->lock
;
556 topdir
= info
->i_indirect
;
557 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
558 info
->i_indirect
= NULL
;
560 list_add(&topdir
->lru
, &pages_to_free
);
562 spin_unlock(&info
->lock
);
564 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
565 ptr
= info
->i_direct
;
567 if (size
> SHMEM_NR_DIRECT
)
568 size
= SHMEM_NR_DIRECT
;
569 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
573 * If there are no indirect blocks or we are punching a hole
574 * below indirect blocks, nothing to be done.
576 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
580 * The truncation case has already dropped info->lock, and we're safe
581 * because i_size and next_index have already been lowered, preventing
582 * access beyond. But in the punch_hole case, we still need to take
583 * the lock when updating the swap directory, because there might be
584 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
585 * shmem_writepage. However, whenever we find we can remove a whole
586 * directory page (not at the misaligned start or end of the range),
587 * we first NULLify its pointer in the level above, and then have no
588 * need to take the lock when updating its contents: needs_lock and
589 * punch_lock (either pointing to info->lock or NULL) manage this.
592 upper_limit
-= SHMEM_NR_DIRECT
;
593 limit
-= SHMEM_NR_DIRECT
;
594 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
595 offset
= idx
% ENTRIES_PER_PAGE
;
598 dir
= shmem_dir_map(topdir
);
599 stage
= ENTRIES_PER_PAGEPAGE
/2;
600 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
602 diroff
= idx
/ENTRIES_PER_PAGE
;
604 dir
+= ENTRIES_PER_PAGE
/2;
605 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
607 stage
+= ENTRIES_PER_PAGEPAGE
;
610 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
611 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
612 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
614 spin_lock(needs_lock
);
616 spin_unlock(needs_lock
);
621 list_add(&middir
->lru
, &pages_to_free
);
623 shmem_dir_unmap(dir
);
624 dir
= shmem_dir_map(middir
);
632 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
633 if (unlikely(idx
== stage
)) {
634 shmem_dir_unmap(dir
);
635 dir
= shmem_dir_map(topdir
) +
636 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
639 idx
+= ENTRIES_PER_PAGEPAGE
;
643 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
646 needs_lock
= &info
->lock
;
647 if (upper_limit
>= stage
) {
649 spin_lock(needs_lock
);
651 spin_unlock(needs_lock
);
656 list_add(&middir
->lru
, &pages_to_free
);
658 shmem_dir_unmap(dir
);
660 dir
= shmem_dir_map(middir
);
663 punch_lock
= needs_lock
;
664 subdir
= dir
[diroff
];
665 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
667 spin_lock(needs_lock
);
669 spin_unlock(needs_lock
);
674 list_add(&subdir
->lru
, &pages_to_free
);
676 if (subdir
&& page_private(subdir
) /* has swap entries */) {
678 if (size
> ENTRIES_PER_PAGE
)
679 size
= ENTRIES_PER_PAGE
;
680 freed
= shmem_map_and_free_swp(subdir
,
681 offset
, size
, &dir
, punch_lock
);
683 dir
= shmem_dir_map(middir
);
684 nr_swaps_freed
+= freed
;
685 if (offset
|| punch_lock
) {
686 spin_lock(&info
->lock
);
687 set_page_private(subdir
,
688 page_private(subdir
) - freed
);
689 spin_unlock(&info
->lock
);
691 BUG_ON(page_private(subdir
) != freed
);
696 shmem_dir_unmap(dir
);
698 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
700 * Call truncate_inode_pages again: racing shmem_unuse_inode
701 * may have swizzled a page in from swap since vmtruncate or
702 * generic_delete_inode did it, before we lowered next_index.
703 * Also, though shmem_getpage checks i_size before adding to
704 * cache, no recheck after: so fix the narrow window there too.
706 * Recalling truncate_inode_pages_range and unmap_mapping_range
707 * every time for punch_hole (which never got a chance to clear
708 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
709 * yet hardly ever necessary: try to optimize them out later.
711 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
713 unmap_mapping_range(inode
->i_mapping
, start
,
717 spin_lock(&info
->lock
);
718 info
->flags
&= ~SHMEM_TRUNCATE
;
719 info
->swapped
-= nr_swaps_freed
;
720 if (nr_pages_to_free
)
721 shmem_free_blocks(inode
, nr_pages_to_free
);
722 shmem_recalc_inode(inode
);
723 spin_unlock(&info
->lock
);
726 * Empty swap vector directory pages to be freed?
728 if (!list_empty(&pages_to_free
)) {
729 pages_to_free
.prev
->next
= NULL
;
730 shmem_free_pages(pages_to_free
.next
);
734 static void shmem_truncate(struct inode
*inode
)
736 shmem_truncate_range(inode
, inode
->i_size
, (loff_t
)-1);
739 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
741 struct inode
*inode
= dentry
->d_inode
;
742 struct page
*page
= NULL
;
745 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
746 if (attr
->ia_size
< inode
->i_size
) {
748 * If truncating down to a partial page, then
749 * if that page is already allocated, hold it
750 * in memory until the truncation is over, so
751 * truncate_partial_page cannnot miss it were
752 * it assigned to swap.
754 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
755 (void) shmem_getpage(inode
,
756 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
757 &page
, SGP_READ
, NULL
);
762 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
763 * detect if any pages might have been added to cache
764 * after truncate_inode_pages. But we needn't bother
765 * if it's being fully truncated to zero-length: the
766 * nrpages check is efficient enough in that case.
769 struct shmem_inode_info
*info
= SHMEM_I(inode
);
770 spin_lock(&info
->lock
);
771 info
->flags
&= ~SHMEM_PAGEIN
;
772 spin_unlock(&info
->lock
);
777 error
= inode_change_ok(inode
, attr
);
779 error
= inode_setattr(inode
, attr
);
780 #ifdef CONFIG_TMPFS_POSIX_ACL
781 if (!error
&& (attr
->ia_valid
& ATTR_MODE
))
782 error
= generic_acl_chmod(inode
, &shmem_acl_ops
);
785 page_cache_release(page
);
789 static void shmem_delete_inode(struct inode
*inode
)
791 struct shmem_inode_info
*info
= SHMEM_I(inode
);
793 if (inode
->i_op
->truncate
== shmem_truncate
) {
794 truncate_inode_pages(inode
->i_mapping
, 0);
795 shmem_unacct_size(info
->flags
, inode
->i_size
);
797 shmem_truncate(inode
);
798 if (!list_empty(&info
->swaplist
)) {
799 mutex_lock(&shmem_swaplist_mutex
);
800 list_del_init(&info
->swaplist
);
801 mutex_unlock(&shmem_swaplist_mutex
);
804 BUG_ON(inode
->i_blocks
);
805 shmem_free_inode(inode
->i_sb
);
809 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
813 for (ptr
= dir
; ptr
< edir
; ptr
++) {
814 if (ptr
->val
== entry
.val
)
820 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
834 ptr
= info
->i_direct
;
835 spin_lock(&info
->lock
);
836 if (!info
->swapped
) {
837 list_del_init(&info
->swaplist
);
840 limit
= info
->next_index
;
842 if (size
> SHMEM_NR_DIRECT
)
843 size
= SHMEM_NR_DIRECT
;
844 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
847 if (!info
->i_indirect
)
850 dir
= shmem_dir_map(info
->i_indirect
);
851 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
853 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
854 if (unlikely(idx
== stage
)) {
855 shmem_dir_unmap(dir
-1);
856 if (cond_resched_lock(&info
->lock
)) {
857 /* check it has not been truncated */
858 if (limit
> info
->next_index
) {
859 limit
= info
->next_index
;
864 dir
= shmem_dir_map(info
->i_indirect
) +
865 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
868 idx
+= ENTRIES_PER_PAGEPAGE
;
872 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
874 shmem_dir_unmap(dir
);
875 dir
= shmem_dir_map(subdir
);
878 if (subdir
&& page_private(subdir
)) {
879 ptr
= shmem_swp_map(subdir
);
881 if (size
> ENTRIES_PER_PAGE
)
882 size
= ENTRIES_PER_PAGE
;
883 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
884 shmem_swp_unmap(ptr
);
886 shmem_dir_unmap(dir
);
892 shmem_dir_unmap(dir
-1);
894 spin_unlock(&info
->lock
);
898 inode
= igrab(&info
->vfs_inode
);
899 spin_unlock(&info
->lock
);
902 * Move _head_ to start search for next from here.
903 * But be careful: shmem_delete_inode checks list_empty without taking
904 * mutex, and there's an instant in list_move_tail when info->swaplist
905 * would appear empty, if it were the only one on shmem_swaplist. We
906 * could avoid doing it if inode NULL; or use this minor optimization.
908 if (shmem_swaplist
.next
!= &info
->swaplist
)
909 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
910 mutex_unlock(&shmem_swaplist_mutex
);
915 /* Precharge page while we can wait, compensate afterwards */
916 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
919 error
= radix_tree_preload(GFP_KERNEL
);
924 spin_lock(&info
->lock
);
925 ptr
= shmem_swp_entry(info
, idx
, NULL
);
926 if (ptr
&& ptr
->val
== entry
.val
)
927 error
= add_to_page_cache(page
, inode
->i_mapping
,
929 if (error
== -EEXIST
) {
930 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
934 * There might be a more uptodate page coming down
935 * from a stacked writepage: forget our swappage if so.
937 if (PageUptodate(filepage
))
939 page_cache_release(filepage
);
943 delete_from_swap_cache(page
);
944 set_page_dirty(page
);
945 info
->flags
|= SHMEM_PAGEIN
;
946 shmem_swp_set(info
, ptr
, 0);
948 error
= 1; /* not an error, but entry was found */
951 shmem_swp_unmap(ptr
);
952 spin_unlock(&info
->lock
);
953 radix_tree_preload_end();
955 mem_cgroup_uncharge_page(page
);
958 page_cache_release(page
);
959 iput(inode
); /* allows for NULL */
964 * shmem_unuse() search for an eventually swapped out shmem page.
966 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
968 struct list_head
*p
, *next
;
969 struct shmem_inode_info
*info
;
972 mutex_lock(&shmem_swaplist_mutex
);
973 list_for_each_safe(p
, next
, &shmem_swaplist
) {
974 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
975 found
= shmem_unuse_inode(info
, entry
, page
);
980 mutex_unlock(&shmem_swaplist_mutex
);
981 out
: return found
; /* 0 or 1 or -ENOMEM */
985 * Move the page from the page cache to the swap cache.
987 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
989 struct shmem_inode_info
*info
;
990 swp_entry_t
*entry
, swap
;
991 struct address_space
*mapping
;
995 BUG_ON(!PageLocked(page
));
996 mapping
= page
->mapping
;
998 inode
= mapping
->host
;
999 info
= SHMEM_I(inode
);
1000 if (info
->flags
& VM_LOCKED
)
1002 if (!total_swap_pages
)
1006 * shmem_backing_dev_info's capabilities prevent regular writeback or
1007 * sync from ever calling shmem_writepage; but a stacking filesystem
1008 * may use the ->writepage of its underlying filesystem, in which case
1009 * tmpfs should write out to swap only in response to memory pressure,
1010 * and not for pdflush or sync. However, in those cases, we do still
1011 * want to check if there's a redundant swappage to be discarded.
1013 if (wbc
->for_reclaim
)
1014 swap
= get_swap_page();
1018 spin_lock(&info
->lock
);
1019 if (index
>= info
->next_index
) {
1020 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1023 entry
= shmem_swp_entry(info
, index
, NULL
);
1026 * The more uptodate page coming down from a stacked
1027 * writepage should replace our old swappage.
1029 free_swap_and_cache(*entry
);
1030 shmem_swp_set(info
, entry
, 0);
1032 shmem_recalc_inode(inode
);
1034 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1035 remove_from_page_cache(page
);
1036 shmem_swp_set(info
, entry
, swap
.val
);
1037 shmem_swp_unmap(entry
);
1038 if (list_empty(&info
->swaplist
))
1039 inode
= igrab(inode
);
1042 spin_unlock(&info
->lock
);
1043 swap_duplicate(swap
);
1044 BUG_ON(page_mapped(page
));
1045 page_cache_release(page
); /* pagecache ref */
1046 set_page_dirty(page
);
1049 mutex_lock(&shmem_swaplist_mutex
);
1050 /* move instead of add in case we're racing */
1051 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1052 mutex_unlock(&shmem_swaplist_mutex
);
1058 shmem_swp_unmap(entry
);
1060 spin_unlock(&info
->lock
);
1063 set_page_dirty(page
);
1064 if (wbc
->for_reclaim
)
1065 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1071 static inline int shmem_parse_mpol(char *value
, int *policy
, nodemask_t
*policy_nodes
)
1073 char *nodelist
= strchr(value
, ':');
1077 /* NUL-terminate policy string */
1079 if (nodelist_parse(nodelist
, *policy_nodes
))
1081 if (!nodes_subset(*policy_nodes
, node_states
[N_HIGH_MEMORY
]))
1084 if (!strcmp(value
, "default")) {
1085 *policy
= MPOL_DEFAULT
;
1086 /* Don't allow a nodelist */
1089 } else if (!strcmp(value
, "prefer")) {
1090 *policy
= MPOL_PREFERRED
;
1091 /* Insist on a nodelist of one node only */
1093 char *rest
= nodelist
;
1094 while (isdigit(*rest
))
1099 } else if (!strcmp(value
, "bind")) {
1100 *policy
= MPOL_BIND
;
1101 /* Insist on a nodelist */
1104 } else if (!strcmp(value
, "interleave")) {
1105 *policy
= MPOL_INTERLEAVE
;
1107 * Default to online nodes with memory if no nodelist
1110 *policy_nodes
= node_states
[N_HIGH_MEMORY
];
1114 /* Restore string for error message */
1120 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1121 struct shmem_inode_info
*info
, unsigned long idx
)
1123 struct vm_area_struct pvma
;
1126 /* Create a pseudo vma that just contains the policy */
1128 pvma
.vm_pgoff
= idx
;
1130 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1131 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1132 mpol_free(pvma
.vm_policy
);
1136 static struct page
*shmem_alloc_page(gfp_t gfp
,
1137 struct shmem_inode_info
*info
, unsigned long idx
)
1139 struct vm_area_struct pvma
;
1142 /* Create a pseudo vma that just contains the policy */
1144 pvma
.vm_pgoff
= idx
;
1146 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1147 page
= alloc_page_vma(gfp
, &pvma
, 0);
1148 mpol_free(pvma
.vm_policy
);
1152 static inline int shmem_parse_mpol(char *value
, int *policy
,
1153 nodemask_t
*policy_nodes
)
1158 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1159 struct shmem_inode_info
*info
, unsigned long idx
)
1161 return swapin_readahead(entry
, gfp
, NULL
, 0);
1164 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1165 struct shmem_inode_info
*info
, unsigned long idx
)
1167 return alloc_page(gfp
);
1172 * shmem_getpage - either get the page from swap or allocate a new one
1174 * If we allocate a new one we do not mark it dirty. That's up to the
1175 * vm. If we swap it in we mark it dirty since we also free the swap
1176 * entry since a page cannot live in both the swap and page cache
1178 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1179 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1181 struct address_space
*mapping
= inode
->i_mapping
;
1182 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1183 struct shmem_sb_info
*sbinfo
;
1184 struct page
*filepage
= *pagep
;
1185 struct page
*swappage
;
1191 if (idx
>= SHMEM_MAX_INDEX
)
1198 * Normally, filepage is NULL on entry, and either found
1199 * uptodate immediately, or allocated and zeroed, or read
1200 * in under swappage, which is then assigned to filepage.
1201 * But shmem_readpage (required for splice) passes in a locked
1202 * filepage, which may be found not uptodate by other callers
1203 * too, and may need to be copied from the swappage read in.
1207 filepage
= find_lock_page(mapping
, idx
);
1208 if (filepage
&& PageUptodate(filepage
))
1211 gfp
= mapping_gfp_mask(mapping
);
1214 * Try to preload while we can wait, to not make a habit of
1215 * draining atomic reserves; but don't latch on to this cpu.
1217 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1220 radix_tree_preload_end();
1223 spin_lock(&info
->lock
);
1224 shmem_recalc_inode(inode
);
1225 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1226 if (IS_ERR(entry
)) {
1227 spin_unlock(&info
->lock
);
1228 error
= PTR_ERR(entry
);
1234 /* Look it up and read it in.. */
1235 swappage
= lookup_swap_cache(swap
);
1237 shmem_swp_unmap(entry
);
1238 /* here we actually do the io */
1239 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1240 __count_vm_event(PGMAJFAULT
);
1241 *type
|= VM_FAULT_MAJOR
;
1243 spin_unlock(&info
->lock
);
1244 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1246 spin_lock(&info
->lock
);
1247 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1249 error
= PTR_ERR(entry
);
1251 if (entry
->val
== swap
.val
)
1253 shmem_swp_unmap(entry
);
1255 spin_unlock(&info
->lock
);
1260 wait_on_page_locked(swappage
);
1261 page_cache_release(swappage
);
1265 /* We have to do this with page locked to prevent races */
1266 if (TestSetPageLocked(swappage
)) {
1267 shmem_swp_unmap(entry
);
1268 spin_unlock(&info
->lock
);
1269 wait_on_page_locked(swappage
);
1270 page_cache_release(swappage
);
1273 if (PageWriteback(swappage
)) {
1274 shmem_swp_unmap(entry
);
1275 spin_unlock(&info
->lock
);
1276 wait_on_page_writeback(swappage
);
1277 unlock_page(swappage
);
1278 page_cache_release(swappage
);
1281 if (!PageUptodate(swappage
)) {
1282 shmem_swp_unmap(entry
);
1283 spin_unlock(&info
->lock
);
1284 unlock_page(swappage
);
1285 page_cache_release(swappage
);
1291 shmem_swp_set(info
, entry
, 0);
1292 shmem_swp_unmap(entry
);
1293 delete_from_swap_cache(swappage
);
1294 spin_unlock(&info
->lock
);
1295 copy_highpage(filepage
, swappage
);
1296 unlock_page(swappage
);
1297 page_cache_release(swappage
);
1298 flush_dcache_page(filepage
);
1299 SetPageUptodate(filepage
);
1300 set_page_dirty(filepage
);
1302 } else if (!(error
= add_to_page_cache(
1303 swappage
, mapping
, idx
, GFP_NOWAIT
))) {
1304 info
->flags
|= SHMEM_PAGEIN
;
1305 shmem_swp_set(info
, entry
, 0);
1306 shmem_swp_unmap(entry
);
1307 delete_from_swap_cache(swappage
);
1308 spin_unlock(&info
->lock
);
1309 filepage
= swappage
;
1310 set_page_dirty(filepage
);
1313 shmem_swp_unmap(entry
);
1314 spin_unlock(&info
->lock
);
1315 unlock_page(swappage
);
1316 page_cache_release(swappage
);
1317 if (error
== -ENOMEM
) {
1318 /* allow reclaim from this memory cgroup */
1319 error
= mem_cgroup_cache_charge(NULL
,
1320 current
->mm
, gfp
& ~__GFP_HIGHMEM
);
1326 } else if (sgp
== SGP_READ
&& !filepage
) {
1327 shmem_swp_unmap(entry
);
1328 filepage
= find_get_page(mapping
, idx
);
1330 (!PageUptodate(filepage
) || TestSetPageLocked(filepage
))) {
1331 spin_unlock(&info
->lock
);
1332 wait_on_page_locked(filepage
);
1333 page_cache_release(filepage
);
1337 spin_unlock(&info
->lock
);
1339 shmem_swp_unmap(entry
);
1340 sbinfo
= SHMEM_SB(inode
->i_sb
);
1341 if (sbinfo
->max_blocks
) {
1342 spin_lock(&sbinfo
->stat_lock
);
1343 if (sbinfo
->free_blocks
== 0 ||
1344 shmem_acct_block(info
->flags
)) {
1345 spin_unlock(&sbinfo
->stat_lock
);
1346 spin_unlock(&info
->lock
);
1350 sbinfo
->free_blocks
--;
1351 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1352 spin_unlock(&sbinfo
->stat_lock
);
1353 } else if (shmem_acct_block(info
->flags
)) {
1354 spin_unlock(&info
->lock
);
1360 spin_unlock(&info
->lock
);
1361 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1363 shmem_unacct_blocks(info
->flags
, 1);
1364 shmem_free_blocks(inode
, 1);
1369 /* Precharge page while we can wait, compensate after */
1370 error
= mem_cgroup_cache_charge(filepage
, current
->mm
,
1371 gfp
& ~__GFP_HIGHMEM
);
1373 page_cache_release(filepage
);
1374 shmem_unacct_blocks(info
->flags
, 1);
1375 shmem_free_blocks(inode
, 1);
1380 spin_lock(&info
->lock
);
1381 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1383 error
= PTR_ERR(entry
);
1386 shmem_swp_unmap(entry
);
1388 if (error
|| swap
.val
|| 0 != add_to_page_cache_lru(
1389 filepage
, mapping
, idx
, GFP_NOWAIT
)) {
1390 spin_unlock(&info
->lock
);
1391 mem_cgroup_uncharge_page(filepage
);
1392 page_cache_release(filepage
);
1393 shmem_unacct_blocks(info
->flags
, 1);
1394 shmem_free_blocks(inode
, 1);
1400 mem_cgroup_uncharge_page(filepage
);
1401 info
->flags
|= SHMEM_PAGEIN
;
1405 spin_unlock(&info
->lock
);
1406 clear_highpage(filepage
);
1407 flush_dcache_page(filepage
);
1408 SetPageUptodate(filepage
);
1409 if (sgp
== SGP_DIRTY
)
1410 set_page_dirty(filepage
);
1417 if (*pagep
!= filepage
) {
1418 unlock_page(filepage
);
1419 page_cache_release(filepage
);
1424 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1426 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1430 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1431 return VM_FAULT_SIGBUS
;
1433 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1435 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1437 mark_page_accessed(vmf
->page
);
1438 return ret
| VM_FAULT_LOCKED
;
1442 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1444 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1445 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1448 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1451 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1454 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1455 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1459 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1461 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1462 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1463 int retval
= -ENOMEM
;
1465 spin_lock(&info
->lock
);
1466 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1467 if (!user_shm_lock(inode
->i_size
, user
))
1469 info
->flags
|= VM_LOCKED
;
1471 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1472 user_shm_unlock(inode
->i_size
, user
);
1473 info
->flags
&= ~VM_LOCKED
;
1477 spin_unlock(&info
->lock
);
1481 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1483 file_accessed(file
);
1484 vma
->vm_ops
= &shmem_vm_ops
;
1485 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1489 static struct inode
*
1490 shmem_get_inode(struct super_block
*sb
, int mode
, dev_t dev
)
1492 struct inode
*inode
;
1493 struct shmem_inode_info
*info
;
1494 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1496 if (shmem_reserve_inode(sb
))
1499 inode
= new_inode(sb
);
1501 inode
->i_mode
= mode
;
1502 inode
->i_uid
= current
->fsuid
;
1503 inode
->i_gid
= current
->fsgid
;
1504 inode
->i_blocks
= 0;
1505 inode
->i_mapping
->a_ops
= &shmem_aops
;
1506 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1507 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1508 inode
->i_generation
= get_seconds();
1509 info
= SHMEM_I(inode
);
1510 memset(info
, 0, (char *)inode
- (char *)info
);
1511 spin_lock_init(&info
->lock
);
1512 INIT_LIST_HEAD(&info
->swaplist
);
1514 switch (mode
& S_IFMT
) {
1516 inode
->i_op
= &shmem_special_inode_operations
;
1517 init_special_inode(inode
, mode
, dev
);
1520 inode
->i_op
= &shmem_inode_operations
;
1521 inode
->i_fop
= &shmem_file_operations
;
1522 mpol_shared_policy_init(&info
->policy
, sbinfo
->policy
,
1523 &sbinfo
->policy_nodes
);
1527 /* Some things misbehave if size == 0 on a directory */
1528 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1529 inode
->i_op
= &shmem_dir_inode_operations
;
1530 inode
->i_fop
= &simple_dir_operations
;
1534 * Must not load anything in the rbtree,
1535 * mpol_free_shared_policy will not be called.
1537 mpol_shared_policy_init(&info
->policy
, MPOL_DEFAULT
,
1542 shmem_free_inode(sb
);
1547 static const struct inode_operations shmem_symlink_inode_operations
;
1548 static const struct inode_operations shmem_symlink_inline_operations
;
1551 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1552 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1553 * below the loop driver, in the generic fashion that many filesystems support.
1555 static int shmem_readpage(struct file
*file
, struct page
*page
)
1557 struct inode
*inode
= page
->mapping
->host
;
1558 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1564 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1565 loff_t pos
, unsigned len
, unsigned flags
,
1566 struct page
**pagep
, void **fsdata
)
1568 struct inode
*inode
= mapping
->host
;
1569 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1571 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1575 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1576 loff_t pos
, unsigned len
, unsigned copied
,
1577 struct page
*page
, void *fsdata
)
1579 struct inode
*inode
= mapping
->host
;
1581 if (pos
+ copied
> inode
->i_size
)
1582 i_size_write(inode
, pos
+ copied
);
1585 set_page_dirty(page
);
1586 page_cache_release(page
);
1591 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1593 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1594 struct address_space
*mapping
= inode
->i_mapping
;
1595 unsigned long index
, offset
;
1596 enum sgp_type sgp
= SGP_READ
;
1599 * Might this read be for a stacking filesystem? Then when reading
1600 * holes of a sparse file, we actually need to allocate those pages,
1601 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1603 if (segment_eq(get_fs(), KERNEL_DS
))
1606 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1607 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1610 struct page
*page
= NULL
;
1611 unsigned long end_index
, nr
, ret
;
1612 loff_t i_size
= i_size_read(inode
);
1614 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1615 if (index
> end_index
)
1617 if (index
== end_index
) {
1618 nr
= i_size
& ~PAGE_CACHE_MASK
;
1623 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1625 if (desc
->error
== -EINVAL
)
1633 * We must evaluate after, since reads (unlike writes)
1634 * are called without i_mutex protection against truncate
1636 nr
= PAGE_CACHE_SIZE
;
1637 i_size
= i_size_read(inode
);
1638 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1639 if (index
== end_index
) {
1640 nr
= i_size
& ~PAGE_CACHE_MASK
;
1643 page_cache_release(page
);
1651 * If users can be writing to this page using arbitrary
1652 * virtual addresses, take care about potential aliasing
1653 * before reading the page on the kernel side.
1655 if (mapping_writably_mapped(mapping
))
1656 flush_dcache_page(page
);
1658 * Mark the page accessed if we read the beginning.
1661 mark_page_accessed(page
);
1663 page
= ZERO_PAGE(0);
1664 page_cache_get(page
);
1668 * Ok, we have the page, and it's up-to-date, so
1669 * now we can copy it to user space...
1671 * The actor routine returns how many bytes were actually used..
1672 * NOTE! This may not be the same as how much of a user buffer
1673 * we filled up (we may be padding etc), so we can only update
1674 * "pos" here (the actor routine has to update the user buffer
1675 * pointers and the remaining count).
1677 ret
= actor(desc
, page
, offset
, nr
);
1679 index
+= offset
>> PAGE_CACHE_SHIFT
;
1680 offset
&= ~PAGE_CACHE_MASK
;
1682 page_cache_release(page
);
1683 if (ret
!= nr
|| !desc
->count
)
1689 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1690 file_accessed(filp
);
1693 static ssize_t
shmem_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1695 read_descriptor_t desc
;
1697 if ((ssize_t
) count
< 0)
1699 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1709 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1711 return desc
.written
;
1715 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1717 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1719 buf
->f_type
= TMPFS_MAGIC
;
1720 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1721 buf
->f_namelen
= NAME_MAX
;
1722 spin_lock(&sbinfo
->stat_lock
);
1723 if (sbinfo
->max_blocks
) {
1724 buf
->f_blocks
= sbinfo
->max_blocks
;
1725 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1727 if (sbinfo
->max_inodes
) {
1728 buf
->f_files
= sbinfo
->max_inodes
;
1729 buf
->f_ffree
= sbinfo
->free_inodes
;
1731 /* else leave those fields 0 like simple_statfs */
1732 spin_unlock(&sbinfo
->stat_lock
);
1737 * File creation. Allocate an inode, and we're done..
1740 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1742 struct inode
*inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
);
1743 int error
= -ENOSPC
;
1746 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1749 if (error
!= -EOPNOTSUPP
) {
1754 error
= shmem_acl_init(inode
, dir
);
1759 if (dir
->i_mode
& S_ISGID
) {
1760 inode
->i_gid
= dir
->i_gid
;
1762 inode
->i_mode
|= S_ISGID
;
1764 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1765 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1766 d_instantiate(dentry
, inode
);
1767 dget(dentry
); /* Extra count - pin the dentry in core */
1772 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1776 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1782 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1783 struct nameidata
*nd
)
1785 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1791 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1793 struct inode
*inode
= old_dentry
->d_inode
;
1797 * No ordinary (disk based) filesystem counts links as inodes;
1798 * but each new link needs a new dentry, pinning lowmem, and
1799 * tmpfs dentries cannot be pruned until they are unlinked.
1801 ret
= shmem_reserve_inode(inode
->i_sb
);
1805 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1806 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1808 atomic_inc(&inode
->i_count
); /* New dentry reference */
1809 dget(dentry
); /* Extra pinning count for the created dentry */
1810 d_instantiate(dentry
, inode
);
1815 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1817 struct inode
*inode
= dentry
->d_inode
;
1819 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1820 shmem_free_inode(inode
->i_sb
);
1822 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1823 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1825 dput(dentry
); /* Undo the count from "create" - this does all the work */
1829 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1831 if (!simple_empty(dentry
))
1834 drop_nlink(dentry
->d_inode
);
1836 return shmem_unlink(dir
, dentry
);
1840 * The VFS layer already does all the dentry stuff for rename,
1841 * we just have to decrement the usage count for the target if
1842 * it exists so that the VFS layer correctly free's it when it
1845 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1847 struct inode
*inode
= old_dentry
->d_inode
;
1848 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1850 if (!simple_empty(new_dentry
))
1853 if (new_dentry
->d_inode
) {
1854 (void) shmem_unlink(new_dir
, new_dentry
);
1856 drop_nlink(old_dir
);
1857 } else if (they_are_dirs
) {
1858 drop_nlink(old_dir
);
1862 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1863 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1864 old_dir
->i_ctime
= old_dir
->i_mtime
=
1865 new_dir
->i_ctime
= new_dir
->i_mtime
=
1866 inode
->i_ctime
= CURRENT_TIME
;
1870 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1874 struct inode
*inode
;
1875 struct page
*page
= NULL
;
1877 struct shmem_inode_info
*info
;
1879 len
= strlen(symname
) + 1;
1880 if (len
> PAGE_CACHE_SIZE
)
1881 return -ENAMETOOLONG
;
1883 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0);
1887 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1890 if (error
!= -EOPNOTSUPP
) {
1897 info
= SHMEM_I(inode
);
1898 inode
->i_size
= len
-1;
1899 if (len
<= (char *)inode
- (char *)info
) {
1901 memcpy(info
, symname
, len
);
1902 inode
->i_op
= &shmem_symlink_inline_operations
;
1904 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1910 inode
->i_op
= &shmem_symlink_inode_operations
;
1911 kaddr
= kmap_atomic(page
, KM_USER0
);
1912 memcpy(kaddr
, symname
, len
);
1913 kunmap_atomic(kaddr
, KM_USER0
);
1914 set_page_dirty(page
);
1915 page_cache_release(page
);
1917 if (dir
->i_mode
& S_ISGID
)
1918 inode
->i_gid
= dir
->i_gid
;
1919 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1920 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1921 d_instantiate(dentry
, inode
);
1926 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1928 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1932 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1934 struct page
*page
= NULL
;
1935 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1936 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
1942 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
1944 if (!IS_ERR(nd_get_link(nd
))) {
1945 struct page
*page
= cookie
;
1947 mark_page_accessed(page
);
1948 page_cache_release(page
);
1952 static const struct inode_operations shmem_symlink_inline_operations
= {
1953 .readlink
= generic_readlink
,
1954 .follow_link
= shmem_follow_link_inline
,
1957 static const struct inode_operations shmem_symlink_inode_operations
= {
1958 .truncate
= shmem_truncate
,
1959 .readlink
= generic_readlink
,
1960 .follow_link
= shmem_follow_link
,
1961 .put_link
= shmem_put_link
,
1964 #ifdef CONFIG_TMPFS_POSIX_ACL
1966 * Superblocks without xattr inode operations will get security.* xattr
1967 * support from the VFS "for free". As soon as we have any other xattrs
1968 * like ACLs, we also need to implement the security.* handlers at
1969 * filesystem level, though.
1972 static size_t shmem_xattr_security_list(struct inode
*inode
, char *list
,
1973 size_t list_len
, const char *name
,
1976 return security_inode_listsecurity(inode
, list
, list_len
);
1979 static int shmem_xattr_security_get(struct inode
*inode
, const char *name
,
1980 void *buffer
, size_t size
)
1982 if (strcmp(name
, "") == 0)
1984 return xattr_getsecurity(inode
, name
, buffer
, size
);
1987 static int shmem_xattr_security_set(struct inode
*inode
, const char *name
,
1988 const void *value
, size_t size
, int flags
)
1990 if (strcmp(name
, "") == 0)
1992 return security_inode_setsecurity(inode
, name
, value
, size
, flags
);
1995 static struct xattr_handler shmem_xattr_security_handler
= {
1996 .prefix
= XATTR_SECURITY_PREFIX
,
1997 .list
= shmem_xattr_security_list
,
1998 .get
= shmem_xattr_security_get
,
1999 .set
= shmem_xattr_security_set
,
2002 static struct xattr_handler
*shmem_xattr_handlers
[] = {
2003 &shmem_xattr_acl_access_handler
,
2004 &shmem_xattr_acl_default_handler
,
2005 &shmem_xattr_security_handler
,
2010 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2012 return ERR_PTR(-ESTALE
);
2015 static int shmem_match(struct inode
*ino
, void *vfh
)
2019 inum
= (inum
<< 32) | fh
[1];
2020 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2023 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2024 struct fid
*fid
, int fh_len
, int fh_type
)
2026 struct inode
*inode
;
2027 struct dentry
*dentry
= NULL
;
2028 u64 inum
= fid
->raw
[2];
2029 inum
= (inum
<< 32) | fid
->raw
[1];
2034 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2035 shmem_match
, fid
->raw
);
2037 dentry
= d_find_alias(inode
);
2044 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2047 struct inode
*inode
= dentry
->d_inode
;
2052 if (hlist_unhashed(&inode
->i_hash
)) {
2053 /* Unfortunately insert_inode_hash is not idempotent,
2054 * so as we hash inodes here rather than at creation
2055 * time, we need a lock to ensure we only try
2058 static DEFINE_SPINLOCK(lock
);
2060 if (hlist_unhashed(&inode
->i_hash
))
2061 __insert_inode_hash(inode
,
2062 inode
->i_ino
+ inode
->i_generation
);
2066 fh
[0] = inode
->i_generation
;
2067 fh
[1] = inode
->i_ino
;
2068 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2074 static const struct export_operations shmem_export_ops
= {
2075 .get_parent
= shmem_get_parent
,
2076 .encode_fh
= shmem_encode_fh
,
2077 .fh_to_dentry
= shmem_fh_to_dentry
,
2080 static int shmem_parse_options(char *options
, int *mode
, uid_t
*uid
,
2081 gid_t
*gid
, unsigned long *blocks
, unsigned long *inodes
,
2082 int *policy
, nodemask_t
*policy_nodes
)
2084 char *this_char
, *value
, *rest
;
2086 while (options
!= NULL
) {
2087 this_char
= options
;
2090 * NUL-terminate this option: unfortunately,
2091 * mount options form a comma-separated list,
2092 * but mpol's nodelist may also contain commas.
2094 options
= strchr(options
, ',');
2095 if (options
== NULL
)
2098 if (!isdigit(*options
)) {
2105 if ((value
= strchr(this_char
,'=')) != NULL
) {
2109 "tmpfs: No value for mount option '%s'\n",
2114 if (!strcmp(this_char
,"size")) {
2115 unsigned long long size
;
2116 size
= memparse(value
,&rest
);
2118 size
<<= PAGE_SHIFT
;
2119 size
*= totalram_pages
;
2125 *blocks
= DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2126 } else if (!strcmp(this_char
,"nr_blocks")) {
2127 *blocks
= memparse(value
,&rest
);
2130 } else if (!strcmp(this_char
,"nr_inodes")) {
2131 *inodes
= memparse(value
,&rest
);
2134 } else if (!strcmp(this_char
,"mode")) {
2137 *mode
= simple_strtoul(value
,&rest
,8);
2140 } else if (!strcmp(this_char
,"uid")) {
2143 *uid
= simple_strtoul(value
,&rest
,0);
2146 } else if (!strcmp(this_char
,"gid")) {
2149 *gid
= simple_strtoul(value
,&rest
,0);
2152 } else if (!strcmp(this_char
,"mpol")) {
2153 if (shmem_parse_mpol(value
,policy
,policy_nodes
))
2156 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2164 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2170 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2172 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2173 unsigned long max_blocks
= sbinfo
->max_blocks
;
2174 unsigned long max_inodes
= sbinfo
->max_inodes
;
2175 int policy
= sbinfo
->policy
;
2176 nodemask_t policy_nodes
= sbinfo
->policy_nodes
;
2177 unsigned long blocks
;
2178 unsigned long inodes
;
2179 int error
= -EINVAL
;
2181 if (shmem_parse_options(data
, NULL
, NULL
, NULL
, &max_blocks
,
2182 &max_inodes
, &policy
, &policy_nodes
))
2185 spin_lock(&sbinfo
->stat_lock
);
2186 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
2187 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2188 if (max_blocks
< blocks
)
2190 if (max_inodes
< inodes
)
2193 * Those tests also disallow limited->unlimited while any are in
2194 * use, so i_blocks will always be zero when max_blocks is zero;
2195 * but we must separately disallow unlimited->limited, because
2196 * in that case we have no record of how much is already in use.
2198 if (max_blocks
&& !sbinfo
->max_blocks
)
2200 if (max_inodes
&& !sbinfo
->max_inodes
)
2204 sbinfo
->max_blocks
= max_blocks
;
2205 sbinfo
->free_blocks
= max_blocks
- blocks
;
2206 sbinfo
->max_inodes
= max_inodes
;
2207 sbinfo
->free_inodes
= max_inodes
- inodes
;
2208 sbinfo
->policy
= policy
;
2209 sbinfo
->policy_nodes
= policy_nodes
;
2211 spin_unlock(&sbinfo
->stat_lock
);
2216 static void shmem_put_super(struct super_block
*sb
)
2218 kfree(sb
->s_fs_info
);
2219 sb
->s_fs_info
= NULL
;
2222 static int shmem_fill_super(struct super_block
*sb
,
2223 void *data
, int silent
)
2225 struct inode
*inode
;
2226 struct dentry
*root
;
2227 int mode
= S_IRWXUGO
| S_ISVTX
;
2228 uid_t uid
= current
->fsuid
;
2229 gid_t gid
= current
->fsgid
;
2231 struct shmem_sb_info
*sbinfo
;
2232 unsigned long blocks
= 0;
2233 unsigned long inodes
= 0;
2234 int policy
= MPOL_DEFAULT
;
2235 nodemask_t policy_nodes
= node_states
[N_HIGH_MEMORY
];
2239 * Per default we only allow half of the physical ram per
2240 * tmpfs instance, limiting inodes to one per page of lowmem;
2241 * but the internal instance is left unlimited.
2243 if (!(sb
->s_flags
& MS_NOUSER
)) {
2244 blocks
= totalram_pages
/ 2;
2245 inodes
= totalram_pages
- totalhigh_pages
;
2246 if (inodes
> blocks
)
2248 if (shmem_parse_options(data
, &mode
, &uid
, &gid
, &blocks
,
2249 &inodes
, &policy
, &policy_nodes
))
2252 sb
->s_export_op
= &shmem_export_ops
;
2254 sb
->s_flags
|= MS_NOUSER
;
2257 /* Round up to L1_CACHE_BYTES to resist false sharing */
2258 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
2259 L1_CACHE_BYTES
), GFP_KERNEL
);
2263 spin_lock_init(&sbinfo
->stat_lock
);
2264 sbinfo
->max_blocks
= blocks
;
2265 sbinfo
->free_blocks
= blocks
;
2266 sbinfo
->max_inodes
= inodes
;
2267 sbinfo
->free_inodes
= inodes
;
2268 sbinfo
->policy
= policy
;
2269 sbinfo
->policy_nodes
= policy_nodes
;
2271 sb
->s_fs_info
= sbinfo
;
2272 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2273 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2274 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2275 sb
->s_magic
= TMPFS_MAGIC
;
2276 sb
->s_op
= &shmem_ops
;
2277 sb
->s_time_gran
= 1;
2278 #ifdef CONFIG_TMPFS_POSIX_ACL
2279 sb
->s_xattr
= shmem_xattr_handlers
;
2280 sb
->s_flags
|= MS_POSIXACL
;
2283 inode
= shmem_get_inode(sb
, S_IFDIR
| mode
, 0);
2288 root
= d_alloc_root(inode
);
2297 shmem_put_super(sb
);
2301 static struct kmem_cache
*shmem_inode_cachep
;
2303 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2305 struct shmem_inode_info
*p
;
2306 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2309 return &p
->vfs_inode
;
2312 static void shmem_destroy_inode(struct inode
*inode
)
2314 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2315 /* only struct inode is valid if it's an inline symlink */
2316 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2318 shmem_acl_destroy_inode(inode
);
2319 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2322 static void init_once(struct kmem_cache
*cachep
, void *foo
)
2324 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2326 inode_init_once(&p
->vfs_inode
);
2327 #ifdef CONFIG_TMPFS_POSIX_ACL
2329 p
->i_default_acl
= NULL
;
2333 static int init_inodecache(void)
2335 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2336 sizeof(struct shmem_inode_info
),
2337 0, SLAB_PANIC
, init_once
);
2341 static void destroy_inodecache(void)
2343 kmem_cache_destroy(shmem_inode_cachep
);
2346 static const struct address_space_operations shmem_aops
= {
2347 .writepage
= shmem_writepage
,
2348 .set_page_dirty
= __set_page_dirty_no_writeback
,
2350 .readpage
= shmem_readpage
,
2351 .write_begin
= shmem_write_begin
,
2352 .write_end
= shmem_write_end
,
2354 .migratepage
= migrate_page
,
2357 static const struct file_operations shmem_file_operations
= {
2360 .llseek
= generic_file_llseek
,
2361 .read
= shmem_file_read
,
2362 .write
= do_sync_write
,
2363 .aio_write
= generic_file_aio_write
,
2364 .fsync
= simple_sync_file
,
2365 .splice_read
= generic_file_splice_read
,
2366 .splice_write
= generic_file_splice_write
,
2370 static const struct inode_operations shmem_inode_operations
= {
2371 .truncate
= shmem_truncate
,
2372 .setattr
= shmem_notify_change
,
2373 .truncate_range
= shmem_truncate_range
,
2374 #ifdef CONFIG_TMPFS_POSIX_ACL
2375 .setxattr
= generic_setxattr
,
2376 .getxattr
= generic_getxattr
,
2377 .listxattr
= generic_listxattr
,
2378 .removexattr
= generic_removexattr
,
2379 .permission
= shmem_permission
,
2384 static const struct inode_operations shmem_dir_inode_operations
= {
2386 .create
= shmem_create
,
2387 .lookup
= simple_lookup
,
2389 .unlink
= shmem_unlink
,
2390 .symlink
= shmem_symlink
,
2391 .mkdir
= shmem_mkdir
,
2392 .rmdir
= shmem_rmdir
,
2393 .mknod
= shmem_mknod
,
2394 .rename
= shmem_rename
,
2396 #ifdef CONFIG_TMPFS_POSIX_ACL
2397 .setattr
= shmem_notify_change
,
2398 .setxattr
= generic_setxattr
,
2399 .getxattr
= generic_getxattr
,
2400 .listxattr
= generic_listxattr
,
2401 .removexattr
= generic_removexattr
,
2402 .permission
= shmem_permission
,
2406 static const struct inode_operations shmem_special_inode_operations
= {
2407 #ifdef CONFIG_TMPFS_POSIX_ACL
2408 .setattr
= shmem_notify_change
,
2409 .setxattr
= generic_setxattr
,
2410 .getxattr
= generic_getxattr
,
2411 .listxattr
= generic_listxattr
,
2412 .removexattr
= generic_removexattr
,
2413 .permission
= shmem_permission
,
2417 static const struct super_operations shmem_ops
= {
2418 .alloc_inode
= shmem_alloc_inode
,
2419 .destroy_inode
= shmem_destroy_inode
,
2421 .statfs
= shmem_statfs
,
2422 .remount_fs
= shmem_remount_fs
,
2424 .delete_inode
= shmem_delete_inode
,
2425 .drop_inode
= generic_delete_inode
,
2426 .put_super
= shmem_put_super
,
2429 static struct vm_operations_struct shmem_vm_ops
= {
2430 .fault
= shmem_fault
,
2432 .set_policy
= shmem_set_policy
,
2433 .get_policy
= shmem_get_policy
,
2438 static int shmem_get_sb(struct file_system_type
*fs_type
,
2439 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2441 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
, mnt
);
2444 static struct file_system_type tmpfs_fs_type
= {
2445 .owner
= THIS_MODULE
,
2447 .get_sb
= shmem_get_sb
,
2448 .kill_sb
= kill_litter_super
,
2450 static struct vfsmount
*shm_mnt
;
2452 static int __init
init_tmpfs(void)
2456 error
= bdi_init(&shmem_backing_dev_info
);
2460 error
= init_inodecache();
2464 error
= register_filesystem(&tmpfs_fs_type
);
2466 printk(KERN_ERR
"Could not register tmpfs\n");
2470 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2471 tmpfs_fs_type
.name
, NULL
);
2472 if (IS_ERR(shm_mnt
)) {
2473 error
= PTR_ERR(shm_mnt
);
2474 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2480 unregister_filesystem(&tmpfs_fs_type
);
2482 destroy_inodecache();
2484 bdi_destroy(&shmem_backing_dev_info
);
2486 shm_mnt
= ERR_PTR(error
);
2489 module_init(init_tmpfs
)
2492 * shmem_file_setup - get an unlinked file living in tmpfs
2494 * @name: name for dentry (to be seen in /proc/<pid>/maps
2495 * @size: size to be set for the file
2498 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
)
2502 struct inode
*inode
;
2503 struct dentry
*dentry
, *root
;
2506 if (IS_ERR(shm_mnt
))
2507 return (void *)shm_mnt
;
2509 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2510 return ERR_PTR(-EINVAL
);
2512 if (shmem_acct_size(flags
, size
))
2513 return ERR_PTR(-ENOMEM
);
2517 this.len
= strlen(name
);
2518 this.hash
= 0; /* will go */
2519 root
= shm_mnt
->mnt_root
;
2520 dentry
= d_alloc(root
, &this);
2525 file
= get_empty_filp();
2530 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0);
2534 SHMEM_I(inode
)->flags
= flags
& VM_ACCOUNT
;
2535 d_instantiate(dentry
, inode
);
2536 inode
->i_size
= size
;
2537 inode
->i_nlink
= 0; /* It is unlinked */
2538 init_file(file
, shm_mnt
, dentry
, FMODE_WRITE
| FMODE_READ
,
2539 &shmem_file_operations
);
2547 shmem_unacct_size(flags
, size
);
2548 return ERR_PTR(error
);
2552 * shmem_zero_setup - setup a shared anonymous mapping
2554 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2556 int shmem_zero_setup(struct vm_area_struct
*vma
)
2559 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2561 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2563 return PTR_ERR(file
);
2567 vma
->vm_file
= file
;
2568 vma
->vm_ops
= &shmem_vm_ops
;